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ON THE COHOMOLOGY OF CATEGORIES, UNIVERSAL

TODA BRACKETS AND HOMOTOPY PAIRS

HANS-JOACHIM BAUES

Let Top* / ~ be the horllotopy category of pointed spaces and let C be a subcat­

egory consisting of either suspensions ~X 01' loop spaces SlY. The 'universal Tocla
bracket' [3] of the category C is a cohomology dass

in the thircl cohorllology of C where the coefficients Dr" resp. Dn, are also deter­
mined by the category C. Very Ettle is known on these iruportant characteristic
classes of homotopy theory.

Associatecl to the category Pair( C) of pairs in C Hardie [13] studies the 'category
of homotopy pairs' for C which as we show represents a cohorllology class in the
second cohomology of Pair(C). In fact, we obtain a natural transformation

which for n = 2 carries the universal Toda bracket of C to the COhOlllOlogy class rep­
resented by the category of honlotopy pairs for C. Hence the elements A(C}r" resp.
A(C}n, determine the category of homotopy pairs for C up to equivalence. \Ve also
show in §4 that the elenIents A(C)E, resp. /\( C)n, characterize algebraically homo­
topy categories of cofibers C(I), 1 E C, resp. fibers P(f), f E Gf. The coefficients
DE and Dn are described explicitly (§ 3) and examples of these coefficients are com­
puted (§ 4). As special cases we study the horl1otopy categories of CW-complexes
\vith cells only in dimension rn and n; dually we characterize the homotopy cate­
gory of two stage Postnikov systems X with non trivial homotopy groups only in
dimension n~ and n (§ 5). Computations of thc universal Toda bracket for Olle point
unions of spheres (§ 6), of homotopy pairs between Hopf maps (§ 7), and homotopy
pairs betwcen Pontrjagin lllaps (§ 8) are given.

Ty peset by A.,Iw-1:'EX

1



§ 1 The COhOlTIology of categories and linear extensions

For the convenience of the reader and in order to fix notation we recaU basic
definitions concerning the cohomology of categories, linear extensions anel linear
track extensions of categories.

(1.1) Definition. Let e be a category. The category of factorizations in e, denoted
by FC, is given as folIows. Objects are morphisms !,g, ... in e anel rnorphisms
J --+ gare pairs (a, ß) for which -

A Cl') A'

If 19

B (ß B'

commutes in Gf. Here aJß is a factorization of g. Cornposition is clefined by
(o:',ß')(o:,ß) -(O:'O,ßß'). \Ve clearly have (o:,ß) = (o:,l)(l,ß) = (l,ß)(o:,l). A
natural system (of abelian groups) on C is a functor D : Fe --+ Ab. Thc functor D
carries the object f to D f = D(f) andcarries the rnorphism (0:, ß) : f -+ 9 to the
indliced hOlllomorphism

D( 0:, ß) = o:*ß* : Df -+ DCl'fß = Dg

Here we set D(o, 1) = 0*, D(l,ß) = ß*.

We have a canonical forgetful functor 1r : Fe --+ cop x C so that each bifunctor
D : cop x C -+ Ab yields a natural systell1 D7f, as weIl denoted by D. Such a
bifunctor is~lso called a C- bünoelnIe.

(1.2) Definition. Let D be a natural systelll on C. VVe say that

D~E~e

is a linear extensions of thc category C by D if (a), (b) and (c) hold.

(a) E and e havc the salne objects and p is a full functor which is the identity
on objects.

(b) For each f : A -+ B in C the abelian gronp D facts tn:tnsitivcly and
effectively on the subset p-l (f) of morphisms in C. \~Te write Ja + 0: for the
action of oE Df on Ja E p-l(J).

(c) The action satisfies the linear distributivity law:

(fa + O')(go + ß) = Joga + f*ß + g*a.

Two linear extensions E and E' are equivalent if there is an isomorphisln of cate­

gories € : E S::' E' with p' € = P and with €(fo +0:) = €(fo) +0: for /0 E 111or(E), a E
D pfo ' Th~extension E is split if there is a functor s : C -+ E with ps = 1.-

Let C be a small category and let lvI (e, D) bc thc set of equivalencc classes of
linea~extensions of C by D. Then there is a canonical bijection
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(1.3)

which maps the split extension to the zero element; see [2] and IV §6 in [4]. Here
Hn (C, D) denotes the cohomology of C with coefficients in D defined below. vVe
obtain a representing cocycle ßt of the COhOluology dass {E} = 'lj;E E H 2 (C, D) as
follows. Let t be a "splitting" function for p which associates witheach morphism
I : A --+ B in C a morphism 10 = t(/) in E with plo = f. Then t yields a coeycle
.6. t by the fonuula -

(1.4) t(gf) = t(g)t(f) + .6. t (9, f)

with ßt(9, f) E D(gf)· The cohomology dass {E} = {ßt} is trivial if and only if
E is a split extension. vVe call -

D~E~C'
- -

a weak linear extension if there is a linear extension as in (1.2) together with an
equivalence of categories e : C~ C' such that p' = ep.

Next we define the cohomology of a category C with coefficients in a natural
system D on C. In order to get cohomology grollps which are actually sets we
have to assulne that GI is a small category; by change of universe it would also be
possible to define the~oholnology in case C is not slnall.

(1.5) Definition. Let C be a category anel let lVn(C) be thc set of sequences
()'1, ... ,An) of n composable lllorphisms in C (which are the n-sinlplices of thc
nerve of C). For n = 0 let lVo(C) = Ob(C) b~he set of objects in C. Thc 11. - th
cochain group pn = pn(c, D) is the abelian group of a11 functions -

c : lVn(C) --+ U Dg

gE1Hor(Q

(1)

with c( AI, ... ,An) E DAl O... OA
n

• Addition in pfi is given by addillg pointwise in the
abelian groups Dg . The coboundary 8 : pn+l --+ pn is c1efined by the fornUlla

n-I

+ L(-l)ic(/\l"" ,AiAi+1,.·. ,/\n)
i=l

+ (-l)n A~C(A1, ... ,/\n-I) (2)

For 11. = 1 we have (8C)(A) = A*c(A) - /\*c(B) for A : A --+ B E lVI (C). One ean
check that 8c E pn for c E pn-l anel that 88 = O. Hence the COhOlllOlogy groups
[2]
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(3)

are defined, n ~ O. A functor q; : C' -+ C induces the honl0morphisl11

(4)

where 1J*D is the natural sys tem giyen by (4)* D) f = D4J( J)' On cochains the rnap
4>. is giyen by the fonnula

where (A~, ... ,A~) E Nn(C' ). If 4> is an equivalence of categories then 4>* IS an
isomorphisrn. A natural transfonllation T : D -+ D' between natural systenls
induces a horllomorphisrll

T. : H 1I (C, D) -+ H ll (GI, D') (5)

by (T./)(A1, ... ,An) = T)../(A1, ... ,A ll ) where T).. : D).. -+ D~ with A= '\1 0 ... 0 '\n
is giyen by the transfonnation T. Now let

I T

D If
}---t D ~ D'

be a short exact sequence of natural systems on C. Then \ve obtain as usual the
naturallong exact sequence

where ß is the Bockstein hOlllorllorphism. For a cocycle elf representing a class {elf}
in Hn(c, D") we obtain ß{e"} by choosing a cochain c as in (1.5) (1) with Te = c".
This is possible since T is surjective. Then ~ -lSC is a cocycle which represents
ß{c"}.

(1. 7) Remark. The cohomology (1.5) generalizes thc cohomology of a group. In
fact, let G be a group and let G bc the corresponding category with a single object
and with morphisrns given bythe elements in G. A G-rllodule D yields a natural
system D : FG -+ Ab by Dg = D for 9 E G. The inducecl n1aps are giyen

by f*(x) = xi and h.(V) = y, f, h E G. Then the classical definition of the
cohonl0logy H n ( G, D) coincides wi th the defini tion of

Hn(C;, tJ) = Hn(G, D)

giyen by (1.5). Further results anel applications of the cohonl0logy of categories
can be found in [2], [3], [4], [5], [11], [23], [24].

Recall that K(A, B) denotes the set of all nl0rphisrns A -+ B in a category ]{.
Assume for all~bjects A, B in ]( we have an equiyalence relation ~ on ]((A, B).
Then ~ is said to be a natural e~ivalence relation on ]( if f ::: 9 and x ::: V irnplies
x/ ::: yg for f, 9 E lvIor(A, B) and x, y E 11.1or(B , C). In this case we obtain
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the quotient category ](/ :: which has the salne objects as ]( and für which the
rnorphisnl A ----t Bare the equivalence classes {j} in ]((A, B)/ ::. vVe often denote
the equivalence class {j} as weIl by j. -

(1. 8) Defin i tion. A track category T ]{ 01' T =4 !{ is a category ]{ with thc following
additional structure T of tracks.

(i) For j, 9 E ]{(A, B) a set T(j, g) is given. \-\Te write j :: 9 if T(j, g) is non
empty and we write H : j ~ 9 if H E T(j, g). \"le call H a track fronl f tü
9 and we indicate H also by the diagram

~
A JJ.H B

(ii) An elerllent 0 = 0f E T(j, f) and functions
,

+ : T(j, g) x T(g, h) ----t T(j, h),

- : T(j, g) ----t T(g, f)

are given. We call °the trivial track and + is the addition of tracks H and
G denoted by H + G : j ~ h. The function - lnaps H : f :: 9 to thc
negative - H : 9 :: f of H.

(iii) Induced functions

b* : T(f,g) ----t T(bj,bg),

a* ; T(!,g) ----t T(fa,ga)

are given for b : B ----t B' and a : A' ----t A where A, A', B, B' E Ob(]().
(iv) This structure satisfies the following conditions

H + (G + F) = (H +G) + F,

H +0 = O+H = H,

H + (-H) = 0, (-H) + H = 0,

a*(H + G) = (a· H) + (a*G),

a·( -H) = -a*(H),

b.(H + G) = (b.H) + (b*G),

b*(-H) = -(b*H),

(a' a)* = a* (a') *, 1* = idelltity

(b'b). = (b').b*, 1. = identity,

b.a· = a* b., anel

j. D + y*H = x.H +g*D for
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A J).H B J).D c.

One readily checks that the relation ~ in (i) is a natural equivalence relation on
!e Vve call !(/ ~ thc homotopy category of thc track category and we write

(1.9)

if p is a full functor which is the identity Oll objects and which satisfies p(f) = p(g)
iff f ~ g. Hence p induces the isoluorphism !(/ ~::::: C. A track category T ](
as above has the following additional propertie~Recallthat a groupoid is a sIllall
category whose 1l10rphisluS are invertible. vVe define a groupoid T(A, B) for objects
A, B E ]( as follows. The set of objects in T(A, B) is the set ]((A, B) and the
element;-H E T(f, g) are the nlorphisrns - -

(1.10) H:g--+f In

The composition law is given by the operation + of tracks above and the identical
morphism of f is 0 j. We obtain a bifunctor

* :T(B, C) x T(A, B) --+ T(A, C)

D * H = f* D + y*H = x*H + g* D

by the final equation in (iv). This bifunctor satisfies 0y *H = y*Hand D *0f = f* D.
Moreover the *-operation is associative. This shows that, up to the convention in
(1.10), a track category is the sallle as a groupoicl enriched category 01' equivalently
a category basecl on the monoidal category of groupoicls. The operations on tracks
can be cOlubined to give the luore general operation of pasting. For exruuple

is meant to inclicate the track u*H + f*G : uf ~ uhg ~ vg. vVe define a functor
t : T ]( --+ T' ](' between track catcgories by a functor t : !( --+ ](' and by functions

(1.11) t = tj,y : T(!,g) --+ T'(tf,tg)

which are compatible with the structure (ii) and (iii) in (3.1), that is t(O) = 0, t(H +
G) = (tH) + (tC), t( -H) = -(tH), t(b*H) = (tb)*(tH), t(a* H) = (ta)*(tH).
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Clearly a functor t : T ]{ ---+ T' ]{' incluccs a functor t : ]( j ~---+ ](' j ~ between
homotopy categories. - - --

(1.12) Definition. Let C be a category anel let D be a natural systenl on C. A
linear track extension T ]( of C by D, denotecl by

D -±-, T ~ !( ----7 C, (1)
- p -

is defined by a track category, a functor ]J ancl an action of D on T as follows. The
functor p is the ielentity on objects anel is fuH, moreover p satisfies

p(f) = p(g) {::::::} f ~ 9 (2)

so that p induces an isorl1orphis111 ]( j ~ ~ C. The action of D on T is given by
isomorphisms of groups --

C! = C!! : Dpf ~ T(j, f), f E lv10r ](,

such that (4) anel (5) hold:

(3)

(4)H E T(J,h)foraf(O:) + H = H +O'h(O:)

VVe also write H + 0' = H +O'k(a).

g.O'/(O') = afg(g*O'), a E Dp /,}
(5)

J.C!y(ß) = O'/g(J.ß), ß E Dpg .

V\'e now consieler maps between linear track extensions. Let T ]( and T' ]{' be both
linear track extensions of C by D. A D-equivariant 111ap over C, t : T ]( ---+ T' ](',
is a functor t as in (1.11) which satisfies - - -

pt = p allel t/JC!/ = atf (6)

for f E !vI01' ](. Rence all linear track extensions of C by D ancl D-equivariant
rnaps over C fonn a category which we denote by Track (C, D). Two objects in
this category are equivalcnt anel we write T ]( '"'-' T' ](', if therc exist lllaps

T ]( r--- T" 1(" ----7 T' ]('

in TTaek (C, D). Thc set of cquivalence classcs

rroT1'ack( C, D) = Ob(Traek( C, D))j '"'-' (7)

is the set of connected cornponents of the category Track(C, D). "'·ie elefine the
trivial track extension in Tl'aek (C, D) by ]( = Gf, P = 112, anel

T(j,g) = { ~(j) if j = 9

otherwise,
(8)

with C!/ = I D (f) anel with zero tracks given by zero eleruents in D(J), J E A10r(C).

The next result is a fundaruental property of linear track extensions which is of
similar nature as the classification of linear extensions in (1.3); it is proved in [3].
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(1.13) Theoreln. Tbere is a c8110nical bijection

1j; : 'lroT1'ack(C,D) ~ H 3 (C,D)

wbicb calTies the trivial track extension to tbe zero element oE tlle COhOlTIology
grOtIp H 3 (C.D) dcnned in (1.5).

{1.14} Definition. \Ve define thc bijection 'IjJ in (1.12) as follows. Let TI( be a linear
track extension of C by D. We choose funetions -

t : lvI01' C --+ At[or ]( }

H : NzC --+ U T(f, g)
/,gEMor(K)

(1)

with pt = 1 and

H(J,g) E T(tJ 0 tg, t(fg))· (2)

Using such choices of t and H we obtain the cochain

c(t, H) : lV3 (C) --+ U D(j)
/EA'fo,- g

(3)

by the element c(t, H)(j, g, 11.) E D(fgh). This elelnent is obtained by the "opera­
tion of pasting" in the following diagraIll

(4)

t(Jgh}

fiH

•~.+-~-::-)-•

t{lg)

t(Jgh}

that is

c(t, H)(J, g, 11.) = O';(}gh) (~) with

~ = -H(j, gh) - (tf)*H(g, h) + (th)* H(J,g) + H(fg, 11.). (5)

One cau check that c(t, H) is a cocyde which rcpresents the characteristic COhOlllOlogy dass

1f'{t](} = {c(t,H)} E H3 (C,D). (6)

This cohomology dass depends only on thc equivalence dass {T]{} of T ]{ in
'lroTrack (GI, D) so that 'ljJ in (1.13) is well defined.
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§ 2 The category of hOlnotopy pairs

The category of horTIotopy pairs was introduced by Hardie [13) and later stuclied
in aseries of papers [13, ... , 22]. vVe here show that the definition of homotopy
pairs yields a natural transformation of cohomology groups

(2.1)

Here Pair (C) is the category of pairs in C; the ob j eets are the morphisms in C
and morphisms f -t 9 in Pair(C) are corTIrTIutative diagrarTIs

A e) X

B ) y
11

in C. Given a natural system D Oll ewe obtain the natural systerTI D~ on Pair(C)
by the quotient group

(2.2)

Induced maps for D~ are in the obvious way given by the induced maps for D.

(2.9) Definition. A track category

T]( = (T ~ ](~ Q)

yields the category H opair(T]() of homotopy pairs as follows: Objects are the

morphisms in C and a morphis1l1 {~,17, H} : f -t 9 is an eqllivalence dass of triple
(~,11, H) defined as follows. vVe fix for each morphism f : A -t B in Gf a morphism

j : A -t B in ]( representing f, that is ! induces f = p(!) via the functor p. A

tripie (~, ry, H) is given by a diagram in T ](, H E T(1]f, g~)

€ )X

db. 19

'1
)

}'p

and the equivalence relation for such triple is defined by

(~, 1], H) ~ ((, r/, f* Ho +H +?hHl)

with Ho E T(ry',ry), H1 E T(~,e), that is
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A e' X

11 ~ I1

A e )X A e )x

11 H 19 I"V 11 db. 19==>

B
1] )Y B

1] )Y

11 ~ 11

B
1]' )y

Let {~,7],H} be the equivalence dass of (~,7],H). Composition is dearly given by

{~, 7], H}{(, 7]', H'} = (~(, 7]7]', 7]*H' +(()* H)

There is a weH defined full functor

p : Hopair(TI() -+ Pair(C) (1)

which is the identity on objects and which carries {~, 1], H} to the pair ofhomotopy
classes ({€}, {1]}). Now suppose that TI( is part of a linear track extension

D2,.T~I(-+C
- -

Then this track extension yields a linear extension of categories

D~ ...±.t Hopair(TI() ~ Pair(C)

Here the action of {a} E D~ (~, 1]) on {~, 7], H} is defined by

{€,7],H} + {al = {C1J,H + a}, a E D(g~).

(2)

One readily checks that (2) is a weH defined linear extension. The following result
relies on the bijections (1.3) and (1.13).

(2.4) Proposition. Tbere is a well defined binatural homomorphism ,\ in (2.1)
wbich carries the dass ~{TK} represented by a linear track extension TI(, to the
dass ~{Hopair(TK)} represented by the linear extension (2.3) (2). -

Proof. The map ,\ is weH defined since a morphism t : T K -+ T'I{' in Track( C, D)
induces an equivalence of linear extensions - - -

·t* : Hopair(TI() -+ Hopair(T'K')

- --
defined as follows. Let 7E ](' be the choice of 7with pI = f corresponding to !-
in I{j see (2.3). Then we choose a track Hf E T'(f, tj) arid we define
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q.e.d.

(2.5) Theorenl. There is a binatura11]ol1]Ol1JOrplüslll

which for n = 2 coincides witlJ tlJe Inap A in (2.4). For a cocyc1e C witl] {c} E
Hn+l(C,D) we define a cocyc1e AC 1vith A{C} = {AC} E Hn(PaiT(C),Dtt) by the
formul-;;;: -- -

n

(AC)((~l,7Jd,··· ,(~n,7Jn)) = L(-l)ic(7Jl, ... ,17i,fi,~i+l, ... ,~n)
i=O

Here

~1 6 ';n• ( • ( • ( • ( •
101 1ft 1h 1/n - 1 1/fl

• ( • ( • ( • ( •
'11 112 'In

is an n-simplex in Pair(C).

The fonnula for Ac in tbe theorenl is siInilar to the fOrIllUla of the hOlll0tOpy h
in (1.15) of [2].

Proolol (2.5). We C0111pare A in (2.5) with A in (2.4). For this we first describe
the cocycle ß E {H opair(T!()} in (1.4) by addition of tracks

(
t(~16)• • • • ( •

1 ~ 1 ~ 1 1 <:= 1111 112 H12

• ( • • . ( •
t( 'lI 712)

JJ G'

t(n
1

n
2

)

ß( (~1, 17d, (~2, 172)) = -G - H 1 - Hz + Ci' + H12

On the right hand side we omit thc obvious inducccll11aps. The cocyclc 6. cau also
be described by subdividiug the squares as follows.
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. ( . ( .
1/<1;{1. ( . ( .
~

Here the diagonals are t(fO~l) = t(1]1/1), t(h ~2) = t(1]2/2), t(fo~1~2) = t(1]1 1]2/1)'

The subdivision corresponds to thc cocyclc AC with c given by {T](} as in (1.14)
(4). Hence we get ß = Ac. A sOlllewhat tedious hut straightforward calculation
shows that A in (2.5) is weH defined by the fonnula for AC. For this the definition
of Dö in (2.1) is crucial.

q.e.d.
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§ 3 The universal Toda bracket

Dur standard exanlple of a track category is the category Top* of pointed topo­

logical spaces. Let I be the unit interval and let IX = I x XI I x {*} be the reduced
cylinder of X E Top*. We have the lnaps

x V X (iOli~) ]X ....!!..-r X

where X V X is the one point union. Here we set it(x) = (t, x) and p(t, x) = x, t E

I, x E X. For maps 1,9 : X -t Y E Top* let

be the set of homotopy classes relative X V ..Y of map H : ] ..Y -t }~ with H (i o, i 1) =
(/,9), An element H E T(/, 9) is termed a track H : f ~ 9. This defines the track
category

which yields the following linear track extensions.

(3.1) Theorenl. (A) Let ]( be a. full category of Top* such that the objects of

]( are suspensions. Then there is a natural systenl DE on ](/ ~ together with a
linear track extension -

DE -±t T :::t ]( -t ](/ ~

(B) Let ](' be a full subcategory of Top such tl1at the objects of ](' are loop
- =* -

spaces. Then there is a natural system Dn 011 1('I ~ together with a linear track
extension

Da --±..t T =t 1(' --+ ]('I ~

The corresponding COhOl1l010gy classes from (1.13)

(I()E = 1jJ{T1{} E H3 (I(,D'i:.)

(1(')n = 1jJ{TI('} E H3
(](', Da)

are called the universal Toda brackets [3] far ]( and ](' respectively. All classical
tripie Toda brackets (/,9, h) in ]( are detennined by (K)E, that is (/,9, h) =
(/, 9, h)* (I<)E; compare 3.3 in [3].Recently the universal Toda bracket (I()E plays
a role in the work of Smirnov on hOlll0tOpy groups of spheres [26]. For the definition
of the natural systenls DE and Dn in (3.1) we need the partial suspension E and
the partialloop operation L. For X, Y E Top* let X V}~ be the coproduct (i.e. one

point union) with inclusiol1s i l : ){ -7 X V Y and i 2 : Y --+ ){ V Y. Moreover let
X ,x Y be the product with projectiol1s PI : X x Y --+ X and P2 : ..Y X 1!'" -t Y". A
zero map 0 : A -t B is given by A --+ * --+ B. vVe say that lnaps
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(3.2) {
I: ~ --+ )C V }/~

g: ..\ xY--+B

are trivial on Y if the eOlnpositions (0,1)1 : A --+ )C V 1r --+ ~y anel g(O, 1) : Y --+
X x Y --+ Bare hOlnotopie to thc zero map. Let [X, y~] be the set of hOlllOtOpy
classes in Top· / ~ and let [A, ~Y V Y~h anel [..Y X Y, Bh be the sets of homotopy

classes in Top· / ~ whieh are trivial on Y. If A is a suspension A = ~A' anel if B

is a loop spaee B = flB ' there are natural homolllorphisnls of groups

(3.3) {
E : [~, ..\ ~ Y~h --+ [~A: (~ ..Y) V Y·h
L: [..\ x },Bh --+ ((flX) x Y,B]z

whieh are termed the partial suspension ancl the partialloop operation respeetively.
For the definition of E, resp. L, we usc the funetors ~*' resp. !l*, on Top· which

are given by

~*X = Sl X ~y/Sl X * (quotient spaee)

n.~y = (X S1
,0) (funetion spaee)

Here S· = I/BI is the l-sphere. \Ve have canonical naturallnaps j : ~.X --+ X, j :
X -+ !l*X, 7r : ~*X --+ ~X, and 7r : flX --+ fl.X. Now E~, resp. L17, are the
unique nlaps in Top· / ~, trivial on Y, for whieh the following diagrams eOffilnute

in Top· / ~

~.A
E. e

~.(.Y V },~) fl.B
0.17

n*(~y x Y~)> (

11 11

rrl E*~Y V E* }/~ Irr O* ..Y x n*y~

1rrvj rrrxj
EA

Ee
) (EX) V y~ OB (

LI/ (O..Y) X }/~

COIllpare [1] and [4], in partieular (11.11.12) in [4], for a list of properties of E
and L. The definition of L is dual to the definition of E.

Let f : A' -+ A be a lilap between suspensions and let 9 : B -+ B' be a lllap
between loop spaees. Then we ean use addition of nlaps to define the differenee
elenlents

(3.4) {
\lI = -i21+ (i 2 +i 1 )1 E [A', A V A]z

\J 9 = -gP2 + g(P2 +pd E [B x B,E'h
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and hence we get

(3.5) {
E V f E (~A',(~A) V Ah
L \J g E [(nB) x B, fiB'h

Here E V f satisfies the formula (dün A' < 00)

E v f = i 1~f + L wn(~)..nf)
n22

where ~f is the suspension anel /\nf is the Janlcs-Hopf invariant. Moreover W n
is the iterated vVhitehead product with 101 = i 1 anel W n = [10 11 -1, i 2 ] for n 2: 2.
COlnpare 3.3.13 in [1]. Using these constructions we are ready to elcfine Dr, and
Dn in (3.1) as follows.

(S. 6) De{inition. (A) Let 1(/ ~C Top */ ~ be a fuH subcategory consisting of

suspensions. Then we define a natural systenl Dr, 011 ]( / ~ by the abelian group

DE(h) = [~A, B] for h : A -+ B E ](/ ~

Induced maps for f : A' -+ A anel 9 : B -+ E' are given by

j* : Dr. (h) = [~A, E] ---t DE (hf) = [~A', B]

f*(o:) = (a, h)(E V f) : 2:A' ---t ~A V A ---t E

g* : DE(h) = [~A, B] ---t Dr,(gh) = [~A, B']

g*(O') =ga: ~A ---t B ---t B'

(B) Let 1(' / ~c Top* / ~ be a fuH subcategory consisting of loop spaces. Then we

define a natural systelu Dn on ](' / ~ by the abelian group

Dn(h) = [A, SlB] for h : A -+ B E !(' / ~

Induced maps for 1 : A' -+ A anel 9 : B -+ B' are given by

f* : Dn(h) = [A,fiB] -+ Do(hf) = [A',SlB]

1*(0:) = O'f : A' -+ A ---t SlB

g* ; Do(h) = [A, fiBJ -+ Do(gh) = [A, fiE']

g*(O') = (L V g)(o, 17.) : A ---t SlB x B -+ SlB'

The properties of E and L show that Dr:, and Dn are well elefined natural systerns.

Rernark. The functors DE ancl Do with Dr,(h) = [L:A, B] anel Do (11.) = [A, SlB]
look like biIuodules. The incluced luaps above howevcr show that D E , Dn are
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actually natural systenls of abelian groups. Accordingly in §3 of [2] and in (1.3.13)
of [5] one has to replace the word 'bimodule' by 'natural systeln'.

Proof of (3.1 ). \Ve only prove part (A). The proof of (B) is the dual version. If A
is a suspension we obtain the nlap i 2 +i 1 : A -+ A VA which yields thc cOlnposition

~*A B.(
i 2t id ~*(A VA) = ~*A V ~*A 1fV~ ~A vA

which is hOlll0topic to a lllap s : L;*A -+ ~A V A nudel' A. Sillce s is actually
a h01110tOpy equivalence under A we see that for 11. : A -+ B E !( we get thc
isoffiorphisffi of groups

(Jh : D(h) = [L;A, B] = [L;A V A, B]h ~ [~*A, B]h = T(h, 17.)

which defines the action of D(h) on T(h,h). COlllpare also (II.lD.lS) in Baues [4].
The following diagralll conullutes in Top* / ~

AVA i2 +i 1 A(

1(7!,i 2 J) 11

A' V A' i2 +i 1 A'(

Therefore also the next diagrmll con1ffiutes in Top* / ~.

(EA) V A (1rVP

1(Ee,i 2 J)

(EA' ) V A' ( 1fVp

This shows that j*ah = O'jhj*.

" (A A) <l-B_._(i_2 +_i1_}(...J* V (

1E.(71,i 2 J)

~*(A' V A') f-(--­

E. (i 2+id
E*A'

q.e.d.

(3.7) Remark. We can replace Top* in (3.1) by any cofibration category C, [4].

That is, if !{ is a full subcategory of ~f consisting of suspensions in C then DB
is definecl in the san1e way on !(/ ~ anel onc obtains a linear track extension as in
(3.1) (A) for !e This way one also obtains the dual track extension in any fibration
category with (3.1) (B) as a special case. A different approach for the COIllputation
of DE, Dn can be dednced froll1 [25]; sec 2.3 in [22].
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§ 4 H01110tOpy categories for principal 11laps

We consider the fiber functor Panel the cofiber functor C

(4.2) Top* / ~ ? H opaiT(Top*) ~ Top* / ~
-- ----

defined as foIlows; cornpare [17]. Given an object h : A -+ B in H opair(Top*)

represented by h : A -t B in Top* we 0 btain the cofibel' (01' mapping cone)

Gf(h) = GfA Uh B

and the fiber (01' lnapping path space)

P(h)=PBxhA

Here CA = IA/i]A is the cone on A anel PB = {a E BI, a(l) = *} in thc
contractible path space. Each morphisrn {~, 7], H} : h ---+ gin H opair(Top*) induces

weIl defined homotopy dasses, tenned principallnaps in [4]:

C{~,1],H} : C(h) -t C(g),

P{C 1], H} : P(h) -+ P(g)

They are represented by the weH known Inaps associateel to the tripie (~, 1], H);
compare for example (\T. §2) in [4]. This completes the definition of the functors
P and C in (4.1).

For a dass X of morphisms in Top* / ~ let H opair("Y) bc thc fuU subcategory of

H opair(Top*) consisting of objects which are elements in ,,1'. vVe write ,,1' = "l'E if

all elements of X are maps between suspensions and we write X = Xn if all elements
of X are lnaps between loop spaccs. Moreover let Pair(,,1') be the fuU subcategory
of Pair(Top*) consisting of objects which are elements in X. By theoreln (3.1) and

(2.3) we have linear extensions of categorics

(4.2)

D~ ~ Hopai1'(XE) 2..-, Pai1'("l'E)

D~ -±..t Hopai1'(Xn) 2..-, Pail'(Xo)

Using A in (2.1) we get the following result which shows that the extensions (4.2)
are cleterrnined up to equivalence by universal Toda brackets (I(}E, resp. (I('}n.

(4.3) Theorenl. (A) Let !( be a full bomotopy category of suspensions 'tvith
XE C K. Then the dass

17



is a restriction of >"(K)r..
(B) Let f(' be a full homotopy category of loop spaces witll .,yn C 1('. Then the
dass

is a restriction of ),,([(')0.

The fiber functor P and the cofiber functor C in (4.1) are compatible with the
linear extensions (4.2) in the following sense. Let

(4.4)

be the fuU horllotopy categories consisting of C(I), f E .-rr. and P(g), 9 E .--1'0
respectively.

(4.5) Theorem. Let 2 ::; b < a and .-Y~ be a dass of maps h : A -+ B between
suspensions A = ~A', B = L.B' of C1V-colnplexes A', B' such that A is (a - 1)
-connected, B is (b - 1) -connectcel, dim(A) :::; a + b - 2, di7n(B) :::; a - 1. Then
there exists a commutative diagralll of lineal' extensions

D~ ) Hopair(.-"lr:,) ) Pair (.-l'E )E
+

Tl 10 11

f E C(Xr.) ) Pair(.-l'E)
+

lVhere the fun etor C, given by (4.1), is full an cl T is tlle surjective natural transfor­
mation in (4.6) below. In fact C allel T are isomorpllislllS iffor all h : A -+ B E XE
we have dim(A) < a + b - 2.

Let h : A -+ B, 9 : X -+ Y E ,-"lE with XE as in (4.5) and let

(~, 17) : h -+ 9 E Pair(.--1'E)

\Ve define the natural systerl1 fE(~,17) = cokernel(q(g, 1)*) and the natural quotient

map T : D~ (C 1]) -» fr. (~, 17) by the cokernel of

(4.6) [L.A, ~Y V Y~h (9,1\. [L.A, Y] ~ D~ (~,1])

where q is the quotient map. COlllpare the notation in (3.2).

(4.7) Corollary. Let .-l'E be a dass oE Inaps as in (4.5). Tllen thc homotopy
catgeory C(X~) is detenllined by tbc universal Toda bracket (I{)E where K is a
category as in (4.3) (A) with XE C 1(, Tllat is, the dass
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is the image under T* oE the restrietion of ),,(!()E to Pair(XE ).

Proof of (4.5). The assumptions on XE show that C(XE) = PR1N(XE ) where the
right hand side is defined in (V. §. 3) of [4J. Hence the result follows from (V.7.17),
(V.7.18) in [4].

q.e.d.
Next we consider the category P(Xo) which is dual to C(XE) in (4.4). We write

hodim(X) :s; n if 7ri("-Y) = 0 for i > n.

(4.8) Theorem. Let 1 :s; a < b and let Xo be a dass of maps h : A -t B between
loop spaces A = f2A', B = f2B' oE CvV-complexes A', B' such that A is (a - 1)
-connected, B is (b - 1) -connected, hodim(A) < b - 1, hodim(B) < a + b. Then
there exists a commutative diagraIll oE linear extensions

D~ +
> Hopair(Xn) ) Pair(Xo)0

JI lp 11

D tt +
> P(Xo) ) Pair(Xn)n

where the functor P, given by (4.1), is an isomorphism oE categories.

(4.9) Corollary. Let Xo be a dass oE maps as in (4.8). Then the homotopy
category P(Xo) is determined by the universal Toda bracket (1(')0 where j(' is a

category as in (4.3) (B) witb ..X"n C 1('. That is the dass - -

1/'{P(Xn )} E H2(Pair(~Yn), Db)

is the restrietion oE /\(1(')0 to Pair(.Yn).

Proof of (4. 8). The assumptions on .-Yo imply that P(Xn) = PR1IV (~Yfd where the
right hand side is defined in (V. §6) of [4]. Hence the result follows from (V.10.19)
in [4].

q.e.d.
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§5 Two stage Postnikov towers and two stage CW-complexes

A bifunctor D : cop x C -+ Ab yields the Grothendieck-construction Gro(D)
which is the following category. Objects are tripie (A, B, h) where A, B are objects
in C and h E D(A, B). A morphism (~,,,.,) : (A, B, h) -+ (X, Y, g) is a pair of
morphisms ~ : A -+ X, "., : B -+ Y in C satisfying ~*9 = T/.h. We shall use the
following bifunctors. Let

(5.1)

be the Eilenberg-Mac Lane functor given by cohomology group

H(~n)(A,B) = Hn(I((A, m), B) = [f«A, m), K(B, n)J

where f{(A, m) denotes the Eilenberg-Mac Lane space of A in degr~e m. The
algebraic properties of the bifunctor Htm) are fairly weIl understood; compare [12]
and [10]. In the next result we describe the fuU homotopy

(5.2) types(m, n) C Top* / ~

consisting of CvV-spaces X with Jri(X) = 0 for i 1. {m, n}, 1 < m < n. Using the
Postnikov decomposition each such space in the fiber X = P(k) of a map

k : [{(A, m) --+ f{(B, n + 1)

where A = Jrm(..Y), B = Jrn ..Y. Here k = kx E H~+l(A,B) is called the k­
invariant of X. The fiber P(k) is also called a two-stage Postnikov tower.

(5.3) Theoreln. Let 1 < m < n and let Xn be the dass of maps k : K(A, m) --+
K(B, n + 1) with A, B E Ab. Then there are equivalent linear extensions of cate­
gones

+ ) types(m, n) k Gro (H n+1
)= (m)

11

+ )

+ ) Hopair (Xo )

1I

-~) Pair(Xn)

11

----+) Pair(Xn)

Here the functor k carries ~Y to (7fmX, 1rnX, kx). The natural system Htm) 18

defined by
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1vhich is actually abimodule with induced maps detennined by t}le bifullctor H em ).
Proof. V-Ie can apply theorerll (4.8). \Ve get Dn = fIrm) since flI(CV,n + 1) =
K(Y, 17.) anel [I«A,n),flI((..-Y,n)] = 0 aJlel [I«B,1n),flI((Y,1n)] = o.

q.e.d.
Next we consider the full horllotopy c3otegory

(5.4) CW(n1., n) C Top· / f'V

consisting of C\iV-complexes X with cells only in dinlension 111, anel n, 1 < 1n < n-1.
Then X = Gf (b) is the cofiber of a lllap

b = bx : M(A, n - 1) --+ 111(B, nl.)

where A = Hn(X), B = Hm()C) are free abelian groups. Here M(B, Tn) is the
Moore sp30ce of B given by a Olle point union of 1l1-spheres. vVc call the cofiber
X = C (h) a two-st3oge Cv"-conlplex. Let ab C Ab be thc c3otegory of free abelian
groups and let

(5.5)

be the functor given by the hOl110tOpy group r~l(A) = 7fm+k111(A, 1'71.). Using hOl110­
topy groups of spheres 7f m +k(sm) anel primary hOluotopy operations it is possible
to compute the functors r~l explicitely by the Hiltol1-NIilnor theorelll. For example
we have

(5.6)
{

r~JA) = A 07T"m+k(sm) for k < 1'71. - 1

r~l(A) = A 0 7f m +k{sm} for k < 2nl, - 2

For k < 1TI - 1 we use the tensor product of abelian groups; while for k < 21TI - 2
we use the following quadratic tensor proeluct of A anel the quaelratic Z -nl0dule
Jrtn+k{sm} in (5.8).

(5.7) Definition [6}. A quadratic Z -ruodule

(1)

is a pair of abelian groups lvIe, A1ee togcther with hOlllomorphisms H, P which
satisfy

PHP = 2P for HPH = 2H. (2)

Then T = HP - 1 is an involution on lvIce, i.e. TT = 1. A luorphism f : J..1 --+ ]\l
between quaelratic Z -l11oclules is a pair of homolllorphisms f = (fe, fee) which
COl11mute with H anel P respectively, feP = pfee, feeH = H Je. Let Q1VI(Z) be
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the category of quadratic Z -nlodules which is an abelian category. 'vVe identify an
abelian group II with the quadratic Z -Illodule II = (II -+ 0 -+ II), this yields the
inclusion Ab C QM(Z). We define the quadratic tensor product

0z : Ab x QA1(Z) -+ Ab (3)

which generalizes the classical tensor product of abelian groups. Here A ®z lvI is
the ahelian group generated by thc synlbols a 0 rn, [a, b] ® 111. with a, b E A, rn E
lvIe , 11. E A1ee . The relations are

{
(a + b) ® 1n = a ® 111. +b® rn + [a, b] ® H(rn),

[a, a] ® n = a ® P(n),
(4)

where a 0 m is linear in rn anel [a, b] ® n is linear in each variable a, b anel n. One
has the natural hOlll01llorphislll

H P
A ®z M --+ A ® A ® Aifee --+ A 0z lvI

with

H (a 0 111.) = a (2) a (2) H (rn),

H([a,b] 011.) =a®b®n+b0a0T(n),

P(a 0 b 0 n) = [a, bJ (2) 1l,

where T = HP - 1 is the involution.

HOlll0topy groups of spheres yield for k < 2111. - 2 the quadratic Z -ll1odule

(5)

where H = 12 is the Hopf invariant and where P is ineluced by thc \iVhitehead
product square [in, in], that is P(0') = [in 1 in] 0 0'. In (5.8) we get the involution
T = HP - 1 = (_1)n. For k < 19 the quadratic Z -Illoclules 7rm +k{sm} are
computed in Toda's book [27]. For exalllpie

and r ; Ab -+ Ab defined by
- -

(5.9)

is J.H.C. Whitehead's quadratic functor [28].

(5.10) Definition. Let 2 < rn < n-1 < 3rn-3 and consider a cOlnnlutative diagrarn
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A e ) x

7}@1
B 01fn -l {sm} ) y 0 1fn-l {sm}

where e: A -+ X, 7] : B -+ y~ are hOlllomorphisms bctween free abelian groups.
Then (~, 1]) : j -t 9 is a morphism in the Grothendieck construction Gro(D) of
the bifunctor D : abop x ab -t Ab which carries A, B to D(A, B) = H orn(A, B 0

7i"n-l {sm}). Vve define a natural systelll D~ = rE on G1'o(D) by the quotient

(1) rE(~, 1]) = H01n(A, Y ®Jrn{sm} )/g*Hom(A,X 0Z/2) + j*H01n(B, Y ®Z/2)

Induced Inaps for r E are given by the bifunctor (A, r~) t-+ H01n(A, 1,r 12) Jrn{sm}).
Here the homomorphisms

(2)

(3)

9* : H 011~ ( A, ~Y (2) Z/2) -t H 011~ ( A, yr (2) Jrn { sm} )

f* : H om,(B, y~ 09 Z/2) -t Hom(A, Y (2) Jrn{sm})

are defined as follows. The suspension ~ induces a map

(4)

between quadratic Z -inodules where ~e = ~ is the suspension and where ~ee = 0
is trivial. The image ~Jrn-1 {sm} = ~Jrn -1 ( sm) is an abelian group. Moreover
the Hopf-maps 7Jm E Jrm+l sm, 1]n-1 E 7i"nsn-1 induce Iuaps between quadratic Z
-modules

(5)

Now 9* above carries a : A -t X 12) Z/2 to the cOlnposition

(6)

Moreover f* above carries ß : B -t Y (9 Z /2 to the sum of the following two
homomorphisms

(8) A-4B0Jrn_l{Snl} ~B0B01fn_l(s2m-l)J1@ßfl

Y ® Y r;y Z/2 (9 1rn_1s2m-l 17S1 Y r;y Y (:9 Jrns2m - 1~ y~ 0 Jrn{sm}
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This completes the algebraic definition of the natural systelTI rE which is used in
the next theorell1.

The functor r~ in (5.5) yields the bifunctor

(5.11 ) D = H O1n(-, r~J : abop x ab --+ Ab

which carl'ies (A,B) to the group H01n(A,r~B) = [.iVI(A,1'n. + k), .iVJ(B,rn)]. By
use of (5.6) we see that the bifunctor D in (5.10) is a special case of (5.11).

(5.12) Theorelu. Let 2 ::; 1n < 11.. -1 aJld let XE be the dass of Inaps b : M(A, 11..­

1) --+ lvI(B,1n) with A, B E ab. Thell there is a comnlutative diagrall1 of linear
extensions of categories, k = n.- rn,

H O1H (-, r ~ )/ I + CH1(rn, n) b ) G1'o(Horn( -, r~-l)))

11 11 11

,rE +
> C(XE) Pair(XE ).,

I

'rr je 11

D~ ) H opair(..-YE ) Pair(..-YE )

Here the functor b carries X to (Hm..:\, HnX, bx). Tlle natural s'ysteln rE is a
quotient, r E = H orn( -, r~)/I, by the definition in (4.6). lvIoreover C and T al'e
isomorphisms for rJ1 ~ 3 and for 3 ::; 1'n < n - 1 < 311"1, - 3 tlle natural system
r E = D~ is denned in (5.10).

Proo f 0 f (5.12). The theorenl is a. special ease of theorelll (4.5). Thc explicit COIll­

putation of r E = D~ for 3 ::; 1n < 11 - 1 < 31H - 3, given in (5.10), is obtainecl by
the following arguments. Consiclel' the natural systelll DE in (3.6). Then it is deal'
that g* in (3.6) col'responds to 9. in (5.10). We have to show that also f* in (3.6)
coincides with f* in (5.10). For this we know that E \l f = i 1 'L.f + (i I, i2 ]('L./2 !) ,
so that

f*(ß) = (ß,1])E \l f = ß~f + [ß, 1]] 'L/Y2 f

= ß'L.f + [1, 1](ß~1] )('L./2!)

Here 1 is the identity of A1(Y·, 'm.) anel ß~1] = E(ß' I\r/) is given by the smash product
ß' 1\ 17' with 'L.ß' = ß, 'L.17' = 1]. Now 'L. in (5.10) (4) induees the hOlllomorphism

whieh is the suspension on 1rn -1 jvI (A, rn). Thel'efore ß('L. f) corresponds to (5.10)
(8). Mol'eover [1, 1](ß~7])'L.f2f corresponcls to (5.10) (9) since for 'L.R = .iVI(Z, 1n), Z E
ab, we have the comlllutative diagraIll, t < 21n - 2,
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11 11 11

"12 > [1,1]. ('\IR)
-~> Jrt LJ •

This shows that H in (5.7) (5) corresponds to the .James-Hopf invariant 12 and P
in (5.7) (5) is inducecl by the generalized \~Thitehead product [1, 1] : r.R /\ R --+ r.R.

q.e.cl.
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§6 The Toda bracket of one point unions of 2-spheres

Let r be the guadratic functor of .J.H.C. Whitehead [28] in (5.9) with

(6.1)

for A E Ab. We have the natural exact sequence in Ab

(6.2) f(A) ~ A 0 A -..!4 A2(A) -t 0

which is short exact if A is free abelian. Here A2(A) = A 0 A/{a 0 a r--.; 0, a E A}
is the exterior square of A. For a free ahelian group A let GAbe a free group with
abelianization (G A)ab = A ancl let EA = GA/f3 (GA) where f 3 ( GA) is thc subgroup
of tripie commutators in GA. Then one has thc central extension of groups

2 w p
(6.3) A (A) )-4 E A ~ A

where pis the abelianization and w is the C01nmutator 1nap with w ({a} /\ {b}) =
a-1b-1ab for a, b E E A and {al = p(a). Let nil be the fuU subcategory of groups
E A , A E ab, where ab is the category of free abelian groups. Thcn one has the
linear extension of categories

(6.4)

where p carries EA to A and where H orn. (-, A2 ) is a bifunctor on ab. The action
+ on e:EA -r EH is definecl by

~ + 0: = e+ wo:p for a E H O1n(A, A2 B).

Hence we obtain the canonical dass

(6.5)

which is non trivial. The cxact sequence (6.2) ineluces thc short exact sequence of
ab -bimoclules

o-t H on~(-, r) -t H om(-, ( 2
) -t H om( - 1 A2

) -r 0

and hencc the associated Bockstein homo1Dorphislll

ß: H 2 (ab, H01n(-,A 2
)) -r H 3 (ab,H01n(-,f))

Now let 5(2) be the fuU homotopy category of 1'.100re spaces j\1(A, 2) where A is
free abelian. Hence 5(2) ~ ab. Thc natural systenl DB on 5(2) is via (6.1) given
by the ab -bimocluleDB = H O1'n, ( -, r) so that the universalTocla bracket (5(2))"B
is an element -

(S (2) h~ E H3
( ab, HO1n ( -, r) )

This element has thc following algebraic clescription in terms of {nz'Z} above, [3].
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(6.6) Theorem.

(S(2))I: = ß{nil}

We use the category nil also for the exaluple of § 7 below given by Hopf-maps.

§7 HOl110tOpy pairs for Hopf Inaps

Let A be a free abelian group. A generalized Hopf map for A is a nlap

(7.1 ) l]A : A1(r(A), 3) -+ A1(A, 2)

which induces the identity of f(A),

1 : f(A) = 7r3i\1(f(A), 3) (~. 7r3lvI(A, 2) = f(A).

Such Hopf maps exist anel are wen elefined up to homotopy. For A = Z the map 1]z

is the classical Hopf map. Let ,l'Hop! be the class of all Hopf maps 1]A, A E ab.

The cofiber C(1]A) of a Hopf luap is the 5-skeleton of j«(A, 2). This implies that
there are isomorphisms of categories

(7.2)

The natural system f1: for "YHop ! in (5.7) is trivial; the natural systelll D~, however,

is non-trivial. In fact Dt on ab coincicles with the following natural system L.

(7.3) Definition. We clefine a natural SystClll L on thc catcgory ab. Let x, y, z E
A E ab and

(1) [[x, V], z] = (x 0 y + y 0 x) 0 z - z 0 (x 0 y + y 0 x)

in 0 3 A A 0 A 0 A. Let L(A,l)J be the subgroup of 0 3 A generated by all
[[x, V], z]. A homomorphism ~ induces

eu ; H orn(A, B ® B) -+ H om(r(A), L(B, 1)J)

where ~ö(a) is the composition

~ö(a) : r(A) -.!!.-, A 0 A Q®$ 0 3 B ~ L(B, 1)J.

Here q carries x 0 y (9 z to -[[z, x], V]. The natural system L associates with
~ : A -+ B E ab the grotlp L(E) = cokernel (~uH*) where
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(2) ~~H* : Hom.(A, r(B)) --+ Hom(A, B 0 B) --+ HO1n(r(A), L(B, 1)3)

Induced maps for L (~) are obtained from the bifunctor (A, B) f---t H 0111. ( A, L (B, 1)3 ).

Let L' = H om(-, ]\2 ) be the natural system on ab given by the binl0dule L' (~) =
Hom(A, A2 B). Then there is a canonical natural transformation r : L' --+ L of
natural systems on ab,

(3)

which carries ß E L'(~) to r(ß) = {~~(ß)}. Here ß : A --+ tg;2 B is a honl01norphism
which projects to ß: A --+ A2 B bY]J in (6.2).

(7.4) Theorenl. TlJe categolT of}Jomotopy pairs between HopfInaps, H opai 7' (XH op!),

is c1Jaracterized algebraica1ly by the fact tllat tllere is a COilllllutative diagram of
linear extensions

H07n( -, ]\2) + , nil , ab

Tl 1 11

L + , H opaÜ'(XHop!) , ab

Here r is t}le natural transforlnation in (7.2).

Equivalently the theorem can bc expressed by the equation

(7.5)

Theorenl (7.4) requires a highly sophisticated proofi conlpare [8].

§ 8 HOlll0tOpy pairs für Pontrjagin luaps

Let A be an abelian group. A Pontrjagin Inap for A is a Inap

(8.1 ) TA : ]«A, 2) --+ ]((f(A),4)

which induces the identity of f(A),

1 : f(A) = H4 ]((A, 2) (~. H4 I((r(A),4) = f(A)

Such Pontrjagin Inaps exist and are weH defined up to hOlnotopy. The map rA

induces the Pontrjagin square which is the cohonlology operation [28]
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H2(X,A) = [X, I((A, 2)] (~. [X,K(r(A),4)] = H4 (X,r(A))

Let XPontrjagin be the dass of all Pontrjagin maps TA, A E Ab. The fiber P(TA) of
a Pontrjagin map is the 3-type of the Moore space M(A, 2)~et

Ext(-, r) : Abop x Ab -f Ab

be the bimodule which carries (A, B) to the group Ext(A, r(B)).

(8.2) Theorem. The category oE bomotopy pairs between Pontrjagin maps,
H opair(XPontrjagin), is part oE the Eollowing diagram oE non-split linear extension:

Ext( -, r)

11

Ext(-, r)

11

Ext(~, f)

+ ) H opair('YPontrjagin)

11

+ )

11

+

-~ Pair(XPontrjagin)

11

Ab

Here AtI2 is the Eull homotopy category oE Moore spaces M(A, 2), A E Ab.

Proof. The result is essentially a special case of (5.3) since

H(2)(A, r(B)) = H3 (I{(A, 2), r(B)) = Ext(A, r(B))

The functor lvI2
-f P(XPontrjagin) carries the Moore space M(A,2) to its 3-type.

The linear extension-for M 2 is the bottom row is also described in (\T.3a.2) of [4]
where we show that the extension is non-split.

q.e.d.
We study the linear extension (8.2) in more detail in [9].
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