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ON THE COHOMOLOGY OF CATEGORIES, UNIVERSAL
TODA BRACKETS AND HOMOTOPY PAIRS

HANS-JOACHIM BAUES

Let T'op™/ ~ be the homotopy category of pointed spaces and let C be a subcat-

egory consisting of either suspensions £X or loop spaces Y. The ‘universal Toda
bracket’ [3] of the category C is a cohomology class

(C)s € H*(C, Dx), resp. (C)a € H*(C, Da)

in the third cohomology of C where the coefficients Dy, resp. Dgq, are also deter-
mined by the category C'. Very little is known on these important characteristic
classes of homotopy theory.

Associated to the category Pair(C) of pairs in € Hardie [13] studies the ‘category

of homotopy pairs’ for €' which as we show represents a cohomology class in the
second cohomology of Pair(C). In fact, we obtain a natural transformation

X H"Y(C, D) -+ H*(Pair(C), D*)

which for n = 2 carries the universal Toda bracket of C to the cohomology class rep-
resented by the category of homotopy pairs for C. Hence the elements A{C)x, resp.
M C)q, determine the category of homotopy pairs for C up to equivalence. We also
show in §4 that the elements M(C)g, resp. MC)q, characterize algebraically homo-

topy categories of cofibers C(f), f € C, resp. fibers P(f), f € C. The coefficients
Dy, and Dgq are described explicitly (§ 3) and examples of these coefficients are com-
puted (§4). As special cases we study the homotopy categories of CW-complexes
with cells only in dimension m and n; dually we characterize the homotopy cate-
gory of two stage Postnikov systems X with non trivial homotopy groups only in
dimension m and n (§5). Computations of the universal Toda bracket for one point
unions of spheres (§ 6), of homotopy pairs between Hopf maps (§ 7), and homotopy
pairs between Pontrjagin maps (§8) are given.

Typeset by Aai4S-TEX



§1 The cohomology of categories and linear extensions

For the convenience of the reader and in order to fix notation we recall basic
definitions concerning the cohomology of categories, linear extensions and linear
track extensions of categories.

(1.1) Definition. Let C be a category. The category of factorizations in C, denoted
by FC, is given as follows. Objects are morphisms f,g,... in € and morphisms
f — g are pairs (a, ) for which

A —% 5 4

Tf Ty

B<LB’

commutes in . Here aff is a factorization of g. Composition is defined by
(e, 8')(a, B) = (o', Bp"). We clearly have (@, 8) = (@,1)(1,8) = (1,5)(e,1). A
natural system (of abelian groups) on C is a functor D : FC — Ab. The functor D
carries the object f to Dy = D(f) and carries the morphism (ev, ﬁ) f — ¢ to the
induced homomorphism

D(a, ) = ayff* : Dy — Doyp = D,
Here we set D(a, 1) = a., D(1,5) = B*.

We have a canonical forgetful functor 7 : FC — C°” x € so that each bifunctor
D : C°" x C — Ab yields a natural system Dr, as well denoted by D. Such a
bifunctor is also called a C- bimodule.

(1.2) Definition. Let D be a natural system on . We say that

phELC

is a linear extensions of the category C by D if (a), (b) and (c) hold.
(a) E and C have the same objects and p is a full functor which is the identity

on objects. _
(b) For each f : A — B in C the abelian group D acts transitively and

effectively on the subset p~ f ) of morphisms in C. We write fp -+ for the

action of « € Dy on fo € p7'(f).
(c) The action satisfies the linear distributivity law:

(fo +a)(go + B8) = fogo + fiB+ g% 0.

Two linear extensions E and E' are equivalent if there is an isomorphism of cate-

gories € : £ = E w1thp e=p and with e(fota) =e(fo)+afor fo € Mor(E), a €
Dyy,. The extension E is split if there is a functor s : € — E with ps = 1.

Let C be a small category and let M(C, D) be the set of equivalence classes of
linear extensions of C by D. Then there is a canonical bijection
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(1.3) % : M(C,D) = H*(C, D)

which maps the split extension to the zero element; see [2] and IV §6 in [4]. Here
H™(C, D) denotes the cohomology of C with coefficients in D defined below. We
obtain a representing cocycle A, of the cohomology class {E} = E € H*(C, D) as
follows. Let  be a “splitting” function for p which associates with each morphism
f:A— Bin C amorphism fy =t(f) in E with pfo = f. Then ¢ yields a cocycle
A; by the formula -

(1.4) t(gf) = t(g)t(f) + Adlg, f)

with Ay(g, f) € D(gf). The cohomology class {E} = {A;} is trivial if and only if

E is a split extension. We call

piLgtg

a weak linear extension if there is a linear extension as in (1.2) together with an
equivalence of categories e : C' = C' such that p' = ep.

Next we define the cohomology of a category C with coeflicients in a natural
system D on C. In order to get cohomology gro_ups which are actually sets we
have to assume that C is a small category; by change of universe it would also be
possible to define the cohomology in case C is not small.

(1.5) Definition. Let C be a category and let N,(C) be the set of sequences

(A1,...,An) of n composable morphisms in C (which arc the n-simplices of the
nerve of C). For n = 0 let No(C) = Ob(C) be the set of objects in €. The n — th
cochain group F* = F*(C, D) is the abelian group of all functions

c: Nu(C) — U D, (1)
gEJ\'Ior(_g_)

with ¢(A1,... ,An) € Dxjo...0on,- Addition in F" is given by adding pointwise in the
abelian groups Dy. The coboundary é : F**1 — F™ is defined by the formula

((SC)(/\I,... :’\n) = (/\1)*6(/\2,.. . ;’\n)

n—1
+ ) (=DM, A, M)
i=1
4+ (=1)"Me(A, ey Anct) (2)

For n = 1 we have (6c)(A) = Ae(A) — A*¢(B) for A : A - B € Ny(C). One can

check that dc € F™ for ¢ € F*~! and that 66§ = 0. Hence the cohomology groups
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H™(C,D) = H*(F*(C, D), ) (3)

are defined, n > 0. A functor ¢ : g’ — € induces the homomorphism

¢*: H'(C,D) —» H™(C',¢" D) (4)

where ¢*D is the natural system given by (¢*D)s = Dy(). On cochains the map
¢* is given by the formula

(Qs*f)(/\;, :’\:z) = f(qb’\fh :ﬁb/\:n)

where (M[,... ,A}) € No(C'). If ¢ is an equivalence of categories then ¢* is an
isomorphism. A natural transformation 7 : D — D’ between natural systems
induces a homomorphism

m.: H'(C,D) - H"(C,D") (5)

by (re (A1, 5 Ax) =7af(A1, ..., An) where 7y : Dy = Dy with A= XAjo... 0\,
is given by the transformation 7. Now let

D”?'L’D:»D’

be a short exact sequence of natural systems on C. Then we obtain as usual the
natural long exact sequence

(1.6) — H¥(C Dr) LN Hn(g,D) AN H"(Q, D" _.3> H"H(Q, D) —

=1

where 3 is the Bockstein homomorphism. For a cocycle ¢” representing a class {¢"}
m H*(C, D") we obtain 8{c"} by choosing a cochain ¢ as in (1.5) (1) with r¢ = ¢".

This is possible since T is surjective. Then :~!dc is a cocycle which represents
B{c"}.

(1.7) Remark. The cohomology (1.5) generalizes the cohomology of a group. In
fact, let G be a group and let G be the corresponding category with a single object
and with morphisms given by the elements in G. A G-module D yields a natural
system D : FG — Ab by Dg = D for ¢ € G. The induced maps are given
by f*(z) = =f and h,(y) = y, f, h € G. Then the classical definition of the
cohomology H"(G, D) coincides with the definition of

H™(G, D) = H"(G, D)

given by (1.5). Further results and applications of the cohomology of categories
can be found in [2], [3], [4], [5], [11], [23], [24].

Recall that K(A, B) denotes the set of all morphisms A — B in a category L.
Assume for all objects A, B in K we have an equivalence relation >~ on K(A, B).
Then =~ is said to be a natural equivalence relation on LKif f=gandz ~ y implies
xf ~ yg for f,g € Mor(A,B) and z,y € Mor(B,C). In this case we obtain
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the quotient category K/ =~ which has the same objects as I and for which the
morphism A — B are the equivalence classes {f} in I{(A, B)/ ~. We often denote
the equivalence class {f} as well by f.

(1.8) Definition. A track category TH or T' =3 K is a category I{ with the following
additional structure T of tracks.
(i) For f,g € K(A,B) a set T(f,g) is given. We write f ~ g if T(f,g) is non
empty and we write H : f ~ g if H € T(f,¢). We call H a track from f to
g and we indicate H also by the diagram

TN

A VH B

N A

(i1) An element 0 =0y € T(f, f) and functions

+:T(f,9) x T(g,h) = T(f,h),
—:T(f,9) = T(g,f)

are given. We call 0 the trivial track and + is the addition of tracks H and
G denoted by H + G : f ~ h. The function — maps H : f ~ ¢ to the
negative — H : g~ f of H.

(iii) Induced functions

b* : T(f)g) - T(bf7bg)’
a*: T(f,9) = T(fa,ga)

are given for b: B — B’ and a: A’ — A where A, A, B, B’ € Ob(L).
(iv) This structure satisfies the following conditions

H+ (G+F)=(H+G)+F,
H+0=0+H=H,
H+(=H)=0,(—H)+H=0,
& (H +G) = (a'H) + ('),
a’'(—H) = —a’(H),

bo(H+ G) = (b,H) + (b.G),
b(—H) = —(b.H),

(d'ea)* = a*(a’)*, 1* = identity
('b)e = (b')4bs, 1, = identity,
b,a* = a*b,, and

f*D+y.H=z,H+¢g*'D for
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D

\/\/

One readily checks that the relation ~ in (i) is a natural equivalence relation on
L. We call K/ ~ the homotopy category of thc track category and we write

(1.9) TK = (T3 K »C)

if p is a full functor which is the identity on objects and which satisfies p(f) = p(g)
f f ~ g. Hence p induces the isomorphism I/ ~= €. A track category TI
as above has the following additional properties. Recall that a groupoid is a small
category whose morphisms are invertible. We define a groupoid T(A, B) for objects
A,B € K as follows. The set of objects in T(A, B) is the set I{(A, B) and the

clements H € T(f,g) are the morphisms

(1.10) H:g->f in  TI(A,B).

The composition law is given by the operation + of tracks above and the identical
morphism of f is 0y. We obtain a bifunctor

+:T(B,C) xL(A,B) = IT(A,C)
D«H=f"D+y,H=2,H+¢g'D

by the final equation in (iv). This bifunctor satisfies OyxH = y, H and D*0y = f*D
Moreover the *-operation is associative. This shows that, up to the convention in
(1.10), a track category is the same as a groupoid enriched category or equivalently
a category based on the monoidal category of groupoids. The operations on tracks
can be combined to give the more general operation of pasting. For example

oL

is meant to indicate the track u,H 4+ f*G : uf ~ uhg ~ vg. We define a functor
t:TK - T'K " between track categories by a functor ¢ : K- K " and by functions

(1.11) t=ts,:T(f,9) > T'(tf tg)

which are compatible with the structure (ii) and (iii) in (3.1), that is t(0) = 0, t(H +
G) = (tH) + (G), t(—H) = —(tH), t(b.H) = (tb).(tH), t(a*H) = (ta)"(tH).
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Clearly a functor ¢t : TK — T'LK' induces a functor ¢ : K/ ~— K'/ ~ between
homotopy categories.

(1.12) Definition. Let C be a category and let D be a natural system on C. A
linear track extension TK of C by D, denoted by

DL T3 K —C, (1)
E—C

is defined by a track category, a functor p and an action of D on T as follows. The
functor p is the identity on objects and is full, moreover p satisfies

p(f)=plg) &= f~yg (2)

~J

so that p induces an isomorphism K/ ~= (. The action of D on T is given by
isomorphisms of groups

0'=0'f:Dpng(f,f),fe.A{[O?‘g, (3)
such that (4) and (5) hold:

of(e)+ H=H +o4(e) for HeT(fh) (4)
We also write H + o = H + oy («).

froy(B) = 054(fiB), B € Dy,. (©)

We now consider maps between linear track extensions. Let TIL and T’!_&‘_" be both

g*gf(a) = O-fg(g‘a)r s Dpf:}

linear track extensions of C' by D. A D-equivariant map over ¢t : T — T’{_x:',
is a functor ¢ as in (1.11) which satisfies

pt=p and  tjjop =0y (6)

for f € Mor I{. Hence all linear track extensions of C by D and D-equivariant
maps over C form a category which we denote by Track (C, D). Two objects in

this category are equivalent and we write TK ~ T'I{ ! if there exist maps

Tg{___ TH;II — TI£’

in Track (C, D). The set of equivalence classes

moLrack(C, D) = Ob(Lrack(C, D))/ ~ (7)
is the set of connected components of the category Track(C, D). We define the

trivial track extension in Track(C,D) by K =C, p = lg, and

D(f) i f=yg
Tif9) = { 0 otherwise, (8)

with 05 = 1p(y) and with zero tracks given by zero elements in D(f), f € Mor(C).

The next result is a fundamental property of linear track extensions which is of
similar nature as the classification of linear extensions in (1.3); it is proved in [3].
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(1.13) Theorem. There is a canonical bijection

¥ : moLrack(C, D) = H*(C, D)

which carries the trivial track extension to the zero element of the cohomology
group H*(C.D) defined in (1.5).

(1.14) Definition. We define the bijection 3 in (1.12) as follows. Let TK be a linear
track extension of C' by D. We choose functions

1 :.Morg—) J'lfforj_\'_'

H:NC— | T(f9) (1)
fgeMor(K)

with pt = 1 and

H(f,9) € T(tf otg, t(fg))- (2)

Using such choices of ¢ and H we obtain the cochain
(L H): No(@) = ) D) (3)

f€MorC

by the element (¢, H)(f,g,h) € D(fgh). This element is obtained by the “opera-
tion of pasting” in the following diagram

t(fgh)
' m

tH
¢ " ® — h [ ] ()]

H
® « ®
w
|H
t(fg)
t(fgh)

that is

c(t, H)(f,9,h) = o7 (A)  with
A=—H(f,gh)—(tf)sH(g,h) + (th)" H(f, 9) + H(fg, h). (%)

One can check that ¢(¢, H) is a cocycle which represents the characteristic cohomology class

Y{th} = {c(t, H)} € H*(C, D). (6)

This cohomology class depends only on the equivalence class {TL} of TK in
moLrack (C, D) so that ¢ in (1.13) is well defined.



§ 2 The category of homotopy pairs

The category of homotopy pairs was introduced by Hardie [13] and later studied
in a series of papers (13, ..., 22]. We here show that the definition of homotopy
pairs yields a natural transformation of cohomology groups

(2.1) H*(C, D) 2+ H*(Pair(C), D*)

Here Pair(C) is the category of pairs in (; the objects are the morphisms in €

and morphisms f — ¢ in Pair(C) are commutative diagrams

A—£>X

,fl lg

B—Y
7

in C. Given a natural system D on C we obtain the natural system D* on Pair(C)
by the quotient group

(2.2) D¥(¢,m) = D(g€)/g.D(€) + £ D(n)

Induced maps for D® are in the obvious way given by the induced maps for D.

(2.8) Definition. A track category

TK = (T3 K- Q)

yields the category Hopair(TL) of homotopy pairs as follows: Objects are the

morphisms in ' and a morphism {£,n, H} : f — g is an equivalence class of triple
(&,m, H) defined as follows. We fix for each morphism f : A — B in ' a morphism

f:A—> Bin I representing f, that is f induces f = p(f) via the functor p. A
triple (£,n, H) is given by a diagram in TK, H € T(nf, §€)

A——e——:oX

| s
B n Y
and the equivalence relation for such triple is defined by
(‘5:773H) ~ (grﬁnlaf‘lHD + H +§*H1)
with Ho € T(n',n), H1 € T(¢,¢'), that is
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A, x —

oE
AL X AL x
IR TR
B—,vY B v
[ O

B L Y
Let {£,n, H} be the equivalence class of (§,7, H). Composition is clearly given by
{&n HH{E ', H'} = (66, H' + (') H)
There is a well defined full functor

p: Hopair(TK) — Pair(C) (1)

which is the identity on objects and which carries {£,n, H} to the pair of homotopy
classes ({¢},{n}). Now suppose that T is part of a linear track extension

DLTj@—)Q

Then this track extension yields a linear extension of categories

D* 3 Hopair(TK) = Pair(C) 2)

Here the action of {a} € D¥(£,7n) on {£,n, H} is defined by

{&,n, HY +{a} = {{,n, H + a}, a € D(g¢).

One readily checks that (2) is a well defined linear extension. The following result
relies on the bijections (1.3) and (1.13).

(2.4) Proposition. There is a well defined binatural homomorphism A in (2.1)
which carries the class ${TK} represented by a linear track extension TK, to the
class ¢ { Hopair(TK)} represented by the linear extension (2.3} (2).

Proof. The map A is well defined since a morphism ¢ : TK — T'K' in Track(C, D)
induces an equivalence of linear extensions

t, : Hopair(TK) — Hopair(T'K')

defined as follows. Let ? € K ' be the choice of ? with p? = f corresponding to f
in K; see (2.3). Then we choose a track Hy € T'(f,tf) and we define
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t & HY = (€, tn, (i) Hy + t(H) — (t€)* H,}

g.e.d.

(2.5) Theorem. There is a binatural homomorphism

X: H**(C, D) — H"(Pair(C), D)

which for n = 2 coincides with the map A in (2.4). For a cocycle ¢ with {c} €
H™Y(C, D) we define a cocycle Ac with Mc} = {Ac} € H"(Pair(C),D*) by the

formula

(/\C)((fla'ﬂl): S 7(671177'1)) = Z(—l)ic(nla' . a’?iafi:£i+1a co ,fn)
i=0
Here
- o 2 * < . <-——E" .

fo

(_

—
-

(_
Py

. lnA lh

o & o
m n2 n

A
[ ]
A
®
A~

is an n-simplex in Pair(C).

The formula for Ac in the theorem is similar to the formula of the homotopy h
in (1.15) of [2].

Proof of (2.5). We compare A in (2.5) with A in (2.4). For this we first describe
the cocycle A € {Hopair(TL)} in (1.4) by addition of tracks

E(EE,)
I+ G
. o o o t(€182) o
| = | = | | o=
I o A1z
* —— . —— » e — o
t(n192)

ey
t(n1n2)
A((§1>771)a(52ﬂ72)) =-G—-—H - Hy + G+ Hi,

On the right hand side we omit the obvious induced maps. The cocycle A can also
be described by subdividing the squares as follows.
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Oz
4

Here the diagonals are t(fol1) = t(m f1), t(f1&2) = t(n2 f2), t(foi€2) = t{mnafi).

The subdivision corresponds to the cocycle Ac with ¢ given by {TX'} as in (1.14)
(4). Hence we get A = Ac. A somewhat tedious but straightforward calculation
shows that A in (2.5) is well defined by the formula for Ae. For this the definition
of D¥ in (2.1) is crucial.

q.e.d.
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§ 3 The universal Toda bracket

Our standard example of a track category is the category Top* of pointed topo-

logical spaces. Let I be the unit interval and let IX = I x X/I x {} be the reduced
cylinder of X € Top*. We have the maps

xvx @Yy 2, x
where X V X is the one point union. Here we set i;(z) = (¢,2) and p(t,z) =z, t €
I,z € X. Formaps f,g: X - Y & Top* let

T(f,9) = IX, Y9
be the set of homotopy classes relative X VX of map H : IX — Y with H(ig,;) =
(f,9). An element H € T(f, g) is termed a track H : f ~ g. This defines the track
category

T = Top® = Top'/ =
which yields the following linear track extensions.

(3.1) Theorem. (A) Let K be a full category of Top™ such that the objects of

K are suspensions. Then there is a natural system Dy on I{/ ~ together with a
linear track extension

Dy T K- K/~

(B) Let K' be a full subcategory of Top such that the objects of K' are loop

spaces. Then there is a natural system Dg on K’/ ~ together with a linear track
extension

Do HT K - K[~

The corresponding cohomology classes from (1.13)

(&
(&

e ={TK} € H*(K, D)
Yo =v¥{TK'} € H*(K', Da)

II¢=: I

are called the universal Toda brackets [3] for I and K’ respectively. All classical
triple Toda brackets (f,g,h) in I are determined by (K)x, that is (f,g,h) =
(f,g,R)*(K)g; compare 3.3 in [3] _Recently the universal Toda bracket (I{)x plays
a role in the work of Smirnov on homotopy groups of spheres [26]. For the definition
of the natural systems Dy and Dg in (3.1) we need the partial suspension £ and

the partial loop operation L. For X,Y € Top" let X VY be the coproduct (i.e. one

point union) with inclusions 2; : X = X VY andi;: Y = XV Y. Moreover let
X .x Y be the product with projections p; : X xY = X and pp : X xYV = V. A
zero map 0 : A — B is given by A — * — B. We say that maps
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(3.2) {f:A—)XVY

g:XxY B

are trivial on Y if the compositions (0,1)f : A - X VY = Y and ¢(0,1) : ¥ —
X xY — B are homotopic to the zero map. Let [X,Y] be the set of homotopy
classes in Top®/ ~ and let [A,X VY], and {X x Y, B]2 be the sets of homotopy

classes in Top*/ ~ which are trivial on Y. If 4 is a suspension A = LA’ and if B

is a loop space B = QB' there are natural homomorphisms of groups

53) { E:[AXVY]; = [Z4,(EX)VY],

L [JY X ]", B]2 - [(QX) X Y, B]2

which are termed the partial suspension and the partial loop operation respectively.
For the definition of E, resp. L, we use the functors X., resp. ., on Top* which

are given by

T.X = 85" x X/§' x ¥ (quotient space)
QX = (XS1 ,0) (function space)
Here S' = I/8I is the 1-sphere. We have canonical natural maps j : T.X = X, 5:

X = X, n:2,X -5 ZX, and 7 : QX —» Q. X. Now Ef, resp. Ln, are the
unique maps in Top®/ ~, trivial on Y, for which the following diagrams commute

in 2*/ ~
TA —f, (X VY) QB 21 QX xY)
I |
| S.XVEY [E QX x Q.Y
[ 5
s4 25, (EX)VY OB« (QX)xY

Compare [1} and [4], in particular (I1.11.12) in [4], for a list of properties of E
and L. The definition of L is dual to the definition of E.

Let f: A’ = A be a map between suspensions and let g : B — B’ be a map
between loop spaces. Then we can use addition of maps to define the difference
elements

(3.4)

Vf=—taf +a+u)f €[A,AV A]
V9=—gpz+9(p2+p)€[BxB,B
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and hence we get
(3.5)

Ev f € [SA,(SA)V A
Lvg€el(QB)x B, QB

Here E 7 f satisfies the formula (dim A’ < o)
EVf=uSf+) wa(SAuf)

n>2

where T f is the suspension and A, f is the James-Hopf invariant. Moreover w,
is the iterated Whitehead product with w; = 7; and w, = [w,—1,12] for n > 2.
Compare 3.3.13 in [1]. Using these constructions we are ready to define Dy and
Dgq in (3.1) as follows.

(8.6) Definition. (A) Let K/ ~C Top®/ ~ be a full subcategory consisting of
suspensions. Then we define a natural system Dy on K/ ~ by the abelian group
Ds(h) = [£A, B] for h:A—-Bel]~

Induced maps for f: A’ =+ A and g : B — B’ are given by

F*: Dg(h) = [SA, B] — Dy(kf) = [SA', B]
ffla)=(a,R)(Es7 f) : A" 5 ZAVA> B
g« : Dg(h) = [EA, B] = Dg(gh) = [£A, B']
g(a)=ga:TA—> B~ B

(B) Let '/ ~C Top*/ =~ be a full subcategory consisting of loop spaces. Then we
define a natural system Dq on '/ = by the abelian group
Dq(h) = [A, QB] for h:A—-Bek'/~

Induced maps for f : A’ = A and g : B — B’ are given by

F*: Da(h) = [A,QB] = Da(hf) = [A,QB]
fflay=af: A5 A QB

g+ : Da(h) = [4,9B) - Da(gh) = |4, QB]

g{0) = (Ly g)(a,h): A = QB x B - QB

The properties of F and L show that Dy and Dg are well defined natural systerms.

Remark. The functors Dg and Dg with Dg(h) = [£4, B] and Dq(h) = [4, QB]
look like bimodules. The induced maps above however show that Dg, Dg are
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actually natural systems of abelian groups. Accordingly in §3 of {2] and in (1.3.13)
of [5] one has to replace the word ‘bimodule’ by ‘natural system’.

Proof of (8.1). We only prove part (A). The proof of (B) is the dual version. If A
is a suspension we obtain the map i +1; : A - AV A which yields the composition

T, ATEY 5 AV A) =S, AVE AT T4V A

which is homotopic to a map s : E,A — LAV 4 under A. Since s is actually
a homotopy equivalence under A we see that for h : A - B € K we get the
isomorphism of groups
on : D(h) = [SA4,B] = [SEAV A, B]* 255 [T, A, B]* = T(h,h)

which defines the action of D(h) on T'(h,h). Compare also (11.10.18) in Baues [4].
The following diagram commutes in Top*/ ~

AvA &y

l(vf,izf) lf
Ay Ay

Therefore also the next diagram commutes in Top*/ .

(A VA &P n(Ava) S8 sy
l(EE,izf) J'E-(Vfﬂ'zf) lE-f
(TA) VA 2 $,(A'V A S o, A
Zy (ia+1y)

This shows that f*on = o f*.

q.e.d.

(8.7) Remark. We can replace Top® in (3.1) by any cofibration category C, [4].
That is, if I is a full subcategory of gcf consisting of suspensions in C then Dy
is defined in the same way on L/ ~ and onc obtains a linear track extension as in
(3.1) (A) for I{. This way one also obtains the dual track extension in any fibration

category with (3.1) (B) as a special case. A different approach for the computation
of Dy, Dg can be deduced from [25]; see 2.3 in [22].
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§ 4 Homotopy categories for principal maps

We consider the fiber functor P and the cofiber functor C

(4.2) Top*/ ~ i Hopair(Top*) <, Top* | ~

defined as follows; compare [17]. Given an object i : A — B in Hopair(Top®)

represented by h: 4 = B in Top™ we obtain the cofiber (or mapping cone)
Chy=CAU; B

and the fiber (or mapping path space)
P(h) =PB Xk A

Here CA = IA/i1A is the cone on A and PB = {0 € B!, o(1) = *} in the
contractible path space. Each morphism {£,n,H} : h — g in Hopair(Top*) induces

well defined homotopy classes, termed principal maps in [4]:

C{¢n,H}: C(h) = C(g),
P{&n,H}: P(h) = P(g)

They are represented by the well known maps associated to the triple (&,7n, H);
compare for example (V. §2) in {4]. This completes the definition of the functors
P and C in (4.1).

For a class &' of morphisms in Top™/ =~ let Hopair(A') be the full subcategory of
Hopair(Top®) consisting of objects which are elements in X'. We write X = Xy if
all elements of X are maps between suspensions and we write X = Xg if all elements
of X" are maps between loop spaces. Moreover let Pair(A’) be the full subcategory
of Pair(Top®) consisting of objects which are elements in A'. By theorem (3.1) and
(2.3) we have linear extensions of categories

DL 5 Hopair(Xg) -2 Pair(Xy)

4.2 o) st Hopair(Xq) - Pair(Xg
Q e =

Using A in (2.1) we get the following result which shows that the extensions (4.2)
are determined up to equivalence by universal Toda brackets (I{)x, resp. <I=\' )a-

(4.3) Theorem. (A) Let I be a full homotopy category of suspensions with
Ay C K. Then the class

${Hopair (Xs)} € H*(Pair(Xs), D)

17



is a restriction of AM(K)x.

(B) Let _[_{_’ be a full homotopy category of loop spaces with Aq C K'. Then the
class

w{Hopair(Xq)} € H?(Pair(Xg), DY)
is a restriction of ML )q.

The fiber functor P and the cofiber functor C in (4.1) are compatible with the
linear extensions (4.2) in the following sense. Let

(4.4) C(Xy), P(Xa) C Top'/ =

be the full homotopy categories consisting of C(f), f € Ay and P(g), ¢ € Aq
respectively.

(4.5) Theorem. Let 2 < b < a and Xy, be a class of maps h : A — B between
suspensions A = £A', B = EB' of CW-complexes A’, B' such that A is (a — 1)
-connected, B is (b — 1) -connected, dim(A) < a+b—2, dim(B) < a— 1. Then
there exists a commutative diagram of linear extensions

DY ——— Hopair(Xs) —— Pair(As)
+

g le "

PE —+-} Q(XE) —_— Pa%‘T((YE)

where the functor C, given by (4.1), is full and 7 is the surjective natural transfor-
mation in (4.6) below. In fact C and 7 are isomorphisms if for allh: A — B € Ay
we have dim(A) < a+b - 2.

Let h: A— B, g: X - Y € Ay with Ay as in (4.5) and let
(§;n) : h — g € Pair(Xy)

We define the natural system 'y (€, 1) = cokernel(g(g,1).) and the natural quotient
map T : Dé(ﬁ,n) -» I's(&,7n) by the cokernel of

(4.6) [£4,X VY], 2% [24,Y]) % DL(g,n)

where ¢ is the quotient map. Compare the notation in (3.2).

(4.7) Corollary. Let Xy be a class of maps as in (4.5). Then the homotopy
catgeory Q(A’g) is determined by the universal Toda bracket (I:{ )z where K isa
category as in (4.3) (A) with Xy C . That is, the class

P{C(As)} € H*(Pair(*x), Iy
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is the image under 7, of the restriction of M)z to Pair(Ax).

Proof of (4.5). The assumptions on Xy show that C(Xx) = PRIN(At) where the
right hand side is defined in (V. §. 3) of [4]. Hence the result follows from (V.7.17),
(V.7.18) in [4].

q.e.d.
Next we consider the category P(Xq) which is dual to C(Xx) in (4.4). We write
hodim(X) < n if mj(X) =0 fori > n.
(4.8) Theorem. Let 1 < a < b and let Xq be a class of maps h : A — B between
loop spaces A = QA', B = QB' of CW-complexes A’, B’ such that A is (a — 1)
-connected, B is (b — 1) -connected, hodim(A) < b — 1, hodim(B) < a +b. Then
there exists a commutative diagram of linear extensions

Df7 —+, Hopair(Xq) —— Pair(Xg)

I l P I

D} —»  P(Xa) —— Pair(Xy)

where the functor P, given by (4.1), is an isomorphism of categories.

(4.9) Corollary. Let Xg be a class of maps as in (4.8). Then the homotopy
category P(Xq) is determined by the universal Toda bracket (I Yo where K' is a

category as in (4.3) (B) with Xq C K. That is the class

${P(Xa)} € H*(Pair(Xa), Dp)
is the restriction of \(K')q to Pair(Xq).

Proof of (4.8). The assumptions on X imply that P(AXn) = PRIN(Xq) where the
right hand side is defined in (V. §6) of [4]. Hence the result follows from (V.10.19)
in [4].

q.e.d.
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§ 5 Two stage Postnikov towers and two stage CW-cdmplexes

A bifunctor D : £ x C' — Ab yields the Grothendieck-construction Gro(D)
which is the following category. Objects are triple (A, B, h) where A, B are objects
in C and h € D(A,B). A morphism (§,7) : (A,B,h) = (X,Y,g) is a pair of
morphisms £ : A = X, n: B = Y in C satisfying £€*g = n.h. We shall use the
following bifunctors. Let o

o

(5.1) Hpy : ADP x Ab —

be the Eilenberg-Mac Lane functor given by cohomology group

HP (A, B) = H"(K(A,m), B) = [K(4,m), K(B,n)]

where K(A,m) denotes the Eilenberg-Mac Lane space of A in degree m. The
algebraic properties of the bifunctor H(},, are fairly well understood; compare [12]

and [10]. In the next result we describe the full homotopy

(5.2) types(m,n) C Top" [ ~

consisting of CW-spaces X with m;(X) = 0 for i ¢ {m,n}, 1 < m < n. Using the
Postnikov decomposition each such space in the fiber X = P(k) of a map

k:K(A,m)— K(B,n+1)

where 4 = m,(X), B = m,X. Here k = kx € HX''(A,B) is called the k-
invariant of X. The fiber P(k) is also called a two-stage Postnikov tower.

(5.3) Theorem. Let 1 < m < n and let Xq be the class of maps k : K(A,m) —
K(B,n + 1) with A,B € Ab. Then there are equivalent linear extensions of cate-

gories

Ay, —— types(m,n) —— Gro(HH')

I I f

Dy ——  P(Xa) —— Pair(Xp)

Df‘z —*  Hopair (Ya) —— Pair(Xq)

Here the functor k carries X to (X, 7nX,kx). The natural system FI("m) is
defined by

E(nm)(ga n) = H(nm)(A: Y)

20



which is actually a bimodule with induced maps determined by the bifunctor H(”m).

Proof. We can apply theorem (4.8). We get Do = I?("m) since QK(Y,n + 1) =
K(Y,n) and [K(A4,n),QK(X,n)] =0 and [K(B,m),Q2K(Y,m)] = 0.

q.e.d.
Next we consider the full homotopy category

(5.4) CW(m,n) C Top*/ =~

consisting of CW-complexes X with cells only in dimensionm andn, 1 <m < n—1.
Then X = C'(b) is the cofiber of a map

b=bx: M(An—-1)— M(B,m)

where A = H,(X), B = Hp(X) are free abelian groups. Here M(B,m) is the
Moore space of B given by a one point union of m-spheres. We call the cofiber
X = C(h) a two-stage CW-complex. Let ab C Ab be the category of free abelian
groups and let -

(5.5) Ty :ab— Ab

be the functor given by the homotopy group I'* (4) = T4 s M(A4,m). Using homo-

topy groups of spheres 7, 44(S™) and primary homotopy operations it is possible

to compute the functors T'*, explicitely by the Hilton-Milnor theorem. For example
we have
(5.6) I‘fn(A) = AQ mpu(S™) for k<m-—-1

' T (A) = A® Tk {S™} for k< 2m —2

For k < m — 1 we use the tensor product of abelian groups; while for k < 2m — 2
we use the following quadratic tensor product of 4 and the quadratic Z -module

Tm4+k{S™} in (5.8).
(5.7) Definition [6]. A guadratic Z -module

M=M, L M. S M) (1)

is a pair of abelian groups M., M.. together with homomorphisms H, P which
satisfy

PHP =2P for HPH =2H. (2)
Then T'= HP — 1 is an involution on M., i.e. TT = 1. A morphism f: M —- N
between quadratic Z -modules is a pair of homomorphisms f = (fe, fee) which

commute with H and P respectively, feP = pfee, fecH = Hf.. Let QM(Z) be

21



the category of quadratic Z -modules which is an abelian category. We identify an
abelian group IT with the quadratic Z -module IT = (IT — 0 — II), this yields the
inclusion 4b C QM (Z). We define the quadratic tensor product

®z : Ab x QM(Z) - Ab (3)

which generalizes the classical tensor product of abelian groups. Here A ®z M 1is
the abelian group generated by the symbols a @ m, [a,b] @ m with a,b € A, m €
M., n € M,.. The relations are

(4)

(a+bd)@m=a@m+b@m+[a,b] ® H(m),
[a,a] ® n = a ® P(n),

where a ® m is linear in m and [a,b] ® n is linear in each variable a,b and n. One
has the natural homomorphism

Aoz M L A@A@ M., £y AQz M (5)

with

Ha@m)=a@®a® H(m),
H([a,b]®n)=a@b@n+bQa®T(n),
Pla®b®n)=[a,b ®@n,

where T = HP — 1 is the involution.

Homotopy groups of spheres yield for k < 2m — 2 the quadratic Z -module

m m m— P m
(5.8) Tmtk{S™} = (Tm 4 (S™) -5 ”"m+k(52 ") = Tmaa(S™))
where H = 7, is the Hopf invariant and where P is induced by the Whitehead
product square [in,15], that is P(a) = [in,7.] 0 @. In (5.8) we get the involution

T = HP —1 = (-1)®. For k < 19 the quadratic Z -modules 7, 4.;{S™} are
computed in Toda’s book [27]. For example

m3{S?} = {2 5 7 -5 7}
and I': Ab — Ab defined by

(5.9) [(4) = A @ m3{S?}

is J.H.C. Whitehead’s quadratic functor [28].
(5.10) Definition. Let 2 < m < n—1 < 3m—3 and consider a commutative diagram
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/| |s
B@mu-1{5"} 24 Y @mi{S™}

where £ : A - X, 7 : B = Y are homomorphisms between free abelian groups.
Then (£,n) : f — g is a morphism in the Grothendieck construction Gro(D) of

the bifunctor D : @b’ x ab - Ab which carrics A, B to D(A,B) = Hom(A,B ®
Tn—1{S™}). We define a natural system Dg =Ty on Gro(D) by the quotient

(1) Ts(é,m) = Hom(A,Y @ 7o {S™})/ g+ Hom(A, X ®Z/2)+ f*Hom(B,Y QZ/2)
Induced maps for 'y are given by the bifunctor (A,Y) — Hom(A4,Y @ 7, {S™}).

Here the homomorphisms

(2) ge - Hom(A, X ® Z/2) - Hom(A,Y @ m,{S™})
(3) f*:Hom(B,Y @ Z/2) - Hom(A,Y @ m,{S™})

are defined as follows. The suspension X induces a map

(4) Limp_1{S™} — wn{3m+l}
between quadratic Z -modules where £, = ¥ is the suspension and where ¥, =0
is trivial. The image Lr,—1{S™} = Zm,—1(S™) is an abelian group. Moreover

the Hopf-maps nm € 741 S™, -1 € 7, S"7! induce maps between quadratic Z
-modules

(5) T {S™Y @ Z/2 ™ 7 {S™) L2 2/2@ St (S™)

Now g, above carries o : A =+ X ® Z/2 to the composition

Y®n, _

6 A5Xx02/2%% yer {S"8%/2 -3 Y @m.{S™}

Moreover f* above carries 8 : B — Y @ Z/2 to the sum of the following two
homomorphisms

(1) AL BOm{5™ Y ©2/20 Srar(5™) 2 Y @ 1 {S™)

@ AL Bem{S"} L BB, (st ) "2
YOV QZ/2Qm 151 3 Y @V @ r, 5! L4 v @ ma{S™}
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This completes the algebraic definition of the natural system 'y which is used in
the next theorem.

The functor T'* in (5.5) yields the bifunctor

(5.11) D = Hom(—,T*) b x ab— Ab

which carries (A4, B) to the group Hom(A,T%¥ B) = [M(A,m + k), M(B,m)]. By
use of (5.6) we see that the bifunctor D in (5.10) is a special case of (5.11).

(5.12) Theorem. Let2 < m < n—1 and let Xy, be the class of mapsb: M(A,n—
1) = M(B,m) with A,B € ab. Then there is a commutative diagram of linear
extensions of categories, k = n.— m,

Hom(—,T¥)/I —X— CW(m,n) —>— Gro(Hom(—,Tk=1))

_I‘g _— Q(XE) e Pair()f'g)
r' _

il [e ||
Dg; —— Hopair(Xy) —— Pair(Xy)

Here the functor b carries X to (Hn X, H, X, bx). The natural system 'y is a
quotient, Ty, = Hom(—,T¥)/I, by the definition in (4.6). Morcover C and T are
isomorphisms for m > 3 and for 3 < m < n -1 < 3m — 3 the natural system
Iy = D}ﬁ_j is defined in (5.10).

Proof of (5.12). The theorem is a special case of theorem (4.5). The explicit com-
putation of I'y = D% for 3<m < n-1<3m -3, given in (5.10), is obtained by
the following arguments. Consider the natural system Dy in (3.6). Then it is clear
that g, in (3.6) corresponds to g. in (5.10). We have to show that also f* in (3.6)
coincides with f* in (5.10). For this we know that E7 f = 11Zf + [i1, 22)(Zv2f),
so that

B)=8,mEv f=0Zf+ 8. 9]Z7:f
= BEf + (L, 1](BIn)(Zv2f)

Here 1 is the identity of M (Y, m) and Bf§n = L(B'An’) is given by the smash product
B Ay’ with £’ = 3, Ly’ =n. Now X in (5.10) (4) induces the homomorphism

S ao it M(A,m) = AQ@ m_1 {57} B A @ m {S™ !} = maM(A,m + 1)
which is the suspension on 7,_y M(A,m). Therefore (Zf) corresponds to (5.10)
(8). Moreover [1,1}(8tn)Z72 f corresponds to (5.10) (9) since for TR = M(Z,m), Z €

ab, we have the commutative diagram, ¢t < 2m — 2,
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Z@m{S"} — 2@ Z@m(S? Yy —2 o Z@n {S™)
I | I
(SR —2s  r(SRAR) b (=R

This shows that H in (5.7) (5) corresponds to the James-Hopf invariant v, and P
in (5.7) (5) is induced by the generalized Whitehead product [1,1] : SRAR — ER.

q.e.d.
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§6 The Toda bracket of one point unions of 2-spheres
Let T" be the guadratic functor of J.H.C. Whitehead [28] in (5.9) with

(6.1) ['(A) = m3M(A,2) = Hy (A, 2)
for A € Ab. We have the natural exact sequence in Ab

(6.2) T(4) 5 A® 4 -2 A%(4) — 0

which is short exact if A is free abelian. Here A2(A) = A@ A/{a®a ~ 0,a € A}
is the exterior square of A. For a free abelian group A let G4 be a free group with
abelianization (G4)*® = A and let Ex = G.4/T'3(Ga) where I'3(G 4) is the subgroup
of triple commutators in GG 4. Then one has the central extension of groups

(6.3) AHA) S Bl D A

where p is the abelianization and w is the commutator map with w({a} A {b}) =
a~1b~tab for a,b € E4 and {a} = p(a). Let nil be the full subcategory of groups
E4, A € ab, where ab is the category of free abelian groups. Then one has the
linear extension of categories

(6.4) Hom(—,A?%) i nil L ab

where p carries B4 to A and where Hom(—, A?) is a bifunctor on gb. The action
+on €: Eq4 = Ep is defined by

E+a=¢+wap for o€ Hom(A,A*B).

Hence we obtain the canonical class

(6.5) {nil} € H*(ab, Hom(—, A%))

which is non trivial. The exact sequence (6.2) induces the short exact sequence of
ab -bimodules

0 = Hom(—,T) —» Hom(—,®%) = Hom(—,A?) = 0
and hence the associated Bockstein homomorphism

B: H*(ab, Hom(—,A%)) = H*(ab, Hom(-,T))
Now let S(2) be the full homotopy category of Moore spaces M(4,2) where A is
free abelian. Hence S(2) = gb. The natural system Dg on 5(2) is via (6.1) given
by the gb -bimodule Dy = Hom(—,T') so that the universal Toda bracket (5(2))s
is an element

(S(2))c € H%Q, Hom(—,T7)

This element has the following algebraic description in terms of {nil} above, {3].
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(6.6) Theorem.

(£(2))e = B{nil}

We use the category nul also for the example of § 7 below given by Hopf-maps.

§ 7 Homotopy pairs for Hopf maps
Let A be a free abelian group. A generalized Hopf map for A is a map

(7.1) na: M(I'(A),3) - M(A,?2)
which induces the identity of I'(A),

1:T(A) = m M(T(A),3) "% raM(4,2) = T(A).

Such Hopf maps exist and are well defined up to homotopy. For A = Z the map 7z
is the classical Hopf map. Let A'y,,5 be the class of all Hopf maps 74, A € ab.

The cofiber C(n4) of a Hopf map is the 5-skeleton of K(4,2). This implies that
there are isomorphisms of categories

(7.2) C(Xhops) = Pair(Xpopy) = ab

The natural system I's for Xpopyin (5.7) is trivial; the natural system Dg, however,
is non-trivial. In fact D% on ab coincides with the following natural system L.

(7.8) Definition. We define a natural system L on the category ab. Let z,y,z €
A € ab and

(1) 2,9,z = (2 Qy+yRz)®2—2Q (zQy+y Q)

in @4 = A® A® A. Let L(A,1); be the subgroup of ®*A generated by all
[{z,y],2]. A homomorphism £ induces

£y : Hom(A,B ® B) - Hom(T'(A), L(B,1)s)
where £y(a) is the composition
Ea) : T(4) 25 49 4% @°B -4 L(B,1)s.

Here ¢ carries z @ y ® z to —[[z,z]|,y]. The natural system L associates with
§: A— B € ab the group L({) = cokernel ({3H,) where
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(2) §4Hy : Hom(A,T'(B)) =+ Hom(A,B @ B) = Hom(T'(4), L{B,1)3)

Induced maps for L(£) are obtained from the bifunctor (A, B) — Hom(A, L(B,1)3).
Let L' = Hom(—,A?) be the natural system on ab given by the bimodule L'(¢) =

Hom(A,A?B). Then there is a canonical natural transformation 7 : L' — L of

natural systems on ab,

(3) 7: L'(¢) = Hom(4,A*B) — L(¢),

which carries 8 € L'(€) to 7(8) = {&(B)}. Here 3 : A — ®*B is a homomorphism
which projects to 3: A — A®B by pin (6.2).
(7.4) Theorem. The category of homotopy pairs between Hopf maps, Hopair(XHopf),

is characterized algebraically by the fact that there is a commutative diagram of
Iinear extensions

Hom(—,A?) —* nel — ab
| | ||
L —x Hopair(Xnops) — ab

Here 7 is the natural transformation in (7.2).

Equivalently the theorem can be expressed by the equation

(7.5) ro{nil} = {Hopair(Xtops)} € H*(ab, L)

Theorem (7.4) requires a highly sophisticated proof; compare [8].

§ 8 Homotopy pairs for Pontrjagin maps

Let A be an abelian group. A Pontrjagin map for A is a map

(8.1) T4 K(4,2) - K(T'(A),4)
which induces the identity of T'(4),

1:T(A) = Hyk(4,2) % HK(D(A),4) = T(A)

Such Pontrjagin maps exist and are well defined up to homotopy. The map 74
induces the Pontrjagin square which is the cohomology operation [28]
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HY(X, 4) = (X, K(4,2)] ™% [X, K(T(A),4)] = B (X, T(4))
Let Xpontrjagin be the class of all Pontrjagin maps 74, A € Ab. The fiber P(14) of
a Pontrjagin map is the 3-type of the Moore space M(A4,2). Let

Ext(—,T) : Ab°P x Ab — Ab
be the bimodule which carries (A, B) to the group Exzt(A,'(B)).

(8.2) Theorem. The category of homotopy pairs between Pontrjagin maps,
Hopair(Xpontrjagin ), Is part of the following diagram of non-split linear extension:

E:E't(—,r) ;) HOpaZ’T(rYPontrjagin) I iq-.—é

il Il I

Eﬂ:t(—,r) __'j‘_"> g(‘:t)Pontrjagin) — Pair(XPontrjagin)

I I l
Eaxt(=,T) —— M* — Ab
Here gz is the full homotopy category of Moore spaces M(A,2), A € Ab.
Proof. The result is essentially a special case of (5.3) since
H{y)(A,T(B)) = H*(K(4,2),I(B)) = Exzt(4,T(B))

The functor gg — g(.ﬂc'pomrjag.-n) carries the Moore space M(A4,2) to its 3-type.
The linear extension for M is the bottom row is also described in (V.3a.2) of {4]
where we show that the extension is non-split.
q.e.d.
We study the linear extension (8.2) in more detail in [9].
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