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Abstract

We construct an elliptic generalization of the Schlesinger system (ESS) with positions
of marked points on an elliptic curve and its modular parameter as independent variables
(the parameters in the moduli space of the complex structure). ESS is a non-autonomous
Hamiltonian system with pair-wise commuting Hamiltonians. The system is bihamiltonian
with respect to the linear and the quadratic Poisson brackets. The latter are the multi-color
generalization of the Sklyanin-Feigin-Odeskii classical algebras. We give the Lax form of the
ESS. The Lax matrix defines a connection of a flat bundle of degree one over the elliptic
curve with first order poles at the marked points. The ESS is the monodromy independence
condition on the complex structure for the linear systems related to the flat bundle. The
case of four points for a special initial data is reduced to the Painlevé VI equation in the
form of the Zhukovsky-Volterra gyrostat, proposed in our previous paper.
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1 Introduction

The Schlesinger system was introduced in [1] is a system of first order differential equations for
n matrices Sj (j = 1, . . . , n), depending on n points xk ∈ CP

1

∂kS
j =

[Sk,Sj ]

xk − xj
, (k 6= j) , ∂k = ∂xk

, (1.1)

∂kS
k = −

∑

j 6=k

[Sk,Sj ]

xk − xj

. (1.2)

This system has the Hamiltonian form with respect to the linear (Lie-Poisson) brackets on
sl(N, C). The Hamiltonian

Hk =
∑

j 6=k

〈SkSj〉

xk − xj
(〈 〉 = tr)

defines the evolution with respect to the time xk. There exists the tau-function expF , related
to the Hamiltonians [2]

∂k ln expF = Hk .

The Schlesinger equations are the monodromy preserving conditions for the linear system on
CP

1


∂z +
∑

j

Sj

z − xj



Ψ = 0 .

For two by two matrices and four marked points the Schlesinger system is equivalent to the
Painlevé VI equation [3]. In this case the position of three points can be fixed as (0, 1,∞) while
x4 play the role of an independent variable. Due to SL(2, C) gauge symmetry we leave with
second order differential equation for the matrix element (1, 2) of S4 (see, for example, [4]).

Here we replace CP
1 by an elliptic curve and define a similar system (the elliptic Schlesinger

system (ESS)). In this case, in addition to the coordinates of the marked points a new indepen-
dent variable appears inevitably. It is the modular parameter of the curve, and thereby we have
an additional new Hamiltonian. The similar systems in their integrable versions were considered
earlier in [5, 6, 7]

We reproduce the main properties of the Schlesinger system. Moreover, we rewrite the ESS
in terms of quadratic Poisson brackets. They are a multi-color generalization of the Sklyanin-
Feigin-Odesski classical algebras [8, 9]. In conclusion, for the four point case and the matrices
of order two we derive the Painlevé VI equation in the form of the Zhukovsky-Volterra gyrostat,
proposed in our previous paper [10]. It was established there that the non-autonomous SL(2, C)
Zhukovsky-Volterra gyrostat is equivalent to the elliptic form of the Painlevé VI equation [11]
proposed by P.Painlevé one year later after Fuchs (see, also, [12]). The corresponding isomon-
odromy problem on an elliptic curve is discovered only recently [13]. This paper is a continuation
of [10], though it can be read independently.
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2 Elliptic Schlesinger system

2.1 Definition

Let Στ = C/(Z + τZ) be an elliptic curve, with the modular parameter τ , (=mτ > 0) and

Dn = (x1, . . . , xn) , xj 6= xk , xk ∈ Στ

be the divisor of non-coincident points with the condition
∑

xj ∈ (Z + τZ) . (2.1)

Consider the space P
(1)
n,N of n copies of the Lie coalgebra g

∗ ∼ sl(N, C)∗, related to the points
of the divisor.

P
(1)
n,N = ⊕n

j=1g
∗
j , g

∗
j = {Sj =

∑

α∈Z̃
(2)
N

Sj
αtα} , (2.2)

where tα is the basis (B.7).

Introduce three operators that act from P
(1)
n,N to the dual space ⊕n

j=1gj

Ikj : g
∗
k → gj , Sk

γ 7→ (Ikj)γSk
γ , (Ikj)γ = ϕγ(xj − xk) , (2.3)

Jjj : g
∗
j → gj , Sj

γ 7→ JγSj
γ , Jγ = E2(γ̆) , (2.4)

Jkj : g
∗
k → gj , Sk

γ 7→ (Jkj)γSk
γ , (Jkj)γ = fγ(xj − xk) (2.5)

where ϕγ(x), E2(γ̆) and fγ(x) are defined by (B.10) - (B.14).
The positions of the marked points xj ∈ Dn, satisfying (2.1), and the modular parameter τ

are local coordinates in an open cell in the moduli space M1,n of elliptic curves with n marked
points and play the role of times.

Definition 2.1 The elliptic Schlesinger system (ESS) is the consistent dynamical system on

P
(1)
n,N with independent variables from M1,n

∂jS
k = [Ikj(S

j),Sk] , (k 6= j) , ∂k = ∂xk
, (2.6)

∂kS
k = −

∑

j 6=k

[Ijk(S
j),Sk] , (2.7)

∂τS
j =

∑

k 6=j

1

2πı
[Sj ,Jkj(S

k)] +
1

4πı
[Sj ,Jjj(S

j)] , (2.8)

where the commutators are understand as the coadjoint action of gj on g
∗
j .

The consistency of the system will be proved below.

In the basis tα (α ∈ Z̃
(2)
N ) (B.7) the ESS takes the form

∂kS
j
α =

∑

γ∈Z̃
(2)
N

)

C(γ, α)Sk
γSj

α−γϕγ(xj − xk) , (k 6= j) , (2.9)

∂kS
k
α =

∑

γ∈Z̃
(2)
N

)

C(γ, α)
∑

j 6=k

Sj
α−γSk

γϕα−γ(xk − xj) , (2.10)

∂τSk =
1

2πı

∑

γ∈Z̃
(2)
N

)

C(α, γ)





∑

k 6=j

Sk
α−γSj

γfγ(xk − xj) + Sk
γSk

−γE2(γ̆)



 . (2.11)
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Remark 2.1 Equations (2.9), (2.10) are consistent with the restriction on positions of the
marked points (2.1) i.e.

∑n
j=1 ∂jS

k = 0.

Remark 2.2 In the rational limit (2.9) and (2.10) pass to the standard Schlesinger system
(1.1), (1.2) (see (A.9)).

As in the rational case the ESS has some fundamental properties

• The space P
(1)
n,N is Poisson with respect to the linear Lie-Poisson brackets on g

∗

{Sj
α, Sk

β}1 = δjkC(α, β)Sα+β (2.12)

ESS is a non-autonomous Hamiltonian system with respect to the linear brackets on P
(1)
n,N

∂kS
j = {Hk,S

j , }1 , ∂k = ∂xk
, (1, . . . , n) , (2.13)

∂τS
j = {H0,S

j}1 , (2.14)

where
Hk = −

∑

j 6=k

〈Ikj(S
k)Sj)〉 = −

∑

j 6=k

∑

γ∈Z̃
(2)
N

Sk
γSj

−γϕγ(xj − xk) , (2.15)

Hτ = H0 = −
1

2πı





∑

k 6=j

〈SjJkj(S
k)〉 +

∑

j

〈SjJjj(S
j)〉



 (2.16)

= −
1

2πı







∑

k 6=j

∑

γ∈Z̃
(2)
N

Sj
γSk

−γfγ(xk − xj) +
∑

j

∑

γ∈Z̃
(2)
N

Sj
γSj

−γE2(γ̆)






.

The brackets (2.12) are degenerate. The symplectic leaves are n copies of coadjoint orbits
Oj (j = 1, . . . , n) of SL(N, C). Let all orbits be generic, and cµ(j) be corresponding
Casimir functions of order µ (µ = 2, . . . , N). The phase space of ESS is

R
(1)
n,N ∼ P

(1)
n,N/{cµ(j) = cµ(j)0} ∼

∏

Oj (2.17)

dimR
(1)
n,N = nN(N − 1) (2.18)

The ESS can be considered as a system of interacting non-autonomous SL(N, C) Euler-
Arnold tops, where operators (2.3), (2.4), (2.5) play the role of the inverse inertia tensors.

• The Hamiltonians satisfy the generalized Whitham equations [14]

∂jHk − ∂kHj = 0 , (j, k = 0, . . . , n) . (2.19)

In other words, the flows commute and the equations (2.6), (2.7) and (2.8) are consistent.
These conditions provide the existence of the tau-function expF

Hj = ∂jF , H0 = ∂τF .

• ESS is the monodromy preserving condition for flat rank N and degree one bundles over
Στ with respect to deformations of its moduli.

While the first two statements can be checked directly the last one should be considered
separately. In next subsection we prove all of them by the symplectic reduction from trivial,
though infinite Hamiltonian system.

4



2.2 Derivation of ESS

Here we derive the ESS starting with a bundle over the elliptic curve Στ . Deformations of
the complex structure of Στ allows us to introduce the times and the Hamiltonians. The ESS
arises on the symplectic quotient of the space of vector bundles with respect to the action of the
SL(N, C) gauge group.

2.2.1 Vector bundles of degree one over elliptic curves

Let EN be a degree one and rank N bundle over the elliptic curve Στ0 ∼ C/(Z + τ0Z) and
Conn(EN) = {A} be the space of its C∞ connections. It is a symplectic space with the form

ω0 =
1

2

∫

Σ
〈δA ∧ δA〉 .

Let (z, z̄) be the complex coordinates on Στ0

z = x + τ0y , z̄ = x + τ̄0y , (0 < x , y ≤ 1) .

For generic degree one bundles the transition matrices corresponding to the two basic cycles can
be chosen as

A(z + 1, z̄ + 1) = QA(z, z̄)Q−1 ,

A(z + τ0, z̄ + τ̄0) = Λ̃A(z, z̄)Λ̃−1 + 2πı
N

dz ,
(2.20)

where Λ̃(z, τ) = −eN (−z − τ0
2 )Λ and Q,Λ (B.1), (B.2). It means that there are no moduli

parameters for degree one bundles.
The complex structure on Στ allows us to introduce the complex structure on Conn(EN).

Let
d′ = ∂ + A , d′′ = ∂̄ + Ā , (∂ = ∂z , ∂̄ = ∂z̄)

be the corresponding components of the connection A.
In addition, we fix a quasi-parabolic structure at n marked points. It means that A has

simple poles at the marked points and

ResA|z=x0
j

= Sj = g−1S
j
0g ∈ Oj ⊂ g

∗
j

while Ā is regular. The symplectic form acquires the additional Kirillov-Kostant terms

ω0 =

∫

Σ
〈δA ∧ δĀ〉 −

n
∑

j=1

〈Sj
0g

−1
j δgjg

−1
j ∧ δgj〉 , gj ∈ SL(N, C) . (2.21)

We denote the set Conn(EN) with the quasi-parabolic structure at the marked points as

R̃
(1)
N,τ,n(Sj

0).
In fact, we will work with the larger space

P̃
(1)
n,N = {Conn(EN ) ;⊕n

j=1g
∗
j} = {(A, Ā) ,Sj , (j = 1, . . . , n)}

equipped with the Poisson brackets

{Aα, Āβ} = δα,−β , (2.22)

{Sj
α, Sk

β} = δjkC(α, β)Sα+β . (2.23)

By fixing the values of the Casimir functions to come down to R̃1
N,τ,n(Sj

0).
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2.2.2 Introducing Hamiltonians by deformation of complex structure

Deform the complex structure as
{

w = z − ε(z, z̄) ,
w̄ = z̄ ;

dw = (1 − ∂ε)dz − ∂̄εdz̄ . (2.24)

The Beltrami differential

µ =
∂̄ε(z, z̄)

1 − ∂ε(z, z̄)

(

∂

∂z
⊗ dz̄

)

, (∂̄ = ∂z̄)

defines the new holomorphic structure - the deformed antiholomorphic operator annihilates dw,
while the antiholomorphic structure is kept unchanged

∂w̄ = ∂̄ + µ∂, ∂w = ∂.

In addition, assume that µ vanishes at the marked points µ(z, z̄)|x0
j

= 0.

We specify the dependence of µ on the positions of the marked points in the following way.
Let U ′

j ⊃ Uj be two vicinities of the marked point xa such that U ′
j ∩ U ′

k = ∅ for j 6= k. Let
χj(z, z̄) be a smooth function

χj(z, z̄) =

{

1, z ∈ Uj

0, z ∈ Σg \ U
′
j.

Introduce times related to the positions of the marked points tj = xj − x0
j . Then

µj = tjµ
0
j = tj ∂̄χj(z, z̄) , tj = xj − x0

j . (2.25)

The dependence of the modular parameter takes the form

µτ = tτµ
0
0 =

tτ
τ0 − τ̄0

∂̄(z̄ − z)(1 −
n

∑

j=1

χj(z, z̄)) , tτ = τ − τ0 . (2.26)

The functions µ0
j (j = 0, . . . , n) can be considered as a basis in a big cell M0

1,n of the moduli
space M1,n. The introduced above times play the role of coordinates in this basis

µ = tτµ
0
τ +

n
∑

j=1

tjµ
0
j . (2.27)

We deform ω0 by means of the Beltrami differentials in a such way that it acquires nontrivial
Hamiltonians. Let us go to a new pair of the connection components

(A, Ā) → (A, Ā′ = Ā − µA)

It changes the form of ω0 (2.21) as

ω = ω0 −
1

2

∫

Στ

δ〈A2〉δµ . (2.28)

Expanding µ in the basis (2.27) we obtain

ω = ω0 −
n

∑

j=0

δH̃jδtj , t0 = tτ , (2.29)
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where

H̃j =
1

2

∫

Στ

〈A2〉∂̄χj(z, z̄) , (j = 1, . . . , n) (2.30)

H̃0 =
1

2

∫

Στ

〈A2〉∂̄(z̄ − z)(1 −
n

∑

j=1

χj(z, z̄)) . (2.31)

The form ω is defined on R1
N (Στ\Dn)×M0

1,n. The brackets (2.22), (2.23) and the Hamiltonians

H̃j lead to the equations of motion

1. ∂jĀ = Aµ0
j , 2. ∂jA = 0 , 3. ∂jgk = 0 , (∂j = ∂tj ) . (2.32)

Evidently, these flows pairwise commute. Moreover, we have from (2.22), (2.30), and (2.31)

{H̃j, H̃k} = 0 (2.33)

Remark 2.3 It easy to see that for general non-autonomous multi-time Hamiltonian systems,
as, for example, ESS, the commutativity of flows amounts to the quasi-classical flatness

∂jHk − ∂kHj + {Hk,Hj} = 0 .

If, moreover, (2.33) holds, then these conditions provide the existence of the tau-function
∂i expF = Hi. In particular, the tau-function exists for the flows (2.32).

2.2.3 ESS as symplectic quotient

Let G = {f(w, w̄)} be the group of smooth maps of Στ to SL(N, C) with the quasi-periodicity

f(w + 1, w̄ + 1) = Q−1f(w, w̄)Q , f(w + τ, w̄ + τ̄) = Λ̃−1(w)f(w, w̄)Λ̃(w) . (2.34)

Define its action on the fields as

A → f−1∂wf + f−1Af , Ā → f−1∂w̄f + f−1Āf , (2.35)

gj → gjfj , fj = f(z, z̄)|z=xj
.

The form ω is invariant with respect to this action. Therefore we can pass to the symplectic
quotient

R
(1)
N,τ,n(Sj

0) = R̃
(1)
N,τ,n(Sj

0)//G .

Proposition 2.1 • The symplectic quotient is the product of the coadjoint orbits

R
(1)
N,τ,n(Sj

0) ∼ ×n
j=1Oj

• The ESS is a result of the symplectic reduction of the system (2.32). Its Hamiltonians

(2.15), (2.16) are reduction of (2.30), (2.31) to R
(1)
N,τ,n(Sj

0).

• There exists the tau-function expF for the ESS

∂j expF = Hj .
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Proof.
The symplectic quotient is characterized by the conditions:
i. the moment constraints

F (A, Ā) =

n
∑

j=1

Sjδ(w − xj, w̄ − x̄j) − Nδ(w, w̄)t0 , Sj = g−1
j S

j
0gj , (2.36)

where F (A, Ā) = ∂̄A + ∂(µA) + [Ā, A]. Note that the last term in the r.h.s. of (2.36) comes
from (2.34) and (2.35).
ii. the gauge fixing

Aw̄ = 0 . (2.37)

It means that any Aw̄ can be represented as the pure gauge Aw̄ = f−1[Aw̄]∂w̄f [Aw̄]. As a result

R
(1)
N,τ,n(Sj

0) is described by the Lax matrix

L = −∂wff−1 + fAf−1 , f = f [Aw̄] .

The Lax matrix is a solution of the equation

∂w̄L =

n
∑

j=1

Sjδ(w − xj , w̄ − x̄j) − Nδ(w, w̄)t0

with the quasi-periodicity (2.20). From (A.13) and (B.15) we get

L(w) = −
1

N
E1(w)T0 +

n
∑

j=1

∑

γ∈Z̃
(2)
N

Sj
γϕγ(w − xj)Tγ . (2.38)

Here, for convenience we have used the basis Tγ instead of tγ . We stay only with finite degrees

of freedom described by the ESS variables Sj . Thereby, the symplectic quotient R
(1)
N,τ,n(Sj

0)
coincides with the phase space of the ESS (2.17).

The following Lemma complete the essential part of the proof.

Lemma 2.1 • The equations of motion (2.32) on the reduced space R
(1)
N,τ,n(Sj

0) take the Lax
form

∂kL − ∂wMk + [Mk, L] = 0 , (k = 0, . . . , n), (2.39)

where
Mk = −

∑

γ∈Z̃
(2)
N

Sk
γϕγ(w − xk)Tγ , (k 6= 0) , (2.40)

M0 = −
1

N
∂τ lnϑ(w|τ)T0 +

1

2πı

n
∑

l=1

∑

γ∈Z̃
(2)
N

Sl
γfγ(w − xl)Tγ . (2.41)

• (2.39) coincides with the ESS (2.9), (2.10), (2.11).

Proof.
Substituting in the equation of motion for A ( 2.32 (2))

A = f−1∂f + f−1Lf
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and defining Mk = −∂kff−1 we come to (2.39). It follows from (2.32 (1)) that M k satisfies the
equation ∂w̄Mk = −Lµ0

k with the same quasi-periodicity as L for j 6= 0. To define M j we have
used (B.15) and (B.16). The Lax equation with M j (j 6= 0) leads directly to (2.9). The Lax
equation with M 0 follows from the heat equation (A.11) and the Calogero equation (A.18). �

After the reduction the Poisson space P̃
(1)
n,N passes to P

(1)
n,N with the brackets (2.23). It follows

from (2.30), (2.31) that the Hamiltonians Hj on P
(1)
n,N can be read off from the expansion of

tr(L2) on the basis of the elliptic functions

1

2
tr(L(w))2 =

n
∑

j=1

(H2,jE2(w − xj) + H1,jE1(w − xj)) + H ′
0 ,

where H0 = − 1
2πı

(H ′
0 − 4η1

N
) and

∑

j H1,j = 0. Here H2,j = 1
2

∑

γ Sj
γSj

−γ are the quadratic
Casimir functions corresponding to the orbits Oj . It can be find that H1,j coincide with (2.15),

and H0 with (2.16). The Hamiltonians commute since their pre-images commute on P̃
(1)
n,N .

Therefore, we have proved the consistency of ESS and the existence of the tau-function. �

2.2.4 Isomonodromy problem

Let Ψ ∈ Γ be a section of a degree one vector bundle over Στ . Consider the linear system






(∂w + A)Ψ = 0 ,
(∂w̄ + Ā)Ψ = 0 ,
∂kΨ = 0 , (k = 0, . . . , n) .

(2.42)

The compatibility conditions of the first two equations is the flatness condition of the bundle.
The equations of motion (2.32) are the compatibility conditions of the last equations with the
two first equations. Let γ be a closed path on Στ , Ψγ is the corresponding transformed solution
and Θγ is the monodromy matrix

Ψγ = ΨΘγ .

Then the last equations implies the independence of Θγ on the moduli times tk. Therefore, the
equations of motion are the monodromy preserving conditions.

Let f be the gauge transformations Ψ → fΨ that ”kills” Aw̄. Then (2.42) takes the form






(∂w + L)Ψ = 0 ,
∂w̄Ψ = 0 ,
(∂k + Mk)Ψ = 0 , (k = 0, . . . , n) ,

(2.43)

where L (2.38) and M k (2.40),(2.41). The compatibility conditions of the last equations with
the first one is the ESS in the Lax form (2.39). They are the monodromy preserving conditions
for the linear system of the first two equations.

3 Bihamiltonian structure of ESS

3.1 Quadratic Poisson algebra

Consider a complex space of dimension nN 2. We organize it in the following way. Attribute to
the marked points of the divisor Dn n copies of the GL(N, C)-valued elements

xj → Sj
0T0 + Sj =

∑

a∈Z
(2)
N

Sj
aTa .
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Add to this set a variable S0 ∈ C and define

P
(2)
n,N = {S0 , (Sj

0 ,Sj , j = 1, . . . , n) |
n

∑

j=1

Sj
0 = 0} .

Proposition 3.1 The space P
(2)
n,N is Poisson with respect to the quadratic brackets

{S0, S
j
0}2 = {Sj

0, S
k
0}2 = {Sj

α, Sk
α}2 = 0 , (3.1)

{S0, S
k
α}2 =

∑

γ 6=α

C(α, γ)



Sk
α−γSk

γE2(γ̆) −
∑

j 6=k

Sj
−γSk

α+γfγ(xk − xj)



 , (3.2)

{Sk
α, Sk

β}2 = C(α, β)S0S
k
α+β +

∑

γ 6=α,−β

C(γ, α − β)Sk
α−γSk

β+γfα,β,γ (3.3)

+C(α, β)Sk
0Sk

α+β(E1(ᾰ + β̆) − E1(ᾰ) − E1(β̆))

−C(α, β)
∑

j 6=k

[Sk
0Sj

α+βϕα+β(xk − xj) − Sj
0S

k
α+βE1(xk − xj)]}

−2
∑

j 6=k

C(γ, α − β)Sk
α−γSk

β+γϕβ+γ(xk − xj)} ,

where fα,β,γ is defined by (B.14). For j 6= k

{Sj
α, Sk

β}2 =
∑

γ 6=α,−β

C(γ, α − β)Sj
α−γSk

β+γϕγ(xj − xk) (3.4)

−C(α, β)
(

Sj
0S

k
α+βϕα(xj − xk) − Sk

0Sj
α+βϕ−β(xk − xj)

)

,

and

{Sj
0, S

k
β}2 =

{

2
∑

γ C(γ,−β)Sj
−γSk

β+γϕγ(xk − xj) , j 6= k ,

−2
∑

m6=k

∑

γ C(γ,−β)Sk
−γSm

β+γϕβ+γ(xk − xm) , j = k .
(3.5)

The brackets are extracted from the classical exchange algebra

{Lgroup
1 (z), Lgroup

2 (w)}2 = [r(z − w), Lgroup
1 (z) ⊗ Lgroup

2 (w)] ,

where r is the classical Belavin-Drinfeld r-matrix r(z) =
∑

γ ϕγ(z)Tγ ⊗ T−γ [17], and Lgroup is
the modified Lax operator

Lgroup =



S0 +
n

∑

j=1

Sj
0E1(z − xj)



T0 + L̃j , L̃j =
∑

α

Sj
αϕα(z − xj)Tα .

The Jacobi identity for P
(2)
n,N follows from the classical Yang-Baxter equation for r(z). The

Poisson algebra P
(2)
n,N defines the structure of the Poisson-Lie group on the product of Gj attached

to the marked points xj . The proof of Lemma will be given in a separate publication.

Remark 3.1 For n = 1 we come to the classical Feigin-Odesski-Sklyanin algebras [8, 9]

{S0, Sα}2 =
∑

γ 6=α

C(α, γ)Sα−γSγE2(γ̆) , (3.6)

{Sα, Sβ}2 = S0Sα+βC(α, β) +
∑

γ 6=α,−β

C(γ, α − β)Sα−γSβ+γf(ᾰ, β̆, γ̆) , (3.7)
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3.2 Bihamiltonian structure

The quadratic brackets on P
(2)
n,N are degenerate. The function detL(z) is the generating function

for the Casimir functions Cµ(j) 1 (see [16]). Since it is a double periodic function it can be
expanded in the basis of elliptic functions (A.6)

detL(z) = C0 +

n
∑

j

C1(j)E1(z − xj) + C2(j)E2(z − xj) + . . . + CN(j)EN (z − xj) . (3.8)

In particular, for the second order matrices N = 2

C0 = S2
0 + 4η1

n
∑

j=1

(Sj
0)

2 +
∑

γ





n
∑

j=1

E2(γ̆)Sj
γSj

γ + 2
∑

k 6=j

Sj
γSk

−γfγ(xk − xj)



 , (3.9)

C1(j) = S0Sj +
∑

k 6=j

Sj
0S

k
0E1(xj − xk) +

∑

k 6=j

∑

γ

Sj
γSk

γφγ(xj − xk) , (3.10)

C2(j) = (Sj
0)

2 −
∑

γ

(Sj
γ)2 . (3.11)

Due to the condition
n

∑

j=1

C1(j) = 0 , (3.12)

the number of the independent Casimir functions is Nn. The generic symplectic leaf

R2
n,N ∼ P

(2)
n,N/{(Cµ(j) = Cµ(j)(0)) , µ = 1, . . . , N , j = 1, . . . , N} .

has dimension
dim(R2

n,N ) = nN(N − 1) . (3.13)

It coincides with the dimension of the ESS phase space R
(1)
N,τ,n(Sj

0) defined in terms of the linear
brackets.

We can extend the linear Poisson manifold P
(1)
n,N (2.2) by adding the variables S0 , Sj

0. In
terms of the linear brackets they are the Casimir functions and therefore preserve the phase

space R
(1)
N,τ,n(Sj

0) (2.17).
The form of brackets (3.2), (3.5) and the Casimir functions (3.9), (3.10) suggests the following

statement:

Proposition 3.2 In terms of the quadratic brackets the ESS takes the form

∂kS
j
α =

1

2
{Sk

0 , Sj
α}2 , (j, k = 1, . . . , n) ,

∂τSj
α =

1

2
{S0, S

j
α}2 .

We have more for the second order matrices. The Casimir functions of the quadratic brackets
serve as Hamiltonians in the representations ESS by the linear brackets

∂kS
j
α = {C1(k), Sj

α}1 , (j, k = 1, . . . , n) ,

∂τS
j
α =

1

2πı
{C0, S

j
α}1 .

1To distinguish them from the Casimir functions of the linear algebra we denote them by capital letters.
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Therefore, for N = 2 the trajectories of the ESS lie on the intersection of the symplectic leaves

of P
(2)
n,2 and P

(1)
n,N . This phenomena is a manifestation of the compatibility of the linear and

the quadratic Poisson brackets. The existence of compatible Poisson structures implies the
bihamiltonian structure of integrable hierarchies related to these brackets [18]. We don’t touch
this point here.

4 Reduction to the PVI

Consider the rank two case (N = 2) with four marked points n = 4. We slightly change here
our notations and enumerate the marked points as xj, j = 0, 1, 2, 3. Replace the basis Tα with
the Pauli matrices

T(1,0) → σ3 , T(0,1) → σ1 , T(1,1) → σ2 ,

and the basis index α = 1, 2, 3. As an initial data we put the marked points on z = 0 and the
half-periods of Στ

x0 = 0 , x1 =
τ

2
= ω2 , x2 =

1 + τ

2
= ω1 + ω2 , x3 =

1

2
= ω1 ,

and assume that
Sj

α = δj
αν̃α , (j = 1 , 2 , 3) , (4.1)

while S0
α = Sα are arbitrary. Since for N = 2 γ̆ ∼ −γ̆ it is not difficult to see that the

Hamiltonians Hj (j = 1, 2, 3) (2.15) vanish for this configuration, while (2.16) assume the form

Hτ =
∑

γ=1,2,3

(Sγ)2E2(γ̆) + Sγν ′
γ , ν ′

α = −ν̃αe(−ωα∂τωα)

(

ϑ′(0)

ϑ(ωα)

)2

.

Therefore, the initial data (4.1) stay unchanged and we leave with the two-dimensional phase
space R(1) ⊂ R1

4,2. It is described by S = (S1 , S2 , S3) with the linear sl(2, C) brackets and the
Casimir function

c2 =
∑

γ=1,2,3

S2
γ . (4.2)

The equations of motion on R(1) take the form of the non-autonomous Zhukovsky-Volterra
gyrostat [10].

∂τSα = 2ıεαβγ

(

SβSγE2(γ̆) + ν ′
βSγ

)

. (4.3)

Here ~S = (S1 , S2 , S3) is the momentum vector, ~J = (E2(ω2) , E2(ω1 + ω2) , E2(ω1)) is the
inverse inertia vector, and ~ν ′ = (ν ′

1 , ν ′
2 , ν ′

3) is the gyrostat momentum. This equation has the
bihamiltonian structure based on the generalized Sklyanin algebra [10].

It was proved in [10] that there exists a transformation that allows to pass from the elliptic
form of the Painlevé VI [11] to the non-autonomous Zhukovsky-Volterra gyrostat (4.3).

The Lax matrices can be read off from their representations for the ESS (2.38), (2.41)

L = −
1

2
∂w lnϑ(w; τ)σ0 +

∑

α

(Sαϕα(w) + ναϕα(w − ωα))σα .

M = −
1

2
∂τ lnϑ(w; τ)σ0 +

∑

α

−Sα
ϕ1(w)ϕ2(w)ϕ3(w)

ϕα(w)
σα + E1(w)L′ .

where L′ =
∑

α(Sαϕα(w) + ναϕα(w − ωα))σα. The former matrix define the linear problem for
(4.3) in the form (2.43).
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5 Appendix

5.1 Appendix A. Elliptic functions.

We assume that q = exp 2πiτ , where τ is the modular parameter of the elliptic curve Eτ .
The basic element is the theta function:

ϑ(z|τ) = q
1
8

∑

n∈Z

(−1)ne(
1

2
n(n + 1)τ + nz) = (e = exp 2πı) (A.1)

The Eisenstein functions

E1(z|τ) = ∂z log ϑ(z|τ), E1(z|τ) ∼
1

z
− 2η1z, (A.2)

where

η1(τ) =
24

2πi

η′(τ)

η(τ)
, η(τ) = q

1
24

∏

n>0

(1 − qn) . (A.3)

is the Dedekind function.

E2(z|τ) = −∂zE1(z|τ) = ∂2
z log ϑ(z|τ), E2(z|τ) ∼

1

z2
+ 2η1 . (A.4)

Relation to the Weierstrass functions

ζ(z, τ) = E1(z, τ) + 2η1(τ)z , ℘(z, τ) = E2(z, τ) − 2η1(τ) . (A.5)

The highest Eisenstein functions

Ej(z) =
(−1)j

(j − 1)!
∂(j−2)E2(z) , (j > 2) . (A.6)

The next important function is

φ(u, z) =
ϑ(u + z)ϑ′(0)

ϑ(u)ϑ(z)
. (A.7)

φ(u, z) = φ(z, u) , φ(−u,−z) = −φ(u, z) . (A.8)

It has a pole at z = 0 and

φ(u, z) =
1

z
+ E1(u) +

z

2
(E2

1(u) − ℘(u)) + . . . . (A.9)

∂uφ(u, z) = φ(u, z)(E1(u + z) − E1(u))|z→0 = −E2(u) . (A.10)

Heat equation

∂τφ(u,w) −
1

2πi
∂u∂wφ(u,w) = 0 . (A.11)

Quasi-periodicity

ϑ(z + 1) = −ϑ(z) , ϑ(z + τ) = −q−
1
2 e−2πizϑ(z) , (A.12)

E1(z + 1) = E1(z) , E1(z + τ) = E1(z) − 2πi , (A.13)
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E2(z + 1) = E2(z) , E2(z + τ) = E2(z) , (A.14)

φ(u, z + 1) = φ(u, z) , φ(u, z + τ) = e−2πıuφ(u, z) . (A.15)

∂uφ(u, z + 1) = ∂uφ(u, z) , ∂uφ(u, z + τ) = e−2πıu∂uφ(u, z) − 2πıφ(u, z) . (A.16)

The Fay three-section formula:

φ(u1, z1)φ(u2, z2) − φ(u1 + u2, z1)φ(u2, z2 − z1) − φ(u1 + u2, z2)φ(u1, z1 − z2) = 0 . (A.17)

Particular cases of this formula are the functional equations

φ(u, z)∂vφ(v, z) − φ(v, z)∂uφ(u, z) = (E2(v) − E2(u))φ(u + v, z) , (A.18)

φ(u, z1)φ(−u, z2) = φ(u, z2 − z1)(E1(z1) − E1(z2)) − ∂uφ(u, z2 − z1) . (A.19)

φ(u, z)φ(−u, z) = E2(z) − E2(u) . (A.20)

5.2 Appendix B. Lie algebra sl(N, C) and elliptic functions

Introduce the notation

eN (z) = exp(
2πi

N
z)

and two matrices
Q = diag(eN (1), . . . , eN (m), . . . , 1) (B.1)

Λ = δj,j+1 , (j = 1, . . . , N , modN) . (B.2)

Let
Z

(2)
N = (Z/NZ ⊕ Z/NZ) , Z̃

(2)
N ) = Z

(2)
N \ (0, 0) (B.3)

be the two-dimensional lattice of order N 2 and N2 − 1 correspondingly. The matrices Qa1Λa2 ,

a = (a1, a2) ∈ Z
(2)
N generate a basis in the group GL(N, C), while Qα1Λα2 , α = (α1, α2) ∈ Z̃

(2)
N

generate a basis in the Lie algebra sl(N, C). More exactly, we introduce the following basis in

GL(N, C). Consider the projective representation of Z
(2)
N in GL(N, C)

a → Ta =
N

2πi
eN (

a1a2

2
)Qa1Λa2 , (B.4)

TaTb =
N

2πi
eN (−

a × b

2
)Ta+b , (a × b = a1b2 − a2b1) (B.5)

Here N
2πi

eN (−a×b
2 ) is a non-trivial two-cocycle in H2(Z

(2)
N , Z2N ). The matrices Tα, α ∈ Z̃

(2)
N

generate a basis in sl(N, C). It follows from (B.5) that

[Tα, Tβ ] = C(α, β)Tα+β , (B.6)

where C(α, β) = N
π

sin π
N

(α × β) are the structure constants of sl(N, C).
The Lie coalgebra g

∗ = sl(N, C) has the dual basis

g
∗ = {S =

∑

Z̃
(2)
N

Sγtγ} , tγ =
2πı

N2
T−γ , 〈Tαtβ〉 = δ−β

α . (B.7)

It follows from (B.6) that g
∗ is a Poisson space with the linear brackets

{Sα, Sβ} = C(α, β)Sα+β . (B.8)
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The coadjoint action in these basises takes the form

ad∗
Tα

tβ = C(α, β)tα+β . (B.9)

Let γ̆ = γ1+γ2τ
N

. Then introduce the following constants on Z̃
(2):

ϑ(γ̆) = ϑ(
γ1 + γ2τ

N
) , E1(γ̆) = E1(

γ1 + γ2τ

N
) , E2(γ̆) = E2(

γ1 + γ2τ

N
) , (B.10)

φγ(z) = φ(γ̆, z) , (B.11)

ϕγ(z) = eN (γ2z)φγ(z) , (B.12)

fγ(z) = eN (γ2z)∂uφ(u, z)|u=γ̆ = ϕγ(z)(E1(γ̆ + z) − E1(γ̆)) . (B.13)

fα,β,γ = E1(γ̆) − E1(ᾰ − β̆ − γ̆) + E1(ᾰ − γ̆) − E1(β̆ − γ̆) . (B.14)

It follows from (A.7) that

ϕγ(z + 1) = eN (γ2)ϕγ(z) , ϕγ(z + τ) = eN (−γ1)ϕγ(z) . (B.15)

fγ(z + 1) = eN (γ2)fγ(z) , fγ(z + τ) = eN (−γ1)fγ(z) − 2πıϕγ(z) . (B.16)
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Lett.Math.Phys., 67 (2004) 153-165.

[14] I. Krichever, The tau-function of the universal Whitham hierarchy, matrix models and topological
field theories, Comm. on Pure and Appl. Math., XLVII (1994) 437-475.

[15] A.Levin, M.Olshanetsky, Hierarchies of isomonodromic deformations and Hitchin systems. Moscow
Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191, Amer. Math. Soc., Provi-
dence, RI, (1999), 223–262.

[16] H.Braden, V.Dolgushev, M.Olshanetsky, A.Zotov, Classical r-matrices and the Feigin-Odesskii al-
gebra via Hamiltonian and Poisson reductions. J. Phys. A, 36 (2003), 6979–7000.

[17] A.Belavin and V.Drinfeld, Solutions of the classical Yang-Baxter equation for simple Lie algebras,
Funct. Anal and Applic., 16, (1982), no. 3, 1–29.

[18] F.Magri, A simple model for the integrable Hamiltonian equation, Journ. Mat. Phys., 19 (1978),
1156–1162.

16


