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A explicit method of constructing pluriharmonic maps
from compact complex manifold into complex Grassmann manifold

Seiichi UDAGAWA

0. Introduction.

Let ¢ : M — N be a smooth map from a complex manifold into a Riemannian
manifold. Then, ¢ is called plurtharmonic if (0,1)-exterior covariant derivative
D" ¢ of the (1,0)-differential Jy of ¢ vanishes identically. Let V¥ be the pull-back
connection on the pull-back bundle p~!TN. We have

(0.1) (D"0p)(X,Y) = VE0p(Y) = 0p(0zY), XY € C=(TM™),

where TM'° is the holomorphic tangent bundle of M. If ¢ " !TNC has the Koszul-
Malgrange holomorphic structure, that is, (0,1)-part of V¥ coincides with O-
operator, we may say that ¢ is pluriharmonic if and only if ¢ sends any holo-
morphic section of MY to a holomorphic section of ¢ !TNC. It is easily ob-
served that if ¢ is holomorphic and N is a Kahler manifold then ¢ !TN"° has
the Koszul-Malgrange holomorphic structure, hence any holomorphic map is pluri-
harmonic. Note that anti-holomorphic map is also pluriharmonic if N is a Kahler
manifold. Conversely, the existence of the Koszul-Malgrange holomorphic structure
on ¢ !TNC (resp. ¢ !TN?) is ensured if ¢ is pluriharmonic and N has non-
negative or nonpositive curvature operator (resp. and N is Kahler)(cf. [0-U2}).
From the point of view of Riemannian geometry, the most important property of
pluriharmonic map is that it is a harmonic map with respect to any K&hler metric
on M. Therefore, the concept of pluriharmonic maps generalizes that of harmonic
maps from Riemann surface. Moreover, when one restricts a pluriharmonic map
from M to any holomorphic curve C of M, it induces a harmonic map from C into
N.

In [O-U1], the complex-analyticity, constancy and stability (as a harmonic map)
of plurtharmonic maps from compact Kahler manifold were investigated in detail.
As the consequences, there are so many non %-holomorphic examples of plurihar-
monic maps, where a map is called X-holomorphic if it is either holomorphic or
anti-holomorphic. As a special case, if the target is a complex Grassmann manifold
G (C") of k-dimensional complex subspaces in C*, any pluriharmonic map ¢ from a
Kahler manifold M is -holomorphic provided Maxrankrdy > 2(n—k—1)(k—1)+3.
In case M with ¢;(M) > 0 and by(M) = 1, the rank condition of ¢ may be replaced
by dimcM > (n — k — 1)(k — 1) + 2 and this dimension estimate is best possible.
On the other hand, the recent works of Ramanathan[Rm]|, Chern-Wolfson[C-W],



Burstall-Wood[B-W], Burstall-Salamon([B-S], Wolfson[Wol] and Wood[Wd1] state
that any harmonic map from Riemann sphere S? into Gx(C™) may be constructed
from a holomorphic map S* — G{(C™) for some 1 < t < k, which originate from
the works of Burns[Bn|, Din-Zakrewski[D-Z], Glaser-Stora[G-S], Eells-Wood[E-W]
with a complex projective space as target. Given a map ¢ : M — Gr(C"), we
may identify ¢ with the pull-back of the universal bundle over G(C"), denoted
by ¢, which is a complex subbundle of the trivial bundle M x C". We have the
sequence of the 9'- Gauss bundles by taking the image of the (1,0)-part of the sec-
ond fundamental form of each subbundle. Wolfson proved that this sequence must -
terminate if A = S§2%. In this sense, his method is explicit and the simplest in
the form. In general, ¢ has the intersection with certain @'-Gauss bundle, say
(r + 1)-th 9'-Gauss bundle, and such least integer r is called &'-isotropy order of
. A holomorphic map has infinite J'-isotropy order, hence one tries to increase
the J'-isotropy order of a given map by certain algebraic replacement. This is a
method of Burstall-Wood, which is explicit and the most natural in the idea. From
their works, one may expect to establish the explicit method, using the second fun-
damental forms, of constructing any pluriharmonic map from a compact complex
manifold M with ¢; (M) > 0 into G(C™). However, there are many difficulties. For
example, J'-Gauss bundle of ¢ has non-removable singularities, and its rank may
be greater than that of ¢, which implies that it is impossible to generalize Wolfson's
method to higher dimension. On the other hand, in [O-U2] Ohnita and the present
author succeeded in generalizing the method of Burstall-Wood and proved that any
pluriharmonic map ¢ from M\ S, with M as above into G(C™) with k = 2,3 and
n < 12 may be constructed, using the second fundamental forms, from a rational
map f : M — G(C") for some t, where S, is a certain singularity of codimension
at least two (see Definition 2.1). The restriction on k aries from the complicate
of Salamon’s diagram, which stands for the relations between ¢ and its 0'-Gauss
bundles, and even for the case of harmonic maps from $? the method is not known
for general k. In higer dimension, the most difficulty exists in that one can say
nothing about the relation of the ranks between ¢ and its §’-Gauss bundle, which
is the reason for the restriction on n. N

In this paper, the concepts of finite and infinite ¢’-isotropy order are impor-
tant (see section 3). A pluriharmonic map with infinite @'-isotropy order is easily
reduced to an anti-holomorphic map, hence we may treat only the case of finite 9'-
isotropy order (see Proposition 7.3). In case the target is a complex projective space
CP""!, it turns out that any pluriharmonic map has infinite §'-isotropy order, so
that reduced to an anti-holomorphic map (Theorem 3.1). Thus, any pluriharmonic
map ¢ from M \ S, with M as above into CP"~! may be constructed, in a unique
way, from a rational map f: M — CP"~! (Theorem 7.1). This is not the case for
the complex Grassmann manifold of higher rank as target. We can prove that any
pluritharmonic map ¢ with finite §'-isotropy order from M\ S, with M as above into



G2(C™) with n arbitrary may be constructed, using the second fundamental forms,
from a pluriharmonic map into CP"™! (Theorems 4.1, 7.2). This technique is par-
tially applicable to the cases of rank 3 and 4. We can prove that any pluriharmonic
map ¢ with finite &'-isotropy order from M \ S, with M as above into Gx(C")
with k = 3 (resp. 4) and n < 15 (resp. 14) may be constructed, using the second
fundamental forms, from a pluriharmonic map into G¢(C") for some 1 <t <k ~1
(Theorems 5.1, 6.1, 7.3). Although it is less explicit than those stated above, we
can prove that any non-holomorphic pluriharmonic map ¢ from M \ S, with M as
above into G(C") with k = 3 (resp. 4) and n < 20 (resp. 15) may be constructed,
using the second fundamental forms, from a rational map f : M — G,(C") for
some t (Theorems 6.2, 7.4), which also improves the result in [O-U2] stated above.

Refer to [E-L] for the recent developments of harmonic map theory, to [B-B-B-
R, [B-B], [0-U1,2], [Ud] for the stability and complex-analyticity of pluriharmonic
maps, and to [B-R], [Uh], [V], [Wd2] for the construction of harmonic maps from
Riemann sphere to Lie group. Finally, we mention that Ohnita and Valli [0-V]
generalized the results of [Uh], [V] to the class of meromorphically pluriharmonic
maps.

1. Preliminaries.

Let E be a unitary vector bundle over a complex manifold M, that is, E is
endowed with a Hermitian fibre metric h and a connection V¥ compatible with
h. Let F be a complex subbundle of E and let S be the Hermitian orthogonal
complement of F' in F with respect to h. Then, F' and S also become the unitary
vector bundles with respect to the induced Hermitian structures. Then, the second
fundamental forms, A% ¥ and AF'S are defined by

(1.1) VEv = Viv + AL (v), VEw = Viw 4+ 437 (w)

for any X € C®(TM), v € C®(F), w € C*(S), where VF, VF and V¥ are
the Hermitian connections of E, F and 5, respectively, and AHS (resp. A5F) is
regarded as Hom(F, S) (resp. Hom(S, F'))-valued 1-form on M. We easily obtain

(1.2) - APS = (457",

where { )* denotes the adjoint of { ) with respect to h. By the complex struc-

ture of M, we may decompose AHS as AFS = A(F;'SO) +A(F(;’51'). Let D be the exterior

covariant differentiation defined by the induced connection on Hom(F, S}, and D',
D" be the (1,0)-, (0,1)-part of D, that is, D = D'+ D". The (0,1)-exterior covariant

derivative D”Ag"z) of Ag’i) is defined by



na FS /5 F.S F.S
(1.3) (D" A W2, W) =V3o Aw = Ay o Vi —Asw

where Z,W € C®°(TM"?). Similarly, D’Ag)‘f) is defined. Now, assume that F
has the Koszul-Malgrange holomorphic structure, that is, a holomorphic structure
compatible with the Hermitian structure of E, and F is a holomorphic subbundle
of E. We may endow S with a holomorphic vector bundle structure by the isomor-
phism § ~ E/F, which is, in fact, nothing but the Koszul-Malgrange holomorphic
structure (cf. [B-S]). Then, Hom(F, S) also has the Koszul-Malgrange holomorphic
structure and a smooth section A of T*M° @ Hom(F, S) is called holomorphic if
D'"A=0.

Let ¢ : M — Gi(C") be a smooth map from a complex manifold into a
complex Grassmann manifold of k-dimensional complex subspaces in C". Then,
we may identify ¢ with a complex subbundle ¢ of rank k of the trivial bundle
C" = M x C", of which the fibre at z € M is given by ¢ = p(z). Note that p is
the pull-back of the universal bundle T over G(C") by go Frequently, we write ¢
as ¢ if there is no confusion.

Definition 1.1. Let E be a complex subbundle of C". We denote by Et
the Hermitian orthogonal complement of E in C" with respect to the standard
Hermitian fibre metric on C". If F is a complex subbundle of E, the Hermitian
orthogonal complement of F'in F is denoted by E & F.

Set

L L

(1.4) A¥ = ARE A9 = A2,

Then, by (1.2) we obtain

(1.5) Al = (A(o ) Afyy = (A(1 o))"

The property of ¢ may be interpreted by the property of A¥. For example, we have

Proposition 1.1. (I) The following statements are mutually equivalent
(1) ¢ is holomorphic (resp. anti-holomorphic)
(2) ¢ is a holomorphic (resp. an anti-holomorphic) subbundle of C",
(3) Afg1y =0 (resp. Af} ;) =0).
(II) ¢ is pluriharmonic if and only if D”A'fl 0y = 0, equivalently D' A( 5y =0
(III) ¢ is pluriharmonic if and only if ot is pluriharmonic.

In fact, we may say that if ¢ is pluriharmonic then A‘{’l 0) is a holomorphic
section of T*M™° @ Hom(p, ¢*) by Proposition 1.1, (II) and the following



Proposition 1.2 ([0-U2]). Ify is pluriharmonic, each of ¢ and ™ has the Koszul-
Malgrange holomorphic structure. In particular, any holomorphic subbundle of p

or E'L, and its Hermitian orthogonal complement in ¢ or 24_ have the Koszul-
Malgrange holomorphic structures.

L
If ¢ is pluriharmonic, by Propositions 1.1, 1.2, we see that A‘(P1 0y 18 also a
holomorphic section of T*M"° ® Hofn(g"‘,f).

2. A method of constructing pluriharmonic maps.

Let ¢ : M — G(C") be a pluriharmonic map from a complex manifold. The
following proposition gives a general method of constructing new pluriharmonic
map from the old.

Proposition 2.1 ([0-U2]). Define @ by

(2.1) g=(p00a)d 8,

where « and f satisfy the following conditions :
(2.2) o and B are holomorphic subbundles of ¢ and @*, respectively,

(23) AR, (@) CTMWgS, AL (A CTMOga.

Then, ¢ is also a pluriharmonic map from M into G,(C"™) for some t.

Al
in place of A(l o) A?’l 0), in this case, &« and  are chosen to be anti-holomorphic

Remark. If we reverse the orientation of M, we see that we may use A(o 1)

subbundles of  and _LE respectively.

To show the exarnples of & and B which satisfy the conditions (2. 2) and (2.3),

we consider A‘('Pl 0y as a bundle homomorphism A(l 0) : : TM™’ @ o — o+ and set

ImAY, = UsemIm(Af, ). .

Im Az"l 0) is a holomorphic subbundle of ﬁ"' over M\ V, where V is an analytic subset
of M. It can be observed that ImAZ”1 0) extends to a holomorphic subbundle of EJ'

over M \ W, where W is an analytic subset of codimension at least 2, and denote it
by ImAf 4 (cf. [0-U2]). Similarly, considering Af, ;) as an another homomorphism

AE’I 0y PP — T* M0 ®£ we set



In the same way as above, Kemélz"1 0) extends to a holomorphic subbundle of

o over M \ W', which is denoted by _I_Qe_r_Afl‘o), where W' is an analytic subset of

codimension at least 2. When we construct the new pluritharmonic map from the

old, we have the new singularity set, hence we give the following definition
Definition 2.1. Denote by S, the singularity set of M with codimcS, > 2 such

that ¢ is a pluriharmonic map from M\S, and S, is of the form
S‘P = Uf:].SJ

for some positive integer k and each S; (¢ = 1,--+,k) is an analytic subset of
M\ U7} S; with codimg$; > 2.

We need the following lemma, which we frequently utilize

Lemma 2.1 ([0-U2]). Assume that M is a compact complex manifold with the
positive first Chern class, ¢,(M) > 0. Let E be a Hermitian holomorphic vector
bundle over M\S, where S is as in Definition 2.1 without the assumption on ¢,
and let A be a holomorphic multi-differential with values in End(E). Then, A is
nilpotent, that is, A™ = 0 as a holomorphic multi-differential with values in End(E)
for some positive integer m < rankF.

For example, AE’ILO) o A‘fl 0) is a holomorphic quadratic differential with values
in End(y) over M\ S, hence nilpotent by Lemma 2.1 if M is compact and ¢, (M) >

L
0. In particular, A‘(’al 0) © Az"l 0) has the non-trivial kernel. In this case, any non-

zero holomorphic subbundle a of ¢ contained in Ker(A‘{’tho) 0 A‘E’l 0)) satisfies the
conditions (2.2) and (2.3) with 8 = Im(Af, o) |a) (see Lemma 2.2 below for the

(1,0
holomorphicity of AEPI,U) l«). In summary, we state the following

Proposition 2.2. Let ¢ : M\S, — G¢(C") be a pluriharmonic map. Then, the
following map @ defines a pluriharmonic map : M\S; — G,(C") for some t :

(24) § =ImAY,  if Af,  #0.
(2.5) = p O KerAf, o if KerAf , #0.

(2.6) g = (pBa) EBI_I_I_’I-(AEDI'O) la), where « is a holomorphic subbundle of  contained

in Ker(A‘f:O) o Af| ), if o # 0, which is satisfied if M is compact and ¢, (M) > 0.

However, (2.5) may be considered as a special case of (2.6) because _I_(_qAL‘(“’1 0)
1s contained in Ker(A(fllo) o A?’l 0))' Moreover, if M is compact and ¢;(M) > 0 then
(2.4) is also obtained by the successive procedure of type (2.6), which follows from
the more general proposition below, Proposition 2.3. For the notational simplicity,
we give



Definition 2.2. Set G'(p) = G(l)(t,o) = ImA?Y

(1,0) and inductively define the r-th
9'-Gauss bundle of ¢, G (p), by

G(H-l)(cp) = G’(G(')((P)) for ¢ = L2,
Similarly, define the r-th 8"-Gauss bundle, G(=7) (), by
G"(p) = G V(p) =ImAf,, , GUV(p) = GG (p)) for i=1,2,0

In particular, set G,(a) = Im(A(1 0) lo) and G (7) = Irn(A 0.1) |4) for a holomor-

phic subbundle & of ¢ and an anti-holomorphic subbundle v of , respectively.
We need the following

Lemma 2.2. Let 7 and p be the Hermitian vector bundles over M with the Koszul-
Malgrange holomorphic structures and let A be a holomorphic multi-differential
with values in Hom(r, u). Then, the following statements are true

(1) If « is a holomorphic subbundle of r, then A |, is holomorphic.

(2) If B is an anti-holomorphic subbundle of p and © :  — 3 is a Hermitian
orthogonal projection, then ™o A is holomorphic.

(3) If v is a subbundle of 7 with 7 § v C KerA and - has the Koszul-Malgrange
holomorphic structure with respect to the connection induced from t, then A |, is
a holomorphic multi-differential with values in Hom(ry, p).

(4) If 6 is a subbundle of p containing the image of A and & has the Koszul-
Malgrange holomorphic structure with respect to the connection induced from p,
then A is a holomorphic multi-differential with values in Hom(r, §).

Proof. Set A = 2!1, iy Ay .i,dz"' @ - ®dz'*. Then, A is holomorphic if and
only if, locally, A; ...;, 1s holomorphlc that is,

Vi o Aj i, = Ai i, 0 VY for any X € C®°(TM"°).
(1) Set € = 7 O «, then A(o ) =0. Therefore, we have

V; o Ai1--"ik |a= Air"ik o] V;( |a: Ail““k o] (Va}:' + A‘c;_(’e) = Ail"'ik o] VQX .

(2) Set x = 46 P, then A&;ﬂl) = 0. Denote by 75 and 7, the projections 7g : p —
and m. : g — K, respectively. Then, we have
mTg o A,‘l...,'k o V} =T8O V” 0 A
=mgo (V omg o Au iy AX’ 0me 0 Aj.iy)
= V’; cTg o} A,‘l...,'k



(3) Set n = 7 © v C KerA, then A(n) =0. We have

V‘;-( [o] Ail"‘ik |.{: A,‘l...,'b o V;—{ |..{= Ai1-~-ik o (V}: + A}q) =A o V}—, .

iy ik

(4) Set v = ;1 © 6, then, since ImA C § we obtain
Aiyiy 0V = V% 0 Aipi, = VR0 Ai iy + A2 0 A4y, = Vi 0 Ai iy

q.e.d.
Now, we prove the following

Proposition 2.3. Assume that M is compact and ¢, (M) > 0. Let ¢ : M\S, —
Gr(C") be a pluriharmonic map and define ¢ by § = (¢ © a) ® 8, where o and
B satisfy the conditions (2.2) and (2.3). Then, there is a finite sequence {¢;}]L, of
pluriharmonic maps with (1) =wo (2)g =e@n (3)fori=0,1,---,n—2, each
©it1 Is obtained from p; by . ((,o 8 ;)@ G, (i), where «; is a holomorphic
subbundle of g contained in Ker(A‘(Pl' 0) © Afi o)) such that

(I) ifg=@G (a) @n is also obtained from wn—1 by the above procedure (3) for
1 =N -1,
(I) if B # G',(«), there is a holomorphic subbundle fn_; of (fN—l G (on—1))*

so that ¢y is obtained from pyn_; by Py =Prn_1 EB_ﬂ_N—l

JIi+1

Proof. First, observe that A(l 0) © A‘(Pl 0) |« is a holomorphic quadratic differ-
ent1al with values in End(«) by Lemma 2.2. Then, it follows from Lemma 2.1 that

(A(1 O)OA*(pl 0) |a)¥ = 0 for some positive integer k < ranka. Set L = A(l 0)oA(E"; 0y las
and define «yg, - -+, @r~y and By, - -+, Bi by

(2.7) o= ImL* 1" o ImLF* with a =ImL® for i= 0,1,--+,k—1

Y

(2.8) Bi = G,(ImL*'") @ G,,(ImL*™*) with B =G\,(InL™")

for ¢ = 0,1,--+, k. Define a sequence {p;}%_, by

(2.9) 0, = (0,00)®P; with go=¢ for i =01, k-1,
By (2.7) and (2.8), we see that for any 1 = 0,1,k — 1,
(2.10) @Pej=ImL* ", BB =G,(ImL 7).

7=0 7=0



so that
(2.11) GL(a:) N (G,(ImL*"*)* = 6; .

We fix any integer ¢ with 0 <1 < k — 1. We show that G|, () = f; and «; is a

L
holomorphic subbundle of ¢, contained in Ker(A((’al‘,O) o Af ))- By (2.9) and (2.10),

we have
—1 ' k—1
(2.12) e, =(pOInLl* )@ G, (ImL*") .

Since LF~* and Aa,o)

bundles of ImL*~'~* and G,(ImL*~!~7), respectively, that is,

o L*—* are holomorphic, &; and §; are anti-holomorphic sub-

B:,G, (ImL*~")
(1,0)

<

0.

(2.13) ACHImERT"

(1,0) A

It follows from (2.12) and (2.13) that
(218)  Gl(as) = Gl (@) Ng* = Gy(as) 1 (G, ImI* )" =

Since ImL*~!~* is a holomorphic subbundle of ®, @; is a holomorphic subbundle of
¥ O ImZL*~*. Moreover, we have

P — _i)’ ! —1
Imag = = 6. (6 )

= ImLk+1—i :

which is orthogonal to ¢ © InZ*~ hence p O ImZ*~* is a holomorphic subbundle
of ¢, by (2.12). Thus, a; is a holomorphic subbundle of .. Finally, by (2.13) and
(2.14) we have

AP 0 AP (i) = AY(6:) C (mLF @ (ot © G, (ImIF—
(1,0) 1,0\ %) = S 0)\Fi AL »= 6 G, (Im ),

1 ,
so that A‘(Pll,o) ) A’a,o)

B = @;:; 5, hence we obtain (I). For (II), we only have to show that Bk is a

holomorphic subbundle of (¢, & G" ()™ ¥, is given by p, = (¢ © @) ® G\ ()

and G,,(«@) is a holomorphic subbundle of 3, hence Ag‘,’l(;')'ﬂk = 0by 8 = G,(a)Dpbs.

Moreover, by the condition (2.3) we have Af: :]g;ea = A‘(“’lld;’ ©%(B) = 0. Therefore,
Br L G"(px) and B is in (p, @ G"'(pk))*. Since A%PE — APPr (o) = (0 and By

(1,0) (1,0)

(@) = 0. If f = G (c) then B = 0 and & = P, @;,

=0



is a holomorphic subbundle of fJ‘ 8 G,(«), Bk is a holomorphic subbundle of gt,
hence of (¢, ® G" (k)™ q.e.d.

We have given the self-contained but lengthy proof. It is easier to understand
the reason that Proposition 2.3 holds, if we use the Salamon's diagram, which will
be defined and used in the next section.

We call the procedure (2.6) the forward replacement of «. When we use Af ,,
and an anti-holomorphic subbundle v of , we call the corresponding procedure the
backward replacement of ~.

3. Salamon's diagram and the isotropy order of pluriharmonic map.

Let C" = M x C™ be the trivial bundle over a complex manifold M with the
standard Hermitian fibre metric hy. Let 71, -+, 7% be a set of mutually orthogonal
subbundles of C" with respect to hg such that each r; ( = 1,---, k) has the Koszul-
Malgrange holomorphic structure compatible with the Hermitian structure induced
from hg and C" = ®;=1 ;. Denote by .48:;’) the (1,0)-second fundamental form of
iin7; @1 for 1 <i5# 5 <k (cf. section 1). Following [B-W], we give
1‘.',1'_,‘
(1,0)
vertices 7y, - - -, 7} and for each ordered pair (7, j) an edge from 7; to 7; representing

Aa";’) The absence of a given edge in the graph indicates the vanishing of the

Definition 3.1." We mean by a diagram {r;, A } the directed graph with

corresponding (1,0)-second fundamental form.

An important use of this diagram is to decide whether a given homomorphism,
such as the composition of some (1,0)-second fundamental forms, is holomorphic or
not. For this purpose, we need

Proposition 3.1. Given a diagram {T,-,A&S’i}, Aa:;’) : TMY @ 1; — 7} is holo-

morphic if the diagram contains no configurations of the following forms :

(1) ! (2) ! (3)

where 1 <1 <k with!l#1,5.

The proof of Proposition 3.1 is just the same method as in [B-W] (cf. Lemma
2.2). The particularly important case is when Lemma 2.1 is utilized. For example, if

-10-



A;{’;‘i“ (1<i<k-1)and A{i‘ ’(;')‘ are all holomorphic, we see that the composition

AH,’or)l o A(rf;);”"‘ 0---0 Aa!’g)’ is a holomorphic section of ®* T*M° ® End(r,) by
Leibniz' rule, hence nilpotent. We often refer to it as a holomorphic circuit and
denote it by {r, 7, -, 7k, 71} for notational simplicity.

Next, we introduce the concept of isotropy order of a given pluriharmonic
map. Let ¢ : M — G,(C") be a pluriharmonic map from a complex manifold.

We denote by G{™ (i) the r-th &'-Gauss bundle of ¢ as in section 2.

Definition 3.2. We say that ¢ has 8'-isotropy order r if ¢ is orthogonal to each
G (¢) (1 <i < r) and not orthogonal to G("+1) () with respect to hg. Moreover,
we say that ¢ has finite (resp. infinite) 9'-isotropy order if r < oo (resp. r = oo).
Similarly, the corresponding notion of 3"'-isotropy order for 3"-Gauss bundles is

defined.
Note that ¢ L G'() always holds, so that any ¢ has @'-isotropy order > 1.

Lemma 3.1 ([0-U2]). If ¢ has &-isotropy order > r, then G¥(p) L GU)(p)
for any 1,7 such that 0 <|i—j|<r,

If ¢ has O'-isotropy order > r, then by Lemma 3.1 we may set R = _t,c_o_J"e

(@;zl G (). Tt follows from Proposition 1.2 and Lemma 2.2, (3) that all @,

G(p) (1 € ¢ < r) and R have the Koszul-Malgrange holomorphic structures

compatible with the Hermitian structures induced from hy, and all Arl’(g;(w) and

() (i+1)
Ag 0)(“’)’6 ) (1 £1 £ r—1) are holomorphic. We often use this fact, without
any comment, in the following. If ¢ is a holomorphic map, AE‘; = _(AEPIJ-O))* =0,

so that AE":O) =0and ¢ 1 G (p) for any i > 1. Therefore, a holomorphic map

has infinite §'-isotropy order. However, since every G{(Y(¢p) is a subbundle of C",
Lemma 3.1 implies that there exists a positive integer s such that G(*)(p) = 0, that
is,  is reduced to an anti-holomorphic map f : M\Sy — G(C") for some ¢. In
general, a given pluriharmonic map has finite @'-isotropy order. A method for that
is to increase the ¢’-isotropy order of a given pluriharmonic map by the successive
procedures of type (2.6), that is, the forward replacement, so that it is reduced to
an anti-holomorphic map, in case M is compact and ¢,(M) > 0. However, when
the target is a complex projective space CP"~1 with Fubini-Study metric, a given
pluriharmonic map turns out to have infinite ¢’-isotropy order. In fact, we have

Theorem 3.1. Assume that M is compact and ¢1(M) > 0. Let ¢ : M\S, —
CP"! be a pluriharmonic map. Then, G*}(p) = 0 for some positive integer
s < n—1. Moreover, if  is non-holomorphic, each G () (0 < i < s — 1) defines
a pluriharmonic map into CP"~! and ¢ is reduced to an anti-holomorphic map

Pa—1 :M\S‘P:—l o CP"-_I.
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Theorem 3.1 is a reformulation of Theorem (7.30) in [O-U2]. This theorem
plays an important role when we treat the complex Grassmann manifold of higher
rank as target. We give here a proof of it using Salamon's diagram.

Proof of Theorem 3.1. If ¢ is anti-holomorphic, we have nothing to prove, so
that we may assume that ¢ is non anti-holomorphic. Suppose that ¢ has ¢'-isotropy
order > r. We have a diagram by Lemma 3.1

. )
where R = o1 0(D]_, GU)(p)). We show that Ag(o)(“a)’p is holomorphic. If r =1,

(r)
G(") () is a holomorphic subbundle of ¢ and A(C; 0)(“’) ¥ = A(1 0) |G () is holo-
G ()
(1,0)
is holomorphic. Then, we have a holomorphic circuit {@,G'(¢), -,G(")(t,o),f-},

a(r)
and by Lemma 2.1 and rankp = 1 we have A(1 )(sa).w 0 because all the other

morphic by Proposition 1.1 and Lemma 2.2. If r > 2, by Proposition 3.1, A

edges in (3.1) are surjective by the definitions. Therefore, ¢ L G{"1) () and ¢ has

9'-isotropy order > r+1. Thus, ¢ has infinite d'-isotropy order, so that G(*}(p) = 0
for some positive integer s <n — 1. If ¢ is non +-holomorphic, by Proposition 3.2
in [0-U1] we have rankcdp < 1 on M\.S'W which 1mphes rankG'(p) = 1 and G'(y)
defines a pluriharmonic map into CP™1, so does G(? () while GUi=1) () deﬁnes
non #-holomorphic map. If G(")(¢) defines a holomorphic map, then

r-—l)( )G( )( ) G(r)( )J. _
(1 0) ’ ’ A(I,O)w IG("””(&O)=O )

hence G("—l)(t,o) already defines an anti-holomorphic map into CP"~ 1, q.e.d.

When the target is a complex Grassmann manifold of higher rank, a generic
pluriharmonic map surely has finite ¢’-isotropy order. Therefore, in this case we
can't expect the result like Theorem 3.1 because the situation of rankG(i'*'l)((,o) >
rankG(9) (¢) may occur. We use the forward replacement, which is the most basic
one by Proposition 2.3, to treat the case of higher rank. We may reverse the
procedures in Theorem 3.1 so that any pluriharmonic map can be constructed,
using the second fundamental forms, from a holomorphic map or a rational map,
which 1s proved in section 7.
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4. Pluriharmonic maps into G3(C").

In this section, we give an explicit method of constructing any pluriharmonic
map @ : M\S, — G2(C"), where M is a compact complex manifold with ¢, (A1) >
0. If o has infinite §'-isotropy order, then G(*)(¢) = 0 for some positive integer s,
hence ¢ is reduced to an anti-holomorphic map @,—1 : M\S,,_, — G,(C") for
some t. Thus, we may assume that ¢ has finite ¢'-isotropy order. We prove

Theorem 4.1. Let ¢ : M\S, — G3(C") be a pluriharmonic map. Assume that
¢ has finite @'-isotropy order. Then, there is a sequence {p;}Y, of pluriharmonic
maps such that

(1) Yo = ©, (2) PN - M\S(PN — CPn—l,

(3) for i = 0,1,--+,N — 1, each p; has J'-isotropy order r + i, where r is the 0'-
isotropy order of @q, and iy, is obtained from p; by the forward replacement of

. . (r+i) (. .
o, where o' = IﬂA(G; 0) (wi) s , which is a holomorphic subbundle ofgi contained
4 .
in Ker(A;pl',o) 0 A‘(‘ol"o)).

Proof. Let r be the @-isotropy order of . As in the proof of Theorem 3.1,

) () (r-1) (r)
we see that Aglo)(”p)"’p is holomorphic. Set A4, , = Ag’o)(‘p)’“’ o A(Gl’o) (), ()

! (r)
... 0 Azal’g)(“’). By Lemma 2.1, A?",w = 0, so that o® = IﬂAg,o)(L‘a)’l’a C Kerd, , C

Ker(Ag.U) o A((“’l 0)) and ranka® = 1. Set o = af, o? = Gg)(ag) fore=1,-++,r,

and set 7§ = ¢ 8 0], 7} = GO(p)oalfori=1,...,r. We have a diagram

o}

N o0
4 R
N
(4.1) -
ad ap

: 0 o? 0 .0
where R = o 6 (D=1 G (p)). By Proposition 3.1, A?l"’o)'“, A?l'g)'“ 0<i<

0 0 0 .
r—1), AE’{"OC;O and A?f,;f){ are all holomorphic. Further, set %, , = IEA?{,’O})B and

R, = R6a?,,. Again, we have a diagram

0 0 '

Yo T Yr Ry Yo
N e e e e et - — LN . N
rd [d 7 7 7

S A A A A

4.2
( ) AN N N N N
rd rd - - == == rd 0 7 0 7
o o5 G Cppy g
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1]
By (4.2) and Proposition 3.1, we see that A(l‘"?)')l"h’ is also holomorphic. We have

a holomorphic circuit {ao,a?, e 70, --,72,048}, which must vanish by

Lemma 2.1. However, AZ{ 'J;‘“ (0<i<r—1)and AZI' ’0)" are all surjective. Since

ranky) = 1, we obtain A(l':;)“% = 0. Hereafter, we use the convention that if a? = 0

for some 1 < ¢ < r 4+ 1 we understand that A(l"g)“% = 0 is trivially satisfied. Set
0

P, = (¢ B ad)dald. If of = 0, then rankp. = 1 and ¢; is a pluriharmonic map
into CP"~!. Hence, assume that of # 0. Then, from (4.2) we have
e, =10, G =7 @l 1<i<r), G (p) C Ry Ba],

so that ¢, has @'-isotropy order r+1. To continue this procedure, we investigate the
properties of o, further. Setting R, = (R) @ o) © G"*1)(,), we have a diagram

(4.3)

?, G'(1) G(r“)(ﬂol) R,

(r+1}) . .
By (4.3) and Proposition 3.1, we see that Ag 0;1 G o holomorphic. We have a

holomorphic circuit {¢ ,G'(¢1)," - ,G(’"'H)(gal),fl}, and setting

G("-I-l)( , () )G("'" ( G’ )
Art1,o = A(1,o) P A(l 0)(("’l W) "0 A‘(To) o

G+ (py),0

we see that A,y ,, is nilpotent. Set o = ImA(1 0) then rankaj < ranky —

1. Let P! : Gt (p)) — af and P, : al — czl be the Hermitian orthogonal
0

projections. It follows from the surjectivity of A?l"o)" and the fact G(")((,ol) =

72 B a,_l_l that P! is surjective. Since (R, @ ad) L o, G"+Y(p,) C R, ® af and

Ag (’)c;l = 0 by (4.2), we obtain

GO (), 4G ()00 a?
(4.4) P, OA(I,O) (1) ‘Pl( )_ (2.0) (1) 1( )_ ?’100 1 Pl( )

—~ 0 0
where v € C°°(G(r+1)(t,ol)), which, together with the surjectivities of P! and A?l",bc;‘ :

implies that P, is surjective. Therefore, we have rankeg > ranka} = rankp -1,
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which, together with the above rank inequality, implies that rankaj = ranka? =
rankg — 1 and Py is an isomorphism, where we note that P; is holomorphic by

Lemma 2.2. We show that Af_{_l,w = 0. Set o} = Ggl)(aetl,), which is a holo-
morphic subbundle of G()(¢,), for i = 1,---,r + 1. If P! l°1+1: ary, — af

(r+1)
is surjective, by (4.4) we see that Pl(Iﬂ(A(Ci 0)1 (wr)en ]01“)) = Pi(ag), hence

(r+1)
IE(A(Ci 0) (e1).en Loz, ) = o, which contradicts the nilpotency of Ar41 4,. There-

~ (r+1)
fore, P1 |a: = 0 by rankag = 1, and hence a}_, C KerAg 0) (pr)en by (4.4) and
the isomorphlclty of P;. Thus, we have proved that A2 +1,4; = 0. Moreover, we

(r+1)
obtain @}, C Rj and al,, = Im(A(Ci 0) (er) l“l+1) C Ry C R} ® o). Finally, set
Ri=RiBap, = (R @) 0 G (p1) O ary,

then by (4.2) we see that R} 1 of and Aﬁ‘;f;‘ = 0.
We claim that

G (pi) i -
(1,0) 18

holomorphlc and A,._H o = 0, then define w4, by i = (fi O ab) @ al, where

Claim. For each 1 = 0,1, -+, if, ¢; has ¢'-isotropy order r 4+ ¢, A

(r41) .
= G:P'.((IB), ab = Im A(ci 0) (eidei KerA, ;. and rankay = rankp — 1.
Then, either ;1 is a pluriharmonic map into CP"~! or, ;1 has &'-isotropy or-

der 7 + 7 4+ 1 and has the following properties :

(r+it1)
(1) (Ci 0) (#i+1):i+1 5 holomorphic and AZ iy

Il

1Pt 0’

(r4i+1) (. :
(2) set aB‘H = I_AL(G1 0) S KerA, it1,p:4., then ranke? = ranka"H =

rankft._i_1 —1 and the Hermitian orthogonal projection Piy; : aft? — a! is a holo-
morphic isomorphism,
(3) G(H.S)(‘Pﬁl) CR,; ®op  (1<s<i+1),

(4) set a'+1 = ch,+l(a'+l) forj =1, ,r+i+2, then ai¥, C R,_, (1 <s <i+1)
and a,',il,_u C R; ® oy,

(5) set Rl = (R} & ab) © GUHt(p;41)) 6 aftl ,, then Rl,, L o} and
ABoe™

(1,0)

Il

This Claim is already established for ¢ = 0. Assume that Claim is true for
0 <2< k%kand P (0 < i £ k) does not define a map into CP"~!, so that each

wit1 (0 £ ¢ < k) has the properties (1) ~ (5). Then, we may define pyys by
Prog = (@, 007 O ot I of ! = 0, then rankg, = 1 by (2) for @iy,

and @42 is a pluriharmonic map into CP"~1. Hence, assume that ak‘H # 0.
First, we draw the diagram for @;;; (0 < i < k). Set 3t = 9.9 a"” and
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7;'*'1 G {(piy1) B a}“ for j =1,---,7 4+t + 1. By the properties (1) ~ (5) for
@it+1, we have a diagram

141 141 i1 i+1 ! i4-1
Yo LR Yr1 it Ry L
> 7o S 2 / 7
N 1
sl >-——~—-$.—>— ————— - N ,
t41 1+1 141 :+1 1+1 1+1
Qg @y ¥ Qryit1 Qg2 o)
In particular, when : = k, we have a holomorphic circuit
B+l okt k41 k41 k41 k41 k+1
{og @k To 0T 5T Tregky1 Yo b
e R
y g -
which is nilpotent. Since ranky;™ = 1 by (2) for @41, and A(1 0) <<
h+1 st okl 7k+1
r + k) and A(l"*[')')'“’ “® are all surjective, we obtain A(l”(;;'“' * = 0. It follows

from (4.5) that

46) ¢, ,=nTeodt, GW(erp) =y @il (1<i<r+E+1),
GUHR D (pr12) C Riyy © o™

Then, @it2 has §'-isotropy order r+k+2. By (3) and (4) for i1 and the definition
of R, we obtain

T CGU M (o) CR,_ @™ (1<s<k+1),
f¢;+1 CR,CR,_,®a; -1 1<s< k) aiiiﬂ CRk@ao ,
which, together with (4.6), yield
(4.7) Gt () CRL_ ®at™ (1<s<k+2)

Set Riqo = (,ok“ S (EBT“L"”L2 GY(pr42)). We have a diagram

(4.8)

17

Ptz G'(rt2) G+t (or1y)  Rigo

\ N N
e - —7 >
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(r+k+2)
By (4.8) and Proposition 3.1, A(G; 0) (Pr42)rsr i holomorphic. Set ak+2 =

Glr+E+2) , L
—@A(l,o) (rtadertz g a; 2 = G%H(ao'”) forj=1,--.,7 +k+2. Set
A _ 4CU TN (prya) 0k 42 AG( o) (ppra), G("+'=+2)(¢k+2)

r+k+2,0642 = “3(1,0) (1,0)
at2,G (Pry2)
oA )

which is nilpotent. Hence, rankaft? < rankep,  — 1. Let Ptz GU+EtD (pr49)

— a§+ and Pyyg : ag"'z — a’f’“ be the Hermitian orthogonal projections. It fol-
k41 k41
lows from the surjectivity of AZI"'E;"“'% and the fact G+ (p, 10) = »)rf_"_“;H &

aktl , (see (4.5) and (4.6)) that P*+2 is surjective. Since (R, @ aft') L of*1
+
GUtkt2) (i, 10) C R, . & aft! and A(lk;)b = 0 by (4.5) for : = k, we obtain

(rE+2)
(4.9) Prya0 A(Gl’o) Pprsa)ense (v)
(r4k+2) okt kB4l k41
_ A(Ci,o) (Wr42),a) (U) (1 0), 1 oPk+2(v),

where v € C®(GU+5+2(p,4,)), which, together with the surjectivities of Pk+2
aEHL R :
and A(1 0)'01 , implies that Py, is surjective. Therefore, we have rankaz’(;"'2 >

ra.nkae1 = ran_kc_ek_‘_2 - ra,nkf)r(’f"'1 = ra.nkgk_!_2 — 1, where the last equality follows
from (2) for ¢4 ;. Consequently, we see that rankat ™2 = ranka*+! = rankp, -1
and Pr4o 1s an isomorphism. We show that Aﬁ+k+2,m+2 = 0. By (4.7) we have

(4.10) af 2 C GUH ppy) CRL_ B af™ (1<s <k+2).

First, we must show that of12 C R,_, (1 < s < k +2). Let p®: aff? — af7t,

q® - a:fig — R, _,(1<s<k+2)andr* :afif+1'—> o' (1<s<k+1)be
the Hermitian orthogonal projections. Take any v € Cw(a,’fif). By (4.10), we may

set v = p’(v) + ¢°(v), and for 1 < s < k + 1 we have

k-|-2 k+2
" o' rtsdl
(411) 1 oA(I;) k()

= A(lﬁo)' . (p ('U)) + A 1!(;)1: ;_l(q (U)) _ (1 0 La ap™! ops(v)’

where we have used the facts (R,_; @ «§™') L o' (see (4.5)) and (5) for p,_;.

o'~ 1 _s-1
If p* is surjective, then, since A(l 0)’a1 is surjective, (4.11) implies that 7°
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surjective, where we note that o™ # 0 and o{™' # 0 (1 < s < k + 1) be-
cause neither ¢,_; nor ¢, defines a map into CP"*~! by the assumption. Since
R, L of™', rankag = ranke! ' and P, : af — a) ' is an isomorphism by
(2), (5) for p,, the surjectivity of 7° implies that p**! : ozf_':_'f_i_l — of is also
surjective. Now, suppose that p! is surjective. Then, it follows that each p°

(1 < s < k+ 2) is surjective. In particular, pF+? : afiiﬂ — agT! s sur-

jective. Note that p*+? = Pk+2 | e+2 . Then, it follows from the surjectivity
r+k+2

(r+5+2)
of p**?% and (4.9) that Pk+2(I_m(Ag,o) Penra)ents o ot )) = Pita(agt?) and

Glrrt2)

‘hence Irn(A(1 (Peta) @t |42 ) = af*?, which contradicts the nilpotency of
o bkt2

A kt2, 0042 Therefore, we have proved that p' is not surjective and p!' = 0 by

ranked = 1. For any fixed s (1 < s < k+ 1), if p* = 0, then by (4.11) and the sur-

akt? o k+2
jectivity of A(l";)" "t for 1 < s < k41 we see that 7* = 0, where we note that if
fiﬁ_H = 0 then 7% = 0 is trivially satisfied. Since P, is an 1sornorphlsrn 1t follows

from 7° = 0 that p‘""1 = 0. Thus, we have proved that p®* =0 (1 < s < k +2),
which, together with (4.10), yields

(4.12) off?CR,_, 1<s<k+2).

Moreover, the fact p*t? = 0, the isomorphicity of Py, and (4.9) imply that

o2 GUrHE+D) (o 12) 0k 42 2 —_
oV ke C Kerd g o , 80 that Al .15 .., =0. Set
k+2 G("+k+2)(¢k+z) k+1
and set

k+2 = Rk+2 S/ ar+k+3 = ((Rk+1 ©® k+1) S/ G(r+k+2)(9"k+2)) S/ aaﬁ112c+3 .

k42

By (4.5) for i = k, we see that R} , L of"' and Aﬁ"g')z’a‘ = 0. In this way,
Claim is established.

Now, let N be any positive integer and suppose that each ¢; (0 < ¢ < N) does
not define a map into CP"~!. Then, by Claim we see that ¢ has J'-isotropy order
r + N. However, this is impossible because the ¢'-isotropy order r + N must be less
than n. Therefore, there exists a positive integer N such that ¢y is a pluriharmonic
map from M\S,, into CP"~!, which, together with Claim, yields the statements
(1) ~ (3) of Theorem 4.1. q.e.d.

The inverse procedures of Theorem 4.1 is also proved in section 7.
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5. Pluriharmonic maps into G3(C").

Let ¢ : M\S, — G3(C") be a pluriharmonic map, where M is a compact
complex manifold with ¢;(A) > 0. As in the case of G3(C™), we may assume that
¢ has finite §'-isotropy order. Define A, as in section 4, where r is the J'-isotropy
order of ¢, then A, . is nilpotent. There are two possibilities :

(I) A%, =0and A2, #0, (I) A2, =0.

We treat these two cases separately. Although we don't get the result such as
Theorem 4.1 because of the complicate of the sequence of pluriharmonic maps into
(G3(C"), we may increase the ¢’-isotropy order by two, so that we can construct
any plurtharmonic map into G3(C") under the restriction on n. Set o = .

(I) Set Ro = ¢ © (@)=, G (), and set 7o = ImAG (%, 7, = GY)(ry) for

. (1,0)
i=1,,rand 7§ =87, 7 = GO(p)erifori =1, --,r. Since Al #0,

(r) i .
set o = Iﬂ(Ag D)(l’a)’w |-.) and o = GE,)(ag) for i = 1,---,r. Then, we see that
rank7y = 2 and rankag = 1. Moreover, set 83 = 08a), 8% = 1,00 fori =1,---,r,
aln)

all, = Iﬂ(A(l,o)((p) la) C Ro and Ry = Ry © a?,,. Then, we have a diagram

0 0 0 ' 0
Yo M Yr Ry Yo
] —_——— == = > >
A A N
A
0 0 0
/80 ﬁ"", 160
(5.1) L, A
ﬁo
1
A N / A
———————— e
0 0 0 0
o o o, e Gy

By (5.1), we have a holomorphic circuit
o _0 0 0 .0 0 g0 o o _0
{a07a1:'":ar+117{)7711'"17r3603ﬁ1:"'a raa'o}:

0.0 0 g0 0 4o e
which must vanish. Since Agl')'g)'“, A?l',’(g‘“ (0<i<r—1), Agl”f;" and Afl“”gt;" are

o 0
all surjective, we have A(l'g)“% = 0. Set _teé = (20 6 af) ® o) then we have
(52) =1 efhed, G =regdal, 1<iln),

Gt (ph) C Ry & B3 @ op
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so that §3 = ImAG O)‘“’“’%, B = GU(B9) (1 < i < ) and Im(4f, 5**' |g0) C

tBad. Note that if o = 0 then ¢} is a plurlharmomc map into G2(C"), so that we

(r )
may assume that o # 0. Set A2, = Im(A(Ci 0) (¥6) |go) and Roy = (R ® o)) © B2,

then we have a diagram

~0 ~0 ~0 ~0

83

¥ R @y e — Cr N Rox , 20

(5 3) N N A A A
7 ———— == > > >

0 0 0 0 0

ﬁo 51 ﬁr r+1 ,80

0 ~ 0
APre8o . po

where we have put & = v ®al,, (0 <1 < 7). By (5 3), we easily see that
0
e B — ag can not be surjective and ImA "+;' ° is contained in the

-0 o]
kernel of A 'aﬁ" A(l"o)“ 0-+0 Aa"’o)l, so that ra.nkImA'(gl"'(;;’% < rankd — 1. Set
0

8 = ImA(I'g;’ °. Denote by Py : 6 — of and P° : B2, | — «f the Hermitian
orthogonal projections. In the same way as (4.4), by (5.1) we obtain

O:’o aoval
(5.4) Pyo A(l‘"z;’ (v) = Ay o P(v), v € C®(Br) .

0 _0
Since Afl" ’Oc;" is surjective, P? is surjective, which, together with (5.4) and the surjec-

0
tivity of A(l"b)‘, implies that P, is surjective, hence ranké) > ranka$ = ranka§ — 1.
Thus, we see that ranké] = rankd) — 1 and P, is an isomorphism. Set §7 =
(')(60)0&9 fori=1,---,r,andset 45 = &508),4? = 65998? forz =1,..-,r. Since

1
Im(Au 0) |(ﬂ°636°)) C Ry @ af, set 60, = Im(A(l 0) (i7a) l(semse)) © By C Ry
and Ry, = Rp; © 62,,. We have a diagram

2,0 2.0 ~0 ! 2,0
Yo "1 L I Al Yo
————————— P 7 ral
50
/ 1 AN T'H, I\
0 0 0 0
60 ‘ 51 \61' . é-0
(55) e ——— = - Ty 7 ?
A N A y U
N M o e e e s e e e N N
7 7 7
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By (5.5) we have a holomorphic circuit

{JBO?:BI’ r+115836(1)1" 50-}-176’0:7]7 a'fraﬂo}

which must vanish. Hence, we get A 5% = 0 because rank4] = 1, where, as in
g (1,0) Yo

section 4, we understand that this equation is trivially satisfied if §? = Q for some
1 <1 <r 4+ 1. Therefore, set o, = (ﬁé e (8@ BY)) @ (&% e ﬂ?) then

(56) o =906, GCp)=4% 06, 88, (1<i<T),
Gt (p)) C Ry, @ 8 @ B,

so that ¢, has @'-isotropy order > r 4+ 1. We remark that § # 0 if o} # 0.

(r+1) H
First, we show that A%, , = 0. Set yj = ImAg 0) (erdier pt o= G&,E(,u},) for

i=1,---,7+1. Denote by P : u} — 62@®A° and P! : (r+1)(<P1) — 63 @ B3 the

Hermitian orthogonal projections, which are holomorphic. By (5.5), we see that P!
is surjective. We have

Gr+V) (), 6 6% :
(5T) PP o 45 U () = 4GSO o i), v e 00(ET (1))
It follows from (5.7) that P} is surjective, which, together with the nilpotency of
A;41,4,, implies that rankuj = rankg — 1 and P? is an isomorphism. Hence,

Pl | .1
Pr+1
Upy1 = (6 fas) ,5’0 )O fir41. Since P0 is surjective, the Hermitian orthogona.l projection

Pl :pl — 82, @ B2, is also surjective, and denoting by §* : GUHD () — 83
the Hermitian orthogonal projection we have

prpy — 83 @ B can not be surjective, and set fip4; = Iﬂ(ﬁl |F1+1),

g G() 1 (+) 1 r 1®ﬂr 1160 r
(5.8) G o0 AS PCTTIN () - gPi@Prents  priyy e C(ul).

By the definition, A‘(BI'B;’ ® is surjective, hence, by (5.8) we see that g* |“1+1

pl,, — 6§ is surjective, which implies that rankfi,1 = ranké) and ranki,; = 1.

cirt+t) i .
Set a = Irn(,f!L(1 e lut, ) al =G (ad) fori=1,---,r + 1. Recall that

al C G(r)((Pl) Cr e a?»-q-l ® Ry & ag )
ary, CGU(p) C Ry @60 @B and 5 CAiDol.



Denote by 7 : G+ (p;) — af and r; : o} — of the Hermitian orthogonal
projections. Then, by (5.1) we have

~ (r} +)
(5.9) oAl Ty = 4% o (w),  we C%(al).

Suppose that ry is surjective. Then, it follows from (5.9) that 7* |°¢+1: oy, —

a!? is surjective, which, together with the isomorphicity of Py : 6§ — of and

the fact (Ry, @ B3) L of?, implies that g laz, at,, — &) is surjective, hence
ra,nkﬁl(a,l.+1) = rankf,4+; and ﬁl(a,l._H) = fir41. Then, it follows from (5.7)

(r+1) (r41)
that Plo(a(l]) = PIO(ILD_(A(G;,D';'I (¥1),1 |a'l_+1))) hence a[1) = Iﬂ(Ag,O-; (1)1 Ia +1)

because P} is an isomorphism. However, this contradicts the nilpotency of Ayy1 4, .
Therefore, we have proved that r, is not surjective, hence r; = 0 by ranka) = 1.
By (5.9), we obtain 7 |a1+1E 0, which, together with the facts that Py : §) — o
is an isomorphism and (R{;, ® 87) L of, yields g* loz,, = 0, hence P (al,)) C .
However, since Pl( o +1) C fir41, and fi,41 does not have Bl as a proper subbundle
by the facts that rankfl§ = 1, rankfir4; = rankéy and g* | " is surjective, we see

that P!(al +1) = 0. Therefore, it follows from (5.7) and the isomorphicity of P

(r+1)
that al,, C KerAg 0) ("ol)"‘", so that A13~+1,=p1 = 0. We treat two possibilities of
w1 separately.

(1) The case of A%, w1 = = 0. If gy = 0, by the isomorphicity of P}, we have
89 @ 3% =0, hence ¢; is a plurlharmomc map into CP"~!. Hence, we may assume

( (r41)
that pg # 0. Since p},y C Kerx‘lﬁ,o;r ()er cop Prig = Im(A(Ci o;- (1) |#i+1) then
trsz C (Ro @838083)0G ) (1), Set Ry = (Ry; ®8®80)0 G (91))8 417y

We have a diagram

1 1 1 ' 1
Yo N B4 ORI - = Tr+1 N Ry > Yo
N S AN N AN
5.10
(5:10) = — - P )
Ko iy Hrya Hyi2 Ho

where 7} = G(')(gal) ©ul (0 €4 <r+1). Recall that rankyy = 1. Hence, by (5.10)
we see that A?l"g;’% =0. Set v, = (¢, © 1g) ® 1 then
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e, =1 ®u, Ge)=r Ouip 1<i<r+1), G () CRI®ug

‘. 9 G+ () 00 _ e
thus, ¢, has §’-isotropy order > r+-2. Note that 1:a.nkIﬂA(l 0) = ra,nk_(,g2 1.

(2) The case of A12~+1,¢1 Z 0. Set ’Y,-l = GU)(‘PI) © pui and B} = pi 6 of for

G (p1),0

i = 0,1,--,r + 1, where G(O(y,) = %, Since oty C KerA ] o , set
(r41)
0‘3«+2 = Iﬂ(Ag,o) ev) Ia}__“) then C'f}q—z C (B ®&®hH)O G(TH)(‘PI)- Set

Ry = (R, @ 85 @ BY) © GV (p1)) © al,,. We have the same diagram as (5.1),
where we must replace the upper index 0 by 1, » by » + 1 and Rj by R}, and we

denote by (5.1); the new diagram. Since rankyj = 1, we obtain A(1FJ5)2,70 = 0. Set
v, = (¢, © a5) @ o1, then by (5.1); we have

(511) el=xv@pfi®a;, GCe)=v0pidal,1<i<r+1),
GUtD(p)) C Ry @ By @ oy

s that 1 G ()0} 1 (i) ¢ g1 :
{30=IﬂA(10) ) ﬁzGl(ﬁO)(lser_'_l)
(r+1)
and l_rn‘_(A(G1 0) (1) ]ﬂl ) CR,®ag -
(r+1}
Set By, = Irn(AG1 0) () !31 ) and Ryy = (R ® o)) © Br,,. Again, we have the

same diagram as (5.3), where we must replace the upper index 0 by 1, » by » + 1
and Rg; by Ri1, and we denote by (5.3); the new diagram. By (5. 3)1, we see that

A(ﬂl"g;’% Blig — aé can not be surjective, hence ra.nkImAfl"S’q" < ranké] — L.
Set 6 = Im A({J{);’ ® and 51 = G(i)(El) Né&! for i = 1,---,r + 1. Denote by
Py : 6§ — aj and P' : B}, — o the Hermitian orthogonal projections. We
obtain

t 1
(5.12) P o A(;+='°‘°( ) = ATy o PH(v), v € C®(BL,)

Since A(ﬁl"g;’ ® is surjective, it follows that P! is surjective, which, together with

5.12) and the surjectivity of A 0,01 , implies that P, is surjective, hence ranké} >
J (1,0) » 0
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ranka] = rankd) — 1. Thus, we have proved that rankéi = rankd} — 1 and Py is
an isomorphism. By (5.6), we see that

bry1 CYrp1 Dogyy C Ry D6 BB .

Recall that 8 @ 89 = fi,41 @ Dpq1, rankdeyy = 1, pl = ol @ B and PP : uf —
89 4? is a holomorphic isomorphism. Note that fi,4, is a holomorphic subbundle of

0 m R0 DO .1 so®BS, 6 BB C oy )
50 ®Bo- By (5.7), we have PP (o) = Im(A ] o i1 ), which is a holomorphic
subbundle of 67 @ B°. Set AL = (6° @ #°) © PP(al), and denote by P? : 8 — fl
the composition of P |g1: f5 — & @ 7 and the Hermitian orthogonal projection

B — f}é Then, 1310 is a holomorphic isomorphism. Moreover, we see that

SSOESAL | AL . ey .
Al oy |5041: Dr41 — By is holomorphic and surjective. We obtain
> r 7'6 6 @ﬁonél o
(5'13) Plo (1+(-)1) 0( )“‘ (1, 0)0 oopﬁl(v)’ vE Coo(‘s +1)

where P} : 6741 — Ur41 is the Hermitian orthogonal projection. Now, suppose

that P! is surjective. Then, (5.13), together with the isomorphicity of P? and

T . 83388, 4L . . 6r 1,5 1 - ..
the surjectivity of A2 %" |5 | implies that A *1'"° : 8L, — B4 is surjective.
y (1,0) r+1 P (1,0) 41 0

However, by (5.3); we see that A({"('J‘)'ﬁ° can not be surjective, hence a contradiction.

Therefore, we have P} = 0, and by’ (5.13) we obtain A(l’*(')l)’ﬁ" = 0. Hence, set
+

Y1

6,’.+2 = Irn(A(l 0) (tpl) Iﬁ +1®6r+1) e 487-+2 C R]_l and Rll = R11 6 6}._1_2. Then,
we have the same diagram as (5.5), where we must replace the upper index 0 by
1, » by » + 1 and R}, by R},, and we denote by (5.5); the new diagram. Since

rankd! = ranka) — ranké = 1, it follows from (5.5); that A?{*Ef)'% = 0. Set
v, = (] © (6 ® B)) ® (61 ® B1), then by (5.5), we have

P, = Yo ©® 6} & f@} s G(')(‘PZ) = ’Ta @ 5|+1 GB,B:'I-H (1 <:<r+ 1)3
UH)(‘PZ) CR,, @6 B,

(r+2 )
so that ¢, has @’'-isotropy order > r+2. Note that rankImA(Ci 0) (we)yea = rankey, —
1.

Next, we treat the second possibility (II).

(IT) In this case, we apply the same methods as in section 4 and (I), (9) We

r)
frequently utilize them without details. Since A:‘:, = 0, setting o) = IrnA(1 0)( )’(‘a,



ol = GE:)(ozg) fori=1,---,7r4+1, 7] =£ea3, 7 =GW(p)eal fori =1,
and Ry = (¢ 6 (D= GW(e))) © al,,, we obtain the diagram (4.2). There are

already three possibilities : (II-1) ranka = 2, (II-2) ranka) =1 and A T 0,

(1,0)
(I1-3) rankag = ra.nkInul(l"a)l’."0 =1

(II-1) Since ranky] = 1, we have A(l”a)l’% =0. Set p, = (¢ © ap) @ f, then

e, =10, Gp)=xeal, (1<i<r), G () CRi@ag,
hence ¢; has @'-isotropy order > r 4+ 1. We show that A3,, , = 0. Set y5 =

(r+1) i ;
IﬂAg,O)l (Pr)er pl = G((pz(u}]) fori=1,--+,r + 1. Denote by P : u} — a? and

1: G+ (p;) — af the Hermitian orthogonal projections. We may use (4.4),
where we must replace P; by P). (4. 4) and the nilpotency of 4,4, ,, imply that

rankp) = ranka? = ranky — 1 and P! | a2 o

: gty — af can not be surjective.
(r+1)
Set fip41 = P! (ptyq) then rankj,y < 1. Set a = IE(A(Ci’O) (er)er |#r+1)
Gy ei(ap)fori=1,---,;r +1. f P'(aly) = firq1, by (4.4) we have P{(ag) =
(r+1)
PO(Im(Ag (o) lat,,)); which, together with the isomorphicity of PY, yields
("+ )
ap = Im (AG; 0) (e2)en |a _)» which contradicts the nilpotency of Ar;;,,. Thus,

(r+1)
we obtain P! |al =0, hence by (4.4) we see that o], C KerA(G; 0) (e1)en , that

is, A}, ,, =0. Agam, we have two possibilities.

(1) The case of A,_i_1 o =0. If ps =0, then of = 0 and ¢, is a pluriharmonic map

Gt (1),

into CP"~!. Hence, we may assume that ug # 0. Since pu}_; C KerA g o ,

set

(r+1) ; -
prye = Im(AG o) ) 1 ) C(Ry & o) © G (i),

Ry = (B, ©25) © GUV(¢1)) 6 try2 -
Then, we have the diagram (5.10), where rankyy = 1. By (5.10), we see that
Aéjl"g;’% = (. Set , = (21 O up) ® pi then

e, =% 0Hn, Ge)=vep, 1<i<r+1), G (p) CR @y,

' . G+ (3) 00 _ e
hence ¢, has 3'-isotropy order > r+-2. Note that rankIgA(l 0) = rankg2 1.
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o~ (F )
2) The case of A% 0. Recall that P! |, =0andal, , C KerA® e
r+1,p1 r+1 -+1

(1,0 ’
(r+1} .
so that o}, , C Ryand o}, = Irn(A(G1 0) (e2) |°i+1) C Ri®al. Set v} = G ()0

il Bl = pl @k for i =0,1,-+,r+ 1and R} = (R ®ad) © G (1)) S ol
where GO (p,) = ¢, Then, we have the diagram (5.1);. Recall that ranky;, =

rankp — rankpug = 1. Hence, by (5.1); we obtain A(l'?;)”.‘(o = 0. Set gi = (p, &

a}) ® ai, then we have

Lr=n®hoar, G e =70 ®al, (1<i<r+1)
G (o)) C R, @By @ o
G(r+1) (1 i )
so that B3 = ImA(l 0 (9’1)#}’ Bl = Gfpg(ﬁé) (1 <7< r+1)and ﬁi+2 —

(r+1})
Im(A(Ci 0) (o) |ﬂ1 ) C R} ® aj. Moreover, set Ry = (R} @ ag) © B}, Then, we

have the diagram (5.3),. Set §5 = ImA( '+§' S then ranké! < ranké) — 1. Since

P! : B}, — of is surjective, it follows that rank66 = ranke] = ranké} — 1 and

P, : 8 — o! is an isomorphism. Set §} = Ggg(&é) N &} and 4} = & © 6} for
1

1 1
i=0,1,---,7 + 1. We show that Af{*bl)’ﬁ" = 0. We may verify that

6r+1 - 'Yr.|.1 & le,-.|.2 C R' ) ao

Set o) = fipq1 @ Dpy1, Where fipy; = P! (ulyy) and rankf,4; = rankfry; = 1in
this case. We have P)(a}) = Im(A?l"b‘;‘ |#,41) which is a holomorphic subbundle
of af. Set B} = a? & P%(a}), and denote by PP : B} — B1 the composition of
P |1 By — af and the Hermitian orthogonal projection : &) — S}. Then, P?

is a holomorphic isomorphism. Moreover, we see that A?l" ’0‘6)°
holomorphic and surjective. We have

.o~ A1 .
Popr Urdr — By is

r1»:80 C!r,n1 D oo
(5.14) BY o AT (v) = ATRE" 0 PL(v) v € C®(6L,,),

where ﬁj : 6,{+1 — Up4q 18 the Hermitian orthogonal projection. Now, suppose

that ﬁul is surjective. Then, (5.14), together with the isomorphicity of P? and the

surjectivity of A(l"’oﬁ;", implies that A('+1)"8° 641 — By is surjective. However, by
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6} > . - -
(5.3)1 we see that A({*(')‘)’ﬁ" can not- be surjective, hence a contradiction. Thus, we

57 41,80

have proved that ﬁj =0 and A(1,0)

= 0. Therefore, set

(r4+1) 1
6tz =Im(AG oy ™ ler, 00,,) 0B C R, Ry =Ru©6l,.

1 21
We have the diagram (5.5),. By (5.5)1, we see that Afi',"a’)’% = 0, because ranky) =

rankdg —rankéy = 1. Set ¢, = (¢] © (6 ® B5)) & (6 @ P1), then we have

e, =% @606, G (p2) =4l @65, ® B, (1 <i<r+1),
G(r+2)(<,02) CR, @606,

' G4 () 02 _ _
hence w5, has 0'-isotropy order > r+2. Note that ra:ak@A(1 0) = ramkf2 1.

(I1-2) Set ¢ = (¢ © og) ® @ then

e,=rm@a), Ge)=voael, (1<i<r), G (p)CR &0,
(r 1) ;
hence ¢; has 8'-isotropy order > r + 1. Set uj = IﬂAg,O)l (w),m’ pl = GSB(;L(I,)
fori=1,.--,r+1. The nilpotency of A,y ,, yields rankpj < ranky —1. We may
use (4.4). It follows from (4.4) that P : u} — o) is surjective, hence ranku} >
ranka? = rankp — 2. If g = ( then ¢, is a pluriharmonic map into CP™™! or
G»(C"™), hence we may assume that u} # 0. Thus, we have rankul = m —1,m — 2,

where m = rankgl. We show that A?‘-H,m = 0. Set
ol = Im(Ag(rﬂ)(m),w I ) 1 __ G(i)( 1) for s=1.... 1
0 — == (110) “,1.+1 ? al - Y1 ao or = y , T + ,

First, assume that rankyu; = m — 1. If P? |yt frp1 — @f is surjective, then
r41
by (4.4) we see that P |1 is surjective, which implies that rankag = m — 2 and

P? |,: is an isomorphism. Moreover, if P! |,
o} ’ ol

(r4+1)
by (4.4) we have Pf(Iﬂ(Ag,o) (e1) 1 |a‘1.+1)) = PP(aj), which is a contradiction.
o~ (r41)
Hence, P! '0’}.+1§ 0 by ranke =1, and o}, C KerAg’o) (pr)en by (4.4), so that
Al =00 IF P! lu1, =0, by (4.4) we get PP |,3= 0. Since y; does not have

vd as a proper subbundle, we conclude that rankaj < rankyl — 1 = 1. Hence,

: apy, — of is also surjective,
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(r+1)
we must have oy, C KerAf; 0) (er) 1 , that is, A2, o, = 0. Next, assume that

rankpl = m — 2. In this case, obv1ously, P! |.u1+1 can not be surjective, hence
22 I“:+15 0, which yields P? lay= 0. However, since rankyu; = rankaf, it follows

that P is an isomorphism, so that o) = 0. In particular, we have proved that if
rankug = m — 2 then A%, o, = 0. We treat these possibilities separately.

(r+1)
(1) The case of A2, o, = 0. Since prpr C KerA(G 0) (m)’w, set

G('+1) 1 ! T
prgr =Im(AG o) er) lur,,) C (R ® ) © G(gy),
and Ry =((Ry® ag) © G(r+1)(9"1)) S ﬂi-{-z .

Then, we have the diagram (5.10), where ranky; = 1,2. First, assume that
rankyy = 1. This is just the same situation as (II-1), (1). Therefore, set w, =

(¢, ©13)@ 1, then g has &'-isotropy order > r42. Next, assume that rankys = 2.

Recall that P : ul — of is an isomorphism. Set §; = Im Afl'g;’% then ranké) < 1.

Set 6} = G’W(ﬁé)ﬂj’i fori=1,.--,r+1. If § = 0, we only set e, = (gl Ouy)®ul,
thus we may assume that ranké} = 1. We verify that.

8741 C G (p1) CRy @ af .
We may use (4.4). Suppose that Pl |5:+1: §t,1 — af is surjective. By (4.4), we

(r+1) L . Br i ibs
see that I_m(Ag,O) (p1)501 5.-+1) = p}, which is a contradiction because A('I'F) #o

can not be surjective by (5.10). Therefore, we have proved that P! ls1,,= 0 and

B © KerAS P01 Set 61, = Im(A]

! = R} ©6},,. Then, we have a diagram

(1 0) Y1) |u1+1®‘55+1) O fy4p C R} and

21 ~1 ~1 7 ~1
Yo 71 o Trl R . Yo
————————— Vat = e 7
61
A r-2
1] / 1 1] / He!
50 63 6r+1 6o
5.15 Ve - o= —— = > > >
(
A N A A A
\ N e e N | N N
[ONEES 7 7
Ho H1 HFr+1 Hry2  Ho
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where 4; = 7} © 6} (0 <7 < r+1). Since rankdy = 1, we obtain A4 {JES'% =0

Set v, = (¢, © (& & 1)) ® (81 @ 1) then @y has J'-isotropy order > r + 2.
We may regard the case of §} = ( as a special case of this procedure. Note that

(r+3)
ra.nkImAg 0) (p2)ipz rankp, —~m, where m =1, 2.

(r41)
(2) The case of A2, , # 0. Since ay; C KefA(G;,o) (9‘-'1).901, set

GrtD (py ! r
iy =Im(Ag tev) lat,,) C(Ro ©® ag) © Gt (1)
and Ry =((Ry®a) 0 G (1)) B oy, -

Moreover, set v} = G (p,) © u} and B} = pl @ o} for i = 0,1,---,7 + 1. Then,
we have the diagram (5.1);. We already know that ranky} = 1, and that either
rankB; = 1 or rankej = 1 holds according as P' |, L «l is surjective or

not. It follows from (5.1); and the fact ranky; = 1 that A(l"zf’% =0. Set p; =
(¢, © aj) @ a; then

Pl=nefda, GCe)=10pfl®al, (1<i<r+1),
Gt (1) C R @ B © g

)
hence f} = ImAG o ¥, gl = GOBY) (1 < i < v +1), and set B, =
(r+1)
I_lp._(A(Ci OJ; (o) s L JC R ®ag, Ru= (R & a}) © BL,,. We have the diagram
5.3);. Set 6 =Im Aﬂ"'"z'% 51 G(? 8Ynatfori=1,..-,r + 1. Observe that
0 (1,0) el 0 1

rank51 = ranka} = rank&tl) -1

and 61+1 C 7.,.._'_1 @ ar+2 C R, @ ao

Denote by P} : 62 +1 — g the Hermitian orthogonal projection. We show that

61, C KerAS Dl pigy that P |, is surjecti that rankg} =
1 erd( o) . First, assume tha ut,, 18 surjective, so that rankf,; =

. . by 1.8 =~ . L
1. In this case, obviously, A({‘Bl) o = . Next, assume that P? |# 1s not surjective,
so that P! |#}. =0, P/ |,1=0, o C g and rankeg = 1. Hence, P1 |g1: By — o]

is an isomorphism. Suppose that Pl1 is surjective. We have
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r uﬁo 00,01
(5.16) 00 AR () = AR o Bl), v e Co(sl,,),

. . . sL...8 . . . .o
which implies that A 7} Po g1 B¢ is surjective. However, this is a contra-
( r+1 0 J

1,0)
diction by (5.3);, hence, we see that P} = 0, and A(;ng)’ﬂ" = 0 by (5.16). Therefore,
c(rtt , Girtl)(
5;+1 C Kerd ] o (D gep g1 sz =Im(A7 (e0) |61, @62,,) © Bryz C Ry and

=Rno 6,,+2 Then, we have the diagram (5.5);, where rankjy = 1. By (5.5),,
we obtain A("*";’% = 0. Set p, = (p;0(8 @BY))D (61 B B1) then s, has §-isotropy

(r+2)
order > r + 2. Note that rankIﬂA(ci 0-;2 (2)02 _ rankp, — 1.
Finally, we treat (II-3).

(I1-3) This case has the same type as that of 0§ in (I). To compare this case with ]

in (1), reset of by B2 for i1 = 0,1,---,7+ 1. Set §) = Im A(l"“'(;ﬁ’% 59 = GY (8% NP

fori=1,-++,r,and set 4 = 4?6 & fori =0,1,--+,7 + 1. Now, we have
rank = rankéy = rankjg = 1.
ctr)

Hence, A({’ff = 0, and hence set §2,, = Im(A4; 0)( ?) lso@se) © Brrn C Rj and

01 = Ry©8) ;. Then, we have the dlagraxn (5.5). One will find that the treatment

of this case is rather easier than those of } in (I). We state only the essential parts.
D

We use the same notation as in (I). Since rank%§ = 1, we obtain A('l'*g,‘)'70 = 0. Set
L, = (0 (8 & 57)) ® (67 @ BY) then ¢ has J'-isotropy order > r + 1. It follows
that rankfir41 = 1, so that P'(al ;) = 0. (5.7) and the isomorphicity of P? imply

(r+1)
that al,, C KerdZ = (#1)¥1 oo that A3 =0.

(1,0) r+1,0,

(1) The case of A2, ,, =0. If uj =0, then ¢y is a pluriharmonic map into CP*~1,

hence we may assume that 1y # 0. We see that Af‘l'j)')”% = 0. Set p, = (¢, Ono)Dpi

' G (p2),02
then ¢, has §'-isotropy order > r+2. Note that rankImA | "% = rankp, ~1.

1
(2) The case of AZ,, , # 0. Since ranky; = 1, we obtain A(l"g;’% = 0. Set
®; = (¢,©2)®eq then we have (5.11) and (5.3);. Since P! : §§ — « is surjective,
it follows from (5.12) that P; : §§ — a1 is surjective, hence rank§} = ranka} — 1

and Py is an isomorphism. By (5.6), we see that 6},, C ;41 Dk, C Ry, @863,
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(r+1)
where al,, C Ry, & & & B because al,, C KerA(G;’O) (e)er  get 6o @ B8 =
fir41 © Upq1, where rankji,; = rankiyg; = } Suppose that P} : §l., — Driy
. . 8 ,
is surjective. Then, by (5.13) we see that A({‘Bl) o : 6341 — 5 is surjective be-

cause P? is an isomorphisrn. However, this contradicts the diagram (5.3);. Since

rankdy = 1, we obtain A(l";";"{" =0. Set v, = (1 © (8 ® F)) ® (61 @ 1), then ,
(r+2)

has 9'-isotropy order > r + 2. Note that rankIﬂA(G;,o) (2)yea _ rankp, — 1.

In summary, we have

Proposition 5.1. Let ¢ : M\ S, — G3(C") be a pluriharmonic map. Assume
that ¢ has @'-isotropy order r. Then Al =0

(I) If A2, #£ 0, set o® = ImA?,. Then, o° C Ker(AE“’:) Af, 0)) and define

! from (,o by the forward replacement of o®. Then, @' has & -Isotropy order r

G (8% 0 08"
and satisfies A2 = 0. Set p° = ImA, 1 and 80 = ImA(l 0) ,

Bo@ 6 C Ker(AEfo)) o A;”l o)) Define ¢y from ! by the forward replacement of
B° & 8°, then p; has 0'-isotropy order > r + 1 and satisfies A,,_H e =0

(r+1) GO
(ID) I A3, = 0, set o” = Iindr,, and 6° = ImAGS 09 Then, a0, 80 ¢

Ker(A(1 0) © (1 0) )s ranka® = 1,2, and ranké® = 0, 1.

then

II-1) If ranka® = 2, then §° = 0 and define ¢, from ¢ by the forward replace-
@
ment of a?,

(II-2) if ranka® = 1 and §° = (), then define also ¢, from ¢ by the forward
replacement of o,

(II-3) if ranka® = ranké® = 1, then define ¢, from p by the forward replace-
ment of a® @ 6°.

Then, ¢, has & -isotropy order > r 4+ 1 and satisfies A3, , =0.

Moreover, for each ¢, in (I), (II), the following are true :
(0) If Ary1,4, =0, 1 Is a pluriharmonic map into CP™~! or G(C™) ( the latter
case occurs only for (II-2)).
(I) HAP-I—I o1 — =0 and AT+1;<P1 gé 0, set

GUtB(uh),pr10p

put = ImA, 4 0, and 6! =ImA, !

Then, pt, 6 C Ker(A'Fl‘O) A"”D)) and ranké! = 0,1 ( the latter case occurs only
for (II-2)). Define @, from ¢, by the forward replacement of u' @ &', then . has
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G(r+2)(¢2)1§02

0'-isotropy order > r 4+ 2 and satisfies rank_IgA(1 0)

m = 1,2 ( the latter case occurs only for (1I-2)).
(2)If AZ,, ,, #0,set o' =ImA?,, . Then, o' C Ker(A(1 0) ©A{i o)), and define

o} from @, by the forward replacement of o'. Then, ¢} has 8'-isotropy order r + 1

NI
and satisfies A12‘+l,zp1 =0. Set ' =ImA, ! and &t ImA(1 0) , then

B, &t C Ker(AE‘flo) A‘plo)) Define ¢y from ] by the forward replacement of

(r+2)
B' @ &', then ¢y has @'-isotropy order > r + 2 and satisfies rankImACi 0) (p2)pz _

= rankyp, —m, where

ranke, — 1.
Using Proposition 5.1, we may prove the following

Theorem 5.1. Let ¢ : M\ S, — G3(C") be a pluriharmonic map. Assume that
@ has finite & -isotropy order and n < 15. Then, there is a sequence {p;}Y, of
pluriharmonic maps such that

(1) o = o, (2) N M\ Sy — CP™1 or Go(C"),

(3) fori = 0,1,---,N —1, each y; has finite 3'-1sotropy order, and ;4 is obtained
from ; by the forward repIacement of a*, where &' is a holomorphic subbundle of

@, contained in Ker(A(l, 0o Af 0y)-

Proof. Construct p; from ¢, using Proposition 5.1. Let r be the J'-isotropy
order of 3. Then, r > 3. Set ap = ImA, ,,, a; = ng(ao) fori =1,---,7 and
Yo = @, © o, Vi = G(i)((Pg) 6 a; for: = 1,.--,r. By Proposition 5.1, we have
rankyy = m, and rankey = rankyp, — m, where m = 1,2, If ap = 0, then ¢, is a
pluriharmonic map into CP"~! or G,(C"), hence we may assume that g # 0. Set
R= gj‘ o (B G (p3)). We have a diagram

Yo

(5.17)

We have two possibilities : (1) a; = 0 for some 1 < i <, (2) any a; (1 <1< r)
1S non-zero.
(1) Set @ = (p, © o) B as. Then, by (5.17) we see that either, ¢ is a pluriharmonic

Gt (),

map into CP"~! or G2(C"), or & has &'-isotropy order r+1 and rankImA g
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= rankyp — m, where m = 1,2.

(2) Since n < 15, one of ¢, G (py) (1 € ¢ < r) has rank < 3 and &'-isotropy order
7. Hence, by Proposition 5.1, either, we have a pluriharmonic map into CP"~?! or
G,(C"), or we have a pluriharmonic map ¢ which has @'-isotropy order r + 2 and

(r+2)(3) -
satisfies rankIﬂA(ci 0) (@e ranky — m, where m =1, 2.
Since the J'-isotropy order can not be so large, repeating this procedure we see that
@ is reduced to a pluriharmonic map into CP"! or G,(C"), and each ¢; in the

sequence has the desired properties by Proposition 2.3. q.e.d.

6. Pluriharmonic maps into G4(C™).

Let ¢ : M\ S, — G4(C") be a pluriharmonic map, where M is a compact
complex manifold with ¢;(M) > 0. We also assume that ¢ has finite @'-isotropy
order, say r. In this section, we present a method for increasing the J'-isotropy
order of ¢ by only one. However, the result of this section, together with the results
in sections 3 ~ 5, yields the explicit construction of any pluritharmonic map into
G4(C") under the restriction on n.

Define A, , as in section 5, then A, , is nilpotent. There are three possibilities :
(D ANP =0and A}, #0, (II) A}, =0and A2 #0, (II[) A7, =0.
As 1n section 5, we trea.t these three cases sepa.rately.

Firat of all, we prepare a proposition, which is used to avoid the repetition of

argument and also useful for the future investigation.

Proposition 6.1 ([0-U2]). Let ¢ : M\ S, — Gi(C") be a pluriharmonic
map. Assume that ¢ has finite 0'-isotropy order, say r, and satisfies Afw =0,
rankImA, , = 1. Then, there is a holomorphic subbundle T of p, which is contained

in Ker(A‘(":o) o Afl 0) ), such that @ defined from ¢ by the forward replacement of T
has §'-isotropy order >r41.

Proof. Set aj = ImA, ,, o} )(ao) fori=1,---,r. Since o2 C
(") n ) . .
KerASP, st o, = BaAZA® 1) C T, whese Tm g 6 (@] GO0
Set 77 = GV (p)© af for i = 0,1,---,7 and R) = R© al,;. Then, we have the

diagram (4.2). Thus, A(I'Jg)lﬁo is holomorphic, and hence set o} = ImA(l"g)“%. If

ad #0, set o} = G.(,,)(ao) N4% fori =1,---,r. Then, we have al C KerA® G (e) 0

(1,0)
(r}
by rankag = 1. Moreover, if we set a},, = _I,_r_n_,(A(ci’D)(“a) lavgar) @ aly, C Ry, R} =

1 1
06ar,;, and v} =) 8a] fori =0,1,---,r, then we see that A?I‘ :)c;.+1 (0<t<r)
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and A(l"’g)“% are all holomorphic. We claim that

Claim. If A(l’f;;'% is holomorphic and IrnA(l'gl'T‘" # 0, then set at' =

ImA(I'E)”T&, ot = ql )(a1+1) 0 71.3' for i = 1,...,7. Then, we have adt! C

¢ (e), G(r( ;
KerA(1 0)(“0) ¥. Moreover, if we set oz Im(A(1 0) () ] @1:; af))e(®i=0 0‘:5-1-1) C
R’ j+1 = R; ) af.ii and ')f = "y, o) a'3+ for: =0,1,---,r, then we see that
a:+1,a.v+1 ) , 0+1 .
(1,0 “+' (0<i<r)and A(l"'(')')L L are all holomorphic.

This Clatm follows from the induction on ;7 and the following diagram

7
Yo \ Yo
. 7>
A A
i > .
ol o
0 0
o ™
j—l AN ]'_1
g A 7 A %o
j-1 -
] Crp1 1
(6.1) ! f
| |
| |
|
I -
N 1
* Nar+1 . AN
C}.’éA A a%,
>
0 0 0
@y ] Qg

where we omit the non-essential arrays (see Convention below). By (6.1) and Claim,
: oy L :
we see that, for any 7 = 0,1, .- A(l'g)l ™ can not be surjective, hence there exists

an nonnegatwe integer s such that A(l"g)“% = 0. Set 7 = ’_, o and define F by

3
= (¢ ©7)® G,(7). Then, it follows from (6.1) that

g=mno@d), @=rvo@)0a<i<n,
D

j=0

GUrt)(F) C R, & (EB al),
1=0
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hence @ has @'-isotropy order > r + 1. q.e.d.

Hereafter, we use the following convention for simplicity
Convention. Given a diagram of type (6.1), we omit the non-essential arrays,
where there are the arrays in the following cases :
(D af-—al(0<i<r+1,0<k<I<y),
(2o =7 (0<m<5;0<i<r+1), (3)al, — R;(0<m<y),
(4) af — af, (05i<r+1,0<k<I<y) with af i, = of
i

0>
B) v — o, (0L i< r+1; 0<m<])w1th7r+1 R’ all, = ag'.

Now, we start from the case (I).

(I) Set ky = ImA,,, k2 = Im(A,p |x,) and g = Im(A,, |«,). Then, ap C
KerA, ,. Set

=Gg)(0ﬂo) (1<i<r), fo=kK2Bap, ﬁi=G£:)(r‘i2)eai (1<i<r),

7U=K16"c2 ) ’Y:=Gg)('€1)9G,(;)(f€2) (15137‘)a
r
So=p0k, 86=Gp)eGP(k)1<i<r), R=¢p*o(@P ().
j=0
(r)
Then, &, C Ker;ﬁl(1 0)("0)'{'5, and hence set a,4q1 = IE(A(CLO)((‘D) lo,) C R and Ry =
R S ary;. Then, we have a diagram
o (61 o o
1T !
A 71/\ . 'T‘r/\ RO A
Yo > —— T = = D > >—270
(6'2) N ™ A A
A
Bo Bo
N AN
187)] o - U ? ar+1> Qo

By (6.2), and keeping Convention in mind, we have a holomorphic circuit

{CI!Q.,CE]_,"'

7a7‘+1)605513"'
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which must vanish, where we note that rankay = rankf; = ranky, = rankéd, = 1.

Since each (1,0)-second fundamental form from 6y to o is surjective, we obtain
r+1,80

A?l,g)‘ °=0. Set 21 = (£9 ag) ® a; then

0 =67 B Bo®ar, G =6 @7 @B Do 1<i<r),
G ()Y CRy @70 ® 6o ® o

(P) (1) Bl i .
SO that, ﬁD @'.}'0 = ImA(Gl 0)(‘P ) , ﬁi @‘Tl — Gfpl)(‘go @")’0) (1 < 1 < T') ,30 II’IlAr me
Yo, a1y a1 )¢
Bi =GB (1 <i<r), B C Kem(1 0)(*“ »¢". Set Brp1 = Im(Af, o ®D 1) ¢
R}, & ap, R} = (Ry & ) 6 Byy1 and 6, = 6; ® ajyq for s = 0,1,---,7. We have

the same type diagram as (5.1), and we see that A(ﬂl""(;;’6° is holomorphic, hence

can not be surjective. Set 75 = ImA(ﬁIE;"S“ then rankry < rankdy — 1 and, in fact,

rankro = rankdy — 1 by the surjectivity of the projection 7y — ey and the fact

rankdy = 1. Moreover, 73 is contained in the kernel of Ao g 4 br-1,8 e A6°’51

(1,0) (1,0) (1,0)°
Set ; = GE:?(TD) N é; (1<i<r), b= 5 e (0 <7 < r). We have a diagram

! ! ! !
60 N 51 N e M o — +6P 60
Ed P
T1 Ty Ré
N N A ™
Tohe> NP N > >—4 7o
(6.3) A A 1 A
Yo TN 71, -~ 7 _ < Tr |/ AN Yo
> -
/]
N ~ N
o — — - —— - - > > >
,BO ,Bl ﬁr ,Br-f-l ﬂU

Note that ranké] = 1, which is also true even if 79 = Q. Set 22 = (21 B Bo) & A1
then

_922:56@1'069%6951, G =67 ®v D Piyt (1<i<ry,
G CRI® 07 @ o,

so that 7o @ yo = ImA(G;(O))(w ! y i By = Gf:g("‘o ®v)(1<i<r)and 7. P, C
KerA(‘;'(D))‘*" 20" Set i =i @7 (0< i< 1), 65 =6 & Biga (0< 5 < r) and set

(r) -
G1 0)("0 ) ue) C R; @ fo, R} = (R(]j ® Po) © pr4+1. We have a diagram

Hr41 = Im(A
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€0 E1 . & Rl g
7 7z - - = = 7 v ra
,l\ A ™ AN
(6.4) (N
> P ——— — = > > >
Ho 231 Hr Hrqa Ho

We need the following

— ry Er—1,8r & — Hrt1,E Hr e
Lemma 6.1. Set A = A(EI’(’)‘)" o A(I,O; 0+ +0 A(Ef,oi and B = A“B ) A(I,O) 1y
0 Aff’o’;l. Set n = ImB and v = Im(A o B). Then, rankny = ranksy — 1,

ranky = rankyy — 1 and v C KerB.

Proof. By (6.4), Ao B is holomorphic, hence nilpotent. Therefore, AE‘I";;’S" can
not be surjective, hence rankImB < rankeg — 1. On the other hand, if we denote by

Py :gop — By and P°: p,y — By the Hermitian orthogonal projections, we have

(6.5) Pr o ATE(v) = A{G) 0 PO(v) s v € C%(kry) -

Since P? is surjective by (6.3) and A(ﬂl‘),‘f)‘ is surjective, it follows from (6.5) that
Py |imB: ImB — B is surjective, hence rankImB > rankf; = rankeg — 1. There-
fore, we have proved that rankImB = rankeg — 1 and P, |imp is an isomorphism.
Thus, in case ImB = Q, we have #; = 0, which contradicts the diagram (6.2)
and the assumption Ai,‘p # 0. Hence, we may assume that ImB # 0. Denote by

gry1 : Er — Bry1 and ¢° : g — 19 the Hermitian orthogonal projections. Since
Af{,'g)c' = 0 by (6.3), we have

(6.6) q° o AEI,’S')"(w) = A'fl",'g;’ro ogr1(w), weC®(e,).
Set 1, = Gf;,)(I_mB) Ner. By (6.3), we see that gp41

because Py |imp is an isomorphism and all APubi

(1,0)
A(ﬁl'*(;;'r" is also surjective by the definition, it follows from (6.6) that ¢° |im(40m):

2t r — Bry1 18 surjective,

' (1 < ¢ < r) are surjective. Since

Im(A o B) — 75 is surjective, hence ranky > rankry = rankpy — 1, where we have
put ¥ = Im(A o B). On the other hand, since A o B is nilpotent, we must have
rankyv < rankpg — 1, thus we obtain ranky = rankuy, — 1. We show that v C KerB.
Set vpgp1 = Gg:'l)(u) C ptr41. Suppose that P° |, . : vrp1 — Bo is surjective.
Then, by (6.5) we see that Py(Im(B |,)) = P1(ImB), which, together with the
isomorphicity of Py, implies that Im(B |,) = ImB. However, this contradicts the
nilpotency of Ao B. Therefore, we have proved that P° |, +1 18 not surjective, hence
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P® |, .= 0 by rankBy = 1. Then, again, by (6.5) we see that Afl"g;’” v =0,

hence v C KerB. g.e.d.
Set
v = v, v,-=Ggg(v0)(15i§r+1), gi=pitri(0<i<r+1),
no =1ImB , ni=ng(no)ﬂ€i(1SiS7'), €i=eioni (0<i<r).

Then, we have a diagram

Eo s s Er €0
7/ I 2
1

N 1 Iy A

Mo fry2A N0
(67) N A ™

~ 7 > ? N
Hol \ #1 | Ho

A A A

> > >

Vo Vr Vril Vo

Set * = (p*60v) 6 G\,2(v), where v is as in Lemme 6.1, then, by (6.7) we have

£3=€o Do P jfto By, G(i)((p3)=éi®77i@ﬁ;@u;+1 (1<i<r),
GtV (o*) C RE @ firt1 @ fio ® vo

{r)s, 3 3 (r), .3 3
so that jip = IﬂAg,o)((’a ) , rankfip = 1, i, C KerA((i,O)(“a ) , hence p* satisfies

the conditions of Proposition 6.1. It follows from (6.1) and (6.7) that there is a

holomorphic subbundle 7 of ¢® with T C Ker(AE(fz)).L oAz'fo)) and rankT = ranke®—1

such that ¢, defined from ¢* by the forward replacement of 7 has &'-isotropy order

(r+1)
> r 4+ 1 and satisfies rank_I_rr_LA(C’; O;rl (er)yer ra.nkf1 - 1.

(IT) Set x = ImA,, and ap = Im(A,, |x). Then, ag C Ker4, ,. Set
CY;'=G£:)(O—‘0) (1<i<r), fpo=KkBa, B =GS)(R)9C¥.' (1<i<r),
=06k, =G p)oGP(k)(1<i<r), R=¢ (PG (»).

i=1

(r) )
Then, a, C KerA?1 0)(“0)"'0, and hence set a,y; = Iﬁ(Ag 0)(90) la,) € R and Ry =

RS ary1. Then, we have a diagram
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Yo Yo
A
Bo Bo
(6.8)
N
Qg Qp

There are three possibilities :
(II-1) rankeg = rankfBy = 1, ranky, = 2, (II-2) rankoy = ranky, = 1, rankf, = 2,
(11-3) rankf; = rankyy = 1, rankeg = 2.

(II-1) By (6.8), we see that r:a.nlx:Irn.AL(1"3)‘"m <1 and IrnA?'l"JO’)""0 is contained in

the kernel of AE’{’& A?{Bﬁm AE’I"'J)‘ First, assume that A(l"g)"-m = 0. Set
(r) (r)
_ (£9a0)$051: then By = ImA, ¥ #)¢' rankfB = 1 and B, C KerA(, 0)‘*" et
Therefore, ¢' satisfies the conditions of Proposition 6.1, and we see that there is a
holomorphic subbundle 7 of <p with 7 C Ker(A(1 0) oAZ"1 0)) and rank7 = ranke' -

m, where m = 1,2, such that ¢, defined from ¢! by the forward replacement of 7

G(r+1)
has d'-isotropy order > r+1 and satisfies ranLIlnA(l 0) (er)er _ ranky —m. Next,
assume that rankIﬁAE;',g)"% =1. Set §; = IrnA(l"’(')')"W, 5 = Gg)(ﬁo)ﬂ'yg (1<i<r)

and ¥ = 7: 8 6; (0 < 7 < r). We have the same type diagram as (6.3). Set
= (p © ap) & o then
P =3B 8B L D a, GO (P ) =% B 6 ® B B aviyy (1<i<r),
GUt(p Y C Ry ® 60 & Bo ® o

so that 8o @ fo = ImAG o “¥', 6, fi = GUl (6 ® fo) (1 < i <) and 6, & B, C

(r)
KerAg'o)(‘ol)’ cSet i =85 BB (0Lt <r),ei =% @ ait1 (0 <7 <r), and set

(r)( ot
flpge1 = .IE(A(G;,O)(#’ ) lu.) C Ry & o, Ry = (R @ &) © pir41- Then, we have the

diagram (6.4), where we replace R2 by R3. Note that ranku, = 2. By the proof of
Lemma 6.1, we obtain

Lemma 6.2. Let A,B be as in Lemma 6.1. Set n = ImB and v = Im(A4 o B).
Then, rankn = rankey — 1, ranky = 1 and v C KerB.

Set p* = (¢! ©v) ® G,1(v), where v is as in Lemma 6.2, then by (6.7) we see that
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? satisfies the conditions of Proposition 6.1. It follows that there is a holomorphic
251
subbundle 7 of ? with 7 C Ker(Al{Y ) 0 A% ) and rankr = ranke?® — 1 such that

1 defined from ? by the forward replacement of 7 has &-isotropy order > r + 1

G+ 1)1

and satisfies 1‘.'5;111(‘I_m__fl(1 0) = r::mk_t,_o-1 - 1.

(11-2) By (6.8), we have A?’l""(';)l’w 0. Set @' = (¢ & ap) @ ey then fp =

G(") 1 L N . G(r) 1 1
IQA(I,D)("9 Y B = Gf}(ﬁo) 1< (S) r) and B, C KerA(l’o)(“’ »¢"  Reset i =
G r

Bi (0 <i<r),and set gy = @(A(l,o)w ' 14,) C Rh @ o, R} = (Rh @ ) © pira
and €; = 7v; ® ai41 (0 €1 <r). Then, we have the diagram (6.4), where we replace
R2 by R).

Lemma 6.3. Let A, B be as in Lemma 6.1. Set np = ImB. Then, rankn, =
rankeg — 1 and (A o B)? = 0. Moreover, the following hold :

(1) If AoB =0, set v = po@no. Then, v C Ker(AEf,lO))LoAal,o)), ranky = rankp' —1,
and p, defined from @' by the forward replacement of v has &' -isotropy order > r+1
and satisfies ra.:nk_I_r_n_AG(F-H)(l”‘)"“’1 = rankp —1.

(1,0)
(2) If Ao B #£ 0, set v = Im(A o B). Then, rankv = 1 and v C KerB.

I

Proof. Since rankyy, = 1, by the proof of Lemma 6.1 we see that rankn, =
rankeg — 1. Since A o B is nilpotent and rankug = 2, we have (40 B)? = 0.

i i . (") 1 1
(1) Set n; = Gfpz(no)ﬂsi (1 <i<r). Sinceny C KerA, we haven, C Kerd® (# )%

(1,0
(r) 1 ~
and hence set 1,4, = l_rp_(A(ci’o)(l'a ) ly.@n.) © tr41 C Ry, R§ = RY © npy1 and

€i=¢€;0n:(0<i<r). We have a diagram

N ~ A A1 -
€o SN N & Iy £o
rd 7
A /\§ : : AN A
( 9) o N ,\771 _ NN Tr N R o
6. rd
A A §<; A A
[N AN — o o N N\
v rd Vd d
Ho 431 Hr Hri1 Ho

Since rankéy = 1, by (6.9) we see that AE’I'I)‘)’% =0. Set v =po @ and p, =
(p'BVv)® Gfpl(v). Then, v and ¢, have the desired properties.

(2) Since Ao B # 0 and ranku, = 2, we obtain rankv = 1, where v = Im(A o B).
Since rankay = ranky, = 1, the proof for v C KerB is quite similar to that of
Lemma 6.1. q.e.d.
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We may consider only the case (2) in Lemma 6.3. In this case, we also have
the same type diagram as (6.7). Set p* = (¢’ © v) ® G|,.(v), then we see that y?
satisfies the conditions of Proposition 6.1. It follows that there is a holomorphic

231 2
subbundle 7 of ¢? with 7 C Ker(AEfO)) 0 Af] 4y) and rankr = ranke? — 1 such that
1 defined from ¢? by the forward replacement of 7 has @-isotropy order > r + 1
r41
and satisfies rankLrp_A(Ci(O;. eher rankp — 1.
(II-3) By (6.8), we obtain AT¢"™ = 0. Set ¢! = (¢ © ao) ® a1 then fy =
(r) . (") _

@A(Gl’o)(wl)'wl, rankfBy = 1 and B, = Gfa1)(ﬁ[)) C KerA® (“"l)"‘al, hence ¢! satisfies

(1,0)
the conditions of Proposition 6.1. It follows that there is 2 holomorphic subbundle

7 of o' with 7 C Ker(AEflo))l o A‘(“’llo)) and rankr = ranke! — 1 such that ¢, defined
from ' by the forward replacement of T has @'-isotropy order > r 4+ 1 and satisfies

. GU+) (@),
ranl\IﬂA(l’o) 1h¥r — ra,nl-c_c,?_1 - 1.

(III) Set po = ImA,,, then po C KerA, ,. Set
pi=GP) (1<i<r), e=96p,

=G o (1<i<r), R=¢"o(@G6V ().
i=1

) -
Then, p, C KerA(ci,O)(‘p)"P, hence set ppy, = @(448,0)(‘#)

R 6 prsq1. We have a diagram

p) C R and Ry =

!
€ & e Ry e
7 [ 7 I 4
(6.10) A~ X 1 1T AT AT
N —— = >t
Ho Hi Hr  Hr41 Ho

There are three possibilities :
(III-1) rankpe = 1, (III-2) rankpe = 2, (III-3) rankpy = 3.

(III-1) In this case, ¢ itself satisfies the conditions of Proposition 6.1. It follows

that there is a holomorphic subbundle 7 of ¢ with r C Ker(Afllo) o A‘("l 0)) and

rank7 = ranky — m, where m = 1,2, 3, such that ¢, defined from ¢ by the forward

Gt (1), 01 —

replacement of 7 has &'-isotropy order > r + 1 and satisfies ra,nkl;n__A(1 0)

rem.kg1 - m.
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(II1-2) By (6.10), we have ra,nls:IrnAfll"g;'Eo < 1. First, assume that AE‘{J'O)"S“ = 0.

Set , = (¢ © po)® p1. Then, by (6.10) we see that 1 has &'-isotropy order > r+1

({
and satisfies ra.nkIrnA(Ci 0; o) _ rankyp — m, where m = 1,2. Next, assume

that rankIﬂAﬁ"‘g; *¢ — 1. In the same way as Lemma 6.3, we have the following

Lemma 6.4. Let A, B be asin Lemma6.1. Set ny = I_I_'QA?{;;'CO. Then, rankny = 1
and (Ao B)? = (. Moreover, the following hold :

i
(1) IFAoB =0, set v=po®no. Then, v C Ker(Af g 0Af (), rankr = rankp —1,
and ¢, defined from o by the forward replacement of v has 0'-isotropy order > r+1

(r4+1)
and satisfies rankIﬂAg 0) Cender rankyp — 1.

(2) If Ao B#0, set v =1m(A o B). Then, rankv =1 and v C KerB.

We only consider the case (2) in Lemma 6.4. Set ¢' = (¢ ©v) & G,(v), then
we see that ¢! satisfies the conditions of Proposition 6.1 (cf. (6.7)). Moreover it

(1,0) °*48cn)
and rankr = ranke' — 1 such that ¢; defined from @' by the forward replacement,

(r41)
of 7 has ¢'-isotropy order > r 4+ 1 and satisfies rankIﬂAg 0) (eu)ver tanke — 1.

follows that there is a holomorphic subbundle 7 of ' with 7 C Ker(A(

Remark. If we simply set o' = (9 © po) ® g1, then we see that @' satisfies the
conditions of Proposition 6.1. However, we can not get the information between
rank7 and ranke’.

(III-3) In this case, since rankeg = 1, it follows from (6.10) that Ai‘l’;;’“ = 0. Set

= (1 © f0) @ f11, then we see that o, has §'-isotropy order > r 4+ 1 and satisfies

G( +1 )( 1)1 —
rankIrn.»‘lL(1 0) P11 r:amkie1 - 1.

In summary, we have the following

Proposition 6.2. Let ¢ : M\ S, — G4(C") be a pIuriharmonic map. Assume
that ¢ has 0'-isotropy order r. Then there is a sequence {p'}IV of pluriharmonic
maps such that

(1) ¢° = ¢, (2)¢" has @ -isotropy order > r+1 and satisfies rankImA
= ranng —m, where m = 1,2, 3,

(3) fori = 0,1,---,N — 1, each ' has 0'-isotropy order r, and @'t is obtained
from * by the forward rep]acement of o', where o' is a holomorphic subbundle of

oA‘p 0))

G (M),
(1,0}

@' contained in Ker(A

(1, 0)

Using Proposition 6.2, we obtain the following
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Theorem 6.1. Let ¢ : M\ S, — G4(C") be a pluriharmonic map. Assume that
@ has finite & -isotropy order and n < 14. Then, there is a sequence {p;}L, of
pluriharmonic maps such that

(Dwo=0, (2)en:M\S,y — Gn(C"), m=1,2,3,

(3) fori =0,1,---,N —1, each ¢; has finite §-isotropy order, and ;4 Is obtained
from ; by the forward repIacement of o', where &' is a holomorphic subbundle of

. contained in Ker(A(1 0) © A‘p' 0))
Proof. Construct ¢, from ¢ using Proposition 6.2. Let r be the J'-isotropy
order of ¢;. Then, we have r > 2. Set o = ImA,,,p, oy = G (0!0) fori=1,--+,r
and o = p, O ao, Vi = Gl )(lpl) Oa;fori=1,.--,r. By Proposition 6.2, we have
rankyy = m and ranka = ranky — m, where m=1,2,3. If og = 0, then ¢, is
a pluriharmonic map into Gm(é-"?, where m = 1,2,3, hence we may assume that
ag # 0. Set R = p; 6 (D] GU) (1)), then we have the diagram (5.17). In the
same way as in the proof of’ Theorem 5.1, we have two possibilities : (1) a; = Q for
some 1 <i<r, (2)any a; (1 <i<r)is non-zero.
(1) Set » = ((,ol 68 ag) @ a1. Then, by (5.17) we see that either, @ is a plurihar-
monic map into G,,(C"), where m = 1,2,3, or ¢ has {’-isotropy order r + 1 and

(r
rankIn:uﬁ!.(G1 O;r (@)

(2) Sincen < 14, oneof p_, G (py) (1 € i < r)hasrank < 4 and @'-isotropy order
r. Hence, by Proposﬂuon 6.2, either, we have a plurlharm_omc map into G, (C"),
where m = 1,2, 3, or we have a pluriharmonic map @ which has J'-isotropy order

41,3 -
r + 1 and satisfies rankIgAg’o)l (@ _ rankp — m, where m = 1,2, 3.

Repeating this procedure, we see that ¢ is reduced to a pluriharmonic map into
Gm(C™), where m = 1,2, 3. q.e.d.

= rankip — m, where m = 1,2,3.

If we don't require the result about (2) in Theorem 6.1, we have

Theorem 6.2. Let ¢ : M\ S, — G(C") be a pluriharmonic map. Assume that
= 3 (resp. 4) and n < 20 (resp. 15). Then, by the successive procedures of

the forward replacement, ¢ is reduced to an anti-holomorphic map f: M\ Sy —
G(C") for some t.

Proof. We show the case of k = 3. By Proposition 5.1, we can construct g
which has &'-isotropy order > 3. Since n < 20, eitherone of ¢, GO (py) (1 <i<3)
has rank < 4 or any of p,, G(p2) (1 € i < 3) has rank 5. The former case implies
that we may construct ¢ from ¢, which has 3'-isotropy order > 4 by Theorems
3.1, 4.1 and Propositions 5.1, 6.2. The latter case unphes that G(4)((,02) C 3, hence
rankG(“)((pz) < 4. Hence, we can construct & from G{*)(y,), which has §'-isotropy
order > 4 by Theorems 3.1, 4.1 and Propositions 5.1, 6.2. Repeating this procedure
and noting that any pluriha‘rmonic map with inﬁnite d'-isotropy order is reduced
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to an anti-holomorphic map, we see that ¢ is reduced to an anti-holomorphic map
by the successive procedures of the forward replacement. q.e.d.

7. A construction of pluriharmonic maps from rational maps.
In this section, we give the inverse of the procedures in Theorems 3.1, 4.1, 5.1,
6.1 and 6.2. For this purpose, we review the following propositions

Proposition 7.1 ([O-U2]). Let ¢ : M — G(C") be a pluriharmonic map from
a complex manifold. Let o C Ker(A(1 0) © A“" ) be a holomorphic subbundle of ¢
and let @ be defined from ¢ by the forward rep]acement of a. Then, G, (c) is an

anti-holomorphic subbundle of g, G',(c) C Ker(A(O 1)oA‘(“’O 1)) and, ffKﬂAﬁ’o) =0,

then ¢ is obtained from @ by the backward replacement of G ().

Proposition 7.2 ([0-U2]). Lety : M — G(C") be a pluriharmonic map from a
complex manifold. Assume that _K_c_a_r_Az’l,o) # 0. Then, there exists a pluriharmonic
mapy : M\ Sy — G{(C") for some 0 < t < k—1 and a non-zero anti-holomorphic
subbundle B of (4 @ G'(¥))* such that ¢ = ¢ @ B over M \ Sy. Conversely,
given ¥ : M — G(C") a pluriharmonic map and a non-zero anti-holomorphic
subbundle B of (% & G'(1))* then ¢ defined by » = @ P gives a pluriharmonic
map @ : M \ S, — Gk(C") with KerA(1 0y # 0, ‘where k = t + rankp.

We remark that if we reverse the orientation of M we may use the concepts
of §"-isotropy order and the backward replacement in place of those of @'-isotropy
order and the forward replacement. First, we treat the case of infinite isotropy
order.

Proposition 7.3. Let ¢ : M \ S, — G(C") be any non-holomorphic plurihar-
monic map with infinite 8" isotropy order, where M is a complex manifold. Then,
there 13 a unique sequence {*}, of pluriharmonic maps such that

(1) ™ =, (2)¢°: M\ Sy — G4(C") is a holomorphic map for some t € N,
that is, a rational map f:M — G(C"),

(3) fori = 0,1,---,N =1, KerA(1 o) = 0, and each @'l is obtained from @' by
Pt = G'(¢') ® o, where o' is a holomorphic subbundle of (G'(¢*) @ *)*.
Proof. Since G(*)(¢) = 0 for some s € N, set = G(—ot1+i) () for i =
0 1, --,s—l Since G'(G o1+ () ¢ Go+249)(p), we have G'(p) C '+ Set
KerA(0 1) " then by (1.2) and Proposition 7.2 we see that p't! = G'(¢') @
o' and o is a holomorphlc subbundle of (G'(¢ ) & G"(G'(e'M)*. Note that the

condition KerA(1 oy = 0 is equivalent to that A(o 1 e 't — ' is surjective,
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which is satisfied by the definition (see (1.2)). Now, N = s — 1 and the existence
is established. For the uniqueness, define the sequence {£'}Y, as in (3), where ¢°
is as in (2). We show that each &' is uniquely determined by the condition (1)

Supposethattp G=N+) () for some 1 <7 < N — 1. Setﬂ'—G( N+id(p) o
& £

(= N+it1)
Since, £:+1 1s a holomorphic subbundle of (E) , (C;l) SLN surjective,

and @Aﬁo) = 0, it follows that £i+1 can not have G(_N+i+1)(<p) as a direct
sum factor and p't! C G=N+i+1 () @ B, Thus, either _c,_o_*+1 g G=N+i+1) ()
or 2“*‘1 has the non-trivial projection into #. The former case may be treated
in the same way, and the latter one yields ¢ # ¢ because MA‘{:,D) = 0 and
(=i-1)
@Ag,o; (o) 0 for any 0 € j < N — 1. Therefore, we have o™ # . Next,
suppose that goi ; G(—N+i)(c,o) for some 1 <1 < N-1 I« ﬁi contains also
G=N+i41) (), then G(—N+) () C KerA(l o

has a proper holomorphic subbundle of G(=N+i*+1 () as a direct sum factor, hence,

which is a contradiction. Thus, Ei

again, we have oV # . Finally, suppose that G’(goi'l)c% ~N+9(p), &' ! has the
non-trivial projection into the both of G(~N+i+1) () and g¢, for some 1 <1< N-1.
This case also leads to the conclusion ¢V # . q.e.d.

Theorem 7.1. Let ¢ : M \ S, — CP"~! be any non *-holomorphic plurihar-
monic map, where M is a compact complex manifold with ¢y(M) > 0. Then, there
is a unique sequence {©*}L, (N < n —1) of pluriharmonic maps into CP"~ -1 such
that

(1) eV =, (2) " : M\ S0 — CP™~1 is a holomorphic map, that is, a rational
map f: M ~— CP™ 1,

(3) for 1 =0,1,---,N — 1, each ¢'"! is obtained from ¢* by o't = G'(¢*).

Proof. This follows from Theorem 3.1 and Proposition 7.3. q.e.d.

For the case of finite isotropy order, we have the following

Theorem 7.2. Let ¢ : M\ S, — G(C") be any pluriharmonic map with finite
0" -isotropy order, where M is a compact complex manifold with ¢;(M) > 0. Then,
there 1 xs a sequence {go "}V, of pluriharmonic maps such that

(1) oV = o, (2) ¢° : M\S o — CP""! and ! is obtained from ©° by
Pl = (p @ By, where B° is a holomorphic subbundle of (¢° & G"(¢°))" so that

Im A(o 1) el = fB° for some r € N, and if ¢ is non anti-holomorphic then

rankf® =1,
(3)fori=1,..-,N—1, each @'t has §"-isotropy order r — i, and 't
from ¢*' by

! is obtained

£i+1:["5i@ﬂi, §i=(£i6ai)€9G;p;(ai),
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where o' is a holomorphic subbundle of ﬁ" so that ranka' = rankg‘ — 1 and

. (y=r=1)¢, .1 i
the Hermitian orthogonal projection P' : IﬂA(GO 1) (e")p

— o' is an anti-
holomorphic isomorphism, and 3* is a holomorphic subbundle of (Eé‘ & G"(@)t so
GU=T)(pi+1) i+l ; .
that ImA , |\ (™™ G:a.-(a )& B
Proof. This follows from Theorem 4.1 and Propositions 7.1, 7.2. q.e.d.

The uniqueness for the choice of B may be expected if we assume that

Ker(A‘("l',O) lai) = 0, however, in general, it seems to be difficult to determine o
uniquely.

Theorem 7.3. Let ¢ : M\ S, — G(C") be any pluriharmonic map with finite
0" -isotropy order, where M is a compact complex manifold with ¢;(M) > 0. As-
sume that k = 3 (resp. 4) and n < 15 (resp. 14). Then, there is a sequence {©'}Y,
of pluriharmonic maps such that
()N =¢, (2)¢®: M\ S — G(C"),1<t< k-1, and ¢! is obtained from
©° by o' = ° @ B°, where B° is a holomorphic subbundle of (p° & G"(°))*, and
! has finite &' -isotropy order,
(3)fori=1,---,N —1, each ¢'*! has finite & -isotropy order, and ¢'*! is obtained
from @' by . . . ' ‘

£:+1 =E:®ﬁ:, E':(E'eal)@a;i(a'),

where o' is a holomorphic subbundle of ' contained in ]E(er(A(“"')l o AY

. (o) ©AG,0) and
B* is a holomorphic subbundle of (¢' & G"(2*))*.

Proof. This follows from Theorems 5.1, 6.1 and Propositions 7.1, 7.2.  q.e.d.

Theorem 7.4. Let ¢ : M\ S, — G(C") be any non-holomorphic pluriharmonic
map. Assume that k = 3 (resp. 4) and n < 20 (resp. 15). Then, there is a sequence
{o*}N_, of pluriharmonic maps such that

(1) ™ =, (2)¢°: M\ Sy — G(C") is a holomorphic map for some t € N,
that is, a rational map f: M — G,(C"),

(3) fori=0,1,---,N — 1, each ©'*! is obtained from ¢’ by

£i-l-l ___Efeﬂi, gi:(zieai)ea;‘\(ai),

where &' is a holomorphic subbundle of @' contained in Ker(AEf‘D))l 0 A?’; 0)
B is a holomorphic subbundle of (é' & G (@)t
Proof. This follows from Theorem 6.2 and Propositions 2.3, 7.1~7.3. q.e.d.

), and
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Remark. (1) Ohnita and Valli [O-V] proved the factorization theorem for the

class of meromorphically pluriharmonic maps into the unitary group. We remark
that, our class of pluriharmonic maps is wider than that of theirs, the method
using the image or kernel of the second fundamental form, which is called the basic
transform, is not established yet, and that even if it is established our results are
not covered by it (cf. [Wd1)).
(2) Toledo suggested to the author that the analogy of their result [C-T] may hold,
that 1s, any non-constant pluriharmonic map ¢ from compact complex manifold
M into CP™~! has a factorization of the form v = go f, where f : M — §
is a holomorphic map into a compact Riemann surface and g : § — CP" ! is a
harmonic map, if (M) is not a geodesic arc in CP"~!. The exceptional case surely
occurs when we set M = T™ that is, m-dimensional complex torus, and consider
the factorization, f : T™ — S! a totally geodesic map, g : ' — CP"! a totally
geodesic immersion. Note that a totally geodesic map from a Kéahler manifold is
pluriharmonic (c¢f. [0-U1]). Thus, if we assume ¢;(M) > 0, we may expect that
S is a Riemann sphere and ¢ is a branched minimal immersion. We will discuss it
elsewhere.
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