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A explicit method of constructing pluriharmonic maps
from compact complex manifold into complex Grassmann manifold

Seiichi UDAGAWA

o. Introduction.

Let i.p : M ---+ N be a smooth map from a complex manifold iuto a Riemannian
manifold. Then, i.p is called pluriharmonic if (0,1 )-exterior covariant derivative
D" Oi.p of the (l,O)-differential Oi.p of <p vanishes identicalIy. Let ,,\?'P be the pulI-back
conneetion on the pulI-back bundle <p-1TN. We have

where T MI 1
0 is the holomorphic tangent bundle of M. If i.p -1T N C has the I(oszul

Malgrange holomorphie strueture, that is, (0,1 )-part of "\?'" coineides with 8
operator, we may say that i.p is pluriharmonie if and only if i.p sends any holo
morprue seetion of T M1 10 to a holomorphie seetion of i.p- 1T N C . It is easily ob
served that if ep is holomorprue and N is a Kähler manifold then i.p -1 T Nl,O has
the Koszul-Malgrange holomorphie strueture, henee any holomorphie map is pluri
harmonie. Note that anti-holomorphic map is also pluriharmonic if fl is a I(ähler
manifold. Conversely, the existenee of the I(oszul-Malgrange holomorphic structure
on i.p-1T N C (resp. ep -1 T N 1 1

0 ) is ensured if ep is pIuriharmonic and N has non
negative or nonposi tive eurvature operator (resp. and N is I{ähler)(ef. [0-U2]).
From the point of view of Riemannian geometry, the most important property of
pluriharmonic map is that it is a harmonie map with respect to any I(ähler metric
on M. Therefore, the eoneept of pluriharmonie maps generalizes that of harmonie
maps from Riemann surfaee. Moreover, when one restriets a pluriharmonic map
from M to any holomorphic curve C of M, it induces a harmonie map from C into
N.

In [0-U1], the eomplex-analytieity, eonstaney and stabili ty (as a harmonie map)
of pluriharmonie maps from compact I(ähler manifold were investigated in detail.
As the eonsequenees, there are so many non ±-holomorphie examples of plurihar
monie maps, where a map is ealled ±-holomorphie if it is either holomorphie or
anti-holomorphie. As a special ease, if the target is a complex Grassmann manifold
Gk(C n

) of k-dimensional complex subspaces in C n
, any pluriharmonie map ep froln a

KäWer manifold M is ±-holomorphic provided MaxrankRdep > 2(n-k-1)(k-1)+3.
In case M with Cl (M) > 0 and b2 (Aif) == 1, the rank condi tion of ep may be replaeed
by dimcM > (n - k - 1)(k - 1) + 2 and this dimension estilnate is best possible.
On the other hand, the reeent works of Ramanathan[Rm], Chern-Wolfson[C-\V],
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Burstall-Wood[B-W], Burstall-Salamon[B-S], Wolfson[Wol] and Wood[Wd1] state
that any harmonie map from Riemann sphere 52 into G k( C n ) may be eonstructed
from a holomorphic map 52 ~ Gt(C n ) for some 1 < t < k, which originate from
the works of Bmns[Bn}, Din-Zakrewski [D-Z], Glaser-Stora[G-S], Eells-V\Tood[E-'iV]
with a complex projective space as target. Given a map r.p : lI/I ~ Gk(C n

), we
may identify <.p with the pull-back of the universal bundle over Gk(C n

), denoted
by <.p, which is a complex subbundle of the trivial bundle M x C n . 'iVe have the
sequence of the B' - Gauss bundles by taking the image of the (l,O)-part of the sec
ond fundamental form of each subbundle. 'iVolfson proved that this sequence mnst
tenninate if M = 52. In this sense, his rnethod is explicit and the sirnplest in
the form. In general, <.p has the intersection with certain 8' -Ganss bunclle, say
(r + 1)-th B'-Gauss bundle, and such least integer r is called a'-isotropy order of
<.p. A holomorphic map has infinite 8'-isotropy order, hence one tries to increase
the B' -isotropy order of a given map by certain algebraic replacement. This is a
method of Burstall-Wood, which is explicit and the most natural in the idea. From
their works, one may expect to establish the explicit method, using the second fun
damental forms, of constructing any pluriharmonic map from a compact complex
manifold M with cr(M) > 0 into Gk(C n

). However, there are many difficulties. For
example, B' -Gauss btmdle of <.p has non-removable singularities, and its rank may
be greater than that of <.p, which implies that it is inl.possible to generalize 'iVolfson's
method to higher dimension. On the other hand, in [0-U2} Ohnita and the present
author succeeded in generalizing the method of Burstall-Wood and proved that any
pluriharmonic map <.p from M \ 5lp with lvI as above into Gk(C n

) with k = 2,3 and
n < 12 may be constructed, using the second fundamental forms, from a rational
map f : M ~ Gt(Cn

) for some t, where 5C{' is a certain singularity of codiInension
at least two (see Definition 2.1). The restrietion on karies from the complicate
of Salamon's diagram, which stands for the relations between r.p and its a'-Gauss
bundles, and even for the case of harmonie maps from 52 the method is not known
for general k. In higer dimension, the most difficulty exists in that one can say
nothing about the relation of the ranks between r.p and its B'-Gauss bundle, \vhich
is the reason for the restriction on n.

In this paper, the concepts of finite and infinite B'-isotropy order are impor
tant (see section 3). A pluriharmonie map with infinite B'-isotropy order is easily
reduced to an anti-holomorphic map, hence we may treat only the case of finite 8' 
isotropy order (see Proposition 7.3). In case the target is a complex projective space
C p n -1, it tums out t hat any pIuriharmonic map has infini te B'-isot ropy order, so
that reduced to an anti-holomorphic map (Theorem 3.1). Thus, any pluriharmonic
map <.p from M \ 51t' with M as above into cpn-r may be constructed, in a unique
way, from a rational map f : M ~ cpn-r (Theorern 7.1). This is not the case for
the complex Grassmann manifold of higher rank as target. vVe cau prove that any
pluriharmonic map <.p with finite B'-isotropy order from AtJ \ Slp with M as ahove into
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G2 (C n
) with n arbitrary may be constructed, using the second fundamental forms,

from a pluriharmonic map into cpn-l (Theorems 4.1, 7.2). This technique is par
tially applicable to the cases of rank 3 and 4. We can prove that any pluriharmonic
map <p with fini te B' -isotropy order from M \ Stp with M as above into G k ( C n)
with k == 3 (resp. 4) and n < 15 (resp. 14) may be constructed, using the second
fundamental forms, from a pluriharmorric map into Ct(C n

) for some 1 < t < k - 1
(Theorems 5.1, 6.1, 7.3). Although it is less explicit than those stated above, we
can prove that any non-holomorphic pluriharmonic map <p from M \ Sr.p with lvI as
above irrto Gk(C n

) with k = 3 (resp. 4) and n < 20 (resp. 15) may be constructed,
using the seeond fundamental forms, from a rational map f : M ---+ Ct(C n

) for
some t (Theorems 6.2, 7.4), which also improves the result in [O-U2) stated above.

Refer to [E-L] for the recent developments of harmonie map theory, to [B-B-B
R], [B-B]' [O-Ul,2), [Ud) for the stability and complex-analyticity of pluriharmonic
maps, and to [B-R], rUh), [V), [Wd2] for the construction of harmonie maps from
Riemann sphere to Lie group. Finally, we mention that Ohnita and Valli [0-V)
generalized the results of rUh], [V] to the class of meromorphically pluriharmonic
maps.

1. Preliminaries.
Let E be a unitary vector bundle over a complex manifold lvI, that is, E is

endowed with a Hermitian fibre metric hand a connection \JE compatible with
h. Let F be a eomplex subbundle of E and let S be the Hermitian orthogonal
complement of F in E with respeet to h. Then, Fand S also beeome the unitary
vector bundles with respect to the indueed Hermitian structures. Then, the second
fundamental forms, AS1 F and AF,s, are defined by

(1.1)

for any X E CCO(TM), v E CCO(F), w E CCO(S), where \JE, \JF and \JS are
the Hermitian connections of E, Fand S, respectively, and AF,s (resp. AS,F) is
regarded as Hom(F, S) (resp. Horn(S, F))-valued I-form on M. vVe easily obtain

(1.2) .

where ( )* denotes the adjoint of ( ) with respect to h. By the complex struc
ture of M, we may clecompose A F1S as A F1S == A&l~) +A~~). Let D be the exterior

covariant differentiation defined by the indllced connection on Hom(F, S), and D',
D I1 be the (1,0)-, (O,I)-part of D, that is, D = D' +D". The (O,l)-exterior covariant
cl . t' D"AF,s f AF1 S . d fin d benva 1ve (110) 0 (1,0) lS e e y
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(1.3) (D" A F,S )(Z W) - \7~ A F,S - A F,S \7f - A ~IS
(1,0) , - Z 0 W W 0 Z 8

Z
W '

where Z, W E C OO(TM1,0). Similarly, D'A~~) is defined. Now, assurne that E
has the Koszul-Nlalgrange holomorphic structure, that is, a holomorphic structure
compatible with the Hermitian structure of E, and F is a holomorphic subbundle
of E. We may endow S with a holomorphic vector bundle structure by the isomor
phism S ~ ElF, which is, in fact, nothing but the I(oszul-Malgrange holomorphic
structure (cf. [B-S]). Then, Hom(F, S) also has the I<oszul-Malgrange holomorphic
structure and a smooth section A of T* M 1 ,o 0 Hom(F, S) is called holamorphie if
D"A = O.

Let !.p : M ---+ G k (Cn
) be a smooth map from a complex manifold into a

complex Grassmann manifold of k-dimensional complex subspaces in c n
. Then,

we may identify !.p with a complex subbundle c.p of rank k of the trivial bundle
C n = Mx cn, of which the fibre at x E M is given by c.p = !.p(x). Note that c.p is

-x -
the pull-back of the universal bundle T over Gk(C n

) by !.p. Frequently, we write c.p
as !.p if there is no confusion. -

Definition 1.1. Let E be a complex subbundle of C n
. We denote by Ei.

the Hermitian orthogonal complement of E in C n with respect to the standard
Hermitian fibre rnetric on C n

. If F is a complex subbundle of E, the Hermitian
orthogonal complement of F in E is denoted by E e F.

Set

(1.4)
.L J.

Alp = A~ l~.

Then, by (1.2) we obtain

(1.5)

The property of !.p may be interpreted by the property of Alp. Für example, we have

Proposition 1.1. (I) The Eollowing statements are mutually equivalent

(1) !.p is holomorphic (resp. anti-holomorphic)

(2) c.p is a holomorphic (resp. an anti-holomolphic) subbundle oE C n
,

(3) A(O!l) = 0 (resp. A(l,O) - 0).
(lI) c.p is pluriharmonic iE and only iE D"A0,0)= 0, equivalently D'A~,l) = O.

(111) c.p is pluriharmonic iE and only iE c.pl.. is pluriharmonic.

In fact, we may say that if c.p is pluriharmonic then Arl,O) is a holomorphic

section of T* M 1
,
O @ Horn( c.p, c.pol) by Proposition 1.1, (11) and the following
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Proposition 1.2 ([0-U2]). J[ep is pluriharmonic, each o[ep and epJ.. has the ](oszul
Malgrange bolomorphic structure. In particular, any bolomorphic subbundle o[ ep

or ep..L, and its Herrnitian orthogonal complement in ep or ep..L have the I{oszul
Malgrange holomorphic structures.

lt'J.
If ep is pluriharmonic, by Propositions 1.1, 1.2, we see that A(lIO) IS also a

holomorphic section of T'" MllO0 Hoin(ep..L, ep).

2. A method of constructillg pluriharmonic maps.
Let ep : M ---+ Gk(C n

) be a plurihannonic map from a complex manifold. The
following proposition gives a general method of constructing new pluriharmonic
map from the old.

Proposition 2.1 ([0-U2]). Denne rp by

(2.1)

where cy and ß satisfy the following conditions :
(2.2) a and ß are holomorphic subbundles o[ ep and ep..L, respectively,

(2.3)
J.

A(lIO)(ß) C T* MllO 0 a .

Then, ep is also a pluriharmonic map from M into Gt(C n
) [or some t.

J.

Remark. If we reverse the orientation of M, we see that we may use ArO,l)' ArO,l)
J.

in place of Arl,O)' ArlIO)' in this case, Cl! and ß are chosen to be anti-holomorphic

subbundles of ep and .:e..L, respectively. .
To show the examples of a and ß which satisfy the conditions (2.2) and (2.3),

we consider A(llO) as a bundle homomorphism A(I,O) : T Ml,O0 ep ---+ ep..L and set

ImA(lIO) = UxEM lm(A(IIO»)X .

ImA(lIO) is a holomorphic sllbbundle of epJ.. over M\ V, where V is an analytic sllbset

of M. It can be observed that IlnA(lIO) extends to a holomorphic subbundle of ep..L

over M \ W, where W is an analytic subset of co dimension at least 2, and denote it
by ImArl,O) (cf. [0-U2]). Similarly, considering A(I,O) as an another homomorphism

Alt' : ep ---+ T* MIIO 0 ep..L we set(1,0) _ _
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In the same way as above, KerA0,O) extends to a holomorphic subbundle of

r..p over M \ W', which is denoted by I(erA(I,O)' where W' is an analytic subset of
codimension at least 2. When we construct the new ·pluriharmonic map from the
old, we have the new singularity set, hence we give the following definition

Definition 2.1. Denote by Scp the singularity set of M with codimcScp > 2 such
that r..p is a pluriharmonic map from M\Scp and Scp is of the fonn

for some positive integer k and each Si (i = 1,"', k) IS an analytic subset of
M\ u~:i Sj with codimcSi ;::: 2.

We need the following lemma, which we frequently utilize

Lemma 2.1 ([O-U2]). Assurne that M is a compact complex manifold with the
positive first Ohern class, Cl (M) > O. Let E be a Hermitian holomorphic vector
bundle over M\S, where S is as in Definition 2.1 without the assumption on r..p,

and let A be a holomorphic multi-differential with values in End(E). Then, A is
nilpotent, that is, Am =0 as a holomorphic multi-differential with values in End(E)
for some positive integer m < rankE.

.L

For example, A(I,O) 0 A(I,O) is a holomorphic quadratic differential with values

in End( r..p) over M\Scp, hence nilpotent by Lemma 2.1 if M is compact and Cl (M) >
.1.

O. In particular, A (1, 0) 0 ArI, 0) has the non-trivial kerne!. In this case, any non-
.L

zero holomorphic subbundle a of r..p contained in Ker(A0,O) 0 A(l,O)) satisfies the

conditions (2.2) and (2.3) with ß = Im(A(I ,0) 10') (see Lemma 2.2 below for the

holomorphicity of A(l,O) la)' In summary, we state the following

Proposition 2.2. Let r..p : M\Slp --+ Gk(Cn
) be a pluriharmonic map. Then, tbe

following map rp defines a pluriharmonic map : M\Sq; --+ Gt(C n ) for some t :

(2.4) <p = ImA(I,O) if A(l,O) ~ O.
(2.5) ;:p = r..p 8 KerA(I,O) if I(erA(I,O) =1= Q.
(2.6) 0 = (r..p8 a )ffi lm(A(110) 10')' where a is a holomorphic subbundle ofr..p contained

.1.

in Ker( A 0,0 )0 Arl ,0))' if a =I=.Q, which is satisfied iE M is compact and Cl (M) > O.

However, (2.5) may be considered as a special c~se of (2.6) because I(erA(l,O)
.1.

is contained in Ker(A(I,O) 0 A0,0) ). Moreover, if M is compact and Cl (M) > 0 then

(2.4) is also obtained by the successive procedure of type (2.6), which follo\vs from
the more general proposition below, Proposition 2.3. For the notational simplicity,
we glve
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Definition 2.2. Set G'(cp) = G(l)(cp) = ImA(l,O) and inductively define the r-th

EJ'-Gauss bundle ofcp, G(r)(cp), by

for i = 1,2" ...

Similarly, define the r-th EJ"- Gauss bundle, G( -r) (cp), by

G"() G(-l)() ImAI.fJ G(-i-1)((I'l) = G"(G(-i) (11'l))cp = cp = - (0,1)' T T for i == 1,2, ....

In particular, set G~(a) = Im(A010) 10') and G~(,) == Im(A(Oll) I,) for a holomor
phic subbundle a of'f.. and an anti-holomorphic subbundle 1 of cp, respectively.

We need the following

Lenlma 2.2. Let T and 11- be tbe Hermitian vector bundles over M witb tbe Koszul
Malgrange bolomorphic structures and let A be a holomorphic multi-differential
with values in Horn(T, 11-)' Then, the Eollowing statements are true
(1) Hais a bolomorphic subbundle oE T, then A 10' is holomorphic.
(2) JE ß is an anti-bolomorpbic subbundle oE 11- and ?T : 11- ---4 ß is a Hermitian
orthogonal projection, then ?T ° A is bolomorphic.
(3) JE I is a subbundle oE T with T 8 I C KerA and , has the I(oszul-Malgrallge
holomorphic structure with respect to tbe connection induced [rom T, then A I.." is
a holomorphic multi-differential with values in Horn(" 11-)'
(4) JE 8 is a subbundle oE 11- containing the image oE A and 8 has the I(oszul
Malgrange bolomorphic structure with respect to the connection induced [rom 11-,
then A i8 a holomorphic multi-differential with values in Horn(T, 8).

Proof. Set A = Li
1

, ... ,iA: Ail ...i.dzi1@ ... @dzila. Then, A is holomorphic ifand
only if, locally, A i1 ... i", is holomorphic, that is,

for any X E C OO(TM1,O) .

(1) Set c; = T 8 a, then A(O~l) = O. Therefore, we have

(2) Set", = 11-8ß, then A(oj) = O. Denote bY?Tß and?T1( the projections 7T'ß : 11- ----+ ß
and 7T' I( : 11- ---4 K., respectively. Then, we have

7T'ß ° Ai1 · .. i/a ° \7:t == 7T'ß 0 \7~ ° A i1 "' i /a

==?Tß ° (Vi O?Tß ° A i1 ''' i /a + A~ß ° ?TI( ° Ait ...i",)

=\7io?TßoAil ... iA: •
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(3) Set 1] = T 8, C KerA, then A(1]) = 0. We have

\7~ 0 A it ... iAl 1"'1'= A it ... iAl 0 \7;' 1...,.= A it ... i1\ 0 (\7} + A ~f1) = Ait'''ili: 0 \7} .

(4) Set v = J.l 8 8, then, since ImA C 8 we obtain

q.e.d.
Now, we prove the following

Proposition 2.3. Assurne that M is compact and Cl (M) > 0. Let <P : M\S<p ---+

G k (Cn
) be a pIuriharmoniCmap and denne 'P by 'P = (<p 8 G) EB ß, where 0' and

ß satisfy the conditions (2.2) and (2.3). Then, ther; is a finite sequence {<pi }~o of
pluriharmonic maps with (1) <P = <Po (2) (j = <PN (3) for i = 0,1, ... ,n - 2, each
<Pi+l is obtained from <Pi by e.p. = (e.p. 8 Gi) EB G:~. (O::i), where O::i is a holamorphie

-1+1 -I ..,.-,
.1.

subbundie of 'P i contained in Ker(A(li,O) 0 Arl',O)) such that

(I) if ß = G~(o::), 'PN is also obtained from t.pN-l by the above procedure (3) for

i = N -1,
(lI) if ß f=. G~(a), there is a holamorphie subbundle ßN-l o{(<PN_l EB G"(<PN_l))J.

so that 'PN is obtained from 'PN-l bY!f..N = 'P N- l EB ßN-l'

.1.

Proof. First, observe that Arl,O) 0 Arl,O) 10' is a holomorphic quadratic differ-
ential with values in End(a) by Lemma 2.2. Then, it follows from Lemma 2.1 that

.1. .1.

(A(l,O)oA(l,O) la)k =°for some positive integer k < ranka. Set L = A(lIO)oA(llO) 10"
and define ao, "', O'k-l and ßo, .. " ßk by

for i = °1 ... k - 1", ,

für i = 0, 1, ... , k. Define a sequence {<pi }:=o by

(2.9) :ei+l=(<Pi8ai)EBßi with 'Po='P für i=O,l,···,k-l.

By (2.7) and (2.8), we see that für any i = 0, 1,· .. , k - 1,

(2.10)
i

EB I L k-l-ia'= mJ - ,

j=O

EBßj = G~(ImLk-l-i) .
j=O
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so that

(2.11 )

We fix any integer i with 0 < i < k - 1. We show that G~i (eri) = ßi and ai is a
J.

holomorphic subbundle of ep i contained in Ker(A(li,O) 0 A(li,O))' By (2.9) and (2.10),
we have

(2.12)

Since L k - i and A(l,O) 0 L k- i are holomorphic, ai and ßi are anti-holomorphic sub

bundles of ImL k - 1 - i and G~(ImLk-l-i), respectively, that is,

(2.13)

It follows from (2.12) and (2.13) that

(2.14)

Since ImL k - 1
-

i is a holomorphic subbundle of ep, eri is a holomorphic subbundle of
ep 8 ImL k

-
i . Moreover) we have

ImA~7~;mL'-')''''= G~.L(G~(ImLk-i»

= ImL k+1
-

i ,

which is orthogonal to ep e ImLk - i , hence ep 8 ImL k- i is a holomorphic subbundle
of ep. by (2.12). Thus, eri is a holomorphic~ubbundle of ep .. Finally, by (2.13) and

-1 -1

(2.14) we have

Arto) 0 A(li,O) (eri) = ArtO)(ßi) C (ImL k- i EB (ep-L 8 G~(ImLk-i))) )

so that Arto) 0 A(li,O)(ad = O. If ß = G~(a) then ßk = .Q and a = EB;::~ aj,

ß = EB7::~ ßj, hence we obtain (I). For (lI), we only have to show that ßk is a

holomorphic subbundle of (epk EB G"(epk))-L. epk is given by epk = (ep 8 a) EB G~(a)

and G~(a) is a holomorphic subbundle of ß, hence A~71\oLßIe = 0 by ß =: G~(O!)ffißk'

Moreover, by the condition (2.3) we have Ait,~ea = Arl~O)ea(ßk) = O. Therefore,

ßk 1. G"(<Pk) and ßk is in (Y'k EB G"(<Pk))-L. Since A(l~) = Arl'~)(a) = 0 and ßk
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is a holomorphic subbundle of ~1.. 8 G~(a), ßk is a holomorphic subbundle of cp;,
hence of (<.p k EB G" (Cf' k))1... q.e.d.

We have given the self-contained but lengthy proof. It is easier to understand
the reason that Proposition 2.3 holds, if we use the Salamon's diagram, which will
be defined and used in the next section.

We call the procedure (2.6) the forward replacement of a. 'Vhen we use ArO,l)
and an anti-holomorphic subbundle / of~, we call the corresponding procedure the
backward replacement of /.

3_ Salamon's diagram and the isotropy order of pluriharnlonic Inap.
Let C n = M x C n be the trivial bundle over a c'omplex manifold M \vith the

standard Hermitian fibre metric ho. Let Tl, ... ,Tk be a set of Inutually orthogonal
subbundles of C n with respect to ho such that each Ti (i = 1, ... , k~) has the I(oszul
Malgrange holomorphic structure compatible with the Hermitian structure induced
from ho and C n = EB;=l Tj. Denote by A(1:~j) the (l,O)-second flLndamental form of

Ti in Ti EB Tj for 1 < i =f. j < k (cf. section 1). Following [B-W], we give

Definition 3.1. . We mean by a diagram {Ti, A('1 :~j)} the directed graph with

vertices Tl, ... ,Tk and for each ordered pair (i, j) an edge from Ti to Tj representing
A(~:~). The absence of a given edge in the graph indicates the vanishing of the

corresponding (l,O)-second fundamental form.
An important use of this diagranl is to decide whether a given hOlnomorphism,

such as the cOlnposition of same (l,O)-second fundamental forms, is holomorphic 01'

not. For this purpose, \ve need

P -t- 3 1 G' d' {ATi,Tj} ATil Tj
T~A"l 0 • h 1roposl Ion - - Iven a lagram Ti, (1,0)' (1,0): 11'.1' @ Ti ~ Tj 1S 0 a-

morphie if the diagram eontains no configurations oE the Eollowing {orms "

(1) I

l '------71---- J

(2) I

Z~----:~------

(3)

where 1 < l < k with l =f. i, j .

The proof of Proposition 3.1 is just the same method as in [B-W] (cf. Lemma
2.2). The particularly important case is when Lemma 2.1 is utilized. Für example, if
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A(~:~)+l (1 < i < k - 1) and A(~,'~) are all holomorphic, we see that the composition

A(~,';)l 0 A(~,~),T'= 0 ... 0 A(~:~) is a holomorphic section of Q?)k T* M1,O0 End(Tl) by

Leibniz' rule, hence nilpotent. We often refer to it as a holomorphic circuit and
denote it by {Tl, T2, ... ,Tk, Tl} for notational simplicity.

Next, we introduce the concept of isotropy order of a given pluriharmonic
map. Let <.p : M ~ Gk(C n

) be a pluriharmonic map from a complex manifold.
We denote by G(r) (ep) the r-th 8'-Gauss bundle of <.p as in section 2.

Definition 3.2. We say that ep has a'-isotropy order r if ep is orthogonal to each

G( i) ( <.p) (1 ~ i ::; r) and not orthogonal to G (r+ 1 ) ( Y') wi th respect to ho. Moreover,
we say that Y' has finite (resp. infinite) 8'-isotropy order if r < 00 (resp. r == 00).
SimilarlYl the corresponding notion of 8"-isotropy order for 8"-Gauss bundles is
defined.

Note that <.p ..L G' (ep) always holds, so that any <.p has 8'-isotropy order > 1.

Lemma 3.1 ([O-U2]). H<.p has 8'-isotropy order 2:: r, then G(i)(Y') 1.. G(i)('P)
for any i,j such tbat 0 <I i - j I< r.

If <p has ß'-isotropy order > r , then by Lemma 3.1 we may set R == epJ... '8
(EBj=l G(i)(<p )). It follows from Proposition 1.2 and Lemma 2.2, (3) that all ep,
G( i) ( <p) (1 < i < r) and R have the I(oszul-Malgrange holomorphic structures

compatible with the Hermitian structures induced from ho, and all A(l'~;(tp) and
c(i)( ) C(i+l)( )

A(llO) lp , t.p (1 < i < r - 1) are holomorphic. We often use this fact, without
.1-

any comment, in the following. If ep is a holomorphic map, A(O,l) == -(A(llO))* = 0,

so that A(l~O) = 0 and 'P 1.. G(i) (ep) for any i > 1. Therefore, a holomorphic map

has infinite 8'-isotropy order. However, since every G(i)(<p) is a subbundle of C n
,

Lemma 3.1 implies that there exists a positive integer.s such that G(s) (ep) = .Q, that
is, <.p is reduced to an anti-holomorphic map f : M\Sf ~ Gt ( C n

) for some t. In
general, a given pluriharmonic map has finite 8'-isotropy order. A method for that
is to increase the 0' -isotropy order of a given pluriharmonic map by the successive
procedures of type (2.6), that is, the forward replacement, so that it is reduced to
an anti-holomorphic map, in case M is compact and cl(M) > O. However, when
the target is a complex projective space cpn-l with Fubini-Study metric, a given
pluriharmonic map turns out to have infinite O'-isotropy order. In fact, \ve have

Theorenl 3.1. Asswne that M is cornpact and cl(M) > O. Let Y' : M\Sep ---+

cpn-l be a pluriharmonic map. Then, G(s) (<.p) = Q for some positive integer
s < n - 1. Moreover, if ep is non-holomorphic, eacb G(i)(Y') (0 < i :::; s - 1) defines
a pluribarmonic map into cpn-l and c.p is reduced to an anti-hololnorpbic map
'Ps-I: M\Stp._l ~ cpn-l.

,-11-



Theorem 3.1 is a reformulation of Theorem (7.30) in [O-U2]. This theorem
plays an important role when we treat the comp1ex Grassmann manifold of higher
rank as target. We give here a proof of it using Salamon's diagram.

Proof 0/ Theorem 3.1. If cp is anti-holomorphic, we have nothing to prove, so
that we may assurne that ep is non anti-holomorphic. Suppose that ep has B'-isotropy
order > r. We have a cliagram by Lemma 3.1

where R = ep..L S (EBj=l GU)(ep)). We show that A~~~;(l,O),l,O is holomorphie. Ifr = 1,

G(r)(cp) is a holomorphic subbundle ofep..L and A~~~))(l,O),l,O = A(l~O) IG(r)(l,O) is ho10

morphie by Proposition 1.1 and Lemma 2.2. If r > 2, by Proposition 3.1, A~~~))(l,O),l,O

is holomorphic. Then, we have a holomorphic circuit {ep, G' (ep), ... ,G(r) (Cf!) , ep},
c(r)() - -

and by Lemma 2.1 and rankep = 1 we have AU,O) l,O 1l,O = 0 beeause all the other

edges in (3.1) are surjeetive by the definitions. Therefore, ep ..1 G( r+l) (ep) and ep has

o'-isotropy order?:: r +1. Thus, cp has infinite B'-isotropy order, so that G(s) (ep) = .Q
for some positive integer s < n - 1. If ep is non ±-ho10morphie, by Proposition 3.2
in [O-U1] we have rankc 8ep < 1 on M\Sl,Ol whieh implies rankG'(ep) = 1 and G'(ep)
defines a pIuriharmonic map into C P n -1, so does G(i) ( ep) while G( i-I) (ep) defines
non ±-holomorphic map. If G( r) (ep) defines a holomorphie map, then

henee G(r-l)( r..p) already defines an anti-holomorphie map into cpn-l. q.e.d.

vVhen the target is a eomplex Grassmann manifold of higher rank, a generie
pluriharmonie map surely has finite 8'-isotropy order. Therefore, in this case we
ean't expeet the result like Theorem 3.1 because the situation of rankG(i+l)(cp) >
rankG( i) (cp) may 0 eeur. We use the forward repIaeement, whieh isthe most basie
one by Proposition 2.3, to treat the case of higher rank. We may reverse the
procedures in Theorem 3.1 so that any pluriharmonie map ean be constructed,
using the second fundamental fonus, from a holomorphic map 01' a rational map,
whieh is proved in seetion 7.
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4. Pluriharmonic maps into G2 (C n
).

In this section, we give an explicit method of constructing any pluriharmonic
map'P : M\Scp ---+ G2 (C n

), where M is a compact complex manifold with c1(M) >
O. Tf 'P has infini t e 8'-isotropy order, t hen G( S) ( 'P) = .Q for some posi tive integer s,
hence <p is reduced to an anti-holomorphic map 'Ps-I: M\Scpll_l ---+ Gt(Cn ) for
some t. Thus, we may assume that 'P has finite 8'-isotropy order. We prove

Theorem 4.1. Let 'P : M\Scp ---+ G2 (C n ) be a pluriharmonic map. Assume that
c.p has finite 8' -isotropy order. Then, there is a sequence {'Pi}~o of pluriharmoruc
maps such that
(1) 'Po == <p, (2) r.p N : M\ScpN ---+ cpn-1,
(3) for i == 0,1, ... ,N - 1, each 'Pi has B' -isotropy order r + i, where r is the B'
isotropy order of 'Po, and r.pi+l is obtained from 'Pi by the forward replacement of

. . c(r+i}(cp') CP"
Qll, where Qll == ImA(l,O) "', which is a holomorphic subbundle of 'P i contajned

.1.

in I{er(A0i
,O) 0 A(li ,O»)'

Proof. Let r be the O'-isotropy order of c.p. As in the proof of Theorem 3.1,
we see that A c(r) (cp),cp is holomorphic Set A - A c(")(cp),cp 0 A c(r-l) (cp),c(")(cp) 0

(1,0) . r,cp - (1,0) (1,0)

A CP,C'(ep) B L 2 1 A2 - 0 th t 0 - I Ac(r)(cp),cp I( A
... 0 (1,0) . Y emma ., r,CP = ,so a QI - m (1,0) C er r,cp C

I( (A ep.1. Alp ) d k 0 - 1 S t 0 - 0 0 - G(i)( 0) ~ . - 1er (1,0) 0 (1,0) an ran QI - • e a o - a, ai - cp Qlo 101' Z - ,"',r,

and set ,8 == <p e ag, ,? = G(i)('P) 8 a? for i == 1,' .. ,r. We have a diagram

(4.1)

o 0 0 0

where R = c.p-l.. 8 (EBj=l G(j)(c.p)). By Proposition 3.1, A~li,~~i+\ An,'~i+l (0 < i ~
o 0 0'0 R 0 R

r - 1), A(;,'~o and A({,~) are all holomorphic. Further, set a~+l = ImA(;,~) and

R~ == R 8 a~+l' Again, we have a diagram

(4.2)
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o 0

By (4.2) ancl Proposition 3.1, we see that A~lr,6) ,1'0 is also holomorphic. We have

h 1 h··· {O ° ° ° 0 0 0} hi h . h ba 0 omorp lC Clrcult Q'o, Q'1 , ... , Q'r+l , '0, 'I , ... , 'r, Q'o , W c must vanlS y
o 0 0 0

L 2 1 H A 1'i 'li+1 (0 < . < 1) cl A1'r ,0'0 11 . t' S'emma .. owever, (1,0) _ t _ r - an (1,0) are a surJec Ive. Ince
o 0

rank,g = 1, we obtain A~;,6) ,10 = O. Hereafter, we use the convention that if a? = .Q
o 0

for some 1 < i < r + 1 we unclerstand that A~lr,6) '10 _ 0 is trivially satisfied. Set

e.p = (e.p 8 ag) ffi a~. If a~ = .Q, then ranke.p = 1 and e.pl is a pluriharmonic map
-1 - . -1

into Cp n
-

1
. Hence, assume that a~ i=.Q. Then, from (4.2) we have

o 0 C(i)() 0 0 (1 < . < ) G(r+l)( ) R' 0e.pl = '0 ffi Q'1 , e.pl = 'i EB ai+1 _ t _ r , e.p1 C 0 EB a o ,

so that e.pl has B' -isotropy order r +1. To continue this procedure, we investigate the
properties of e.pl further. Setting R1 = (R~ ffi ag) 8 G(r+1)(e.pl), we have a diagram

c er +1 )( )
By (4.3) and Proposition 3.1, we see that A(l,O) 'P1 ,'P1 is holomorphic. We have a

holomorphic circuit {e.p , G' ()O1), ... , G( r+l) ()OI),)O }, and setting
-1 -1

we see that A r+1 ,l;'1 is nilpotent. Set a~ '= ImA~~~~1)('Pd'!P1 then ranka~ < rank)Ol 

1. Let pI : G(r+l) ()OI) -+ ag and PI : Q'~ ~ a~ be the Hermitian orthogonal
o 0

projections. It follows from the surjectivity of A(l,'O)o and the fact G( r) ()OI) =

,~ ffi a~+1 that pI is surjective. Since (R~ EB ag) J.. a~, G(r+l) ()OI) c R~ EB ag and
R' 0

A(]~~)1 - 0 by (4.2), we obtain

(4.4) C (r+1)( ) c er + 1 )( ) 0 0 0 _
p 0 A !P1 ,!P1 (v) = A 'P1 ,0'1 (v) - A 0'0,0'1 0 pI (v)

1 (1,0) (1,0) - (1,0) ,

( ) _ 0 0

\vhere v E COO( G r+l ()OI», which, together with the surjectivities of pI and Aft,~~l ,
implies that PI is surjective. Therefore, we have ranka~ > ranka~ = rank)O 1 - 1,
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which, together with the above rank inequality, implies that rankO:'~ = rankO:'~ =
rank<p I - 1 and PI is an isomorphism, where we note that PI is holomorphic by

Lemma 2.2. We show that A;+I ,lf'1 =O. Set O:'} = G~? (O:'~), wmch is a holo

morphic subbundle of G(i) (epI), for i = 1,"',T+ 1. If pI 10'1 : a~+1 --+ 0:'8
r+l

C(,.+I) ( )
is surjective, by (4.4) we see that P1(Im(A(1 0) lf'I,lf'1 10'1 » = Pl(a~), hence, ,.+1

I (A G(,.+I)(r,od,lf'1 I ) 1 h' h d' h'l f A Thm (1 0) 0'1 = a o, w lC contra lCtS t e nl potency 0 r+l /PI' ere-
, r+l '

--1 I - # 0 1 c(r+l)(/pd,/Pl ( )
fore, P 0'~+1 = 0 by rankO:'o = 1, and hence O:r+1 C KerA(l,O) by 4.4 and

the isomorphicity of PI. Thus, we have proved that A;'+l,/Pl - O. Moreover, we

b · 1 R' d I I (A c (r+l)(/pd I ) R R' 0 F' 11o taln O:r+l C 0 an O:r+2 = -ill (1 0) 0'1 eie 0 EB 0'0' lna y, set, ,.+1

R' 1

then by (4.2) we see that R~ ..1 O'~ and A(1~~)1 - O.
We claim that

c(r+i)( .) .
Claim. For each i = 0, 1, .. " if, epi has o'-isotropy order r + i, A(l,O) /PI ,!.pIlS

holomorphic and A;+i,!.pj = 0, then define epi+l by epi+l = (<Pi 8 o:~) EB o:L where
. I .. C("+i)("".) "". .

a~ = G!.pi (o:h), o:h = ImA( 1,0) l' l C I(erAr+i,lpi and rankah = rankepi - 1.

Then, either epi+l is a pluriharrnonic map into cpn-? 01', <Pi+l has o'-isotropy or
der T +i + 1 and has the following properties :

()
c(r+i+l)(!.pi+d,!.pi+l' . 2 _

1 A(I,O) IS holomorphlc and A r+i+1,/Pi+l = 0,

( )
i+1 _ c( ,.+i+1)(/P i+d ,/P i +1 ~ i _ # i +1 _

2 set 0: 0 - ImA(l,O) C I<erAr+i+1 ,I.pi+l' then ranka1 - ranko:o -

rankep. - 1 and the Hermitian orthogonal projection Pi+1 : 0:'~+1 --+ O:'i is a holo-
-J+l

morphic isomorprusm,
(3) G(r+s)(<Pi+l) C R~-1 EB o:g-l (1 < s < i + 1),

(4) t i+1 G(j) ( i +l) ~ . 1 . 2 t h i +I R' (1 < <. 1)se a j = lf'i+l 0:'0 101' J = ,"', r + t + 1 en O:'r+s C s-l _ S _ t +
cl i+l C R' LI::'. ian O:'r+i+2 i Q7 0:0 ,

(5) set R~+l = ((R~ EB O:'~) 8 G( r+i+l) (epi+l» 8 a~-:t~+2' then R~+l 1. a~ and
R ' i+l

A i+l'O'I 0
(1,0) -.

This Claim is already established for i = Q. Assume that Claim is true for
o < i < k and <pi+l (0 < i < k) does not define a map into cpn-l, so that each

<Pi+l (0 < i < k) has the properties (1) rv (5). Then, we may define epk+2 by
ep k+2 = (<p k+l e 0:~+1) EB a~+l. If 0:'~+1 = .Q, then rank<p k+2 = 1 by (2) for <p k+l,

and <Pk+2 is a pluriharmonic map into cpn-l. Hence, assume that a~+l =f. Q.
First, we draw the diagram for 'Pi+l (0 < i .< k). Set 1~+1 - <P i+l e 0:'~+1 ancl

-15- '



'+1 ( ') I '+1,j == G J (CPi+l) 8 aj for j == 1,"', r + i + 1. By the properties (1) I"V (5) for
c.pi+l, we have a diagram

In particular, when i == k, we have a holomorphic circuit

which is nilpotent. Since rank'1'~+l
~+1 .1:+1

+ ko) d A'Yr +II +1 lQ'O
r an (1,0)

from (4.5) that

Then, c.pk+2 has 8'-isotropy order r+k+2. By (3) and (4) for c.pk+l and the definition
of R~ we obtain

which, together with (4.6), yield

(4.7)

(4.8) L~-~
G( r+k+2) (c.p k+2)

-16-



wruch is nilpotent. Hence, ranka~+2 ~ rank~k+2 - 1. Let pk+2 : G(r+k+2) (Y'k+2)

---+ a~+l and Pk+2 : a~+2 ---+ a~+l be the Hermitian orthogonal projections. It fol-
k+1 ok+1

lows from the surjectivity of A~;,~)+l' ° and the fact G(r+k+l) (Y'k+2) == ,;:t~+1 EB

a~tk+2 (see (4.5) and (4.6» that pk+2 is surjective. Since (R~+l ffi a~+l) ..1 a~+l ,
R' k+l

G(r+k+2)( ) R' ffi k+l d A k+1'01 - 0 b (45).r . k bt .Y'k+2 C k+l G7 a o an (1,0) = Y . lor t == ,we 0 aln

(4.9)

where v E cco(G(r+k+2)(Y'k+2», which, together with the surjectivities of pk+2
k+1 k+l

and A(10,o) '°1 ,implies that Pk+2 is surjective. Therefore, we have ranka~+2 >
ranka~+l == rank~k+2 - rank,;+l = rank~k+2 - 1, where the last equality follows

froln (2) for 'Pk+l. Consequently, we see that ranka~+2 == ranka~+l == rankY'k -1- +2
and Pk+2 is an isomorphism. We show that A;+k+2,lf'1:+2 == O. By (4.7) we have

(4.10)

First, we must show that a:t; C R~_l (1 < s< k + 2). Let p~ : a~t; ---+ ag-I,

q~ : a~t; ---+ R~_l (1 < s< k + 2) and T~ : a;t;+l .---+ a~-l (1 < s< k + 1) be

the Hermitian orthogonal projections. Take any v E CCO(a~t;). By (4.10), \ve may
set v == pB(V) + q~(v), and for 1 < s ~ k + 1 \ve have

(4.11 )

where we have used the facts (R~_l EB ag-I) ..1 a~-l (see (4.5) and (5) for Y's-l'
,-1 ,-1

If pB is surjective, then, since A(lO,O) '°1 is surjective, (4.11) implies that TB is
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surjective, where we note that O'~-1 -=I .Q ancl a~-1 i:- Q (1 ::; s < k + 1) be
cause neither 'Ps-I nor 'Ps defines a map into cpn-I by the assumption. Since
R'..l s-1 k s nk s-1 cl P s s-1 . . 1. bs 0'1' ran Q'o = ra 0'1 an 8: 0'0 ---+ 0'1 lS an lsomorp 11sm y
(2), (5) for 'Ps, the surjectivity of T

S implies that pS+l : Q'.~t;+1 ---+ O'~ is also
surjective. Now, suppose that pI is surjective. Then, it follows that each p8

(1 < s < k + 2) is surjective. In particular, pk+2 : a~t~+2 ---+ O'~+l is sur-

jective. Note that pk+2 = pk+2 I ~+2 . Then, it follows from the surjectivity
a .. +~+2

k+2 () ( (G("+"+2)(/P~+2) /P~+2 I )) ( k+2)of p ancl 4.9 that Pk+2 Im A(1 0) I 0'"",+2 = Pk+2 0'0 ancl
I r+k+2

c(r+k+2)( ) k 2
·hence Im(A(I 0) lr'Je+2 11.;'1l+2 I k+2 ):::: 0'0+ , which contradicts the nilpotency of

, 0' .. +k+2

A r +k+2 ,lr'k+2' Therefore, we have proved that pI is not surjective and pI = 0 by
ranka8 :::: 1. For any fixed s (1 < s ::; k + 1), if ps = 0, then by (4.11) and the sur-

k+2 k+2
jectivity of A~;,6; ,0' .. +.+1 for 1 < s < k +1 we see that T S

_ 0, where we note that if

a:t;+1 :::: Q then TS = 0 is trivially satisfied. Since Ps is an isomorphism, it follows
from T S = 0 that p8+1 = O. Thus, we have proved that p8 = 0 (1 < s ::; k + 2),
which, together with (4.10), yields

(4.12) k+2 R'
O'r+s C 8-1 (1 < s ~ k + 2) .

Moreover, the fact pk+2 = 0, the isomorphicity of Pk+2 and (4.9) imply that
k+2 K A Ge ..+ 1l

+
2

)(/Pk+2),l.;'k+2 h A 2 - S
Q'.r+k+2 C er (1,0) , so t at r+k+2,/Pk+2:::: O. et

and set

R' k+2
B (4 5) f . k h R' k+1 cl A k+ 2 l O'l - I 1 .y . or 'l,:::: ,we see t at k+2 1. Q'.1 an (1,0) = O. n t 11S way,
Claim is establishecl.

Now, let N be any positive integer and suppose that each <Pi (0 < i < Ar) does
not define a map into cpn-l. Then, by Claim we see that 'PN has a'-isotropy order
r + N. However, this is impossible because the a'-isotropy order r +N mnst be less
than n. Therefore, there exists a positive integer N such that 'P N is a pluriharmonic
map from M\S/pN into cpn-l, which, tagether with Claim, yields the statements
(1) I'V (3) of Theorem 4.1. q.e.d.

The inverse procedures of Theorem 4.1 is also proved in section 7.
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5. Pluriharmonic maps into G3 (C n
).

Let tp : M\S'P ---+ G3 (C n) be a pluriharmonic map, where M is a compact
complex manifold with cl(M) > O. As in the case of G2 (cn), we mayassurne that
tp has finite 8'-isotropy order. Define Ar,'P as in section 4, \vhere r is the 8'-isotropy
order of cp, then Ar,lr' is nilpotent. There are two possibilities :

"VVe treat these two cases separately. Although we don't get the result such as
Theorem 4.1 because of the complicate of the sequence of pluriharmonic maps into
G3 (cn), we may increase the O'-isotropy order by two, so that we can construct
auy pluriharrnonic map into G3(cn) under the restrietion on n. Set r.po = cp.

(I) Set Ro = cp-L 8 (E9~=1 G(r)(tp)), and set TO = ImA~~~)(lr')'lr', Ti = G~)(TO) for

i = 1,"', T and ,g = r.p 8 TO, ,p = G(i)(r.p) 8 Ti for i = 1,"', r. Since A;,lr' ~ 0,
° I (AG(")(e,o),e,o I) d 0 G(i)( 0) ~ . Th hset a o = m (1,0) r,. an Q:'i = 't' ao 101' t = 1,···,r. eil, we see tat

rankTo = 2 and rankag = 1. Moreover, set ßg = T08a8, ßp = Ti8o:? for i = 1"", r,
o I (AG(")(/P) I ) d pI ROh d'

Ur+l = m (1,0) ae C Ho an ..l'iJ = 0 8 Q'r+l' T en, we have a lagram

(5.1)

,g R'
°

°U"+l

,g

By (5.1), we have a holomorphic circuit

{ 00 ° 0 0 0 ßO ßO ßO °}a O,al ,""O::r+l"O"l,""'r' 0' 1"'" r'Q'O ,

o 0 ßO ßO 0 0 0 °
h· h t . h S' A'"Yi ,'"Yi+l Ai' i+l (0 < . < 1) A'"Y,.,ßo d Aßr'O'ow lC mus varrlS. Ince (1,0) '(1,0) _ t _ T - , (1,0) an (l,O)

° °3011 surjective, we have A a(;6)1 1
'"Y

O
_ O. Set r.pl = (cp 8 ag) EB a~ then we have

, .!-.Q.!...()

(5.2) ~ = ,g EB ßg EB a~, G(i)(cp~) = ,? EB ß? EB a?+l (1 < i < r) ,

c.;(r+1)(cp~) C R~ EB ßg EB ag ,
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o G(")('P~),'P~ 0 (i)( 0) ( ') G(")('P~)
so that ßo = ImA(l 0) , ßi = G 1 ßo 1 ~ z < rand Im(A(l 0) Ißo) C

, 'Po ' ,.

R~ ffiag. Note that if a~ =.Q then ep~ is a pluriharmonic map into G2 (C n
), so that we

may assurne that a~ i- Q. Set ß~+l = Im(A~~~)('P~) Iß~) and Ral = (R~ ffi ag) 8 ß~+l
then we have a diagram

(5.3)

where we have put &? = ,? EB a?+l (0 < i < 7'). By (5.3), we easily see that
ßo ~O ßO ~O

A ,.+I,Q'O ßO AO t b .. cl ImA "+1,0'0 . . cl' h(1,0) : r+l ---+ a o can no e sUTJectIve an _ (1,0) lS conta1ne In t e
~ 0 ßO -0 -0 ~ 0 ~ 0 ßO .0

k 1 f A O'''' 0 AO',.-I,O',. AO'O'O'I th t kI A "+1,0'0< nk AO 1 S terne 0 (1,0) 0 (1,0) 0" . 0 (1,0)' so a ran rn (1,0) _ ra a o - . e
ßO .0

8g = ImA(;,~)'O'O. Denote by Po : 8g ---+ a~ and po : ß~+l ---+ ag the Hermitian

orthogonal projections. In the same way as (4.4), by (5.1) we obtain

(5.4) ßo ~O 0 °
R A r+l'O'O() AO:'OlO'I pO()

o 0 (1,0) V = (1,0) 0 V 1

Since A~t~)g is surjective, po is surjective, which, together with (5.4) and the surjec-
o °

tivity of A(lo,~)1 , iInplies that Po is surjective, hence rank8g > ranka~ = rankfi·g - l.

Thus, \\re see that rank8g = ranktig - 1 and Po is an isomorphism. Set 8? =

G(i) (~O)n ... 0f . 1 cl tAO A0 cO ... 0 ... 0 cO f . 1 S'
1 Uo ai 01' Z = ,"', r, an se 10 = CiO8uo , 1i = ai 8ui 01' Z = ,"', r. 1nce

<Po
G(r)(<p~) I 0 0 G(")('P~) 0

Im(AU,O) I(ß~ffi8~») C Ro EB ao, set 0r+l = Im(A(1,o) I(ß~$6~») 8 ßr+l C ROl

and R~l = Hol 8 8~+l' We have a diagram

(5.5)

'.
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By (5.5) we have a holomorphic circuit

50 ·0

which must vanish. Hence, we get A(~~)'''Yo == 0 because ranki'g == 1, where, as in

section 4, we understand that this equation is trivially satisn.ed if 8p == .Q. for some
1 < i < r + 1. Therefore, set <PI = (~ e (sg ffi ßg)) EB (Sr ffi ßr) then

(5.6) ,... 0 cO ffi ßO
<PI = '0 EB vI \I7 I' Q(i)('Pl) = i'S EB 8?+I EB ßS+l (1 < i < r),

c(r+I)(<Pl) C R~I EB 8g EB ßg ,

so that 'PI has 8'-isotropy order > r + 1. We remark that 88 f:. .Q if a~ f:. .Q.

F · h h A3 0 S I I A G (r+1)(lfld,lf'1 1 G(i) ( 1) flrst, we s ow t at r+l,1f'1 == . et J.L0 = m (1,0) , J.Li = !P1 J.L0 01'

i = 1, ... ,r +1. Denote by p l
O : J.1.~ ---+ 5~ EB ß? and pI : c(r+I) (<PI) ---+ 5g ffi ß8 the

He1'mitian orthogonal projections, wmch are holomo1'pmc. By (5.5), we see that pI
is surjective. We have

It follows from (5.7) that pr is su1'jective, which, together with the nilpotency of
A r +1 '1fl1' implies that rankJ.L6 = rank'Pl - 1 and pp is an isomorphism. Hence,

pilIlI : J.1.~+1 ---+ 58 ffi ß8 can not be surjective, and set itr+l = Im(pl IIl I ),
r+l r+l

Vr+l = (58 EB ßg) 8 itr+l' Since pr is surjective, the He1'mitian orthogonal projection
P{ : J.1.~ ---+ 5~+1 EB ß~+I is also surjective, and denoting by qt : G(r+l) ('PI) ---+ 88
the Hermitian orthogonal projection we have

By the definition, Aß(;~)1I5g is surjective, hence, by (5.8) we see that tf IIlI :
, r+1

J.l~+1 ---+ 88 is surjective, which implies that rankfir+l = rankSg and rankvr +l = 1.

S I Im(AG (r+l)(lf'lLIf'I I ) 1 G(i)( 1).r . 1 R 11 het a o = _ (1 0) Jll, ai = 4'1 a o .101' 't = ,"', r + 1. eca t at, r+l

a~ C G(r) (<PI) c ,~ EB a~+1 EB R~ EB ag ,
a~+l C G(r+1)('Pl) C ~1 EB 8g EB ßg and 8g c ,g EB a~ .
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Denote by rt : G(r+l)()Ol) --+ a~ and rl a~ --+ ag the Hermitian orthogonal
projections. Then, by (5.1) we have

(5.9)

Suppose that rl is surjective. Then, it follows from (5.9) that T1 101 : a~+l --+
r+l

a~ is surjective, which, together with the isomorphicity of Po : 88 --+ a~ and
the fact (R~1 EB ß8) ..1 a~, implies that qt 101 : a~+1 --+ 88 is surjective, hence

r+l

rankpl(a~+I) = rank{tr+1 and pl(a~+I) = flr+l. Then, it follows from (5.7)
. O( 1) o( (a(r+l)(r.pd,lf'l I» 1 (c(r+l)(lf'l),r.pl I )

that PI a o = PI Im A(1 0) 0 1 , hence a o = Im A(1 0) 0 1
, r+l J r+l

because Pf is an isomorphism. However, this contradicts the nilpotency of A r+1 ,r.pl'
Therefore, we have proved that rl is not surjective, hence r1 = 0 by rankag = 1.
By (5.9), we obtain rt 101 - 0, wmch, together with the facts that Po : 88 --+ a~

r+l .

is an isomorphism and (R~1 EB ß8) ..1 O!~, yields qt 101 = 0, hence pI (O!~+1) c ß8.
r+l

However, since pI (a~+I) C flr+l' and {tr+l does not have ßg as a proper subbundle
by the facts that rankßg = 1, rankflr+l = rank8g and qt 1/l1 is surjective, we see

""r+l

that p I
( Cl!~+1) = O. Therefore, it follows from (5.7) and the isomorphici ty of P1°

h I I( A c (r+l)(r.pd,lf'l th A 3 - 0 W t t t 'b'l" ft at O!r+l C er (1,0) ,SO at r+l,r.pl =. e rea wo POSSI I Ibes 0

'PI separately.

(1) The case 0/ A;+I'lf'l = O. If J.L~ = .Q, by the isomorpmcity of P~, we have
8~ EB ßf =.Q, hence )01 is a plurihannonic map into cpn-1. Hence, we mayassume

1 . 1 a(r+l)(<pd,r.pl 1 ( c(r+l)(r.pd I )
that J.Lo f:..Q. Slnce J.Lr+1 C I(erA(1 0) , set J.Lr+2 = Im A(l 0) Jll then, , r+l
J.L~+2 C (R~1 EB88EBß8)8G(r+I)()OI). Set R~ = ((R~l EB8gEBßg)8G(r+l)()OI»8{l:~+2·
We have a diagram

(5.10)

1 1 1 R' 1

1 1 1 1 1
J.Lo J.Ll J.Lr+l J.L r+2 J.Lo

where ,[ = G(i) ()OI) 8 J.L~ (0 < i < r +1). Recall that rank,ö = 1. Hence, by (5.10)
1 1

we see that Ar;J~)'1'O - Q. Set )02 = ('PI 8 J.L~) EB J.L~ then
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c(r+2)( )
thus, 'P2 has 8'-isotropy order > r+2. Note that ranklmA V'2 ,V'2 == rank'P -l.- (1,0) -2

(2) The case 0/ A;+I ,V'1 i= O. Set ~d = G(i)('Pl) e J.tt and ßf = J.Lt e at for

. h G(O)() S' 1 K A Ger+1
) (V'd I<PIz == 0, 1, ... ,r + 1, w ere 'PI == 'PI' Ince U r+ l C er (1,0) , set

1 I (AG (r+l)(<pd I ) th 1 (R' cO CD. ßO) e G(r+1) ( ) S ta r +2 == m (1 0) 0'1 en a r +2 C 01 EB uD w 0 'PI· e, r+l

R~ == ((Rfn EB 8g EB ßg) 8 G(r+1)()Ol» 8 a;+2' We have the same diagram as (5.1),
w here we must replace the upper index 0 by 1, r by r + 1 and R~ by R~, anel we

1 1

denote by (5.1)1 the new diagralTI. Since rank'6 == 1, we obtain A~lr,t)''i'o = O. Set

)O~ = ('PI 8a~)EBaL then by (5.1)1 we have

(5.11)

so that

1 1 ßl 1
)01 == '0 EB 0 EB a 1 , Q(j)((J:l1) == "'V~ EB ß~ EB a~ (1 < i < r + 1)Tl 11 1 1+1 - - ,

Q(r+2)(c,oi) C R~ EB ß~ EB a~,

ß1 == ImAG(r+I)(<pt),<Pt ß~ == G(j)(ßl) (1 < i < r + 1)
o - (1,0) 'I ~i 0 --

G(r+l)(4'I) 1
and Im(A(10) 1 Iß l ) C R~ EB a O •

, r+l

C( r +1) ( 4' 1 )

Set ß~+2 == Im(A(l 0) I Ißl ) and R l1 == (R~ EB a~) 8 ß~+2' Again, we have the
I r+l

same diagram as (5.3), where we must replace the upper index 0 by 1, r by r + 1
and Ral by H l1 , and we denote by (5.3)1 the new cliagram. By (5.3)1' we see that

Aß;+2'Ö~ ß1 "'I t b . t' h kI Aß;+21&~ < k "'I 1(1,0) : r+2 --}o a o can no e surJec Ive, ence ran m (1,0) _ ran a o - .

Set {j~ = ImAfhi ,&~ and {j~ = G~~ ({j~) n &~ far i = 1,"', r + 1. Denate by

PI : 8~ --}o ai and pI : ß;+2 --}o a~ the Hermitian orthogonal projections. We
obtain

(5.12)
ß l - 1 1 1

P A r+210'0 () AO'O ,0'1 pI ( )
1 0 (1,0) V == (1,0) 0 V,

ßl 1

Since A(;,t) 10'0 is surjective, it follows that pI is surjective, which, together with
1 1

(5.12) and the surjectivity of A(t~)I, implies that PI is surjective, hence rank8J >
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rankai = rank&ö - 1. Thus, we have proved that rank8~ = rank&~ - 1 and PI 18

an isomorphism. By (5.6), we see that

,,1 1 1 pI ffi""O ßOVr+1 C rr+1 EB a r+2 C ..l'1J1 QJ Vo EB o·

Recall that 88 EB ß8 = itr+1 EB Vr+1, rankvr +1 = 1, J-L~ = a6 EB ßa and P? : 1-l6 ---+

Sr EBßr is a holomorphic isomorphism. Note that Pr+1 is a holomorphic subbunclle of
,,0 ßO B (5 7) h pO( 1) I (A6gEeßg,6~EBß~ I ) h' h' h I h'00 EB o· y . , we ave 1 a o =....m (1,0) Ilr+1 , W lC lS a oomorp lC

subbundle of 8~ EB ßr· Set ßÖ = (8r EB ß~) 8 P~(a6), ancl denote by p~ : ßÖ ---+ ßÖ
the composition of Pf Iß~: ßÖ ---+ Sr EB ßr and the Hermitian orthogonal projection

: Sr EB ßf ~ ßJ. Then, p~ is a holomorphic isomorphism. Moreover, we see that
o 0 ~1

A50EBßo ,ßo I " ß"1' h 1 h' cl . t' W bt'(l
J
O) Vr +1: Vr+1 ~ 0 18 oomorp lC an surJec Ive. e 0 aln

(5.13)

where Pt : 8;+1 ---+ Vr +1 is the Hermitian orthogonal projection. Now, suppose

that Pt is surjective. Then, (5.13), together with the isomorphicity of p~ and
o 0 ~ 1 51 ß1

h ... f A 50 Eeßo ,ßo I . l' th t A r+1' 0",,1 ßl . . t't e surJecttvlty 0 (1,0) Vr +1' Imp les a (1,0) : u r+l ---+ 0 IS surJec lve.

However, by (5.3)1 we see that A~~~)'ß~ can not be surjective, hence a contradiction.
" 61 ß1

Therefore, we have Pt == 0, and by' (5.13) we obtain A6~), 0 = Q. Hence, set

,,1 (AG(r+1)(4'~) 1 ) ßl R cl R' R ,,1 Th
U r+2 = In1. (1 0) ß1 EB6 1 8 r+2 C 11 an 11 = 11 8 ur+2' en,

J r+1 r+1
we have the same diagram as (5.5), where we must replace the upper index 0 by
1, r by r + 1 and R~1 by R~I' and we denote by (5.5)1 the new diagram. Since

61 ~ 1

rank1'l = rank&6 - rankS~ = I, it follows from (5.5)1 that A(~~r"(o _ Q. Set

C;02 = (C;O~ 8 (86 EB ßö) EB (Si EB ß}), then by (5.5)1 we have

,,1 ,,1 ßl
'P 2 = 10 EB VI EB l' G(i)(C;02) = 1't EB Of+l EB ßf+l (1 < i < r + 1),

a(r+2) (C;02) c R~ 1 EB 6~ EB ß6 ,
G(r+2)( )

so that C;02 has oJ-isotropy order > r+2. Note that ranklmA 4'2 ,4'2 = rankcp
- (1,0) -2

1.
Next, we treat the second possibility (lI).

(lI) In this case, we apply the same methods as in section 4 and (I), (2). We

f t1 t 'l' th 'th t d t'l S' A 2 - 0 tt' 0 I A G (r)(4'),4'requen y u llze em Wl ou e al s. lllce r,4' = , se lUg a o = m (1,0) ,
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a? = G~)(ag) for i = 1,'" ,r + 1, ,8 = c.p 8 ag, ,? = G(i)(c.p) 8 a? for i = 1,'" ,r

and m= (r.pJ.. e (EBj=1 GU)(r.p») e a~+~ we obtain the diagram (4.2). There are
o 0

already three possibilities : (11-1) rankag = 2, (11-2) rankag = 1 and A~lr,6) ,'10 _ 0,
o 0

(11-3) rankag = rankImA~lr,t) 1'10 = 1.

o 0

(11-1) Since rank,g = 1, we have A~;,6)'''(0 == O. Set c.p1 = (r.p e ag) ffi a~ l then

hence r.pt has 8'-isotropy order > r + 1. We show that A;+l ,/.PI = O. Set f-l5 ==
G(r+l)( ) (i)

ImA /.PI l!.pl H~ - G (111 ) for i-I ... r + 1 Denote by pO . 11.
1 ---+ a O and- (1,0) , ,..." - <P1 rO -". 1 . rO 1

pI : G(r+l)(c,ol) ---+ ag the Hermitian orthogonal projections. We may use (4.4),
where we must replace PI by P~. (4.4) and the nilpotency of A r+1 ,<Pl imply that

rankf-L~ = ranka~ = rankr.p - 1 and pI l/ll : J.L~+1 ---+ ag can not be surjective.
-1 ,.. .. +1

S '" P-l( 1 ) h nk'" < 1 S 1 I (A G(..+1)(<pd,/.P1 I )et J.Lr+1 = J.Lr+l t en ra JLr+l _ . et ao = m (1,0) P.~+l '

at = G~?(a~) for i = 1,"" r + 1. If pl(a~+I) = P-r+l' by (4.4) we have P~(()I5) =

P~(Im(A(~(~+)1)(<pdl/P1 10'1 », which, together with the isomorphicity of P~, yields
, r+1

1 I (A G (r+1)(/pd,/P1 I ) hi h cli h'l f A Tha o = m (1 0) 0'1, W c contra cts t e fil potency 0 r+l /P1' us,
I r+1 I

b . p-l lOh b (4 ) h 1 I"f A G (r+1)(/P1LlfI1 hwe 0 taln 0'1 = , ence y .4 we see t at a r+1 C ~er (1 0) , t at
r+1 I

is, A;+I ,lfl1 = O. Again, we have two possibilities.

(1) The case 0/ A~+111.p1 = O. If J.L5 = .Q, then a~ = .Q and r.pl is a pluriharmonic map
. n-1 1 . 1 Ge ..+1)(/pd,/.P1
lnto CP . Hence, we may assume that J.L0 =I=.Q. Slnce JLr+l C KerA(l,O) ,
set

JL~+2 == Im(AG(I(~+)1)(/.pd 1/l1 ) C (R~ ffi a8) 8 G(r+l) (r.pl) ,
, ""r+1

R~ == ((R~ E9 (8) e G(r+l)(r.pl» 8 /-L~+2 .

Then, we have the diagram (5.10), where rank,J = 1. By (5.10), we see that

AP.;+21'1~ - 0 S t - ( 8 1) ffi 1 th
(1,0) =. e r.p2 - r.p 1 /-Lo CD J.Ll en

1 1
r.p 2 = '0 ffi J.L1 ,

G(r+2)( )
hence r.p 2 has 8'-isotropy order > r+2. Note thatrank ImA 1.p2 ,I.p 2 = rankc.p -1.

- (1 ,0) -2
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(2) The case 0/ A;+1 I" t O. Recall that pI 10'1 = 0 and U~+1 C I(erA G(I(~+)1)(4'1),ip1 ,
'Tl "+1 ,

th t l R' d 1 - I (AG (r+l)(l.fJd I ) C R' ffi 0 S t 1 - G(t)( )8so a u r +1 C 0 an u r +2 - m (1 0) 0'1 owUo' e Ti - CPI
l r+l

f.L~, ßt = J.l~ 8 u~ for i = 0,1"", r + 1 and R~ = ((~ EB ag) 8 G(r+l)('Pl)) 8 a~+2'
w here G(0)(Cf?1) = Cf? • Then, we have the diagram (5.1) I . Recall that rankI~ =

-1
1 1

rankc,01 - rankf.L~ = 1. Hence, by (5.1)1 we obtain A(lr,~)'''Yo = O. Set 'P~ = ('PI 8

(6) EB uL then we have

1 1 ßl 1
Cf? 1 = '0 EB 0 EB u 1 , G(i)('P~) = TI EB·ßI EB at+l (1 < i < r + 1),

G(r+2) (Cf?~) c R~ EB ß~ EB a~ ,

c(r+l)( 1) 1 (")
so that 131 = ImA ipl ,4'1 ß~ = G I ((31) (1 < i < r + 1) and 131 =o - (1,0) 't tpi 0 - - r+2

C("+I)(tpl) 1 1 (' 1) 1
Iln(A(10) 1 Iß l ) C R1 EB U O' Moreover, set Rn = R1 ffi U o 8 ßr+2' Then, we, r+l

ß1 Al

have the diagram (5.3)1' Set 8Ö = ImA(;,t) ,0'0 , then ranköö < rank&6 - 1. Since

pI : ß~+2 --+ u~ is surjective, it follows that rankö5 = rankui = rank&~ - 1 and

p . 81 --+ a l is an isomorphism Set 8~ = a( i) (Öl) n &~ and ,;~ = &~ 8 S~ forl' 0 1 . I tpi 0 I 11 I I

i = 0, 1, ... ,r + 1. We show that A~t~)'ß~ = O. We may verify that

cl 1 1 R' 0
ur+l C Ir+l EB a r+2 C 0 EB ud .

Set ag = ilr+l EB Vr+l, where ilr+l = pI (J.l~+I) and rankilr+l = rankVr+l = 1 in
o 0

this case. We have P~(Uö) = Im(A(I~~)1 !Pr+l) which is a holomorphic subbundle

of a~. Set ß~ = a~ 8 P~(UÖ), and denote by PI0 : ßÖ --+ ßJ the composition of
p~ Iß~: ßÖ --+ u~ and the Hermitian orthogonal projection : a~ --+ ßÖ' Then, pIO

o AI"

is a holomorphic isomorphism. Moreover, we see that A(lo,~o IV"+l: Vr+I --+ ßJ is
holomorphic and surjective. We have

(5.14)
" 6 1 ßl 0 ßAl -

P o A r+l 1 O() AO'a, 0 pl()
1 0 (1,0) V = (1,0) 0 f) V ,

where Pt S~+1 --+ Vr+l is the Hermitian orthogonal projection. Now, suppose

that Pt is surjective. Then, (5.14), together with the isomorphicity of Pf and the
o Al 61 ßl

. t"t f AO'o,ßo ' l' th A ,,+1' 0 cl ßl . " H bsurJec lVI y 0 (1,0)) lmp les at (1,0) : U r+l --+ 0 18 surJectIve. owever, Y
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(5 3) h A6~+1 lß5 t b .. h· t d" Th. 1 we see t at (1,0) can no - e surJeetIve, enee a con ra letIon. us, we
- 61 ßl

have proved that PJ = 0 and A(;~)' 0 =O. Therefore, set

61 - 1

We have the diagram (5.5)1' By (5.5)1, we see that A(;~)'i'o = 0, beeause rank1'J =

rank&~ - rank8~ = 1. Set 10
2

= (1O~ e (8~ EB ßÖ)) EB (8} EB ßt ), then we have

... 1 ~1 ffiß1
'P 2 = 1'0 EB °1 Q7 l' G(i)(102) = 1': EB 8:+1 EB ß:+l (1 < i < r + 1),

G(r+2) ('P2) c R~ 1 ffi 86 EB ß~ ,

G(r+2)( )
henee r.p2 has 8'-isotropy order > r+2. Note that rankImA 'P2 ,'P2 = rank<.p -1.

- (1,0) -2

(11-2) Set r.p = (cp e ag) EB a~ then
-1 -

h h a'· cl > 1 S 1 I A G (r+l)('P t ),'Pl 1 G(i)( 1)ence <.pI as -lsotropy or er _ r + . et 110 =....!!! (1,0) , l1i = !.pl /-Lo

for i = 1,' .. , r +1. The nilpotency of A r +1 ,4'1 yields rankl1Ö < rankc.pl -1. We may

use (4.4). It follows from (4.4) that P10
: J-L6 ---+ a~ is surjective, henee rank/-L6 >

ranko:~ = rank<.p - 2. If J-L6 = Q then c.p1 is a pluriharmonic map into cpn-l or
-1

G2 (C n
), henee we may assume that J-L~ -f:..Q. Thus, we have ranlCJ.l~ = m - 1, m - 2,

where m = rank10 . We show that A~+1 l/J = O. Set
-1 'Tl

0:1 = Im(Ac (r+l)(4'l),'Pl 11 )° - (1,0) Pr+l '
a} = G~:(a~) for i = 1,oo·,r+1.

First, assume that rankJ-L6 = m - 1. If pI IH 1 : J-L~+1 ---+ ag is surjeetive, then
rr+l

by (4.4) we see that P1
0 101 is surjective, which implies that ranka6 = m - 2 and

o .

pf 10'1 is an isomorphism. Moreover, if pI 10'1 : a~+1 ---+ ag is also surjective,
o r+l

by (4.4) we have pp(Im(A(~(~+)l)(4'd,!.pl 10'1 )) = P~(a~), which is a contradiction.
, r+l

-1 I - 0 _ 1 . C(r+l)('Pd,cpt
Hence, P 0;+1 = 0 by rankaO- 1, and a r +1 C I(eIA(I,O) by (4.4), so that

A;+1 l/Jl = O. If pI 1,,1 = 0, by (4.4) we get PI0 10'1 = O. Since 11~ does not have
lT rr+l 0

,g as a proper subbundle, we conclude that ranka5 < rankig - 1 = 1. Hence,
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t h 1 !( A G(r+l)(CPIL/.pl th t' A 3 - 0 N thwe mus ave a r+1 C er (1,0) ,a IS, r+l,/.pl = . ext, assurne at

rankJ.L~ = m - 2. In this case, obviously, pI 1111 can not be surjective, hence
r+l

pI 111 1 = 0, which yields Pf 10'1 = O. However, since rankJ.L~ = ranka~, it followsr+l 0

that p 10 is an isomorphism, so that a~ =.Q. In particular, we have proved that if
rankJ.L~ = m - 2 then A;+I,CPl = O. We treat these possibilities separately.

S· 1 K A G(r+l)('Pl),'P1(1) The case 0/ A;+l,'Pl = O. Ince J.Lr+1 C er (1,0) , set

Then, we have the diagram (5.10), where rank,~ = 1,2. First, assume that
rank,J = 1. This is just the same situation as (11-1), (1). Therefore, set CP2 =

(CP1 8J.L~)EBJLL then CP2 has 8'-isotropy order > r+2. Next, assume that rank,J = 2.
1 1

Recall that pf : J.L~ ---+ a~ is an isomorphism. Set 06 = ImA~;,t)'i'O then rankSJ < 1.

Set st = G~1 (06) n ,·rt for i = 1, ... , r +1. If 06 =.Q, we only set cP 2 = (<PI 8 J.L~) EB J.LL

thus we Inay assume that rank06 = 1. We verify that.

0;+1 C G(r+1) (epl) C R~ EB ag .

We may use (4.4). Suppose that pI 161 : S~+1 ---+ ag is surjective. By (4.4), \ve
r+l

h I (AG(r+l)(/.pt} /.PI I ) 1 h' h . d" b A5;+I'Jl~see t at m (1,0) , 5;+1 = J.L0, W IC IS a contra Icbon ecause (1,0)

can not be surjective by (5.10). Therefore, we have proved that pI 151 = 0 and
r+l

1 G(r+l)(cpt} 'PI S 1 ( G(r+l)(cpd I ) 1 ,
0r+1 C !(erA(l 0) '. et Sr+2 = Im A(l 0) 11 1 EBst 8 J.Lr+2 C R1 and, , r+l r+l
R~ = R~ 8 S~+2' Then, we have a diagram

(5.15)
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61 - 1

h "1 1 ",1 (0 < - < 1) S' k" 1 1 b' A ,.+2 ,"fo - 0w ere 'i = 'i e Ui _ 't _ r + . luce rau '0 = , we 0 talu (1,0) =.
Set <P2 = (<PI 8 (86 ffi /-L~)) ffi (8t ffi /-L~) then <P2 has 8'-isotropy order > r + 2.
We may regard the case of 66 = Q as a special case of this procedure. Note that

G(,.+2)(<P2) <P2
ranklmA(I,O) J = rank<P2 - m, where m = 1,2.

2 . 1 a e,.+1)(<pt},<P1
(2) The case 0/ A r+1 ,<P1 1= O. Slnce G'r+l C KerA(I,O) , set

1 I (A G (r+1)(<pd I ) (R' 0) G(r+l)( )G'r+2 = m (1,0) 0';+1 c 0 EB G'o e 'PI

and R~ = ((R~ EB ag) 8 G(r+1)(<Pl)) 8 G'~+2 .

Moreover, set ,: = G(i) (<PI) 8 J.L} and ß; = J.L~ 8 a; for i = 0,1, ... ,r + 1. Then,
we have the diagram (5.1)1' We already know that rank,6 = 1, and that either

rankß6 = 1 01' ranka~ = 1 holds according as pI 1/l1 ---+ ag is surjective 01'
r,.+l

1 1

not. It follows from (5.1)1 and the fact rank,5 = 1 that A~lr,t)'''to = O. Set 'P~ =

(<PI 8 a~) EB ai then

1 1 ßl 1<PI = '0 EB 0 EB a 1 , G(i)(U')l) = "V~ EB ß~ EB a~ (1 < i < r + 1)Tl 11 1 1+1 - - ,

G(r+2) (<p~) c R~ EB ß~ EB a~ ,

G(,.+l)( 1) 1 (i)
hence ß1 = ImA <P1 ,<Pi ß~ = G (ßl) (1 < i < r + 1) and set ßl =o - (1 ,0) 1 1 <P t 0 - - , r+2

I (A G(,.+l)(<pt) I ) R' 1 R (R' 1)· ßl 1::H h h d'...ill (10) ß1 C 1 EB G'Ol 11 = 1 EB a o 8 r+2' "ve ave t e la,gram, r+1

(5.3)1- Set 86 = ImAß(f~2) ,&~, 8; = G( il (86) n Ci; for i = 1, ... , r + 1. Observe that
, <P1

rank8~ = rankQ;~ = rank&~ - 1

cl rl 1 1 R' 0an U r+1 C 'r+l EB G'r+2 C 0 EB G'o .

Denote by Pl : 8~+1 ---+ G'g the Hermitian orthogonal projection. We show that
a(r+1)( 1) 1 ......

8~+1 C KerA(1 0) <P1 ,<P1. First, assume that pI Ip 1 is surjective, so that rankß6 =
, r+l

1. In this case, obviously, A(6~~1),ß~ = O. Next, assurne that pI 1/l1 is not surjective,
, r+1

so that pI IJl1 = 0, PI0 la1 = 0, G'~ C ,g ancl rankaö = 1. Hence, pf Ißt: ßÖ ---+ O!~
rr+1 0 0

is an isomorphism. Suppose that Pl is surjective. We have
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(5.16)
61 ß1 0 0 __

P o A .. +1' O() AO'O'0'1 p l ()1 0 (1,0) V = (1,0) 0 1 V ,

h 'ch' l' h A6;+1Iß~ -cl ß1 . .. H th' .w 1 1mp 1es t at (1,0) : U r+1 --+ 0 IS surJectlve. owever, lS lS a contra-
-- 61 ß1

diction by (5.3)1, hence, we see that Pl = 0, and A(~~)' 0 == 0 by (5.16). Therefore,
C( ..+1)(cp1) cp1 c(r+1)(cp1)

5~+1 C I(erA(l 0) l' 1. Set 5;+2 = Im(A(l 0) 1 Iß1 ffi61 ) 8 ß~+2 C Rn and
I , .. +1 .. +1

R~l = R11 8 8~+2' Then, we have the diagram (5.5)1, where rank..y5 = 1. By (5.5)1,

we obtain Ag~)'''''~ = O. Set ep2 = (ep~ 8 (55 EB ßö» EB (51 EB ßi) then ep2 has 8'-isotropy
c(r+2)( )

order > r + 2. Note that ranklmA(I,O) 1fJ2 ,lfJ2 = rankep2 - 1.

Finally, we treat (11-3).

(11-3) This case has the same type as that of ep~ in (I). To compare this case with ep~

. (I) tOb ß°.r . 0 1 1 S t -cO I Aß~+1,')'g -cO G(i)(-CO) 0In ,rese a'i Y i 101' t = , ,"', r + . e ud = m (1,0) 'Ui = cp ud n /i

for i = 1, ... ,r, and set i'7 = ,7 e 5r for i = 0,1" .. ,r + 1. Now, we have

rankßg = rank5g = rank7g = 1 .

H A6~,ßg - 0 cl h t cO - I (AC(")(cp) I ) 8 ßO R' clence, (1,0) - ,an ence se U r+1 - m (1,0) ß~EB6~ r+1 C 0 an

R~l = R~ 85~+1' Then, we have the diagram (5.5). One will find that the treatment
of this case is rather easier than those of ep~ in (I). We state only the essential parts.

60 ·0

\!Ve use the salne notation as in (I). Since ranki'g = 1., we obtain A(~~)'''''o = O. Set

ep = (ep 8 (5g ffi ßg» EB (5~ EB ß?) then epl has 8'-isotropy order > r + 1. It follows
-1 -

that rankiLr+1 = 1, so that pI (a~+l) = O. (5.7) and the isomorphicity of P1
0 imply

1 c( ..+1)(IfJt},CP1 3_
that a'r+l C KerA( 1,0) , so that A r + 1 ,1fJ1 = O.

(1) The case 0/ A~+IICP1 = O. If J.l~ = .Q, then ep1 is a pluriharmonic map into Cp n
-

1
,

. r1 ..,.1
hence we mayassume that J.l~ f:..Q.. We see that A(1"+0)2

1

0 = O. Set ep = (<p 8J.l~)EBJ.Li, -2-1
C( ..+1)( )

then t..p2 has 8'-isotropy order 2:: r +2. Note that rankItnA(I,O) 1fJ2 ,lfJ2 = rankep2 -1.

1 1

(2) The case 0/ A;+1
1
1fJ1 1= O. Since rank,ö = 1, we obtain A~;,t)Ii'O - O. Set

ep~ = (ep1 ea'~)ffiat then we have (5.11) and (5.3)1, Since pI : 55 --+ a'6 is surjective,

it follows from (5.12) that PI : 85 --+ ai is surjective, hence rank55 = rankti~ - 1
and PI is an isomorphism. By (5.6), we see that 5;+1 C '~+1 E9 Q'~+2 C R~1 E9 8g EB ßg,
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h 1 H' ffi cO ffi ßO b 1 K A G{I"+I)(Cf'd,Cf'l S t ~O ßOw ere a: r+Z C 01 Q7 00 Q7 ° ecause a:r+1 C er (1,0) e V o EI:) ° =

f1r+1 EB Vr+1l where rankf1r+1 = rankVr+1 = 1. Suppose that Pi : S~+l ---+ Vr+1

is surjective. Then, by (5.13) we see that A~;~\,ß5 : 8~+1 ---+ ß'J is surjective be

cause Pf is an isomorphism. However, this contradicts the diagram (5.3)1' Since

ranki'l = 1, we obtain A~t~)'1'5 =O. Set 'P z = ('P~ e (85 EB ßö)) EB (8tEl:) ßi), then 'Pz
G(r+2)( )

has B'-isotropy order > r + 2. Note that rankImA(1,0) '-P2 ,'-P2 = rank'Pz - 1.

In summary, we have

Proposition 5.1. Let'P : M \ S'-P ---+ G3 (C n ) be a pluribarmonic map. Assume
that 'P bas B' -isotropy order T. Tben, A~,Cr' = O.

(I) If A~,'-P t= 0, set a O = ImA~,Cf" Tben, a O C I(er(A(l~O) 0 A(l,O»)' and define

'PI from 'P by the forward replacement of aO. Tben, 'PI bas (J'-isotropy order T

c(r+l)(ßO) '-P18ßo

and satisfies A;,Cr'1 == O. Set ßO == ImAr,'-P1 and SO = ImA(17~) I , tben
( 1).L 1

ßO EB 8° c Ker(A(i,o) 0 A(1 ,0»)' Denne 'PI from 'PI by tbe forward replacement of

ßO EB 80
, tben ep1 bas B' -isotropy order > r + 1 and satisfies A;+l,'-Pl = O.

G (r+l)( 0) °
( ) f 2 - ° - I A cl cO - V' Ci ,'-P8Ci Tb ° cO11 I Ar,'-P = 0, set a: - m r,'-P an u - ImA(l,O) . en, a ,u C

.L

I(er(A(l,O) 0 A(l,O»)' ranka:o = 1,2, and rankoo = 0,1.

(11-1) 1f ranka:o = 2, tben So = .Q and define 'PI from ep by tbe forward replace
ment oE a O

,

(11-2) if ranka:o = 1 and 60 = .Q., tben define also 'PI from 'P by the forward
replacement of a O

,

(11-3) if rankao = rank8° = 1, then deHne 'PI from e.p by tbe forward replace
ment of a OEB 00 .

Tben, 'PI has EY -isotropy order > T + 1 and satisfies A~+ll'-Pl = O.

Moreover, for eacb 'PI in (I), (11), tbe following a;re true :
(0) If A r+I ,Cf'1 =0, epl is a pluriha.rmonic map into cpn-l or G2 (C n

) ( the latter
case occurs only for (11-2)).
(1) H A~+I,'-Pl = 0 and A r+I, '-P1 t= 0, set

and
c(r+2)( 1) 1

~l _ I A '1'1 JA lCr'18JA
v - m (1,0)

.L

Tben, /-LI, 81 C I(er(A(11
,0) 0 A(I1

,
0») and rank81 = 0, 1 ( tbe la.tter case occurs only

for (11-2)). Define ep2 from epl by the forward replacement of f-ll EB 81
, then 'Pz bas

-31-



a(r+2)( )
EJ'-isotropy order > r + 2 and satisnes ranklmA(llO) lr'2 llt'2 = rank<P2 - m, where

m = 1,2 ( tbe latter case occurs only for (11-2)).
, .L

(2) H A;'+l,lt'l ~ 0, set a 1 = ImA;'+I ,lf'l' Then, a 1
C I(er(A(ll,O) 0 A(11,0»' and denne

<P~ from <PI by the forward replacement of a 1. Then, <P~ bas EJ' -isotropy order r +1
c(r1+2) (ßl) l<t't eßl

and satisnes A;+l ,<t't = O. Set ß1 = ImAr+1,lr'~ and 81 = ImA(1~~) , tben
( 1).L 1

ß1, 81 C I(er(A(i,~) 0 A(11,O»' Define 'P2 from 'Pt by the Eorward replacement oE
a(r+2)( )

ß1 E9 81
, then 'P2 has EJ'-isotropy order > r +2 and satisfies rankImA(1,0) lf'2 ,<t'2 =

rankep - 1.
-2

Using Proposition 5.1, we may prove the following

Theorelll 5.1. Let<p: M \ Slf' --+ G3 (C n
) be a pluriharmonic map. Assume that

'P has finite O'-isotropy order and n < 15. Then, there is a sequence {<Pi}~o oE
pluriharmonic maps such that
(1) <po = 'P, (2) 'PN : M \ SlpN --+ cpn-1 or G2(C n

),

(3) for i = 0,1, ... ,N - 1, eacb 'Pi bas finite B' -isotropy order, and epi+l is obtained
from 'Pi by tbe forward replacement of a i , wbere a i is a bolomorpbic subbundle oE

.L

<P i contained in !(er(A(li ,O) 0 A(li,O»'

Proof. Construct 'P2 from 'P, using Proposition 5.1. Let r be the EJ' -isotropy

order of 'P2. Then, r 2:: 3. Set ao = Inl.Ar, lf'2' Cl'i = G~; (ao) for i = 1"", rand
/0 = <P 8 ao, Ti = G(i)(<P2) 8 O:'i for i = 1,···,r. By Proposition 5.1, \ve have

-2
rank,o = m, and rankao = rank.f2 - m, where m = 1,2. If ao = Q, then ep2 is a
piuriharmonic map into cpn-l 01' G2(C n ), hence we may assurne that ao :f:. Q. Set
R = <P~ 8 (EBj=l G(j)(<P2»' We have a diagram

(5.17)

vVe have two possibilities : (1) Cl'i = Q for same 1 < { :::; r, (2) any ai (1 < i < r)
18 non-zero.
(1) Set <p = (<p 8 ao) EB a1' Then, by (5.17) we see that ei ther, 'P is a pIuriharmonic

- -2
. . a(r+l)(-) -

map Into cpn-l 01' G2(C n), 01' ep has a'-lsotropy order r+1 and rankImA(llO) lr' l<t'
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= rank~ - m, where m = 1,2.
(2) Sin~ n < 15, one of'P2, G(i)('P2) (1 ~ i ~ r) has rank < 3 and B'-isotropy order

r. Hence, by Proposition 5.1, either, we have a pluriharmonic map into cpn-l or
G2 (Cn

), or we have a pluriharmonic map 0 which has 8'-isotropy order r + 2 and
c(r+2}( -) -

satisfies ranklmA(I,O) "P,"P = rank(f? - m, where m = 1,2.
Since the B'-isotropy order can not be so large, repeating this procedure we see that
'P is reduced to a pluriharmonic map into cpn-l or G2(Cn), and each 'Pi in the
sequence has the desired properties by Proposition 2.3. q.e.d.

6. Pluriharmonic luaps ioto G4(C n
).

Let r.p : M \ S"P ---+ G4 (C n ) be a pluriharmonic map, where M is a compact
complex manifold with Cl (M) > O. We also assume that 'P has finite B'-isotropy
order, say r. In this section, we present a method for increasing the B'-isotropy
order of 'P by only one. However, the result of this section, together with the results
in sections 3 rv 5, yields the explicit construction of any pluriharmonic map into
G4 (C n

) under the restriction on n.
Define Ar,"P as in section 5, then Ar,"P is nilpotent. There are three possibilities :
(I) A~,"P - 0 and A~,"P ~ 0, (11) A~,"P = 0 and A;,"P ~ 0, (111) A;,cp = O.
As in section 5, we treat these three cases separately.

Firat of all, we prepare a proposition, which is used to avoid the repetition of
argument and also useful for the future investigation.

Proposition 6.1 ([O-U2]). Let r.p : M \ S"P ---+ "Gk(C n ) be a pluriharmonic
map. Assurne that 'P has finite B' -isotropy order, say r, ancI satisfies A;,"P - 0,
rankImAr,l,O = 1. Then, tbere is a holomorphic subbundle r of ':f..' which is contained

.L

in I(er(A(l,O) 0 A0,0)' such that 0 defined from 'P by the forward replacement of T

has B' -isotropy order > r + 1.

Proof. Set ag = ImAr,<p, a? = G~) (ag) for i = 1, ... ,r. Since a~ C

KerAg~~;(<pL<p, set a~+l = Im(A~~~)/<p) IO'~) c R, where R = 'Pi. 8 (EBj=1 G(j)('P».

Set I? = G(i)( r.p) 8 a? far i = 0,1,' .. 1 r and R~ = R 8 a~+l' Then, we have the

d· (4 2) Th AO'~+l ,I'g. h 1 h' d h 1 I AO'~+l ,I'g Iflagram .. US, (1,0) IS oomorp lC, an ence set a o = m (1,0) .

1 --I- 0 t 1 - G(i)( 1) n 0 f .' 1 Th h 1 K AG(r)(lp),l,Oa o -;- _, se ai - r.p a o li 011,== ,'" ,r. en, we ave a r C er (1,0)

b k olM 'f 1 I (Ac(r)(<p) I ) 0 R' R'y ran Fao =. oreover, 1 we set a r+1 = -ill (1,0) O'~ffiQ'; 8 a r+1 C 0' 1 =
1 1

R' 8 1 d 1 0 1.t' . 0 1 h h A Q' j ,0' i +1 (0 < . < )° a r+1 , an li = li 8 a i Lor 1, = , ,"', r, t en \ve see t at (1,0) _ 1, _ T
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1 1

ancl A~;,6)'''YO are all holomorphic. We claim that

Cla ';m, If AO'~+l'~ , h 1 h' cl I A«!.+l'~ -J. 0 h i+l~ (1 0) IS oomorp 1e an ..m. (1,0) I _, t en set o!o -

IrnA~+11~ i+l G(i)( i+1) i ~ . 1 Th we have j+1(1,0) 'O!i = c.p O!o n li lor 1- = ,'" ,r. en, O!r C
c(") (c.p),c.p , i+1 (c(r)(c.p) 1 t::1J.j k)

I(erA(l,O) , Moreover, 1f we set O!r+1 = Im A(l ,0) (Ef)~:~ 0'~))8 (\J7 k=O O!r+l C

R' R' - R' e j + 1 cl j+1 - i e i+1 ~ . - 0 1 th th tj' i+ 1 - i lY r +1 an li - {i a i lor 1. - , ,"', r, en we see a
j+1 '+1 '+1 '+1

A O'j '~+1 (0 ' ) cl Aa;.+l,Ta 11 h 1 h'(1,0) < 1. <r an (1
1
0) are a oomorp lC.

This Claim follows from the induction on j ancl the following diagram

O!i
0

i-I j-1
O!o O!o

j-l i-I -I·
I-(al O!r -

(6.1)
I -

I t

i I

l.. I
I

------- -
O!l O!l

0 0
------ - -

a O a O a O 0 O!0

° 1 r D: r+1 0

\vhere \ve omit the non-essential arrays (see Convention be1ow). By (6.1) ancl Claim,

we see that, for any j = 0,1, .. " A~,b)'-ri. can not be surjective, hence there exists

an nonnegative integer s such that A~1~,6) ,"Y~ =Q. Set r = Ef)j=o O!~ and define rp by

CP = ('P 8 r) E9 G~(r). Then, it .follows from (6.1) that

8

~ = I~ ffi (EB O!{) ,

j=O

8

G( i) ($) = li E9 (EB a{+1) (1 < i < r) ,
j=O

8

G(r+1)(cP) C R~ ffi (EB O!~) ,
i=O
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hence 'P has 8'-isotropy order > T + 1. q.e.d.

Hereafter, we use the follo\ving convention for simplicity
Convention. Given a diagram of type (6.1), we omit the non-essential arrays,

where there are the arrays in the following cases :
(1) af --7 a~ (0 < i < T + 1; 0 < k < I :::; j),
(2) ai --7 ,..d (0 < m < ji 0 < i < T +1), (3) a~+1 --7 Rj (0 < m < j),
(4) a~ --7 af+1 (0 < i < r + 1; 0 < k < I < j) with a~+2 = a~,

(5) ,I~ ai+1 (0 < i < r + 1; 0 <m < j) with ':+1 = Rj, a:.n+2 = a~.

Now, we start from the case (I).
(I) Set K:1 = ImAr,lt'1 K:2 = Im(Ar,lt' IK1) and ao = Im(Ar,lt' IK2)' Then, ao C
KerAr,lt' , Set

ai = G~)(ao) (1 < i < r), ßo = "'2 8 a o, ßi = G~)(K:2) 8 ai (1 < i < r),

,0 = "'1 8 K:2 1 'i = G~)(K:}) 8 G~)(K:2) (1 < i < r) ,

80 = cp 8 h:} ,

r

8i = G(i)(cp) 8 G~)(K:l) (1 < i:S; r), R = cpJ. 8 (EB G(j)(cp)) ,
j=O

c{ro)(lt') Ip c(r)(Ip)
Then, a r C I(erA(l,O) I, and hence set a r+l = Im(AU,O) 100r) c R and R~ =
R e a r+l' Then, we have a diagram

(6.2)

By (6.2), and keeping Convention in mind, we have a holomorphic circuit
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which must vanish, where we note that rankO:'o = rankßo = rank70 = rankoo = l.
Since each (l,O)-seconcl fundamental form from 00 to 0:'0 is surjective, we obtain

A(l",~) ,So = 0. Set <pI = (r.p 8 0:'0) EB C}l then

r.pI = 00 EB 70 EB ßo EB 0:'1, G(i)(r.pl) = 8i EB 7i EB ßi EB C}i+l (1 < i < r) ,

G(r+l) (<pI) C ~ EB 70 EB ßo EB 0:'0 ,

G(")(4'l),~l (i)() ( ') 2
so that ßo EB ,0 = ImA(I,O) , ßi E9 /i = G4'1 ßo EB ,0 1 < t < r , ßo = ImA r ,lf'l,

(i). C(")(""l),4'l c(r)(4'l)
ßi = G4'l(ßO) (1 < t < r), ßr C I(erA(l,O) . Set ßr+l = Im(A(l,O) Iß,.) C

R~ E9 0:'0, R~ = (R~ E9 ao) e ßr+l and Si = Di E9 ai+I for i = 0,1"", r. We have

the same type diagram as (5.1), and we see that A1;,t),60 is holomorphic, hence

can not be surjective. Set Ta = ImAf;,~),6o then rankTo < rank80 - 1 and, in fact,

rankTo = rankSo - 1 by the surjectivity of the projection TO ---+ G'I and the fact

k c 1 M . t' cl' th kIf A0,.Ii'O A6r-1,6r A50 ,61ran va =. oreover, TO 18 con aine In e 'erne 0 (1,0) 0 (1,0) 0"'0 (1,0)'

Set Ti = G~f (Ta) n Si (1 < i < r), 8~ = Si 8 Ti (0 < i < r). We have a diagram

(6.3)

Note that rankD~ = 1, which i8 also true even if TO =.Q. Set <p2 = (r.pI 8 ßo) EB ßl
then

r.p2 = 8~ ffi TO ffi ,0 E9 ßl' G(i) (<p2) = 8~ EB Ti EB Ti EB ßi+I (1 < i < r) ,

G(r+l)(<p2) C R~ EB Ta EB ,0 EB ßo ,
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(6.4)

We need the following

L 6 1 S t A A er ,Ilo Aer-i,er A eo ,ei and B == Allr+i,eo 0 Allr ,Ilr+i 0
emma .. e == (1,0) 0 (1,0) 0 ••• 0 (1,0) (1,0) (1,0)

••• 0 A(lo,~i. Set 1] == 1mB and v == Im(A 0 B). .Then, rank1] == rankeo - 1,

rankv == rankJlo - 1 and v C l(erB.

Proof. By (6.4), A 0 B is holonlorphic, hence nilpotent. Therefore, A({,t) ,eo can

not be surjective, hence rank1mB < rankeo - 1. On the other hand, if we denote by
PI : eo ---+ ßl and pO : /-lr+l ---+ ßo the Hermitian orthogonal projections, we have

(6.5) P 0 Allr+i,eO(v) - AßO,ßi 0 pO(v)
1 (1,0) - (1,0) ,

Since pO is surjective by (6.3) and Af~,'~i is surjective, it follows from (6.5) that

PI 11mB: 1mB ---+ ß1 is surjective, hence rank1mB > rankßl == rankeo - 1. There
fore~we have proved that rank1mB == rankEo - 1 and PI IrmB is an isomorphism.
Thus, in case 1mB == .Q, we have ßl == .Q, which contradicts the diagram (6.2)
and the assumption A;,,,, t= O. Hence, we may assume that 1mB 'f:..Q. Denote by
qr+l : er ---+ ßr+1 and qO : ).Lo ---+ TO the Hermitian orthogonal projections. Since

A~i:~) = 0 by (6.3), we have

(6.6) o Aer ,Ilo() Aßr+i,TO ( )q 0 (1,0) W == (1,0) 0 qr+l W ,

Set 1]r == G~; (1mB) n Er' By (6.3), we see that qr+l l'Jr: 1]r ---+ ßr+l is surjective,

because PI hmB is an isomorphism and aB Af:,':;+i (1 < i < r) are surjective. Since

Af;,~) ,TO is also surjective by the definition, it foBows from (6.6) that qO IIm(AoB):

lm(A 0 B) ---+ TO is surjective, hence rankv > rankro == rankj.Lo - 1, where we have
put v == Im(A 0 B). On the other hand, since A 0 B is nilpotent, we must have
rankv < rank/-lo - 1, thus we obtain rankv == rankj.lo - 1. We show that v C I(erB.

Set Vr+l == G~2+1) (v) C flr+1' Suppose that pO IVr+i: Vr +l ---+ ßo is surjective.
Then, by (6.5) we see that P1(lm(B Iv» == P1 (ImB), which, together with the
isomorphicity of PI, implies that Im(B Iv) == 1mB. However, this contradicts the
nilpotency of ..4oB. Therefore, we have proved that pO lvr+i is not surjective, hence
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pO IVr +l = 0 by rankßo = 1. Then, again, by (6.5) we see that A(;,t)'~O ]V r +l = 0,
hence v C KerB. q.e.d.

Set

Vo = v, Vi = G~~ (vo) (1 < i < r + 1), {Li = J.Li 8 Vi (0 < i < r + 1) ,

11o=ImB, 1]i=G~~(1]O)nCi(l<i~r), €i=Ci811i(O<i<r).

Then, we have a diagram

(6.7)
1]0

Set ep3 = (ep2 8 v) EB G~2(V), where v is as in Lel11me 6.1, then, by (6.7) we have

ep3 = 60 EB 170 EB [10 EB VI, G(i)(cp3) = €i ES 7]i EB Pi EB vi+l (1 < i < r) ,

G(r+I)(cp3) C R~ EB Pr+l EB Po EB Vo ,

A c{r)(/fl3),/fl3 '" A c(r) (/fl3L/fl3 3'
so that J.Lo = ImA(lIO) , rankJ.Lo = 1, J.Lr C !(erA(l,O) , hence ep sattsfies
the concli tions of Proposi t ion 6.1. It follows from (6.1) and (6.7) that t here isa

(3).L 3
holomorphic subbundle r of e.p3 with T C I(er(A(i,o) OA(I,O» and rankT = rankep3-1

such t~at e.pI defined frol11 ep3 by the forward replacement of T has 8'-isotropy order
c(r+l)( )> r + 1 and satisfies rankIrnA ~1 ,~1 = ranku, - 1.

- - (1 ,0) LI

(11) Set K = ImAr,~ and ao = Im(Ar,~ Ix). Then, ao C I(erAr,lfl . Set

O:i = G~)(o:o) (1 < i < r), ßo = K8o:o, ßi = G~)(K)8O:i (1 < i < r),
r

70 = cp 8 K, 7i = G(i)(cp) 8 G~)(K) (1 < i < r), R = epl. 8 (EB GU)(ep» .
j=1

C(r)(lfl) lfl C{r)(lfl),
Then, G: r C I(erA(1,O) ',and hence set G'r+l = Im(A(l,O) 100r) C Rand Ro =
Re G:r+I' Then, we have a diagralu
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ß ßo
(6.8)

0'0

There are three possibilities :
(11-1) rankO'o == rankßo == 1, rank,o == 2, (11-2) rankao == rank,o == 1, rankßo == 2,
(11-3) rankßo == rank,o == I, rankao == 2.

(11-1) By (6.8), we see that ranklmA('lr,6; ,'"'(0 < 1 and ImA(';,6)''"'(0 is contained in

the kernel of A '"'(r ,ßo 0 A '"'(r-l,'"'(r 0 ... 0 A '"'(0,'"'(1 First assume that A O'r+l,'"'(O == 0 Set
(1,0) (1,0) (1,0)., (1,0) -.

I a(r)(tpl),tpl . _ a(r)(lf'l),lf'l
!p == (!p8 a O)EB a l, then ßO == ImA(1,O) , rankßo - 1 and ßr C I(erA(l,O) .

Therefore, !pI satisfies the conditions of Proposition 6.1, and we see that there is a
(l).l 1

holomorphic subbundle T of !pI with T C I(er(A(i,o) oA(I,O» and rankT == rankepi -

m, where m == 1,2, such that epl defined from epl by the forward replacement of T
a(r+l)( )

has B'-isotropy order > r+1 and satisfies rankIlnA(I,O) 'PI ,'PI == rankepi -mo Next,

th t kI A O'r+l,'"fO - 1 S t C - I AO'r+l''"'(O c. - G(i)(C)n '(1 < . < )assume a ran m (1,0) -. e vo - m (1,0) , ul- lf' uo 'I ~ 't _ r
and 7i == ,i 8 8i (0 < i < r). We have the same' type diagraIn as (6.3). Set
<pI == (ep 8 ao) ffi al then

<pI == io ffi 80 ffi ßo EB aI, G(i)(<pl) == 1'i EB Oi EB ßi EB O!i+l (1 < i < r) ,

G(r+l) (epl) C R~ ffi 00 EB ßo EB ao ,

a(r) (lf'l),tpl (i) .
so that 00 EB ßo == ImA(I,O) , Oi EB ßi == Glf'l(OO EB ßo) (1 < t < r) and or ffi ßr C

a( r) ( 1) 1

KerA(l,O) lf' ,lf' . Set J.Li == Oi EB ßi (0 < i < r), ci == 1'i EB O'i+l (0 < i < r), and set

(
c( r) (lf' 1) 1)' 1 (' )

J.Lr+l == Im A(I,O) J.Jr C mEB 0'0, Ro == Ro EB ao 8 J.Lr+l- Then, we have the

diagram (6.4), where we replace mby Rö. Note that rankJ.Lo == 2. By the proof of
Lemma 6.1, we obtain

Lemma 6.2. Let A, B be as in Lemma 6.1. Set?] == 1mB and v == Im(A 0 B).
Then, rank?] == rankeo - 1, rankv == 1 and v C KerB.

Set ep2 == (!pI 8 v) EB G~l(V), where v is as in Lelnlna 6.2, then by (6.7) we see that
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c.p2 satisfies the conditions of Proposition 6.1. 1t follows that there is a holomorphic
( 2).l. 2

subbundle T of c.p2 with T C Ker(A(i,o) 0 A(l,O») and rankT = rankc.p2 - 1 such that

r.p1 defined from r.p2 by the forward replacement of T has CY -isotropy order > r + 1
c(r+1)( )

and satisfies rank1mA 'P1 ,'P1 = rankep - 1.
- (1,0) -1

(11-2) By (6.8), we have Aet,6) ,"'(0 = O. Set c.p1 = (r.p e ao) EB a1 then ßo =
c(r)(lp1),lp1 (i). c(r)(lp1),1p1

1mA(1,O) , ßi = G<p1 (ßo) (1 < t :::; r) and ßr C KerA(l,O) . Reset {Li =
. c(r)(1p1) I 1 I )

ßi (0 < t < r), and set {Lr+1 = 1m(AU,O) IJlr) C Ra EB ao, Ro ::::: (Ra EB ao S{Lr+1
and ei = ,i EB ai+1 (0 < i < r). Then, we have the diagram (6.4), where we replace
R~ by R~.

Lemma 6.3. Let A, B be as in Lemma 6.1. Set 1]0 = 1mB. Then, rankTJa :::::
rankeo - 1 and (A 0 B)2 = O. Moreover, the following hold:

( l).l. 1

(1) If AoB =0, set v ::::: /-loffiTJo. Then, v C I(er(A(i,o) oA0,O»)' rankv::::: rankep1-1,

and 'PI denned from c.p1 by the forward replacement of v has 8' -isotropy order 2:: r +1
c(r+1)( )

and satisfies ranklmA Ip1 ,<P1 ::::: rankc.p - 1.
- (1,0) -1

(2) H A 0 B "# 0, set v ::::: Im(A 0 B). Then, rankv = 1 and v C I(erB.

Proof. Since rank/o ::::: 1, by the proof of Lemma 6.1 we see that rankryo
rankeo - 1. Since A 0 B is nilpotent and rank{LO == 2, we have (A 0 B)2 ::::: O.

C) c(r)( 1) 1
(1) Set 7]i = G ~l (1]0 )nCi (1 < i < r). Since 1]0 C I(erA, we have t]r C I(erA(l,O) <P ,Ip

(
c( r) ( <P 1 ) I) 1 ... 1 1

and hence set 1]r+1 ::::: Im AU,O) Jlrffi'1r e /-lr+1 eRD, Ro ::::: Ro e TJr+1 and
ei ::::: Ci 81]i (0 < i < r). We have a diagram

(6.9)
770

Since rankEo ::::: 1, by (6.9) we see that A(;~) ,eo = O. Set v ::::: {Lo EB 1]0 and r.p 1 :::::

(c.pl 8 v) EB G' 1 (v). Then, 1/ and CPl have the desired properties.
- Ip

(2) Since A 0 B "# 0 and rank{LO ::::: 2, we obtain rankv::::: 1, where v ::::: 1m(A 0 B).
Since rankao = rank,o ::::: 1, the proof for v C I{erB is quite similar to that of
Lemma 6.1. q.e.d.
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We may consider only the case (2) in Lemma 6.3. In this case, we also have
the same type diagram as (6.7). Set r.p2 = (r.pl 8 v) EB G' l(V), then we see that r.p2

- - cp
satisfies the conditions of Proposition 6.1. It follows that there is a holomorphic

( 2).1. 2
subbundle r of <.p2 with T C I(er(A(i,o) 0 A(l,O) and rankr :::: rankr.p2 - 1 such that

<PI defined from <.p2 by the forward replacement of T has ß'-isotropy order > r + 1
O( .. +l)( )

and satisfies rank1mA lf'l ,'f'l = rank<.p - 1.
- (1,0) -1

(11-3) By (6.8), we obtain A(;',6)''''fO = Q. Set <.pI = (<.p e ao) EB aI then ßo =
O(")(lf'l),lf'l (r) a(r)(lf'lLlf'l l'

ImAU,O) , rankßo :::: 1 and ßr = Gtp1 (ßo) C KerAU,O) , hence e.p satlsfies
the conditions of Proposition 6.1. 1t follows that there is a holomorphic subbundle

( 1).1. 1
r of <.pI with r C I(er(A(i,o) 0 A(I,O») and rankT:::: rank<pl -1 such that <PI defined

from !.pI by the forward replacement of T has G' -isotropy order > r + 1 and satisfies
0(r+1)( )

ranklmA lf't ,lf't :::: rank<p - 1.
- (1,0) -1

(111) Set {Lo :::: IrnAr,cp, then J.Lo C KerAr,lf" Set

co :::: <.p e J.Lo ,
r

R:::: <pJ.. 8 (EB GU)(<.p)) .
j=l

a(r)(cp) ep o(")(ep)
Then, J.Lr C I(erA(1,O) " hence set J.Lr+l ::::: Im( ..4{1,O) 11l,.) C R anel R~ -
R 8 J.Lr+l' We have a diagram

(6.10)

J.Lo J.Ll J.Lr J.Lr+l J.Lo

There are three possibilities :
(111-1) rank{Lo :::: 1, (111-2) rankjlo :::: 2, (111-3) rankJ.Lo :::: 3.

(111-1) In this case, <.p itself satisfies the conditions of Proposition 6.1. 1t follows
.L

that there is a holomorphic subblll1dle r of r.p \vith r C l(er(A(l,O) 0 Arl,O») and
rankr :::: rank<.p - m, where m = 1,2,3, such that 'PI defined from 'P by the forward

0(,.+1)( )
replacement of r has ß'-isotropy order ~ r + 1 and satisfies ranklmA{1,O) lf't ,lpt ::::

rank<Pl - m.
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(111-2) By (6.10), we have rankImA(;,~)'~o < 1. First, assurne that A(;,~),eo - O.

Set cp == (cp8J.L0)ffiJ.Ll' Then, by (6.10) we see that CPl has 8'-isotropy order > r+1
-1 -

a(r+t)( )
and satisfies rankIrnA(1

1

0) 'PI ,'PI == rankCPl - m, where m == 1,2. Next, assurne

that rankImA(;,~)I~O == 1. In the same way as Lemma' 6.3, we have the follo\ving

Lemnla 6.4. Let A, B be as in Lemma 6.1. Set 7]0 == 1mA(;,~)'~o. Then, rank7]o == 1

and (A 0 B)2 = O. Moreover, the following hold:
.1.

(1) H AoB = 0, set v = J.Lo EB7]o. Then, v C l(er(A0,O) OA(I ,0)' rankv == rank~-l,
and epl defined from ep by the forward replacement of v has 8'-isotropy order > r +1

c(r+l)( )
and satisfies rankImA 'PI l'Pt == rankep - 1.- (1,0) -1

(2) H A 0 B t= 0, set v == Im(A 0 B). Then, rankv == 1 and v C KerB.

We only consider the case (2) in Lemma 6.4. Set cpl == (ep 8 v) EB G~(l/), then
we see that cp 1 satisfies the condi tions of P roposi tion 6.1 (cf. (6.7)). Moreover, it

( t).1. 1

follows that there is a holomorphic subbundle r of cpl with r C Ker(A(i,o) 0 A(I,O)

and rankr == rankcpI - 1 such that epl defined from i.pl by the forward replacement
- a(r+l)( )

of r has 8'-isotropy order ~ r + 1 and satisfies rankImA(IIO) 'PI ,'PI == tankepI - 1.

Remark. If we simply set cpl == (s:: e J.L0) EB /-LI, then we see that epl satisfies the
conditions of Proposition 6.1. However, we can not get the information behveen
rankr and rankepi.

(111-3) In this case, since rankeo == 1, it follows from (6.10) that A(;,~) I~O - O. Set

ep == (I.p e J.Lo) EB {LI, then we see that CPl has B' -isotropy order > r + 1 and satisfies
-1 -

a(r+l)( )
rank1mA 'PI l'Pt == rankep - 1.

- (1,0) -1

In summary, we have the following

Proposition 6.2. Let cp : M \ S'P --+ G4 (C n ) be a plurihannonic map. Assume
that ep has 8'-isotropy order r. Then, there is a sequence {cpi}~o of pluriharmonic
maps such that

a(r+l)( N) N
(1) epo == ep, (2) epN has 8' -isotropy order > r+1 and satisnes rank1mA(1

1
0) 'P ,r.p

== rankepN - rn, where m == 1,2,3,
(3) for i == 0,1" ", N - 1, each cpi has 8'-isotropy order T, and epi+l is obtained
from epi by the forward replacement of a i , wllere a i is a holomorphic subbundle of

i .. ('Pi).!. 'Pi
cp contaJned ln Ker(A(l,O) 0 A(I,O)'

Using Proposition 6.2, we obtain the following
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Theorem 6.1. Let<.p: M \ Sft' --+ G4 (C n
) be a pluribannonic map. Assume tbat

<p bas finite EY -isotropy order and n < 14. Then, there is a sequence {<.pi}~o of
pluriharmonic maps such that

(1) <.po = <.p, (2) <.pN : M \ Sft'N --+ Gm(Cn), m = 1,2,3,
(3) for i = 0, 1, ... ,N - 1, each <.pi has finite (J'-isotropy order, and <.pi+l is obtained
from <.pi by tbe forward replacement of a i , where a i is a holomorphic subbundle of

.L

<.pi contained in !(er(A(li ,O) 0 A(li ,O)'

Praaf. Construct <.pI from <.p using Proposition 6.2. Let r be the 8'-isotropy

order of 'PI' Then, we have r > 2. Set ao = ImAr,ft', ai = G~;(ao) for i = 1, ... , r

and ,0 = <PI 8 ao, "Yi = G(i)(<Pl) 8 ai for i = 1,"', r. By Proposition 6.2, we have
rank"Yo = m and ranka = rank<Pl - ffi, where m = 1,2,3. If ao = .Q., then <PI is
a plurihannonic map into ~m(cn), where m = 1,2,3, hence we may assurne that
ao =1= Q. Set R = ~t 8 (ffi '=1 G(J)(<Pl», then we have the diagram (5.17). In the
same way as in the proof 01. Theorem 5.1, we have two possibilities : (1) ai =.Q for
some 1 < i < r, (2) any ai (1 < i < r) is non-zero.
(1) Set Cf; = (cp 8 ao) E9 al. Then, by (5.17) we see that either, cp is a plurihar-

- -1
manie map into Gm(C n

), where m = 1,2,3, or cp has 8'-isotropy order r + 1 and
G(r+l)(~) ~ -..-

rankImA(I,O) I = rank<p - m, where m = 1,2,3.

(2) Since n < 14, one of <PI' G(i) (<PI) (1 < i < r) has rank < 4 and 8'-isotropy order
r. Hence, by Proposition 6.2, either, we have a pluriharmonic map into Gm(C n

),

where m = 1,2,3, or we have a plurihannonic map rp which has B'-isotropy order
. G( ..+l)(~),~-..-

r + 1 and sahsfies ranklmA(I,O) = rank'P - m, where m = 1,2,3.
Repeating this procedure, we see that 'P is reduced to a pluriharmonic map into
Gm(C n

), where nl = 1,2,3. q.e.d.

If we don't require the result about (2) in Theorem 6.1, we have

Theorenl 6.2. Let e.p : M \ Sft' --+ Gk(Cn
) be a. pluriharmonic map. Assurne that

k = 3 (resp. 4) and n < 20 (resp. 15). Tben, by the successive procedures oE
the forward replacement, <.p is reduced to an anti-holomorpruc map f : M \ S f ----+

Gt(C n) for some t.

Praaf. We show the case of k = 3. By Proposition 5.1, we can construct 'P2
which has ßI-isotropy order;::: 3. Since n ~ 20, either one of 'P2, G(i) ('P2) (1 < i < 3)

has rank < 4 or any of 'Pl.' G(i)(<P2) (1 < i < 3) has rank 5. The former ease implies
that we may construct <.p from <P2, which has B'-isotropy order > 4 by Theorems
3.1, 4.1 and Propositions 5.1, 6.2. The latter case ilnplies that G(4) (<P2) C <P2, hence
rankG(4)(CP2) < 4. Hence, we can construct cp from G(4)('P2), which has 8'-isotropy
order > 4 by Theorems 3.1,4.1 and Propositions 5.1, 6.2. Repeating this procedure
and noting that any pluriharmonic map with infinite 8'-isotropy order is reduced

-43-



to an anti-holomorphic map, we see that ep is reduced to an anti-holomorphic map
by the successive procedures of the forwarq replacement. q.e.d.

7. A construction of pluriharmonic maps from rational maps.
In this section, we give the inverse of the procedures in Theorems 3.1, 4.1, 5.1,

6.1 and 6.2. For this purpose, we review the following propositions

Proposition 7.1 ([O-U2]). Let r.p : M --+ Gk(Cn ) be a pluriharmonic map [rom
.1.

a complex maniEold. Let a C Ker(Ar1,O) 0 Ar1,O» be a holomorphic subbundle oE ep
and let rp be defined from ep by the forward replacement of a. Then, G~(a) is an

-.1. -

anti-holomorphie subbundle of~, G~(a) C !(er(A('O,l) oA('O,l» and, ifI(erA(l,O) = .Q,
then ep is obtained {rom rp by the backward replaeement oE G~(a).

Proposition 7.2 ([O-U2]). Let ep : M --+ Gk(Cn
) be apluriharmonic map from a

complex maniEold. Assume that KerA(l,O) f:. Q.. Then, there exists a pluriharmonic

map'lj; : M\S1jJ --+ Gt(C n
) for some 0 ~ t < k-1 and a non-zero anti-holomorphie

subbundle ß oE ('lj; EB G'('lj; »1. such that ep = 'lj; EB ß over M \ S1jJ. Conversely,
given 'lj; : M --+-Gt(C n

) a pIuriharmoni;;-map and a non-zero anti-holomorphie
subbundle ß oE (1jJ EB G' (t/J»1. then ep defined by ep = 'lj; EB ß gives a pluriharmonie
map ep : M \ SV' --+ Gk(C~) with KerA(l,O) =1= Q., where k = t + rankß·

We remark that if we reverse the orientation of M we may use the concepts
of B"-isotropy order and the backward replacement in place of those of B'-isotropy
order and the forward replacement. First, we treat the case of infinite isotropy
order.

Proposition 7.3. Let ep : M \ SV' --+ Gk(C n ) be any non-holomorphie plurihar
manie map with infinite O" -isotropyarder, where M is a complex manifold. Then,
there is a unique sequence {epi}~o oE pluriharmonic maps such that
(1) epN = ep, (2) epo : M \ Sepo --+ Gt ( C n

) is a holomorphic map for some t E N,
that is, a rational map f : M ---+ Gt(C n

),

(3) for i = 0,1,·· . ,N - 1, I(erA0
i

,o) = Q., and eaeh epi+1 is obtained from epi by

epi+1 = G' (epi) EB a i , where a i is a holomorphic subbundle oE (G' (epi) EB epi)1..

Proof. Since G(-s)(ep) = .Q for some sEN, set epi = G(-S+l+i)(ep) for i =
0,1, ... ,s -1. Since G' (G( -s+l+i) (ep») C G( -S+2+il(ep), we have G'(epi) C epi+1. Set

. i+1 i . - .

a l = !(erA(O,l)'V' , then by (1.2) and Proposition 7.2 we see that epl+1 = G' (epl) EB

a i and a i is a holomorphic subbundle of (G'Cepi) EB G"(G' (epi»))1.. Note that the
i i+1 i .

condition I(erA <P = .Q is equivalent to that Aep ,'I': epl+1 --+ epl is surjective,- (1,0) (0,1) _
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wruch is satisfied by the definition (see (1.2»). Now, N == s - 1 and the existence
is established. For the uniqueness, define the sequence {<pi}~o as in (3), where c.p0
is as in (2). We show that each a i is uniquely determined by the condition (1).
Suppose that <pi ~ G(-N+i)(<p) for some 1 < i < N -1. Set ßi == G(-N+i)(<p) 8 .fi.

, , a(-N+i+l)( ) ßi
Since, <p,+1 is a holomorphic subbundle of (<p').L, A(O,l) V', is surjective,

and !(erAr;.i
,O

) == .Q, it follows that ~i+l cau not have G( -N+i+l)('P) as a direct

sum ,factor and <pi+l C G(-N+i+l)(<p) EB ßi. ,Thus, either ~i+l ~ G(-N+i+I)(<p)

or c.p'+l has the non-trivial projection into ß'. The former case may be treated

in the same way, and the latter one yields cpN i=- <p because !(erA~,o) == .Q and
a(-i- 1 )( )

I<erA(I,O) tp ==.Q for any 0 < j < N - 1. Therefore, we have cpN :f. <p. Next,

suppose that cpi ~ G( -N+i) (e.p) for some ,I < i < N - 1. If e.pi contains also

G(-N+i+I)('P), then G(-N+i)(<p) C KerA(':,o)' which is a contradiction. Thus, <pi

has a proper holomorpruc subbundle of G(- N+i +1 ) ( cp) as a direct sum factor, hence,
again, we have <pN f:. e.p. Finally, suppose that G' (e.pi-l) ~ G( -N+i) (e.p), a i - 1 has the
non-trivial projection into the both of G( -N+i+l)( r.p) andßi, for some 1 < i < N -1.
Trus case also leads to the conclusion cpN :f. e.p. q.e.d.

Theorem 7.1. Let <p : M \ SV' --+ cpn-l be any non ±-holomorphic plurihar
manie map, where M is a compact complex manifold with eI(/vI) > O. Then, there
is a unique sequence {<pi}~O (N < n - 1) oE pluriharmonie maps into cpn-l such
that
(1) cpN == cp, (2) cpo : M \ SIt'0 ---+ cpn-l is a holomorphic map, that is, a rational
map f : A1 ---+ cpn-l,
(3) for i == 0,1, ... , N - 1, eaeh cpi+l is obtained trom cpi by cpi+l == G'(cpi).

Proof. This follows from Theorem 3.1 and Proposition 7.3.

Für the case üf finite isotropy order, we have the following

q.e.d.

Theorem 7.2. Let ep : M \ SIt' --+ G2 (C n) be any pluriharmonie map with finite
EJ"-isotropyorder, where M is a compact complex manifold with Cl (~1) > O. Then,
there is a sequence {epi}~o of pluriharmonic maps such tbat
(1) <pN == <p, (2) 'Po : M \ SV'0 --+ cpn-l, and cpl is obtained trom <po by
'r..1 == cpo EB ßo, where ßO is a holomorphic subbundle oE (epo EB G"('P0 )).1- so that

G(-~)( 1) 1
ImA(O,l) V' lV' == ßO for sonle rEN, and iE ep is non anti-holomorphic then

rankßo == 1,
(3) for i = 1, ... ,N - 1, each cpi+l has B" -isotropy order r - i, and epi+l is obtained
from 'Pi by
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where a i is a holomorphic subbundle oE r.pi so that ranka i - rankr.pi - 1 and

the Hermitian orthogonal projection pi : ImA~~~~"-l)(!.pi),!.pi ~ a i is an anti

holomorphic isomorphisrn, and ßi is a holomorphic subbundle oE (~i ffi G" (0i )).1. so

that ImA G(i- ")(!.pi+l),!.pi+l = G' .(ai) EB ßi.
-- (0,1) !.pI

Proof. This follows from Theorem 4.1 and Propositions 7.1, 7.2. q.e.d.

The uniqueness for the choice of ßi may be expected if we assurne that

I(er(A(l
i
,O) lai) = Q, however, in general, it seems to be difficult to determine a i

uniquely.

Theorem 7.3. Let r.p : M \ 5!.p ~ Gk(Cn
) be any pluribarmonic map witb finite

8" -isotropy order, where M is a compact complex manifold with Cl (M) > O. As
sume that k = 3 (resp. 4) and n < 15 (resp. 14). Then, there is a sequence {'Pi}~o

of pluriharmonic maps such that
(1) r.pN = 'P, (2) 'Po : M \ S!.po ~ Gt(Cn

), 1 < t < k - 1, and 'PI is obtained Erom
c.p0 by 'PI = 'PO EB ßO, where ßO is a holomorphic subbundle of ('PO EB G"('P 0)).1., and

c.p1 has finite er' -isotropy order,
(3) for i = 1,' .. , N -1, each c.pi+1 has finite fY' -isotropy order, and 'P i+1 is obtained
from c.pi by

'P i+1 = ~i ffi ßi, <pi = (cpi e ai) EB G~i (ai) ,

where a i is a holomorphic subbundle of 'Pi contajned in Ker( A~i,id;L 0 A(l
i

,O»)' and

ßi is a holomorphic subbundle oE ((j;i EB G"(0i )).1..

Proo! This follows from Theorems 5.1, 6.1 and Fropositions 7.1, 7.2. q.e.d.

Theorem 7.4. Let e.p : 11.1\51;' ~ Gk(Cn ) be any non-holomorphic plurihannomc
map. Assurne that k = 3 (resp. 4) and n < 20 (resp. 15). Then, there is a sequence
{'Pi}~O of pluriharmonic maps such that
(1) c.pN = 'P, (2) c.p0 : M \ S!.po ~ Gt(Cn ) is a holomorphic map for some t E N,
that is, a rational map f : M ---+ Gt(Cn

),

(3) for i = 0, 1, ... , N - 1, each 'P i+1 is obtained from 'Pi by

where a i is a holomorphic subbundle of e.pi contained in I(er(A~i,id).1. 0 A(l
i

,O»)' and

ßi is a holomorphic subbundle of (<pi EB G"(epi))..L.

Proof. This follows from Theorem 6.2 and Propositions 2.3, 7.1,....,7.3. q.e.d.
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Remark. (1) Ohnita and Valli [0-V] proved the faetorization theorem for the
elass of meromorphieally pluriharmonie maps into the unitary group. We remark
that, our elass of pluriharmonie maps is wider than that of theirs, the method
using the image or kernel of the seeond fundamental form, whieh is ealled the basic
transform, is not established yet, and that even if it is established our results are
not eovered by it (cf. [Wd 1]) .
(2) Toledo suggested to the author that the analogy of their result [C-Tl may hold,
that is, any non-eonstant pluriharmorue map r..p from eompaet eomplex manifold
M into cpn-1 has a faetorization of the form r..p = gof, where f : M --lo S
is a holomorphie map into a eompaet Riemann surfaee and 9 : S ---+ cpn-1 is a
harmonie map, if r..p(M) is not a geodesie are in cpn-1. The exeeptional ease surely
oecurs when we set M = Tm, that is, rn-dimensional complex torus, and eonsider
the factorization, f : Tm --lo SI a totally geodesie map, 9 : 51 --+ cpn-1 a totally
geodesie immersion. Note that a totally geodesie map from a I(ähler manifold is
pluriharmorue (cf. [0-VI]). Thus, if we assume Cl (M) > 0, we may expeet that
S is aRiemann sphere and 9 is a branehed minimal immersion. We will diseuss it
elsewhere.
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