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The Geometry of some Kihler-Einstein manifolds

Thomas Kakolewski

0. Introduction

This paper is an analysis of the geometry of some compact, inhomogeneous
Kéhler-Einstein manifolds with ¢;(M) > 0. More precisely, I look at those
examples of Koiso and Sakane, which are CP!-bundles, describe their isometry
groups, and add some more explicit examples of cohomogeneity one.

0.1. In chapter 1, I give a description of the metrics of Koiso and Sakane in the
terminology of principal bundles and connections. Proofs are only indicated,
but I hope that the reader.may find this description easy to understand never-
theless. The proof of inhomogeneity depends on the basic curvature calculation
at the end of this chapter.

0.2. It has turned out that the computation of (infinitesimal) isometries is
easier to survey if you look at Kaluza-Klein metrics first. This is done in
chapter 2.

0.3. In chapter 3 I prove that the cohomogeneity formula
coh(P) = coh(M) + 1
holds without any further assumptions.
0.4. In chapter 4 I give some (perhaps new) cohomogeneity 1-examples in

every even dimension > 4. For completeness I include manifolds of higher
cohomogeneity, which are essentially due to Koiso and Sakane.

0.5. There is an appendix with short proofs for well-known facts, e.g. for
“Kahlerform closed implies Kahler”.

Some of the results stated here already appear in my Diplomarbeit written
at the University of Bonn under the supervision of Prof. Hermann Karcher.
I wrote this paper while being at the Max-Planck-Insititut fir Mathematik
in Bonn.



1. The metrics of Koiso and Sakane

1.1 Notation. Our notation is an extension of the one in [Bes, Chap. 2].
Let L —— M be a Hermitian holomorphic line bundle over a Kaihler-Einstein
manifold with ¢;(M) > 0. Hence we may assume the Einstein condition on M
to be ¥ = §. We denote the (real-valued) norm function on L by

v(l) = VA1) .

The principal C*-bundle corresponding to L is just
P = L\ {zero-section},

the Chern connection is
0 = d'logv?,

and its curvature (form) is given by
—d8=Q=rn"ip",

where pV is a form of type (1,1) on M representing the Chern class of L up to
the factor 51; We assume that the corresponding symmetric tensor field

B(u,v) = p" (u, Jv)

has constant eigenvalues in |—1,1[ w.r.t. §. To exclude the trivial bundle we
assume that B # 0.

1.2. We are looking for “natural” metrics on P. In the situation at hand it is
natural to consider the so-called Kaluza-Klein metric

g(u,v) = m* §(u, v) + (fu, 0v)c.

The following facts are well-known:
(a) P = M is a Riemannian submersion and the horizontal distributions for
the connection and the submersion coincide; especially
() H LV, where V = kerdr,H = kerd.

(b) The #-parallel displacement on P is isometrical, hence all fibres are iso-
metric and totally geodesic, cf. [Vil, 3.5].

(c) C* acts isometrically on the right P x C* — P.



1.3. Unfortunately the Kaluza-Klein metric will never be Kahler, and by
Myer’s theorem no metric with # = g on P will be complete. So we are
interested in metrics that may be continuated to the compactification

P= P XC- C.
Clearly, the isometry group will then be compact.

Claim. The metrics g on P satisfying

(a’) as above
(b) as above
(c) S' C C* acts isometrically P x S' —» P
(d) g is Hermitian
(e) dw=0.
are all given by
g=r'§~-Un*B+U'{(8,0).
Here § is Kéhler, U: P — R is a function, U’ = djU is its derivative , and

U’ > 0. 1 and i denote the fundamental fields generated by 1 and ¢ € C, the
Lie algebra of C*.

“Proof”. Check the conditions in the order they are listed. When you check
(e), compute dw on vectors which are basic or fundamental. Then use:
Let X, Y be basic and U,V be fundamental. Then
[U,V]=[X,V]=0
0lX,Y]=Q(X,Y), H[X, Y] is basic.

Furthermore U satisfies

(1.3) dyU=diU=0 (VX €H)

and therefore depends only. on the R*-factor in the decomposition
P=v"1(1) x R*

given by the norm function. Additional, U|v~1(1) = 0. For functions with
(1.3), differential equations involving ' become ODEs when you choose the
coordinate logv on the R*-factor. Hence there is a function F with F/ = U,
and one can show that

- w=7*w+dd°F.



1.4. The Ricci curvature is intimately related to the volume form g, see [Bes,
2.100 f]). Here

p=QU) 1 A U'(Ref) A(Im6)
(1.4a)
=U'QUU) 7"k N wc(8,8),
where Q(s) is the polynomial
Q(s)=ﬁ(1—A;s), m = dim¢ M,
i=1

i.e. Q(s) is just (detr(g — .913))1/2 w.r.t. g.
The Einstein condition (r = g) reduces to

(1.4b) F=§ and 20U + (logU'Q(w)) =0.
This ODE implies
Ub~'(1)=-1, U™ '(1)=1

/:11 sQ(s)ds = 0.

The ODE (1.4b) may be integrated once to obtain

-2 2, 7Q(r)dr
(1-5%)Q(s)

U'=(1-U%%(u) with (s)=

1.5. This and the function

_vi-1 _ 1-1/2

T4l 14 1/02
as a better coordinate for the R*-factor helps to show the regularity of g near
the “poles” v~1(0) and v~}(c0). ‘

Sketch of the proof. The proof can be divided into several steps:

1) V satisfies V' =1~ V2,

2) gy =7*§—Vr*B+V'(8,0) does exist on P and is regular.

3) Write U =: w o V. Then u:{-1,1] — [~1, 1] is regular.

4) wy =wy +dd*(F o V) for F(s) = 2 %ﬁdt : D
g» induces the standard metric on the fibres € = 2, with V as the standard
height function. Using this V and its volume form similar to (1.4a) and per-

forming the product integration, you see that the condition f_ll 3Q(s)ds =0
is equivalent to the vanishing of Futaki’s functional.



1.6. The function U is a moment map for the Sl-action (i.e. i= Jgrad U), and
hence AU = 2U, [Lic, Cor. in sec. 96|, [Bes, 11.52]. Indeed, under conditions
(2’) to (e) in 1.3, (1.4b) is equivalent to

F=§ and AU =2U.

This equation also helps you to find unit vectors X € #, W € V on v~1(0),
such that K(X,W) < 0. Thus none of these metrics has positive sectional
curvature.

By direct computation, the curvature of the fibres is given by

<0)-(4%) /.

which is never constant. Indeed, if it were constant, curvature would be 1 by
Gaufi-Bonnet. Then you might {multiply by U’ and integrate} twice to obtain

U2+U’=01U+Cg.

But the constants may be determined by the values of U/ and U’ on v~1(0) and
v~1(00). We obtain

U'=1-U? ie. Pp=1.

Hence @ = 1 and B = 0. But this was excluded from the very beginning. Hence
the fibres are inhomogeneous. Looking at the principal orbits, we see that the
height function U must be preserved by isometries (because otherwise we could
use the §-parallel displacement and the S-action to construct 2-dimensional
orbits in the fibres, but these have cohomogeneity at most one).



2. Isometries of torus bundles

In chapter 3 we will describe the orbits under the connected isometry group
I°(P) in terms of I°(M). Remember that the cohomogeneity of a Riemannian
manifold may be defined as

coh(M) = Pig}fﬁ codim I°(M) - p,

and similarly for other Lie group operations on a differentiable manifold. The
Lie algebra of the isometry group I(M) is the Lie algebra i( M) of Killing fields,
which are characterized by L, g = 0. Let us first consider the simpler case of
a Kaluza-Klein metric on a principal torus bundle.

2.1. Let
(M, §) be a Riemannian manifold with H'(M,R) =0,
P — M be a principal torus bundle with fibre T,
(, )¢ be a metric on T (biinvariant, of course),
8 be a principal connection with curvature form
Q = —df = 7*7n (such an n does exist),
7 be harmonic..

These manifolds occur “in real life”, cf. [Wa-Zi]. Consider the Kaluza-Klein
metric '

g=7"g+(0,60),.

We are interested in the closed subgroup F C 10(15) of isometries mapping
fibres to fibres and its Lie algebra f of projectable Killing fields.

2.2 Properties. Let X be a projectable Killing field, and X its projection.
Then

(2.2) 0=_LX9=7T.LX§+(LX9’9)t+<0’LX9>t'

The horizontal part M X is described by X, and the vertical part V X may be
described by the function §X: P — t. Since V X is Killing along each fibre
(see 5.2) and i(T) = t,

(0) 8X is constant along each fibre.

(1) Evaluation of (2.2) on 2 horizontal vectors yields Ly§ = 0, i.e. X is

Killing.
(2) Evaluation of Y € H, V € V yields L 8(Y) =0, i.e. L8 is vertical.
(3) But L0 =iydf+diy0=—i,Q+d6X is also horizontal by (0).

Thus X is projectable Killing iff L ¢ § = 0 and L8 = 0.
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2.3 Existence. Let X be a Killing field on M. Find a lift X with
Lyf=-i,Q+d6X =0.

By (0), there must be a function f: M — t with 6X = n*f. So our condition
becomes

T (ign) =ixQ =d8X = 7"df.
Since 7 is harmonic, di ¢n = L7 = 0, so there is an f with i ;n = df. Once f
is chosen, there is a unique lift X with 6 X = »*f. This is the desired Killing
field.

2.4 Further properties. X = 0 implies f = const, hence kerm = t. The

Killing fields X with
/ f=0 (<=> / 6X = 0)
M P

form another ideal of f, which is clearly complementary to t:
Let Y be such a field. Then

L 8Y —0[X,Y]=L,8-Y =0

/PG[X,Y]=[PLX9Y=]PBY=O

by the very definition of the Lie derivative. In this sense, f = t®i(M), and this
splitting is compatible with the biinvariant metric [, g(X,Y) on i(P). O

and

Remark. Indeed, for any compact Lie group with biinvariant metric
g=z02 =z6[g gl
where z is the centre of g. [Bes, 11.53], [Hel, p. 132].

2.5 F in terms of T < I°(M). For any Riemannian submersion, P — M
induces a homomorphism

mF — I°(M), given by (wa)(rp)= (ap).

Thus ker 7 is a normal subgroup of F, and so is T = (ker 7). So we define a
homomorphism

F — Aut(T) by
¢ (a— pag™!).
Observe that F' is compact and Aut(T') is discrete. By the latter,
peF® = eI’ (M) and ¢a=a¢Vae€ I°(P).

Thus
FO is the centralizer of T in I°(P),

since the latter is connected (cf. {Hel, p.287] or [Bes, 8.19]).
Remark. F is the normalizer of T in I°(P).



2.6 Example. Let T — P — M be the Hopf fibration S! — §2m+! _, Cpm,
with the standard metrics. Then I®(M) = PSU(m +1). Choose § = (ip, ).
Then 7 is a multiple of the Kahler form and I°(P) = SO(2m + 2).
Looking at (a — ¢a¢™!) with a = i we see that
Fo={$|pa=ad}=U(m+1), and
F is generated by F? and complex conjugation.
Let A € u(m + 1), and X(p) = Ap be the corresponding Killing field. Then

/ X = —[ (Aip, p) = —vol(§%™*1) tracep Ai = 0
P S2m+1
= A € su(m+1).

2.7 Example. Same situation as above, but now choose {u,v), = ¢ - uv with
0 < ¢ < 1, obtaining a Berger sphere. If ¢ is small enough, the fibres are
shortest simply closed geodesics [Wa-Zi, chap.3], and are therefore mapped to
fibres. Thus,
IP(P)=F=U(m+1).

(See also [Bes, 7.13].)
2.8 Moral. Example 2.6 shows that F' # I°(P) in general. Furthermore
F? and I%(M) x T are only related up to the finite coverings

SUm+1)x8 — G — PSUm+1)x8,

where G stands for U(m + 1) resp. PSU(m+ 1) x S?, and the arrows denote
the obvious covering maps.

2.9 A cohomogeneity formula. Still the knowledge of Killing fields is suffi-
cient to calculate the orbits of FO: The isometries in question are members of
one-parameter subgroups, and these are projected and lifted by

f -5 iM)—i(M)dt —f.

The projection FO — I9(M) is well defined by (wa)(7p) = m(ap), whereas
lifting 7°(M) — FO involves a choice of the one-parameter subgroup through &.
But then, if d7p = §, we obtain at least ap € Py, and with the torus action on
the fibre we obtain that orbits are just
FO ‘p= P[O(M)..,p.
If we denote the cohomogeneity for an “arbitrary” group action G x M — M
by
coh(M,G) := inf codimG - p,
PEM

we finally obtain
(2.9) coh (P, F?) = coh(M).



2.10. For trivial bundles the situation is much easier, even in a more general
setting:

Theorem. Let M, N be compact Riemannian manifolds. Then the homomor-
phism
x: [%(M) x I°(N) — I°(M x N), (a,b)—axb

i3 an isomorphism.

Proof. m and mw; are Riemannian submersions. First we show that every
Killing field X is projectable under m;: M x N — M. Let ¢ be a geodesic in
the fibre {m} x N. We have to show that dm; Xocis constant. Let u € T,, M
be fixed and look at the vector field

i#(m,n)=(x,0) on {m}xN.

Clearly
dm i = u, dmei =0, toc is parallel.

Consider the function
h(s) = (dm| Xoc,u) = {dmy Xoc,dm doc) = (Xoc,#oc).
Since Xoc is a Jacobi field, and @ oc is parallel,
h"(8) = (Re Xoc,t0c) =0

by the decomposition of the curvature tensor (dr2 ¢’ = 0, dr2 @ = 0). Hence
h(s) = as + b, but since |h(s)| < ||X||,|u| for all s, h is constant. This shows

IO(MXN)=F1=F1QF2,

where F) and F, are now the subgroups of I°(M x N) which preserve the fibres
of the submersions m; and m,. Hence the homomorphism

(m1,m): F1 N Fy = I°(M x N) — I°(M) x I°(N)
is defined, and clearly inverse to x. d

Remark. This shows I°(T) = T, which has been used above, for the product
metric. For any other biinvariant metric the isotropy group of any point must
preserve the harmonic forms d z;, and the result follows again.

Remark. A similar result holds if the manifolds are complete and simply
connected. Then effects like SO(2) C I° (R?) make the formulation slightly
more complicated. See [Ko-No 1, p. 240].



2.11 How exceptional is F # I°(P) ? Example 2.7 tells us, that F # I9(P)
should only happen in very special situations. E.g. in example 2.6 I°(P)/F is
a symmetric space (of type D III, see [Bes, p.312]). Additional, if I°(P) is
semisimple, I°(P)/F is homogeneous Kahlerian and algebraic [Bor, Thm 2].

But this knowledge does not help too much unless I°( P) is known. On S2,
m := f consists of horizontal Killing fields. With our simple minded methods
~ we can only show, that these make up an ad f-invariant subspace of i(P):

Theorem. Let m be the space of horizontal Killing fields. Then

(1) {i(P),t] Cm, (P)#f=m#0
(2) [f,m] C m, tLlm

If n 13 nondegenerate,
(3) fNm= {0}

Proof.  As before, Ly8 = —i,Q 4+ d68X is horizontal even for X € i(P).
Therefore, if U € t,

0= (Lyf) U= Ly8U-8[X,U].
N, s’

0

This shows the first part of (1). If X ¢ f = centralizer of t, choose an u € t
with [X, U] #0.
In order to prove (2),let X € f, Y € m. Then
6[X,Y]=L,(0Y)=0.
Now let X € fNm, Y be a basic field. Then
0=(Ly8) Y =8[X,Y]=QX,Y)=7(X,Y),

which proves (3). O
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3. Isometries of certain projective bundles

Now we come back to the metrics of Koiso and Sakane. We shall see that the
isometry group is simpler than in the case of Kaluza-Klein metrics, although
the metric is more complicated.

Observe that H!(M,R) = 0 holds (easy, cf. [Bes, 6.56]), and even that
m1(M) =1 (difficult, cf. [Bes, 11.26]).

3.1 i(P) = f. Due to the complex structure, we can show that i(P) = f.
Indeed, let X be an arbitrary Killing field on P. w is harmonic, hence

0=Lyw=(Lyg)(J, )+9(LxJ, )

which implies L, J = 0, i.e. X is holomorphic. Thus every isometry a € J° (P)
is holomorphic. Using the topology of I°(P) and Liouville’s theorem for the
holomorphic map

B, = By Ly&cm
N’ —

compact open

you see that F is also open in I°(P). This proof is due to Blanchard [Bla).

3.2 Remark. Since fibres are mapped to fibres by I° (}3), P is inhomogeneous.
This might have been observed earlier, since the fibres are totally geodesic [Ko-
No 2, p.60].

3.3 Properties. We consider the metric
g=n'g-Unr"B+U'{#,0 )¢

Let X be a (projectable) Killing field. By 1.6 we know that L, U = L, U’ =0.
Thus

(3.3) 0=Lyg=1"Leg—Un"LeB+U'({Ly8,8)+(8,Lx8)).

But furthermore, if we write V X as a linear combination of 1 and i, the coef-
ficient of 1 is zero. Since V X and i are Killing fields along the fibres, yXisa
constant multiple of i. Thus
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(0) 6X is constant along each fibre and in iR.

(1) Lifting two vectors Y, Z horizontally to v=1(0) and v~1(c0), evaluating
and solving for L ¢g and L ¢ B (remember that U takes values 1, U’ =
0 there) we find

Lgg=LgB =0, i.e. X is a Killing field that preserves B.

(2) and ...
(3) are as before (on P C P, where U’ > 0).

Thus X is projectable Killing iff
Lgg=0, LgB=0, Ly#=0, and LyU=L,U =0.

3.4 Existence. Let X be a Killing field on M. pV has constant trace and
thus is harmonic {Bes, 2.33]. Hence

LyB=Lgp"(,J)+p"(,LgJ)=0.
0

Again we find a function f: M — iR with ign = df. (Here n = ip"V, hence
again 2 = 7*7.) Once f is chosen, there is a unique lift X with 8X = =*f.
This is the desired Killing field.

3.5 Further properties. X = 0 implies f = const, hence ker 7 = Ri.
Let u and ji denote the volume forms. By (1.4a),

p=U'QU)r* A (Ref) A(Im8).
Again, product integration of

60X u=U'Q) =" (fi) A (Reb) A(Imf)

]Mf=0 = j;ex=o.

The Killing fields X with [ p0X = 0 form a complementary ideal to t as
before. In this sense, f = iR @ (M), and this splitting is compatible with the
biinvariant metric [, g(X,Y) on i(P). O

yields that

Remark. Obviously, R is the center of f = i(P), so i(P) cannot be semisimple.
Thus, the claim in [Bes, 11.55] is false. But [Bes, 8.88] again shows that P is
inhomogeneous. '
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3.6 Digression. Let X be a Killing field. Because of di3@ = L 4& = 0, there
is a so-called “moment map” ux satisfying dug = igw. X may be recovered
by p %, since w is nondegenerate. The moment map for the lifted Killing field X
is just

px =m"ug - Ur* (Im f),
where d(Im f) = i4p" is as before.

3.7 The cohomogeneity formula. Since F-p C v~!(v(p)), we look at
v~1(t). This is either 2 M, or a S'-bundle with Kaluza-Klein metric. By the
same proof as in 2.9 we obtain

coh(P) = coh(M) + 1.
3.8 Infinitesimal automorphisms. Let a(M) denote the Lie algebra of (real)
holomorphic vector fields. Koiso and Sakane use the well-known relationship
[Bes, 11.52]
a(M)=iM)® Ji(M)  (valid for Kdhler manifolds with p = w)

and some complex analysis to prove the cohomogeneity formula under further
assumptions (e.g., that M is a product manifold), see [Ko-Sa 2, prop. 6.3].

The other way round, the result of Matsushima quoted above and our

description of i(P) yield

a(P) = (M) @ Ri ® Ri.
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4. Examples

In order to give an example one “only” has to give a Hermitian holomorphic
line bundle over a Kahler-Einstein manifold (with p = &), such that

(a) the eigenvalues A; of the curvature form are constant in ]—1, 1 and

1
(b) /_ ST (1= Ais) ds =0

4.1. If (b) does not hold, the following trick will work: Look at

MxM-Z5M, Li=wL, Ly=njl*=m}(L7}).

Then .
L, has Eigenvalues A;,...,Anm, 0 ,..., 0
L, has Eigenvalues 0,..., 0 ,=A1,..., =2
Ly ® L, has Eigenvalues Ay,...,Am, =A1,..., —Am.

Hence (b) is satisfied.

Since the tautological bundle 7 — CP™ has all eigenvalues equal to — =L

D
L = 7% gives examples for 0 < k < m + 1. These were the first examples of
Koiso and Sakane.

4.2 Even-dimensional examples. Look at the special Milnor hypersurfaces
H:=Hpm:={l20:...:2m),[wo: ... wm]| Zz,-w,- =0} C CP™x CP™.

for m > 2. If (, ) denotes the Hermitian form on C™*!, the equation may
also be written as (z,@) = 0. SU(m + 1) acts transitively on H by

A'(z!w)= (Az’m)

since it does on the Stiefel manifold of unitary 2-frames.

Although compact homogeneous Kahler manifolds are well-known as ab-
stract manifolds [Bes, chap. 8], and Cz C ker( ,%W) clearly describes a flag
manifold, we continue with the description of this embedding. We will show
that the induced metric is an Einstein metric, and that the bundles L := L1 ® Lo
still yield examples when restricted to H.

I apologize for introducing local coordinates.

cCm = CP™



is a coordinate chart for CP™. The standard metric (with curvature between
1 and 4) is then given by

1 1 Y
05(w,v) = Re (@(u, v) - ﬁm(u,va,p))

with I(p) := 1+ |19|2 The Christoffel symbols are given by

Iy(w8) = =g (Yo + (.0))

(cf. (5.1a)). In the product coordinate system of CP™ x CP™

(Pog)— ([1:po:...:pm],[Ligo: - :qm])

the Milnor Hypersurface H is given by the equation

1+(p,q)=0.
Let f be the real part of this function. Then — at least on H and TH —

grad f(p,9) =( Ip)-p+7) , Ua)(~q+P))
D(u.u) grad f(pa Q) =(m("19 + E) + l(p)ﬁ, e )

Now let us describe the embedding in terms of the unit normal vector field

N :=grad f/|grad f|

and the shape operator
(u,v) — Y D(u’u)N,

where V denotes the orthogonal projection onto T'H. When computing [grad f|,
observe that each component of grad f has

|(grad £)il* = 1(p)i(q)-

Since H is homogeneous, it is sufficient to calculate the Ricci tensor at one
point, e.g. at
(p,q) = (e,—e)  with e=(1,0,...,0).

Now, for any complex hypersurface M in a Kéhler manifold M the Ricci en-
domorphism is )
r=7+VR(N,JN)J -28%

15



where each endomorphism above is symmetric and does not depend on the
choice of N.(Confer 5.5f.) )

Now let CP™ x CP™ be denoted by M. With the above information
about § = VDN and the well-known curvature tensor of CP™ [e.g. Kar,
6.4.2] you may verify the following eigenvectors and eigenvalues:

eigenvector eigenvalue of —252 eigenvalue of Ry (N,JN)J
(e,€) 0 -2
(te,ie) 0 -2
{ui=v =0} -1 -1
Since r; has eigenvalues 2m + 2, we see that
TH=2mg= 3205 Ty

Now consider the bundle L|H, where
L=mnir~F@mrk.
The curvature of L on M is given by
B(u,v) = g{a x (—a)u,v) .

Here o = k/(m + 1) is a number between 0 and 1, and a x (—a) denotes the
endomorphism field

ax (—a)(u) = a x (—a)(u,u2) = (ou1, —aug).

Since By is just B restricted to T H, the calculation of its eigenvalues becomes
a problem of linear algebra: The endomorphism associated to By is just

V(a x (—a))|TH.

Since the components of the unit normal vector N = (N, N2) have equal length,
(N1,—N3) € TH. Therefore By has the following eigenspaces and eigenvalues:

eigenspace dim¢ eigenvalue
C (N1,N2) 1 0
{(v,v)eTH|v=0} m-1 o
{(v,v)€TH|u=0} m-1 -

Remember that these eigenvalues are w.r.t. the metric 7. Hence By has
eigenvalues +k/m w.r.t. the metric ry. Thus we obtain new examples, if 0 <
k< m.

Remark.  H is irreducible by theorems of Hano and Matsushima [Ha-Ma,
Thm 4, Thm 5]. Therefore these even-dimensional examples are also irreducible
[Ko-Sa 1, 5.6].

16



4.3 Further examples. Koiso and Sakane developed a method to construct
suitable bundles over homogeneous Kahler manifolds [Ko-Sa 2]. I did not check
whether the above examples are easier understood in their description.

4.4 Higher cohomogeneity. Since a large part of this paper is devoted to
the calculation of cohomogeneity, there should be given some examples with
large cohomogeneity. There are two ideas:

(a) Let M, be of cohomogeneity 1. Then My x ... x M is of cohomogeneity d
d

by 2.10.

. . cpP? CP! CP! .
(b) Iteration gives My — ... — M; =—— My, where M; is of cohomogene-

ity 1.

Unfortunately, (a) is too silly, while (2) cannot be carried out, since you
loose control over the holomorphic vector bundles over the more and more
complicated M;.

Fortunately, at least the tautological bundle of a projective bundle is well
understood. Take for example M; = P — CP™ x CP™, where L is as in 4.1
with 0 <k<m+1. Let E=1@ L. Then

M) = P x¢. CP!
=P xge P(COHC) = P(Pxce (CHCO))
= P(E)
is a projective bundle, and
Ky, =7 (Ky @det(E*)) ® TEz

by the dualization of [Gri, (2.38)]. (Remark —2 = —rank E, check the cor-
rectness of the sign by the assumption M = {p}.)
Let g = c1(7~!) € H2(CP™, Z) be the generator. Now

ci(My) = ¢y (Kp,) = 7% (c1(M) + c1(E®)) = 21 (7E) .
Since M and E* are direct sums, by standard calculations,
&1 (My) = 7 (7 (m + 1= K)g) + 73 ((m + 14 k)g) ) - 2e1 (7).
Thus, for 0 < m + 1 — k even, the bundle
Ly:=7" (TTIH(m+1—k)I2 ® WSH(m+1+k)/2) ® TE—:l
has [pV] = [pm,] on the cohomology level. But, by [Bes, 2.110], you can
modify a chosen fibre metric k on L; to obtain also p¥ = %PM“ as follows:
if pV(h) — 1p=dd°®, then hy :=¢?®h has pV(h;) = 1p.

These building blocks are due to Koiso and Sakane and may be used to con-
struct manifolds of arbitrary cohomogeneity (with large dimensions, of course).
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FEzample. Let

My= M x...x M, (I copies)
Ly =701 ®@...Q m[ Ly,

and perform the trick described in 4.1. Then coh(P) = 2! + 1.

Ezample. Build up your example from

L, - M, [ times (I2>1)
LT = M (1 = 1) times
r(dim M1+1}/2 _, ¢ pdim M, 1 times

to obtain each eigenvalue £1/2 (I 4 1) times on

Mix- o %X My x My x -+ x M xCpdimM

o '

{ =1

Then coh(P) = 2l + 2.

Remark. Thus there are positive Kahler-Einstein manifolds with arbitrary
cohomogeineity. Since the smallest dimension of M; is dimg M; = 10, the

quotient
coh /dimg

is asymptotically < 1/10. Therefore one should mention, that there are also
completely different positive Kabler-Einstein manifolds with finite isometry

group due to Tian [Tial.

4.5 Final Remark. Up to now, all known examples have even polynomial @,

and therefore trace B = (.
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5. Appendix

Here are some short proofs for well-known facts.

5.1 Proposition. Let M be a compler manifold with Hermitian metric. In a
complex coordinate chart the following conditions are equivalent

(a) The Christoffel tensor I'(X,Y) = Dy Y — 04Y is linear over C (in the
second argument)

(b) DJ =0 (the metric is a Kahler metric)
(c) dw =10 (the Kahler form is closed).

Here O denotes the local connection of the chart.

Remark. (c)=(b) is often pretended to be “delicate”, e.g. by [Bes, 2.29].

Proof.
(a) = (b)
Dx JY =0x JY + I'(X, JY)
= JOxY + JI(X,Y) = JDxY

(b) = (c) DJ=0 = Dw =0 = dw = 0.
(c) = (a) Here we use the well-known formula for 2¢g(X,T'(Y, Z)) twice:

29(X,I(Y,J2)) + 29(JX, I(Y, 2))
"3,])(5' (Y, 2) +8Yg (Z,JX) +azg (JX,Y)
-8, 3w (Y, JZ)=Byw (JZ, JX )+0,w (X, Y)
=0,

since each cyclic sum of dw over (X,Y,Z) and (JX,Y,JZ)
yields 0.

5.2 Proposition (cf. [Ko-No 2, p.59]). Let M be a totally geodesic submanifold
of a Riemannian manifold M, X be a Killing field on M. Then the tangential
component V X is a Killing field on M.
Proof. Let c be a geodesic in M (and M). Then

(Do VX,d)=dy(VX,d)=d (X, c) = <ﬁdX,c’> =0. 0
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5.3 Ricci curvature of complex hypersurfaces. Let (M, (, )) be a Kahler

manifold and M C M be a complex submanifold of real codimension 2. By the
last proposition, M is a Kahler manifold. Figuratively spoken, the following
computation of the Ricci curvature of M lies somewhere between [Ko-No 2]
(arbitrary codimension) and [Smy], [No-Sm] (who assume M to be a complex
space form and are therefore led to inappropriate proofs).

5.4. Let us start with a unit normal vector field N. Then

Su:=yV DN
is the corresponding shape operator, and
b(u,v) := (Su,v)

is the correscponding second fundamental form.

Since Ny := JN is another unit normal vector field, we get another set of
data Ns, S5, and by. We show

Sy =J8S=-=-8J,
b(Ju, Jv) = —b(u,v).
Proof.

(Sau,v) = (DuJN,v) = (JSu,v), alsoSy=JS.
Sy =83 =8(-J)
b(Ju, Jv) = (SJu,v) = =(JS u, Jv) = —b(u,v).
O

5.5 Lemma. —-52 and traceS = 0 do not depend on the choice of N.

Proof. Let N be another unit normal vectorfield. There are real-valued
functions a; and a2, such that

~

N=a N+aJN and al+ai=1.

Hence
S u= V(DUN)

=a1S-u+aJS-u

and
5% = 4252 + 610,578 + azay J5 5+ a2 J8 IS
=-5J -SJ

= S2.

Finally, trace S = (=JS82,id) = (S,,J) = 0. O
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Remark. N A JN does not depend on the choice of N. The matrix of S
is diag (A1, —A1,..., Am, —=Am) with respect to a suitable adapted orthonormal
frame e, Jei,...,em,Jem .

5.6. Now we express 7 in terms of r, ﬁ, and S. Remember the Gauf equation

R(u,v,w,t) = R(u,v,w,t) +{Su, w)(Sv,t) —(Su,t)(Sv,w)
+{Sau, w){Sav, t) —(Sau, t){Szv, w)
Let e;,...,esm be an orthonormal frame on TM. Add N,JN in order to

obtain an orthonormal frame of TM |M. By contraction over ey,...,eam , the
first term R(u,v,w,t) yields

#(u,w) — R(u, Nyw, N) — R(u, JN,w, JN).

By the symmetries of the curvature tensor of a Kahler manifold, and by the
algebraic Jacobi identity, this may be simplified to

#(u,w) — R(u, Jw, N, JN).
The other terms yield

Z((Su,w)(Se,‘,ei) ~ (Su,e)(Sei, w)) = (Su, w)trace S — (Su, Sw)

= (—5%u,w) = (=Szu,w).

Therefore
r(u,v) = #(u,v) = R(u,Ju, N, JN) - 2g(5%u,v),
or, as endomorphisms of TM
r = F+YVR(N,JN)J-25%

where each endomorphism above is symmetric and does not depend on the
choice of N.
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