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The Geometry af same Kähler-Einstein manifalds

Thomas Kakolewski

O. Introduction

This paper is an analysis of the geometry of some compact, inhomogeneous
Kähler-Einstein manifolds with Cl (M) > O. More preciseIy, I look at those
examples of Koiso and Sakane, whieh are Cpl-bundles, describe their isometry
groups, and add same more explicit examples of cohomogeneity one.

0.1. In ehapter 1, I give a description of the metries of Koiso and Sakane in the
terminology of principal bundles and connections. Proofs are only indicated,
but I hope that the reader ,may find this description easy to understand never
theless. The proof of inhomogeneity depends on the basic curvature calculation
at the end of this chapter.

0.2. It has turned out that the computation of (infinitesimal) isometries is
easier to survey if you look at Kaluza-Klein metrics first. This is done in
chapter 2.

0.3. In chapter 3 I prove that the cohomogeneity formula

eoh(P) =coh(M) + 1

holds without any further assumptions.

0.4. In chapter 4 I give some (perhaps new) cohomogeneity l-examples in
every even dimension ~ 4. For completeness I include manifolds of higher
cohomogeneity, which are essentially due to Koiso and Sakane.

0.5. There is an appendix with short proofs for well-known facts, e.g. for
"Kählerform closed implies Kähler".

Some of the results stated here already appear in my Diplomarbeit written
at the University of Bonn under the supervision of Prof. Hermann Kareher.
I wrote this paper while being at the Max-Planek-Insititut für Mathematik
in Bann.
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1. The metrics of Koiso and Sakane

1.1 Notation. Dur notation is an extension of the one in [Bes, Chap. 2].
Let L~ M be a Hermitian holomorphic line bundle over a Kähler-Einstein
manifold with cl(M) > O. Hence we may assume the Einstein condition on M
to be r = g. We denote the (real-valued) norm function on L by

v(l) = Jh(f;T) ·

The principal C· -bundle corresponding to L ia just

P = L \ {zero-section},

the ehern eonneetion ia
8 = d'log 11

2
,

and its eurvature (form) is given by

where pV ia a form of type (1,1) on M representing the ehern dass of L up to
the factor 2~' We assume that the eorresponding symmetrie tensor field

B(u,v) = pV(u,Jv)

has eonstant eigenvalues in ]-1, 1[ w.r.t. g: To exdude the trivial bundle we
assume that B 1= o.

1.2. We are looking for "natural" metrics on P. In the situation at hand it is
natural to eonsider the s<rcalled Kaluza-Klein meine

g(u, v) = 1r.g(u, v) + {(Ju, Bv}c'

The following facts are well-known:

(a) P~ lvI ia a Riemannian submersion and the horizontal distributions far
the connection and the submersion coincide; especially

(a') 11. 1.. V, where V = kerd1r, 11. = kerB.

(b) The 8-parallel displacement on P is isometrieal, heuee all fibres are iso
metrie and totally geodesie, cf. [Vil, 3.5].

(c) C· acta isometrically on the right P x C· ~ P.
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1.3. Unfortunately the Kaluza-Klein metric will never be Kähler, and by
Myer's theorem no metric with r = 9 on P will be complete. So we are
interested in metrics that may be continuated to the compactification

p = p x~. C.

Clearly, the isometry group will then be compact.

Claim. The metnes 9 on P satisfying

(a') as aoove

(b) as above

(c) SI C C* aets isometrieally P x SI -+ P

(d) 9 is Hermitian

(e) dw=O.

are all given by
9 = 'fr*g - U1r*B + U'{fJ,8).

Here 9 is Kähler, U: P -+ IR ia a funetion, U' = di U is its derivative, and

U' > O. i and i denote the fundamental fields generated by 1 and i E C, the
Lie algebra of C*.

"Proof". Check the conditions in the order they are listed. When you check
(e), compute dw on vectors which are ba..sic or fundamental. Then use:

Let X, Y be basic and U, V be fundamental. Then

[U, V] = [X, V] =0
8[X, y] = O(X, Y), 1-l[X, Y] is basic.

o
Furthermore U satisfies

(1.3) ('fiX E 11.)

and therefore depends only, on the R+-factor in the decomposition

P = 1I-1(1) X R+

given by the norm function. Additional, Ulv- l (l) = O. For functions with
(1.3), differential equations involving I become ODEs when you choose the
coordinate log v on the R+-factar. Hence there is a function F with F' = U,
and one cao show that

W = 1r*w + ddcF.
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1.4. The Rieci eurvature is intimately related to the volume form jJ., see [Bes,
2.100 f]. Here

J.L = Q(U) 7l'* jL 1\ U' (Re 9) 1\ (Im 9)
(1.4a)

= U'Q(U) 7r* ji. /\ wc(8 ,9 ),

where Q(s) is the polynomial
m

Q(s) = II (1 - AiS),
i=1

m = dimcM,

Le. Q(s) is just (det[i(g - sB)) 1/2 w.r.t. g.
The Einstein eondition (r = g) reduees to

(1.4b) T =!J and 2U + (log U'Q(u))' = D.

This ODE implies

Ulv-1(1) = -1, Ulv-1(l) = 1

[I sQ(s) ds = O.
1-1

The ODE (lAb) may be iIitegrated onee to obtain

-2 f~l TQ(T) dT
U' = (1 - U

2
) 1/J(u) with 1/1(s) = (1 _ s2) Q(s)

1.5. This and the function

v2 - 1 1 - 1/v2
y.- --~~

.- v2 + 1 - 1 +1/v2

aB a better eoordinate for the R+-factor helps to show the regularity of 9 near
the "poles" v-l(D) and 1I-1(oo).

Sketch 0/ the proo/. The proof ean be divided. into several steps:

1) Y satisfies V' = 1 - y2.

2) gv = Jr*Y - V7r* B + V'(9 ,9 ) does exist on P and is regular.

3) Write U =: u 0 V. Then u: [-1, 1] -+ [-1,1] is regular.

4) Wu =Wv + dd~(F 0 V) for F(s) = J~1 uf~;;tdt 0
9tJ induees the standard metrie on the fibres t = 8 2, with V aB the standard
height funetion. Using this V and its volume form similar to (1.4a.) and per-
forming the produet integration, you see that the eondition J~1 sQ(s) ds = D
is equivalent to the vanishing of Futaki's functional.
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1.6. The function U ia a moment map for the Si-action (i.e. i - J gra.d U), and
hence ~U = 2U, [Lic, Cor. in sec. 96], [Bes, 11.52]. Indeed, under conditions
(a') to (e) in 1.3, (1.4b) is equivalent to

r = 9 and ~U = 2U.

This equation also helps you to find unit vectors X E 11, W E V on v- l (O),
such that K(X, W) < O. Thus none of these metrics has positive sectional
curvature.

By direct computation, the curvature ·of the fibres is given by

( 1U")'/K (t, i) = -'2U' U',

which is never constant. Indeed, if it were constant, curvature would be 1 by
Gauß-Bonnet. Then you might {multiply by U' and integrate} twice to obtain

U2 +U' = elU +C2.

But the constants may be 4etermined by the values of U and U' on v-i (0) and
v-1(00). We obtain

U' = 1- U2
, l.e. 'ljJ =1.

Hence Q =1 and B =O. But this was excluded from the very beginning. Hence
the fibres are inhomogeneous. Looking at the principal orbits, we see that the
height function U must he preserved hy isometries (hecause otherwise we could
use the 8-parallel displacement and the Si-action to construct 2-dimensionaJ.
orbits in the fibres, hut these have cohomogeneity at most one).
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2. Isometries of torus bundles

In ehapter 3 we will deseribe the orbits under the eonnected isometry group
JÜ(P) in terms of JÜ(M). Remember that the cohomogeneity of a. Riema.nnian
manifold may be defined as

coh(M) = inf codim fJ (M) . p,
pEM

and similarly for other Lie group operations on a differentiable manifold. The
Lie algebra of the isometry group I(M) ia the Lie algebra i(M) of Killing fields,
whieh are eharacterized by L x9 = Q. Let ua first eonsider the simpler ease of
a Kaluza-Klein metrie on a principal torus bundle.

2.1. Let

(M,g) be a Riemannian manifold with H 1(M, R) = 0,
P ---t M be a prineipal torus bundle with fibre T,

( , )t be ametrie on T (biinvariant, of course),

obe a prineipal connection with eurvature form

n = -dO = 'Fr • ." (such an TJ does exist),

7] be harmonie.,

These manifolds oeeur "in reallife", cf. [Wa-Zi]. Consider the Kaluza-Klein
metrie

9 = 1r.g+ (0,0 )t.

We are interested in the elosed subgroup F c JO(?) of isometries mapping
fibres to fibres and ita Lie algebra f of projectable Killing fields.

2.2 Properties. Let X be a projectable Killing field, and X its projection.
Then

(2.2) 0 = Lxg = 'Fr. Lx9+ (LxO, O)t + (0, LxO )t'

The horizontal part 1-l X ia deseribed by X, and the vertieal part V X may be
deseribed by the funetion fJX: P ~ t. Sinee V X is Killing along each fibre
(see 5.2) and i(T) =t,

(0) OX is constant along each fibre.

(1) Eva!nation of (2.2) on 2 horizontal vectors yields Lx9 = 0, Le. X ia
Killing.

(2) Evaluation of Y e 7{, V E V yields Lx 8(Y) = 0, i.e. LxO ia vertieal.

(3) But LxO = i xdlJ +dixB = -ixO +d8X is also horizontal by (0).

Thua X ia projectable Killing iff Lx9 = 0 and Lx8 = O.
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2..3 Existence.. Let X be a Killing field on M. Find a Lift X with

Lx 8 = -ixO + d8X = O.

Hy (0), there must be a funetion f: M --+ t with 8X = 71'". f. So our eondition
becomes

1r. (ix1]) = ixO = d8X = 1r·df.

Sinee 1] is harmonie, dix1] = L j(1] = 0, so there is an f with i j('7 = df· Onee f
ia chosen, there is a unique lift X with 8X = 1r.,. This is the desired Killing
field.

2..4 Further properties.. X = 0 implies f = eonst, henee ker1r = t. The
Killing fields X with

Lf = 0 ({=} t 9X = 0)

form another ideal of f, whieh is clearly eomplementary to t:
Let Y be such a field. Then

Lx 8Y - 8[X, Y] = Lx 8. Y = 0

and t 9[X,Yj =t Lx 9Y =t 9Y = 0

by the very definition of the Lie derivative. In this sense, f = t EBi(M), and this
splitting ia eompatible with the biinvariant metrie Jp g(X, Y) on i(P). 0

Remark. Indeed, for any eompact Lie group with biinvariant metrie

g = z EB z.l. = z EB [g, g),
where z ia the centre of g. [Bes, 11.53], [Hel, p. 132].

2.5 F in terms of T c-+ JO(M). For any Riemannian submersion, P ...!.... M
induees a homomorphism

1r: F -jo fJ (M), given by (1ra) (1rp) =1r(ap).
Thus ker1r ia anormal subgroup of F, and so is T = (ker1r)O. So we define a
homomorphisID

F --+ Aut(T) by

cjJ ~ (a ~ cjJa4>-l) .
Observe that F ia compact and Aut(T) is discrete. By the latter,

4J E jitO ===> 4J E fJ(M) and </Ja = a4J 'Va E fJ(P).

Thus
FJ is the centralizer ofT in JO(P),

sinee the latter is connected (cf. [Hel, p.287] or [Bes, 8.19]).

Remark. F is the normalizer 0/ T in JO (P).
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2.6 Example. Let T ~ P -+ M be the Hopf fibration SI -+ s2m+l -+ cpm,
with the standard metrics. Then JO(M) = PSU(m + 1). Choose 8 = (ip, ).
Then 'fJ ia a multiple of the Kähler form and JO(P) = SO(2m + 2).

Looking at (a 1-+ </>acP-1) with a = i we see that

pO ={4> I cPa = acP } = U(m + 1), and

F ia generated by FO and complex conjugation.

Let A E u(m + 1), and X(P) = Ap be the correaponding Killing field. Then

f 8X = - f (Aip, p) = - vol(s2m+l) tracell Ai = 0
} P }S'Jm+l

{::::> A E su(m + 1). ,

2.7 Example. Same situation aB above, but now choose (u, v)t = r? .uv with
o < c < 1, obtaining aBerger sphere. If c is small enough, the fibres are
shortest simply cl08ed geodesics (Wa-Zi, chap.3], and are therefore mapped to
fibres. Thus,

fJ(P) = F = U(m + 1).
(See also [Bes, 7.13].)

2.8 Moral. Example 2.6 shows that F i= JO(P) in general. Furthermore
pO and JO(M) x T are only related up to the finite coverings

SU(m+1)xS l
---+ G ~ PSU(m+1)xS1

,

where Gstands for U(m + 1) resp. PSU(m + 1) X SI, and the arrows denote
the obvious covering maps.

2.9 A cohomogeneity formula. Still the knowledge of Killing fields is suffi
cient to calculate the orbits of FJ: The isometries in question are members of
one-parameter subgroups, and these are projected and lifted by

f ~ i(M) ~ i(M) ffit~ f.

The projection FO ...!.... JO{M) is weIl defined by C1ra)(1t'p) = 1r(ap) , whereas
lifting JO{M) ~ pO involves a choice of the one-parameter subgroup through a.
But then, if atrp = ij, we obtain at least ap E P4' and with the torus action on
the fibre we obtain that orbits are just

FJ .p = P10(M)-"p'

If we denote the cohomogeneity for an "arbitrary" group action G x M -+ M
by

coh(M,G):= inf codimG· p,
pEM

we finally obtain

(2.9) coh (P, pO) = coh(M).
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2.10. For trivial bundles the situation is much easier, even in a more general
setting:

Theorem. Let M, N be compact Riemannian manilo/ds. Then the homomor
phism

X: JÜ(M) X fJ(N) ----+ fJ(M x N), (a, b) .-+ a x b

is an isomorphism.

Praof. 1rl and 1r2 are Riemannian submersions. First we show that every
Killing field X ia projectable under 1rl: M x N --+ M. Let c be a geodesie in
the fibre im} x N. We have to ahow that d1rl Xoc is constant. Let u E TmM
be fixed and look at the vector field

ü(m, n) = (u,O) on im} x N.

Clearly
üoc is parallel.

Consider the function

h(s) = (d1rlXOC,U) = (d1rlXOc,dtrl üoc) = (Xoc,üoc).

Sinee Xoc ia a Jacobi field, and üoc ia parallel,

h"(s) = (Re! Xoc, üoc) = 0

by the deeomposition of the eurvature tensor (d1r2 d = 0, d1r211 = 0). Henee
h(s) = as + b, but since Ih(s)1 :5 IIXIloolul for all s, h is eonatant. Thia shows

fJ(M x N) = F1 = Fl n F2'

where F1 and F2 are now the subgroups of JO(M x N) which preserve the fibres
of the submersions trI and 1r2. Hence the homomorphism

is defined, and clearly inverse to x. o
Remark. This shows JÜ(T) = T, which has been used above, for the product
metric. For any other biinvariant metrie the isotropy group of any point mllSt
preserve the harmonie forms dXi, and the result follows again.

Remark. A similar result holds if the manifolds are complete and aimply
connected. Then effects like 80(2) C [0 (R2 ) make the formulation slightly
more complicated. See [Ko-No 1, p. 240].
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2.11 How exceptional is F:F IO(P) '! Example 2.7 teIls us, that F :F IO(p)
should only happen in very special situations. E.g. in example 2.6 IO(p)/F is
asymmetrie space (of type DIll, see [Bes, p.312]). Additional, if JO(P) is
semisimple, fJ(P)/F is homogeneous Kählerian and algebraic [Bor, Thm 2].

But this knowledge does not help too much unlesa fJ(P) is known. On 8 3 ,

m := f.l consists of horizontal Killing fields. With our simple minded methods
we can only show, that these make up an ad f-invariant subspace of i(P):

Theorem. Let m be the space 01 horizontal Killing fields. Then

(1) [i(P), t] C m,

(2) [f, m] c m,
11 1] is nondegenemte,

(3) f nm = {O}

i(P):Ff~m:FO

t 1. m

Proof. As before, 'Lx8 = -ixO + d (JX is horizontal even for X E i(P).
Therefore, if U E t,

0= (Lx 8)' U = L x 8U -8[X,U].
~

o

This shows the first part of (1). Ir X ~ f = centralizer of t, choose an u E t
with [X, U] =1= o.

In order to prove (2), let X E f, Y E m. Then

8[X, Y] = L x (8Y) = O.

Now let X E f n m, Y be abasie field. Then

0= (Lx 8). Y = 8[X, y] =O(X, Y) = 1] (X,Y),

which proves (3).

10
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3. Isometries of certain projective bundles

Now we come back to the metries of Koiso and Sakane. We shall see that the
isometry group ie simpler than in the case of Kaluza-Klein metrics, although
the metric is more complicated.

Observe that H1(M, R) = 0 holds (easy, cf. [Bes, 6.56]), and even that
1rl(M) = 1 (difficult, cf. [Bes, 11.26]).

3.1 i(P) = f. Due to the complex structure, we can show that i(P) = f.
Indeed, let X be an arbitrary Killing field on P. w is harmonie, hence

which implies LxJ = 0, Le. X is holomorphic. Thus every isometry a E JO(P)
ia holomorphic. Using the topology of JO(p) and Liouville'a theorem for the
holomorphie map

Px
~

compact

a D 1r U chan cm
~ ru --+ +-----+
~
open

you see that F is also open in JO(P). This proof is due to Blanchard [Bla].
. 0

3.2 Remark. Since fibrea are mapped to fibres by JO(P), P ia inhomogeneous.
Thia might have been observed earlier, since the fibres are totally geodesie [Ko
No 2, p.60].

3.3 Properties. We consider the metric

9 = 1r*9 - U 7r*B + U' (8 ,9 )c

Let X be a (projectable) Killing field. By 1.6 we know that L xU = LxU' = O.
Thus

But furthermore, if we write V X as a linear combination of i and i, the coef
ficient of i ia zero. Since V X and i are Killing fields along the fibres, V X ia a
constant multiple of 1. Thua

11



(0) 8X ia constant along each fibre and in iR.
(1) Lifting two vectors Y, t horizontally to v -1 (O) and v -1 (00), evaluating

and solving for Lx 9 and LxB (remember that U takes valuea ±l, U' =
othere) we find

L X9= LxB = 0, Le. X iE! a Killing field that preserves B.

(2) and ...

(3) are aB before (on PCP, where U' > 0).

Thua X ia projectable Killing iff

Lx9 =0, LxB =0, Lx 8 =0, and LxU =LxU' =0.

3.4 Existence. Let X be a Killing field on M. pv has constant trace and
thus is harmonie [Bes, 2.33]. Henee

LxB = Lxp'V{ ,J) + p'V (,LxJ) = O.
~

o

Again we find a function f: M ---+ ilFl with i x'TJ = df. (Here 1] = ipv, henee
again n = 1r·Tf.) Onee / is chosen, there is a unique lift X with 8X = 7r. f.
This ia the desired Killing field.

3.5 Further properties. X = 0 implies / = eonst, hence ker 11" = tRi.
Let J1. and jJ. denote the volume forms. Hy (1.4a),

J1. = U'Q{U) tr'" jJ 1\ (Re 8) " (Im 9).

Again, produet integration of

8X J1. = U'Q(U) 11"'" (/{l) 1\ (Re 8) 1\ (Im 8)

yields that

JMf=O <=> hex=o.
The Killing fields X with fp 8X = 0 form a complementary ideal to t as
before. In this sense, f = iR EB i(M), and thia splitting ia eompatible with the
biinvariant metric fp g(X, Y) on i(P). 0

Remark. Obviously, IR ia the center of f = i(P), so i{P) cannot be semisimple.
Thua, the claim in [Bes, 11.55] ia false. But [Bes, 8.88] again showa that P is
inhomogeneoua.
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3.6 Digression. Let X be a Killing field. Because of d i XW = LXW = 0, there
ia a so-called "moment map" p.X satisfying dp.x = i XW. X may be recovered
by J.Lx' since w ia nondegenerate. The moment map for the lifted Killing field X
ia just

P.x = 'Fr. P.X - ~1r. (Im f) ,

where d (Im f) = i xpv ia as before.

3.7 The cohomogeneity formula. Since F· p C v- 1 (v(P)}, we look at
v-1(t). Thia ia either ~ M, or a Si-bundle with Kaluza-Klein metric. By the
same proof aB in 2.9 we abtain

coh(F) = coh(M) + 1.

3.8lnflnitesimal automorphisms. Let a(M) denote the Lie algebra of (real)
holomorphic vector fielda. Koiso and Sakane use the well-known relationship
[Bes, 11.52]

a(M) = i(M) EB Ji(M) (valid for Kähler manifolds with p =w)

and same complex analysis to prove the cohomogeneity formula under further
asaumptiona (e.g., that M ia a product manifold), see [Ko-Sa 2, prop. 6.3].

The other way round, the result of Matsushima quoted above and our
description of i(P) yield

a(P) = a(M) EB IRi ffi Ri

13



4. Examples

In order to give an example one "only" has to give a Hermitian holomorphic
line bundle over a Kä.hler-Einatein manifold (with P= w), such that

(a) the eigenvalues Ai of the curvature form are constant in ]-1, I[ and

(b) 11
Srr:1 (1 - AiS) ds = O.

-1

4.1. If (b) does not hold, the following trick will work: Look at

MxM~M,

Then
LI has Eigenvalues

L2 has Eigenvalues

LI ® L2 has Eigenvalues

Hence (b) is aatisfied.

Al , , Am, 0 , , 0

o , , 0 ,-Al, , -Am

Al , , Am , -At, , -Am'

Since the tautological bundle T ---+ cpm haB all eigenvalues equal to - m~l'

L = r k gives examples for' 0 < k < m + 1. These were the first examples of
Koiso and Sakane.

4.2 Even-dimensional examples. Look at the special Milnor hypersurfaces

H := Hmm := { [zo : ... : zm], [wo: ... : wm ] IL ZiWi = 0 } C Cpm X cpm.

for m ~ 2. If ( , ) denotes the Hermitian form on Cm+1 , the equation may
also be written as (z, w) = o. SU(m + 1) acta tranaitively on H by

A . (z, w) = (Az, Aw) ,

since it does on the Stiefel manifold of unitary 2-frames.
Although compact homogeneous Kähler ma.nifolds are well-known as ab

stract manifolds [Bes, chap. 8], and Cz C ker ( ,w) clearly describes a Hag
ma.nifold, we continue with the description of this embedding. We will show
that the induced metric is an Einstein metric, and that the bundles L := L 1®L2

still yield exampIes when restricted to H.
I apologize for introducing local coordinates.

cm -l> cpm

P t-+ [1 : Po : ... : Pm]

14



is a eoordinate chart for cpm. The standard metrie (with curvature between
1 and 4) is then given by

( 1 1-)gp(u,v) =Re 1(P)(u,v) - 12(p)(U,p)(v,p)

with I(p) := 1 + 1P12
. The Christoffel symbols are given by

1rp (u, v) = - I (P) ( u, p )v + (v, P)u)

(cf. (5.1a)). In the product coordinate system of Cpm x Cpm

(p, q) t---4 ([1 : Po : ... : Pm], [1 : qo : ... : qmD

the Milnor Hypersurface H is given by the equation

1+ (p, q) = O.

Let 1 be the real part of this funetion. Then - at least on H and T H -

grad f(P, q) =( l(p)(-p + q) ,l(q)(-q + p))

D(tA,tI) grad f(p, q) =( u,p )(-p +q) + I (p)v, )

Now let us describe the embedding in terms of the unit normal vector field

N := grad f jlgrad I1

and the shape operator
(u, v)~ V D(tA1tl)N,

where V denotes the orthogonal projection onto T H. When computing Igrad 11,
observe that each component 0/ grad / has

I(grad l)d2 = l(p)l(q).

Since H is homogeneous, it is Bufficient to calculate the Ricci tensor at one
point, e.g. at

(p, q) = (e, -e) with e = (1,0, ... ,0).

r = r + V R(N, JN)J - 282
,

Now, for any complex hyperaurface M in a Kähler manifold M the Rieci en
domorphism is

15



where each endomorphiam above ia symmetrie and does not depend on the
ehoice of N.(Confer 5.5f.)

Now let cpm x cpm be denoted by M. With the above information
about S = V DN and the well-known eurvature tensor of cpm [e.g. Kar,
6.4.2] you may verify the following eigenvectors and eigenvalues:

eigenvector eigenvalue of -282 eigenvalue of Rfj(N, J N)J

(e,e) 0 -2

(ie, ie) 0 -2

{ Ul = VI = 0 } -1 -1

Since r M haB eigenvalues 2m + 2, we see that

rH = 2m 9 = 2~';2 TM'

Now consider the bundle LIH, where

L • -k i<:>I Je=1t"I T \CI1I"2 T •

The curvature of L on M ia given by

B(u, v) = g(O' X (-a)u,v) .

Here a = k/ (m + 1) ia a n~ber between 0 and 1, and a x (-0') denotes the
endomorphism field

Cl' x (-a)(u) = 0' X(-O')(UI, U2) = (O'UI, -au2).

Since BH is just B restricted to T H, the calculation of its eigenvalues becomes
a problem of linear algebra: The endomorphism aBsociated to BH is just

V(a x (-er)) ITH.

Since the components of the unit normal vector N = (Nl , N2 ) have equallength,
(NI, - N2) E T H, Therefore BH has the following eigenspaces and eigenvalues:

eigenspace dime eigenvalue

C (NI,N2) 1 0

{ (u, v) E T H Iv = 0 } m - 1 0'

{ (u, v) E T H Iu = 0 } m - 1 -0'

Remember that these eigenvalues are w.r.t. the metric TM' Hence BH haB
eigenvaluea ±k/m w.r.t. the metric rHo Thua we obtain new examples, if 0 <
k <mo

Remark. H ia irreducible by theorems of Hano and Matsushima [Ha-Ma,
Thm 4, Thm 5]. Therefore these even-dimensional examplea are also irreducible
[Ko-Sa 1, 5.6].
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4.3 Further examples. Koiao and Sakane developed a method to construct
auitable bundles over homogeneoua Kä.hler manifolda [Ko-Sa 2]. I did not check
whether the above examples are easier understood in their description.

4.4 Higher cohomogeneity. Since 80 large part of this paper ia devoted to
the calculation of cohomogeneity, there should be given some examples with
large cohomogeneity. There are two ideas:

(80) Let MI be of cohomogeneity 1. Then MI x ... XMI ia of cohomogeneity d
, v '

d
by 2.10.

Cpl Cpl Cpl
(b) Iteration gives Md ---+ .•• --+ MI ---+ Mo, where Mi is of cohomogene-

ity i.

Unfortunately, (80) is too silly, while (2) cannot be carried out, since you
loose control over the holomorphic vector bundles over the more and more
complicated Mi.

Fortunately, at le88t the tautological bundle of So projective bundle is weIl
understood. Take for example MI = P~ cpm X cpm, where L ia aB in 4.1
with 0 < k < m + 1. Let E = 1 G1 L. Then

MI = P XC. Cpl

= P XC. P(C ffi C) = P(P xc. (C ffi C))

=P(E)
is a projective bundle, and

KM l = 1r* (KM t2S'det(E*)) ~ T"E
2

by the dualization of [Gri, (2.38)]. (Remark: -2 = - rank E, check the cor
rectness of the sign by the assumption M = {p}.)

Let 9 = cI(r- l ) E H2(cpm, 71.) be the generator. Now

cI(MI ) = Cl (KMl ) = 11'* (cI(M) + cI(E*)) - 2Cl (rE)'

Since M and E* are direct sums, by standard calculations,

Cl (MI) = 1r*(1I'i(m + 1 - k)g) +1r2(m + 1 + k)g)) - 2CI (TE).

Thus, for 0 < m + 1- k even, the bundle

LI := 1r. (1ri H(m+l-k)/2 ® 1I'2 H (m+l+k)/2) ® TEl

has [pV] = ! [PMl] on the cohomology level. But, by [Bes, 2.110], you can
modify achosen fibre metric h on LI to 0 btain also pV = !PMl' aB folIows:

if pV(h) -!p = ddc~, then h l := e2~h has pV(h1 ) = ~p.

These building blocks are due to Koiso and Sakane and may be used to coo
struct manifolds of arbitrary cohomogeneity (with large dimensions, of course).
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Example. Let

M'J = M1 x X M1 ,

L2 = 1riL1 0 ® 1r;LI,

(l copies)

and perform the trick described in 4.1. Then coh(P) = 21 + 1.

Example. Build up your example from

L1 M I

Li1 MI
r(dim Mt+1}/2 ~ cpdim Mt

1 times (I ~ 1)
(I - 1) times

1 times

to obtain each eigenvalue ±1/2 (I +1) times on

Ml X ••• X MI X MI X '" X MI xcpdim Mt.
, ., "'t t'.... ,...

l i-I

Then coh(P) = 21 +2.

Remark. Thus there are positive Kähler-Einstein manifolda with arbitrary
cohomogeineity. Since the smallest dimension of M 1 ia dim[Ji MI = 10, the
quotient

coh/ dim[li

is asymptotically ~ 1/10. Therefore one should mention, that there are also
completely different positive Kähler-Einstein manifolds with finite isometry
group due to Tian [Tia].

4.5 Final Remark. Up to now, all known examples have even polynomial Q,
and therefore trace B = O.
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5. Appendix

Here are some short proofs for well-known facts.

5.1 Proposition. Let M be a complex mani/old with Hermitian metne. In a
complex coordinate chart the following conditions are equivalent

(a) The Christoffel tensor r(X, Y) = DxY - 8x Y is linear over C (in the
second argument)

(b) VJ = 0 (the metric is a Kähler metric)

(c) dw = 0 (the Kähler fonn is closed).

Here 8 denotes the loeal connection 0/ the chart.

Remark. (c)=>(b) ia often pretended to be "delicate", e.g. by [Bes, 2.29].

Proof.

(a) => (b)
Dx JY = 8x JY + r(X, JY)

= J8x Y +Jr(X, Y) = JDxY

(b) => (c) DJ =0 => Dw =0 => lUv = o.
(c) => (a) Here we use the well-known fonnula für 2g(X, r(y, Z») twice:

2g(X, r(Y,JZ») + 2g(JX, r(y, Z»)

=-8x g(Y,JZ) +8y g(JZ,X) +8Jzg(X,Y)

-8Jxg(Y,Z) +8y g(Z,JX) +8zg(JX,Y)

= 8x w(Y,Z) +8yw(Z,X) -8JZw(JX,Y)

-8JXw (Y,JZ)-8y w (JZ, JX)+8z w (X,Y)

=0,

since each cyclic BUffi of 8w aver (X, Y, Z) and (JX, Y, JZ)
yields O. 0

5.2 Proposition (cf. [Ko-No 2, p.59]). Let M be a totally geodesie submanifold
0/ a Riemannian mani/old M, X be a Killing field on M. Then the tangential
component V X is a Killing field on M.

Proof. Let c be a geodesic in M (and M). Then

(Dei VX,d) = dC/(VX,d) = dc,(X,d) = (iJdX,d) = O. 0
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5.3 Ricci curvature of complex hypersurfaces. Let (M, ( , )) be a Kähler
manifold and M C M be a eomplex submanifold of real eodimension 2. By the
last proposition, M is a Kähler manifold. Figuratively spoken, the following
eomputation of the Rieci curvature of M lies somewhere between [Ko-No 2]
(arbitrary codimension) and [Smy], [No-Sm] (who ~ume M to be a eomplex
space form and are therefore 100 to inappropriate proofs).

"5.4. Let ua start with a unit normal vector field N. Then

Su:=VDuN

is the correaponding shape operator, and

b(u, v) := (8u, v)
ia the correscponding second fundamental fonn.

Sinee N2 := JN ia another unit normal vector field, we get Mother set of
data N2 , 82, and b-:2. We show

8'2 = JS = -SJ,
b(Ju, Jv) = -b(u, v).

Proof·

(82U,v) = (DuJN,v) = (J8u,v), also S'J = J8.

82 = 82=8(-J)
b(Ju, Jv) = (8J u, v) = -(JS 11., Jv) = -b(u, v).

o
5.5 Lemma. -82 and traceS = 0 da not depend on the choice of N.

Proof. Let N be another unit normal vectorfield. There are real-valued
functions al and a2, such that

and a~ +a~ = 1.

Hence

S· 11. = V(DuN)
= alS . 'U +a2 JS . u

and

82 = a~S2 +ala28J8 + a2 a l JS S + a~ J8 JS.......,.,. .......,.,.
-SJ -SJ

=82
•

Finally, trace8 = (-J82, id) = (82 , J) = O.
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Remark. N A J N does not depend on the ehoice of N. The matrix of S
ie diag (Al, -Al,"" Am, -Am) with respect to a euitable adapted orthonormal
frame el, Jet, ... , em , Je m •

5.6. Now we express r in terms of r, R, and S. Remember the Gauß equation

R(u, v, w, t) = R(u, v, w, t) +(8u, w)(Sv, t) -(81.1., t)(Sv, w)
+(S2U, W)(S2V, t) -(S2U, t)(S2V, w)

Let el,"" e2m be an orthonormal frame on TM. Add N, JN in order to
obtain an orthonormal frame of T MIM. By eontraction over el, ... , e2m , the
first term R(u, v, w, t) yields

f(u, w) - R(u, N, w, N) - R(u, JN, w, JN).

By the symmetries of the eurvature tensor of a Kähler manifold, and by the
algebraie Jacobi identity, this may be simplified to

f(u, w) - R(u, Jw, N, JN).

The other terms yield

L ((Su, W)(Sei' ei) - (8u, ei) (Sei, w)) = (Su, w) trace 8 - (Su, Sw)
i

=(-S2u,w) = (-8~u,w).

Therefore

- - 2T(U, v) - T(U, v) - R(u, J v, N, J.N) - 2g(S u, v),

or, aB endomorphisDlS of TM

r - r+VR(N,JN)J-28 2
,

where each endomorphism above ia symmetrie and does not depend on the
ehoiee of N. .
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