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0 Introduction

In this paper we derive an index formula for an elliptic operator in the so-
called wedge algebra introduced and developed by the second author and his
school [4, 5, 6]. We confine ourselves to the most simplest case both from
analytical and topological point of view. The simplest wedge is a direct
product W = R? x X" where RY is called the edge and X* = X x R,
is a stretched cone over a smooth compact manifold without boundary X.
Sometimes we will call R? the base and X” the fiber of the wedge.

The analysis of pseudo-differential operators on such a manifold is nat-
urally performed in the framework of operator-valued symbols: we consider
pseudo-differential operators on the base R? with symbols a(y, n) taking val-
ues in the so-called cone algebra with asymptotics C{X") on fibres. In general,
the cone algebra with asymptotics deals with meromorphic Mellin symbols.
For the index theory a minimal asymptotic information is sufficient: we con-
sider Mellin symbols holomorphic in a narrow strip S = {Rz—(n+1)/24 €
(—e,€)} around a fixed weight line ['(n41)/2-4,. In other words, we deal with
empty asymptotic data in the weight strip. The cone and the wedge theories
under these assumptions are much simpler than in the general case. For the
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reader’s convenience we give a brief description of the cone and wedge alge-
bras in our particular case. The proofs are mostly omitted or sketched, for
more details the reader is referred e.g. to [6].

A general concept of pseudo-differential operators with operator-valued
symbols acting in Hilbert spaces was studied in the work [3]. Index theory
for such operators includes the following problems:

1. elaborate a notion of topological index (t-index) and the corresponding
concept of ellipticity (t-ellipticity),

2. the same problem for analytical index, in other words, one has to elabo-
rate the notion of ellipticity (a-ellipticity) implying the Fredholm prop-
erty of the operator,

3. prove the index theorem, that is show that both indices coincide if the
symbol is both a-elliptic and t-elliptic.

In the case of the wedge algebra the operator-valued symbols a(y,n) in ques-
tion are operator families on T*(RY) = R*. The minimal assumptions for
item 1 is that for any point (y,7n) the symbol a(y,n) is a Fredholm operator
invertible outside a compact set. Under these assumptions the so-called in-
dez bundle ind a(y,n) is defined as an element of K (R??) = Z (see [3]). The
topological index of the operator A = Op is defined then with the help of
the Chern character

ind, A = ]m ch{ind a(y, )} € Z.

The second item is more subtle. Of course, the symbol classes $S™(R?xR?)
similar to the scalar-valued case may be introduced by means of the estimates

16y 87 aly, mll < C(mymP. (0.1)

It turns out, however, that these estimates together with t-ellipticity do not
imply a-ellipticity (see [3]). This is because they do not control fibrewise
properties of 979%a(y,n) such as compactness for |3 > m or the Hilbert-
Schmidt property giving only norm decay for large n. In [3] the symbols of
order 0 with compact fibre variation were introduced for which t-ellipticity
and estimates (0.1) do imply a-ellipticity in appropriate Sobolev spaces, and
the index theorem was proved.



For the wedge algebra we can not apply directly the methods of [3] since a
non-trivial twisted group action on fibres is involved in this case. Instead we
use the notion of ellipticity for wedge operators in terms of their interior and
edge principal symbols (see e.g [6]). 1t implies the Fredholm property in the
spaces W*" via parametrix construction. At the same time this construction
provides fibrewise parametrices which are precisely inverse operators for large
y,n. Thus, t-ellipticity also holds, and we prove the index theorem in the
form |

nd A= fR . te(dr Ada+ (rda)?). (0.2)
Here A = Op(a(y,n)) is an elliptic wedge operator, r(y,n) its fibrewise
parametrix up to trace class operators. Observe that the integrand in (0.2)
is a differential form.with compact support, representing the Chern character
ch{ind a(y,n)}. '

The proof is based on an analytical approach suggested in {1} and algebraic
machinery developed in [2]. We introduce the so-called algebraic index in the
algebra of formal operator-valued symbols as an intermediate step between
analytical and topological indices. The analytical part of the paper consists
in the theorem on the regularized trace of a product. In section 1 we briefly
discuss the cone and the wedge Sobolev spaces [*7 and W?*7, especially
trace class operators in these spaces. In section 2 the needed special cases
of the cone and wedge algebras are discussed. Here the fibrewise properties
of the derivatives in (0.1) are controlled by a special grading of W*7. The
next section deals with the parametrix construction. Qur treatment is rather
brief, more details may be found in [6] and references therein. In section 4
the theorem on a regularized trace of a product is proved. We have made
some improvements comparing with the original proof in {1] allowing to avoid
an analytical continuation in orders for operator-valued symbols. The proof
of the index formula is briefly discussed in section § following (1, 2].



1 Cone and Wedge Sobolev Spaces

1.1 Cone Sobolev Spaces

By a stretched cone X” with a base manifold X we mean a cartesian product
X x R, with the action of the group R

Az, t) = (z,At) (1.1)

AeR,, (z,t)€ X xRy. The base X.is supposed to be a smooth compact
n-dimensional manifold without boundary. For a coordinate neighborhood
U C X we denote by U" = U x Ry the stretched conical neighborhood in
X". We use a notation V2 C R™*! for a geometrical conical neighborhood
corresponding to a coordinate neighborhood V' C S™ on the unit sphere in
R™!. The group R, acts on V2 by homotheties. By 2 conical coordinate
diffeomorphism x : U = V2 we mean a diffeomorphism which commutes
with the action of Ry. The inverse diffeomorphism

x VA 3E e () e UM (1.2)

may be thought of as a passage to polar coordinates.

There are several modifications of the Sobolev spaces adopted to the
conical structure.

1. The spaces H*(X"). For a function v € C§°(X") with support in a
stretched conical neighborhood U” we take its push-forward

O6u)(@) = u(x7'(7))

under conical coordinate diffeomorphism (1.2) and define

||u||H.(XA) = x*u”H‘.(RnH).

The general case may be reduced to the above special one by taking a
finite coordinate covering U; of X and the corresponding partition of unity




pi(z). For a stretched conical neighborhood U/ we take a coordinate diffeo-
morphism x; : U} — V:* and set

ullzrsgxny = D2 lXinpitel sty (1.3)
t

It may be easily verified that the norm (1.3) does not depend on the covering,
partition of unity and coordinate diffeomorphisms up to equivalence.

2. The weighted Sobolev spaces H*7(X"). Again we may consider
a special case of u(z,t) € C§°(X") with support in a conical coordinate
neighborhood U”. Let (€, ) denote the Mellin transform of u(z,t) with
respect to ¢, that is

a(z) = /0 T Elu(t)dt,

and the Fourier transform with respect to z. Then
lelroageny = [ [ (LI + Pl 2)Pdzde (1.4)
R Il (1) /24

where [(ni1)/2-y = {z : Rz = (n 4+ 1)/2 — v} is a so-called weight line on the
complex plane.

Like before we can reduce the general case to this special one.

3. The cone spaces K*?(X"). Take a cut-off function w(t) € C(R,)
which is equal to 1 near ¢+ = 0 and set

|lu||]\-'s;r()p\) = Hw(t)u”,qa.v(,v/\) -+ ”(1 —w(t))u“Hs(XA). (15)

So, the space K*7 is a “mixture” of the weighted space H*” near t = 0 and
the usual Sobolev space H*(R™!) near ¢ = oo. The choice of w(t) does not
affect the norm (1.5) up to equivalence.

For any fixed cut-off function we(t) € CP(R.) equal to 1 near ¢ = 0 we
have four bounded multiplication operators

Ko7 225 [ (1.6)
H* 225 Ko (1.7)
K2 e (1.8)
H® 528 o, (1.9)



The group R, acts on any of these functional spaces since it acts on cones.
It is convenient to modify this action by a factor, namely

(kau)(t, z) = AT u()t, z). (1.10)

A general result concerning strongly continuous actions of Ry on Banach
spaces consists in the following estimate for the norm of &)

leall < C (max (,\, %))M (1.11)

for some C > O and M > 1 (see [8]). For our spaces H*(R™!), H*(X"),
K*7(X") the estimate (1.11) for the action (1.10) may be proved directly.
There are continuous embeddings

H31 oy H-’:, H’la"!l 3 Haz,’rz’ K‘nm o3 K-‘m."m
for sy > 52, M 2 7.

Lemma 1.1 For ¢(z) € C(R™!) denote by M()), A > 1 a multipli-
cation operator

M()) : H*(R™) “G) H*=N (R, (1.12)

N>20. If N>(n+1)/2, then M(}) is a Hilbert-Schmidt operator and the
following estimate holds for its Hilberi-Schmidt norm

[M(N)llrs < CAF (1.13)

Proof. Applying Fourier transform to both sides of the equation

o(@) = (3 ) ule),

we obtain

B(&) = [ AHHOE — )a(e)de.

To represent this operator as an integral operator between L?-spaces, intro-
duce the following functions

51(51) = <§1>3_N§(51)

6

&



w(€) = (6 a(f).
The operator (1.12) may be rewritten as
Bu() = [ K&, &m(e)de

where 4,9, € L*(R™"!) and

s—N
K(€,€) = A“+‘%;~¢(A(£1 - £))-

The Hilbert- Schmidt norm of the operator M () is equal to the L*-norm of
its kernel K(&;,£), so that

AMOIls = 1K (61, g

2s-N)
- [l tite - oPdends

By Peetre’s inequality

(61/A)20~N)
(€A

Since A > 1, the right-hand side does not exceed C (£, — €)2*~N whence
IMOVGrs < O f (6~ €7 MI(e — )P [(e/3)7as
<o [(gag

proving the lemma.

< C{(e — /NN,

O

Lemma 1.2 Let w(t) € CP(R,), w=1neart =0. For A > 1 let
M(X) be a multiplication operator

M(AY = Kor(xny 28 foeNa=s(xA) (1.14)

where N > 0, § > 0. If N > (n+1)/2 and § > 0, then M(}) is a
Hilbert-Schmidt operator and the estimate (1.13) holds.
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Proof. Take cut-off functions wy(t),w;(t),ws(t) € CL(R4) equal to 1
near t = 0 and such that

Wy = Wp; Wol; = Wy, Wiy = Wo.

Then for any A > 1 we have

" (%) = wo(t) + (1 — wo(t))w G)

which gives a decomposition of M(}) into a sum of two multiplication oper-
ators
M(A) = My + My())

where
My : K(X7) 29 o (xn) @@ go-Na-s(xn) =) go-Na=s(xA)

M(/\) }-\za,”p’ XA :“-’_0;3) H? XA) ( )Hs N X/\ —i;t) I.rs —Nyy— S(XA)
By (1.6)-(1.9) the extreme left and right operators in these sequences are

bounded, so it is suflicient to estimate Hilbert-Schmidt norms of multiplica-
tion operators in the middle. For the operator

Hs()(/\) w(x RARYEY = L N(XA)

the desired estimate follows directly from Lemma 1.1. Since M, does not
depend on A, it is sufficient to prove that

HJ,')'(X,P\) ""U_(tg Hs-N,'y—J (XA)

is a Hilbert-Schmidt operator for N > (n +1)/2, § > 0. Using partition
of unity, we come to the multiplication operator wo(t)p(z) where p(z) is
supported in a coordinate neighborhood U C X. Using Mellin transform
with respect to ¢ and Fourier transform with respect to z, we get

o) = [ [ Gole— )6 — Oz E)des

(n+1)/n—1

for v = wppu. The function



is holomorphic in the whole plane C except the first order pole at z = 0 and
decreases rapidly along vertical lines I's. In particular, if z € ['(541)/2-4 and
21 € L(ng1)/2-v+s With 6 > 0, then

Bz = 2 < S = )
for any N > 0. We proceed further similarly to Lemma 1.2. Introducing
Dz, &) = (L+ G + 12 )N %5(2, )
WL, €) = (L+ 1617 + [=%)%a(z, €),

we come to an integral operator

1(z1,€ /1\ (zl,fl,z f)ul( f)dzd{
between L?-spaces whose kernel is
(L4 [&]* + [ )l

(14 [€]* + |2[*)/

1 2 2\ (s=-N)/2
=(1+[€ + |Z|2)_N/2((1++|Té:2 1 :Zz‘)ga—m/z w(z1 = 2)p(6y = §)

K(z, 6, 2,6) = @(z1 = 2)p(&r = &)

Thus, for the Hilbert-Schmidt norm of M; we obtain

IMilEs< [ el dal [ 1K (o1, 61,2,€) Py de.
(n+1)/2—~ Cint1)/2=n+s R2n
By Peetre’s inequality
A+1&672+ |zl|2)’“N
(L4 [EI2 + (22~~~

C(L+ & = €* + |21 — 2PN

The integral over &, 2y converges since & and p are rapidly decreasing func-
tions while the integral over ¢, z converges, provided N > (n + 1)/2.
C



1.2 Wedge Sobolev Spaces
The simplest model of a stretched wedge is a cartesian product
W=RIxX"=R'xR; x X (1.15)

where X" = R4 x X is a stretched cone with a base manifold X of dimension
n. In local charts on X the points of W are represented by triples

(y,t,z) € R" x Ry x R™

The wedge Sobolev spaces W?*" are adopted to the fibering structure (1.15).
The function u = u(y,t,z) € C°(W) is considered as a function on R? with
values in the cone Sobolev space K*7(X"). Introduce the so-called smooth
norm function [n] for n € R? which is greater than or equal to 1 everywhere
and [n] = |¢| for sufficiently large || >-C:-Obviously we have:

] ~ () = (1 + n|*)*"*

where ~ means that two-sided estimates hold

0<C]SMS02

{m)

We also introduce a notation

k(1) = Kix)
for the action (1.10) on K*7(X"). Then the norm in W?*" is given by
Fellies = [ s~ (n)a(n)landn (1.16)

where
u(n) = Fyanlu(y,t,z)]

is the Fourier transform with respect to y. A detailed exposition of the
wedge Sobolev spaces (as well as the cone Sobolev spaces K*7) may be found
in [4, 8]. Here we would like to emphasize one interesting and important
property of these spaces. Although the fibering structure of the wedge is
involved in the definition (1.16) it turns out that for functions with supports
away from the edge the norm (1.16) is equivalent to the usual Sobolev norm
in H*(R9t**1) [6].

For any N, > 0 there is a continuous embedding W*7 — W*=N7—3 We
are interested in the Hilbert-Schmidt properties of this embedding.

10



Theorem 1.3 Let w(t) € CP(Ry), w(t) = 1 neart = 0, p(y) €
C§(RY) and let

M weer YY) pre-Na-s (1.17)

be a multiplication operator followed by embedding. Then M is a Hilbert-
Schmidt operalor for § >0 and N > (g+n+1)/2 .

Proof. We proceed similarly to Lemma 1.1. Suppressing dependence on
z € X denote

v(y,t) = p(y)w(thu(y,t)
or applying the Fourier transform with respect to y € R?

B, t fcp m =)y tydy.  (118)
Introducing the functions
(1) = [ ()i(n, 1)

Bi(n1,t) = (] &7 )8 (m, 1)

we represent the operator (1.18) as an integral operator

[7?1

1(m, 1) @(m — e~ (m)w(t)a(n)t(n, t)dn

between L*-spaces Lz(R", K3 (XM)) = LA(R9, K°~Na=8( X M), Tts kernel

K(ni,n) = [[m]]:—,vso(m )[nl]Nﬁ'l(m)w(t)ﬁ(ﬁ)

is a function in (n1,7) € R with values in the space L{K*7, s~Nn=6),
Using Lemma 1.2, we will show that K(m,n) is a Hilbert-Schmidt operator
and estimate its Hilbert-Schmidt norm. Apart from a constant factor our
operator is

&7 (m)w(t)s(n) = &7 (m)s(n) ([7]) = Kal/fm]W ({jﬂ) :

11



Applying (1.11) and then using Peetre’s inequality, we get

sl < € (max (% [—[j,,—]]))M < Gyl —

where || || means the operator norm in K*=¥7=% Next, by Lemma 1.2 the
Hilbert-Schmidt norm of the multiplication operator by w ([—fﬂ) acting from
K7 to K°=N7=% may be estimated as C[n}(**1)/2, Since

=N

[EZ;]],_N < C[Th - U]ls_Nl,

we come to the following estimate

1K (m,m)||as < Clny = 0}~ VM |3y — p)|[n] =N +H+D/2,

Thus,

1M s = [, I Cra, sy

<C [ Nl = al=NM 0, — n)fedn [ a7,

The first integral converges since ¢ is a rapidly decreasing function while the
second one converges in virtue of the inequality 2N >n + 1+ q. 0

Corollary 1.4 Ford >0, N >n+q+1 the operator M given by (1.17)
belongs to the trace class.

Proof. Let wi(t), ¢(y) be other functions with compact supports and
such that w(t)wi(t) = w(t), ©(y)e1(y) = ¢(y). The operator M may be
factorized by

(W)w(t) 11~ - 9)w1 () 1178 Ny
M W P pe-Nj2y-5/2 ¢ 1;( We-No J’

both factors being the Hilbert-Schmidt operators, whence the assertion fol-
lows. a

12



2 The Cone and the Wedge Algebras

2.1 The Cone Algebra

We will need the very special case of a cone algebra with asymptotics. For
reader’s convenience we give here its brief description, the wedge algebra will
be considered in the next subsection. As a rule, the proofs are omitted, more
detailed exposition may be found in [6].

The operators of the cone algebra are defined first on functions

u(t) = u(t,z) € Cg°(X") = C3° (R4, C=(X))
and then are extended-by.continuity.to-the. cone.Sobolev .spaces

Az Knm o fem (2.1)

with some s;,2,7,7 € R™. One of the indices sy, s, may be chosen arbi-
trarily. If for any s; € R™ we may take s, = s; — m the operator is said to
be of order m (more precisely, not greater then m). If (2.1) holds for any
s1,82 € R™, the operator is called smoothing.

The indices v;,72 are more rigid, neither of them, in general, may be
chosen arbitrarily. We suppose that there are two fixed weights o, g such
that for sufficiently small € > 0 (2.1) holds for any v, € (@) — €, +¢) and

Vo= +7 —ap € (a2 — €, a0 + €).

These two weights ay, ay will be called weight date. If v;,v2 may be chosen
independently within the weight intervals '

N € {ay —¢€,01 +€), Y2 €(az—¢,02 +¢), (2.2)

the operator is called flattening (with respect to the given weights o, ;). If
the operator is both smoothing and flattening, it is called a Green operator
(with respect to the given weights a;, ;). The set of Green operators is
denoted by Cg = Cg(ay, az).

The operators (2.1) of finite order form an algebra (provided the indices
match) and Green operators form an ideal. Since K*7 are dual spaces, the

13



adjoint operator A* belongs to the algebra if A does, moreover, A* € Cyq if
A€ Cg.

Now we define the cone algebra C = C(X"). An operator A of order
m € R (notation A € C™) consists of three summands

A=Ap+ Apn+ Ag =
= weo (1)1 ™" Opp(ai(t, i7))@eo(t) +
+wo(t)t™™Opyy(ay(t, 2))ao(t) + Ag (2.3)

called Fourier, Mellin and Green operators respectively. Here wp(t),weo(t)
form a partition of unity on R, ,wy(t) = 1 near the vertex ¢ = 0 and has
compact support, we(t) = 1 — wo(t), the functions &y, Weo are equal to 1 on
the supports of wy,we, respectively and @o, 1 — @ € CE(Ry). .

The first item in (2.3) is a usual Fourier pseudo-differential operator

1 o] [« I
Opr(au(t) = 5= /_ ) [_ Uyt tru(h)d, (2.4)

with a Fuchs-type symbol a;(2,17) (the subscript ¢ stands for interior). The
values of the symbol are pseudo-differential operators of order m on X, so in
a local coordinate chart on X we have

a;(t, 2, 7,€) € ST (Ry x R* x R™). (2.5)
The second item in (2.1) is a Mellin pseudo-differential operator

Opay(au(t, 2))ult) = -2% / e I (ftl)za,,(t,z)u(tl)”i—?. (2.6)

Here a,(t, z) (v stands for vertez) is a holomorphic function in a weight-strip

S ={|Rez — (n+1)/2 — y] < &}

for some fixed 74y and € > 0 with values in pseudo-differential operators on
X, so that in a coordinate chart on X we have

ay(t,z,2,6) € ST(R; x R* x I'g x R")
on any line ['s = {Rz = §} C S uniformly in |3 — (n+1)/2 4+ 7| S e < e.

14



The operators (2.4), (2.6) under these assumptions have bounded exten-
sion

Ap + Apy : K% o Kommn=m (2.7)

for any s € R™ and v € (y0 — €,7 + €). Without loss of generality we may
take vo = 0 in the sequel.

The operator (2.4) and (2.6) must be compatible in the sense that for any
functions ¢,4 € C§°(X") the inclusion

¢(Opp(ai) — Opp(an))h € L™(X") (2.8)

holds (see 6, 8.1.3, Theorem 2]). The notation L~°° means smoothing opera-
tors. Observe that (2.8) is also an infinitely flattening operator since ¢, = 0
in the neighborhood of t = 0. B ‘

The last item in (2.3) is a Green operator usually with respect to the
weights 7o, 70 — m. In this case the whole operator A = Ap + Ay + Ag acts
in the spaces (2.7). Sometimes (these cases will be specified) we will need
Green operator with respect to the weights 9,70 — { with [ > m. In these
cases (2.7) implies

A= Ap+ Ay + Ag: K°7 — Km0 (2.9)
because of the embedding
Kemmamm ey foemma=t
We also will use an obvious modification of operators (2.3)
A: K@ CV- = Ko™ g O+,

According to these decompositions the operators are represented by 2 x 2
matrices. The first two items in (2.3) act in direct summands K7, so, more
accurately, they should be represented by a matrix

( AFJ(;AM g ) . (2.10)

However, we will not use these pedantic notations keeping in mind that Ag
and Ay enter only the left upper corner of the full matrix. As for the Green

15



item, it is represented by a full matrix which admits an extension

I(Sl.";'l [\"62")1-1
Ag= (911 912 ) : ] — & . (2.11)
921 G2 CN- CN+

for any 8i,$82 € Rn’ Y15 Y2 € (70 — &% + 5)‘
Let us list some important properties of the cone operators (2.3).

1. f Ae C™ and B € C™ then AB € C™ 1™ 50 C is an algebra called
the cone algebra. For the interior and vertex symbols of the product
we have the following asymptotic sums

= (= )

aiob~Y o 0,08 b; (2.12)
k=0

a, 0 b Z k'afa,, tag v (213)

These expansions are called Leibnitz products for interior (2.12) and ver-
tex (2.13) symbols. If the symbols a;, a, and b;, b, satisfy compatibility
conditions (2.8), then (2.12) and (2.13) are automatically compatible.

2. Green operators form an ideal Cg in the cone algebra. The whole
calculus is performed modulo Green remainders. In particular, the
choice of cut-off functions @y, &, as well as the partition of unity wq, we
is unessential modulo Cg.

There is another ideal denoted by Cprie which consists of smoothing op-
erators (2.3). Since the Fourier item Ap is necessarily flattening (since
Weo = Weo = 0 near ¢ = 0), it means that smoothing Ar are actually Green
operators. So, we may assume that a; = 0 including the item Ap into Ag.
The operators from Caric are called smoothing Mellin operators. 1t is espe-
cially important to specify the weight data since the information concerning
orders is "forgotten“ for smoothing operators. For the Mellin operator

Apr = wo(t)t ™ Oppy(au(t, 2))ao(t) (2.14)

with a, € S7* natural weight data are o,y — [ (! has nothing to do with
the order which is —o0).

16



Remark 2.1 The smoothing operator (2.14) is in fact a Green operator
with respect to the weight data o, y0—! if a,(0, z) = 0. Indeed, it is flattening
since a, may be written in the form a,(¢,z) = tb(t, z) with some smoothing
symbol b(Z, z) and the factor ¢ gives a gain of weight at least by 1. Thus, any
smoothing Mellin symbol may be decomposed

a,(t,z) = ay(0, 2) + (au(t, z) — ao(0, 2))

into a Mellin symbol not depending on ¢ and a symbol vanishing at ¢ = 0.
It means that the corresponding operator (2.14) modulo Green operators
may be represented by a symbol independent of ¢ (of course, all the Mellin
symbols in question are holomorphic in the weight strip S).

Remark 2.2 Any cone operator (2.3) is uniquely defined modulo Casic
by its interior symbol a;(¢,7). Indeed, there is a standard way to construct
a Mellin symbol a,(t, z) holomorphic in the whole plane z € C and satisfying
the compatibility condition (2.8) (6, 8.13, Theorem 2]. This procedure will
be referred to as ”Mellinization”. Any other choice of the compatible Mellin
symbol differs by a cone operator with smoothing interior symbol, so the
difference belongs to the ideal Chsiq.

We finish our description of the cone algebra by two important additional
properties of Green operators.

Lemma 2.3 For any Green operator G € Cg with respect to the weight
data v,y and any cut-off function w(t) € C(R,) the operator

wG K" — K™
belongs to the trace class.

Proof. Indeed, the operator may be factorized

d P t v
K — KotNots ui(—>) K

with N > n+ 1 and § > 0. The second operator belongs to the trace class
(cf. Corollary 1.4). O

17



Lemma 2.4 In the assumption of Lemma 2.3 let
1+G: K% — K

be invertible for at least one s = so. Then it is invertible for any s € R™ and
(14 G)™' —1 is a Green operator.

Proof. If u belongs to the kernel of 1 + &, then u = —Gu € K*7 for any
5. So, the kernel does not depend on s. The same is true for the cokernel.
Next, denoting

Gl = (1+G)_1 -—1,

we have

Since 1 4 (7, is bounded in the space K*7 and G belongs to the ideal Cg, it

follows that G also belongs to Cg.
O

2.2 The Wedge Algebra

We consider now our main object the wedge algebra )Y for a model wedge
W=RIxX"=R*xRy xX. Let m € Rand [ > m. We define a
wedge operator of order m with respect to the weight data vp,v — [ as a
pseudodifferential operator on R? with a symbol a(y,n) whose values are
cone operators from C™ satisfying the conditions below. We use notation

A =Opp(a(y,n)) € Y™

According to (2.3)

a(y,n) = ar(y,n) + ap(y,n) + ac(y,n)- (2.15)

This operator depending on parameters (y,n) € R% is considered in the
spaces

a(y,n): E — E

with _
E=K"gCV- E=K"™""gCM
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for v € (Yo — &% +€).
First, we suppose that the estimates hold

&= (A5 85 aly, M)l g5 < Cl™ P (2.16)

Here k() = &[] means the action (1.10) in the spaces K*” and a trivial
action in CN¢, The symbol spaces defined by estimates (2.16) will be denoted
by S”‘(]I}gx RY, E, E) or simply S™(R%*). We will also use the spaces ST (RIx
R, E, E) for which

a(y, ) ~ D am-i(y,n)
=0
with ap,-; € S™7(R%) being homogeneous of order m — j for large 7:
a(y: ’\77) = ’\m—-jn()‘)a’m-j(y’ 77)'{’-1(’\) (2‘17)

for A > 1, || 2 C > 0. Any such function defines uniquely a purely
homogeneous function @,-;(y,n) for n # 0 satisfying (2.17) everywhere with
any A > 0. Conversely, having a homogeneous function @,,(y,n) of order m
we define a symbol a,,(y,n) = x{n)dm(y,n) by means of a cut-off function
x(n) which is equal to 0 for || < ¢/2 and to 1 for |p| > ¢. Clearly, this
symbol satisfies (2.16). .

Next, we would like all the three items in (2.15) to satisfy estimates (2.16)
separately. To this end we take ap(y,n) and aar(y,7n) in the form

ar(y,n) = weo (Ln])t™" Opp(aily, 2, 0, 17))@oo(t[7]) (2.18)

am(y,n) = wo(t[n])t " Oparlay(y,t,tn, 2))ao(t[n]). (2.19)

Here Opp, Opps mean Fourier and Mellin pseudo-differential operators with
respect to the variable ¢ (cf. (2.4), (2.6)). The interior and the vertex symbols
a; and a, satisfy the same conditions as for the cone algebra with regard to
the specific dependence on 7:

1. ai(y,t,in,17) is a pseudo-differential operator on X with

ai(y, t,7,7) € CP(R] x Ry, LT (X;REY)), (2.20)

TI‘vT
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2. ay(y,t,tn, z) is holomorphic in the strip
ze€S={Rze((n+1)/2=v—-¢c,(n+1)/2-v+¢)}
for some € > 0 and on any weight line ['s
au(y, 1,77, 2) € C¥(RY x Ry, LF(X;RLE x Tp)) (2.21)
uniformly in 8= (n+1)/2 — 5 — v with |y[ < eo < ¢,
3. the compatibility condition holds

Opp(ai(y,t,tn,tr)) — Oppr(a.(y, t,tn, 2)) € CP(RE, L==(X* RY))
. . .(2.22)
(see [6, 9.2.3, Theorem 1]).

As for the Green item ag(y,n) we assume
ac(y,n) € ST(R) x Ry, K*™ @ CV-, K™ @ C') (2.23)

for any s1,82 € R M — vl <&, |2 —7+!| <e.

Similarly to the cone algebra the Green symbol is given by 2 x 2 matrix
while ar and aps enter only the left upper corner of the matrix.

Instead of (2.20) we may also assume that in a local chart U C X the
operator a;(y,t,1n,t7) is given by a complete symbol a;(y, ¢, z,tn,t7, £) with

ai(y,t,z,7,7,€6) € ST(R? x Ry x R™ x R7+*7), (2.24)

Following [6], we call such symbols a; edge-degenerate. The space of the
operator-valued symbols a(y,n) with the above properties (2.20)-(2.23) will
be denoted by R™ (the weight data are tacitly meant). So, Y™ is the space
of operators Opr(a(y,n)) with a(y,n) € R™. The properties of the wedge
operator are mostly similar to those of the cone operators.

1. Any A € Y™ acts continuously in the wedge Sobolev spaces
A Ws.j' - Ws-—m,'y—f

for any s € R™® and v € (0 — €, 70 + €).
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2. The wedge operators form an algebra, so that for A € Y™ B ¢
Y™ AB € ymn-!-mz.

3. The ideals Cg, Cpr4¢ in the cone algebra generate corresponding ideals
Re, Rm+c and Vg, Varte by the requirement that the symbols a(y, )
take values in Cg or Caryc.

These ideals have an additional filtration R, RYy, ¢, V&, Virsc defined by
the order m of the operator-valued symbol a(y,7n). In contrast to the cone
algebra this order is not forgotten, it enters the relations (2.23), (2.16). All
the properties of these ideals such as Lemmas 2.3, 2.4 and Remarks 2.1, 2.2
remain valid fibrewise, that is for a(y,n) considered at any fixed value of y,n
as an operator in the cone algebra. Because of the edge-degeneracy Remark
2.1 takes a more sharpened form:.

ay(y, 8, tn,2) = a,(y,0,0,2) mod V7 (2.25)

for a smoothing Mellin symbol a,(y,t,17, z).

To get global properties of A = Op(a(y,n)) € Y from the fibrewise prop-
erties of the symbol a(y,n) € R we need some stabilization conditions for
large ¢ and y.

Definition 2.5 We say that A € Y stabilizes to 0 if there is a constant
C > 0 such that for any function u(t,y) € CP(Ry x R, C(X)) supported
outside a ball t2 + |y|? > C? we have Au=10. If A =1+ B where 1 means
an identity operator and B stabilizes to 0, we say that A stabilizes to 1.

For example, if the Green item ag(y,n) in (2.15) is absent, this definition
means that the symbols «;(y, ¢,tn,tn) and a,(y,t,tn, ) vanish for |y|* +¢* >
C?. The case when A stabilizes to 1 gives analogous conditions: a; = 1 for
ly|? +¢* > C*

The following lemma is crucial for the index theory. Roughly speaking, it
says that derivation along the base covariable n not only gives better norm
decay for large n, but improves fibrewise properties of the symbol.

Lemma 2.6 Let A € R™ with respect to the weight data v,y —1 (I > m)
and let a(y,n) stabilize to 0. Then for |3| > 0 and some § > 0

020Pa(y,n) € S™PIR™, K+ @ CN-, koAl g oNHY - (2.26)
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Observe that (2.26) is a sharpening of (2.16) since the space £ = K*~™7~!
in (2.16) is replaced by K*~™+fl7=45 which has better smoothness and
weight.

Proof. Let us consider first a Green symbol

ag(y,n) € SH(R*, K™ @ CN=, K*»™ @ C™Y). (2.27)

From (2.17) it follows that for a homogeneous function a,,_; its derivatives
d7am-; have the same degree of homogeneity as a,,; itself, while each deriva-
tion with respect to n diminishes this degree by 1. Hence,

ajafaa(y,n) € S:?-'m(]qu, Ko g oN- kg ONY)

that is 3;’3,fag is again a-Green-symbol-of.-the-order-m .—.|3| -with.respect
to the same weight data +,y — {. But for Green symbols we may restrict
weight intervals y; € (y — 8,7 +6), 2 € (y =1 —8,¥ — 1 + ¢) to embedded
ones y1 € (v —6/2,7+48/2), v2 € (y— L,y — [ +¢). It means that the
Green operator with respect weight data v,y — [ is also a Green operator
with respect to v,y — I + §/2. It remains to consider the operator-valued
symbols of the form

a(y,n) = ar(y,n) + am(y,n)
= woo(t[ﬂ])t_mopp(ai(y: t,in, tT))‘Doo(t[U])
+wo(t[n])2 ™™ Oppy(auly, L, i, 2))oo(t[n]) (2.28)

omitting the Green items. Conjugation by x(n) = &y, yields

£ (n)aly, n)x(n) =
7

mymm (g, -5 1 )
= [77] t ww(t)OpF(al(yv [U}’t["?]’t )) Oo(t)

T, a i— A 2))o(t). .
+ml™t " wo(t)Opar(au(y, TEE ))o(t) (2.29)

The operator (2.29) is bounded in the norm of L{(K*7, K*~™7~™) for any
y, 7, we need to show that apart from the factor {n]™ it is uniformly bounded
with respect to y,n. It is really the case since the variables y,in/(n],t/[n]
vary over compact sets (details may be found in [6, Chapter 9]).
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Let us apply d/0ni to (2.28). Denoting for brevity
, - d
ai(yatana ) a~ (Jatan’ )

- 3} -
aL(y, t,n, z) = ?av(ya t,n, z)
Nk

we get

n-‘(n)a%a(y, () =

= ("™ e (0P (a4, . 1))

+[n]*"-‘t-"*“wo(t)OPM(a:,<y,m,t[’;—],z))ao(t)

" (00 (0

o)
Uk
L (1) Op (1 - o) AL

HInl™ T o (£) Opar(t) 5 -

)T wp (£) Oy o(1 — Goo) 5 —

, .. 0
1" 0 Oy — Op )i 5 (2:30)

where

O OpF’(at(y:[ ] [ ] tT))

OPM = OpM(av(y$ [%]’t'[%]’z))‘

The first two summands in (2.30) have the same form as (2.29) with m re-
placed by m—1, hence they are uniformly bounded in L(K*7, Ks~m+1n-m+1)
apart from the factor [7]™~1. The rest of the summands are infinitely smooth-
ing and infinitely flattening for fixed y, 7. For example, the third summand
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is smoothing because the supports of wy and & do not intersect and is
infinitely flattening because wy vanishes near { = 0. The last summand is
smoothing due to the compatibility condition (2.22) and flattening because
wj = 0 near t = 0. Taking into account the factor [7]™~' we see that all the
terms but two first ones in (2.30) are Green symbols of order m — 1 with
respect to any weight data. Homogeneous components may be obtained by
the Taylor expansion of symbols a;, a, in t :
ta

ai(y,t:tﬂ’t"') ~ Zaf'a;(y, O,tﬂat"')'&'{
and similar expansion for a,. In subsequent considerations such Green sym-
bols may be thrown off. Finally, 8/0yx applied to (2.28) do not affect orders
and weights, so da/0ys is an.operator-valued. symbol.of the same type.as.

a(y, n)-
Thus, using induction, we obtain

8;'35(1(% n) € ,S'm—lﬁl(Rm;’ K, A/s—m+|ﬁ|,»y—m+|ﬁl)

for a(y,n) given by (2.28).
It remains to observe that for { > m and |#| > 0 we have an embedding

KemmHBl=m+lB] y pra-m+|Bly-m+s

for a é > 0 sufficiently small. O

3 Ellipticity and Parametrix Construction

In this section we consider elliptic operators of zero order in the wedge alge-
bra. We also take vy = 0 considering operator-valued symbols

a(y,n): K @ CN- - K*7 g CM

for any s € R and v € (—¢,¢). In other words, a(y,n) € R® with respect to
the weight data v,y and A = Op(a(y,7n)) € Y°. Throughout this section we
assume also that all the operators (and symbols) stabilize for |y|?> + 2 > C?
either to 0 or to identity. Now, we define two principal symbols for the cone
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and wedge operators. For a cone operator A of the form (2.3) (with m = 0)
its intertor principal symbol is defined by

oy(A) = ayo)(t, z,t7,§) (3.1)

for t > 0, (7,n) # 0. Here a;)(¢,,7,€) is the homogeneous part in (7, €)

of the highest degree 0 of the function (2.5) (with m = 0) written in the

local coordinates on X. Similarly to the smooth case, the choice of local

coordinates is unessential, so that (3.1) is a function on T*(intX") \ 0.
Next, the conormal symbol of A is defined by

oum(A) = ay(0,2) : H(X) = H*(X). (3.2)

It is an operator acting in Sobolev spaces on X and depending on a parameter
z € Lingryz-y-

For the wedge operator of order 0 its interior principal symbol is defined
similarly to (3.1)

Uﬂ’(A) = al'((l)(y1tamat77:t7: 6) (33)
where a;(9) means the homogeneous component of the highest degree zero of
the function (2.24).

Finally, the principal edge symbolof A € Y° is an operator-valued function

K* K7
oA(A)ysm): & — @ (3.4)
CN_ CN+

defined for n # 0, homogeneous in 7 of the highest degree 0:

aa(A)(y, An) = ( i (1) ) aa(A)(y,m) ( Eé [1) ) (3.5)

For the operator A = Op(a(y,n)) with a(y,n) given by (2.15), (2.18), (2.19),
(2.23) the operator (3.4) is equal to

oa(A) = wo(t|n])Opp(a.(y,0,tn, z))ao(t|n|) +
Fwoo (t1])Opp(ai(y, 0,19, t7))o0(t 0]} + acio)(y,n) (3.6)

where ag(g)(y,n) means the homogeneous component of the highest degree
0 of the classical operator-valued symbol ag. Of course, homogeneity is
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understood in the sense of (3.5). The expression (3.6) may be rewritten (at
least formally) as a limit

. k7' 0 0
AHTOO( 0 1 )“(y”’) ( T]A 1 ) (3.7)

where a(y,n) € R? is the operator-valued symbol (2.15). Although the sym-
bol a(y,n) is by no means classical, its principal edge symbol o, may be
thought of as a homogeneous component of a(y, n) of the highest degree 0 as
(3.7) shows. In fact, the homogeneity of (3.6) in the sense of (3.5) is easily
seen.

The principal symbols may be defined in the case m # 0 with obvious
modifications, for example, o4(A) = ™™ a;,,). We confine ourselves to the
case m = ( only. ‘ '

All the introduced symbol maps are homomorphisms: for A;, A, belong-
ing to C° or to Y* we have obviously

oy(ArAz) = oy(A1)oy(Az), (3.8)
om(A14;) = ap(Ar)om(Al), (3.9)
oa(ArAz) = oa(A1)an(As). (3.10)

Since oA(A) is a cone operator for any y,n # 0 it has a conormal symbol
which may be found using (3.6) by throwing off the Green part and putting
t = 0. This yields

omoa(A) = ay(y,0,0,2) (3.11)

independent of #. Of course, op04 is also a homomorphism.

Along with the notations oy(A), oa(A), omoa(A) we will use analo-
gous notations ay(a(y,n)), oala(y,n)), omoa(a(y,n)) for the operator-valued
symbol a(y,n) € R°.

Next, we define elliptic operators in the cone and wedge algebras C° or
)? postulating that both principal symbols are invertible. So, an operator
A € CY is elliptic if the following two conditions hold.

1. o4(A) is invertible, more precisely, a;q)(t,7,z,§) is invertible for all
t >0,z € X and (7,£) # 0. This condition is usually called interior
ellipticity.

26



2. om(A)(z) : H(X) — H*(X) is an invertible operator (at least for one
s = so) for all 2 € ['(ny1)/2-y (conormal ellipticity).

Similarly, an operator A € J® or an operator-valued symbol a(y,7n) € R° is
called elliptic if interior ellipticity holds as in item 1 above and besides

2. oa(A)(y,n) is an invertible operator (3.5) for all  # 0 for at least one
s = 3¢ (edge ellipticity).

In the rest of this section we are dealing with parametrix constructions
allowing one to obtain both t-ellipticity and a-ellipticity (see Introduction).
Our main theorem reads as follows.

Theorem 3.1 Let a(y,n) € R° be elliptic and stabilize to identity. Then
there exists an operator-valued symbol r(y,n) € R® such that

L=r(y,m)a(y,n), 1-aly,n)r(y,n) (3.12)
are Green symbols vanishing oulside a compact set in (y,n) € R*™.

Having constructed the symbol r(y,n) we use it as an initial step to
construct successively more and more precise parametrices Ry = Op(rN(y, 7)
in the algebra )°.

Theorem 3.2 Let A € R® be elliptic and stabilize to identity. Then for
any integer N > 0 there ezists an operator Ry € Y° such that

1— RvA, 1— ARy
are Green operators of order —N (that is belong to Yz ).

A similar theorem holds for the cone algebra. For further references let
us formulate 1t separately.

Theorem 3.3 Let A € C° be elliptic and stabilize to identity. Then there
exists an operator R € C° such that

1-RA, 1—AR€Cq.

The last theorem is, of course, a parameter-independent particular case of
Theorem 3.1. However, we need it in the proof of Theorem 3.1, so Theorem
3.3 must be proved independently. We obtain such a proof as a result of two
initial steps in the proof of Theorem 3.1
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Since Green operators in the cone algebra are compact (they even belong
to the trace class by Lemma 2.3) Theorem 3.3 means that the operator A
with invertible interior and conormal symbols is a Fredholm operator in the
space K*Y. We need also an inverse statement: if A € C° is a Fredholm
operator in K*7 for at least one s = sy then both its principal symbols
(interior and conormal) are invertible. For the interior principal symbol this
statement is a usual consequence of elliptic theory in the smooth case. For
the conormal symbol it may be proved using the same ideas, see e.g. [4].

The above theorems assert not only the existence of the parametrix but
also its belonging to a certain class. Lemma 2.4 gives a simple example of
such a statement. The proofs of Theorems 3.1, 3.2, 3.3 are actually reductions
of more complicated cases to this simplest one.

Proof of Theorem 3.1. We divide the proof into several steps.

1. For an operator-valued symbol a(y,n) € R° consider the corresponding
complete interior symbol a;(y, %, z,tn,tr,£) in local coordinates on X with

ai(y,t,z,7,7,€) € SG(R? x Ry x R™ x Ro1H7), (3.13)

Although the symbol classes ST in (3.13) are defined with respect to all
the variables y,¢,z and corresponding covariables n,7,£, we treat y,n as
parameters which are not involved into the Leibnitz product. In particular,
n i1s a large parameter of parameter-dependent elliptic theory. Because of
stabilization conditions we may assume that y,¢ vary on a compact set.
Now interior ellipticity implies that the symbol a;(y, ¢, z,tn,tr,£) is ellip-
tic in the usual sense of parameter-dependent elliptic theory. Thus, we may
construct the Leibnitz inverse for a;, that is the symbol r}(y,t,z,tn,tr,§)
with
rH(y,t,2,7,7,€) € S%R? x Ry x R™ x R+1+7) (3.14)

such that
(i)

1“2 al

|or}=0

98,r102,a; € STO(R? x Ry x R x R*H1H7) (3.15)

(y,n are parameters). These local complete symbols define a family of
pseudo-differential operators on X

ri{y,t,in,tr) H*(X) = H*(X) (3.16)
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such that the operator-valued function r}(y,t,7,7) is smooth up to ¢t = 0.
Such a family allows ” Mellinization”, that is one can construct another family
rl(y,t,7,2) smooth up to { = 0 and holomorphic in z € C such that the
operators Opg(r}(y,t,in,t7) and Opum(rl(y,t,in,z)) are compatible in the
sense of (2.22).

Finally we define an operator-valued symbol

ri(y,n) =

= weo(t[])Opp(ri (y, 1, 1, 7)) oo (1))

Fwo(t[n})Opay (ro(y, B, 1, 2))Do(t[n])
belonging to RO(RYx R, K*, K*7). If necessary we may border this symbol
by zeros to obtain a 2 x 2 matrix with the given left upper corner r!(y, n).

Thus, at the first step we have constructed an operator-valued symbol
r'(y,n) € R° satisfying the relation

r(y,maly,n) =1~ b'(y,n) (3.17)

in the cone algebra with a smoothing b'(y,n). Indeed, the interior symbol
of (3.17) differs from 1 by a smoothing symbol in virtue of (3.15). In other
words, we have b' € R}, ¢

Remark 3.4 If a stabilizes to 1 then necessarily Ny = N_, so that a(y,n)
acts in the space K*Y@®CY. By construction our symbol r!'(y,7) also satisfies
stabilization conditions, but it stabilizes to the matrix

( o ) (3.18)

2. At the second step we correct r!(y,n) to obtain a symbol r%(y,n) € R°
which is a more accurate parametrix of «(y,7n), namely,

L —r*(y,ma(y,n) = b*(y, 1) € Re. (3.19)

Consider the edge symbol oa(«) given by (3.6). By the edge ellipticity it
is an invertible (and hence Fredholm) operator in the space K*7 @ CV for
7 # 0. In its turn, this property necessarily implies conormal ellipticity of
the Fredholm operator oa(a). Thus,

omoa(a) = a,(y,0,0,2) : H(X) - H*(X)
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has an inverse

a;'(y,0,0,2) : H(X) = H*(X) (3.20)
independently of n. Now, taking conormal symbols opro4 in (3.17), we get
r(y,0,0,2)a,(y,0,0,2) = 1 — b(y, 0,0, 2)

with b} rapidly decreasing in the strip z € S. By (3.20) we may rewrite the
last equality in the form

r2(,0,0,2) = a;'(y,0,0,2) + c(y,7), (3.21)

with e(y,z) = a;(y,0,0,2)bl(y,0,0,2) which also decreases rapidly in the
strip z € S. Thus, the operator-valued symbol

Ar(y,n) = wo(t[n))Opar(a; ' (y,0,0,2) — ri(y,0,0, 2))To(t[n])

is a smoothing Mellin one, and we set

r2(y,n) = r'(y,n) + Ar(y,n).

Now, by construction

UMGA(Tz(yJU)) = a:l(yaO)Oaz) = (UMUA(G))-I )

so that
JMO'A(]' - Tz(y: U)a(yaﬁ)) = 0.

But the smoothing Mellin symbol vanishing at ¢ = 0 is a Green symbol (see
Remark 2.1), implying (3.19).

Remark 3.5 For the parameter-independent case with N = 0 these two
steps prove Theorem 3.3.

3. At this step we construct the further correction r® = r?4+Ar with Ar €
RY, such that oa(r®) is invertible for n # 0. So far we may affirm only that
oa(r?) is a Fredholm operator because of conormal ellipticity: opoa(r?) =
(omoa(a))™?! is invertible. Its index does not depend on y,7 for n # 0 and is
equal to 0 since, for large y, r? stabilizes to the matrix (3.18) in K" @& CV,
so that both kernel and cokernel coincide with CV.
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There is a standard way to obtain an invertible operator starting with a
Fredholm one by bordering the latter with finite-dimensional operators. This
procedure looks as follows.

Denoting the principal homogeneous edge symbol oA(r?) by d(y,n) we
may restrict ourselves to the compact set of parameters y,n with |y| < C
(because of stabilization condition) and || = 1 because of the homogeneity

d(y, i) = £(A)d(y, e~ (A).

For a Fredholm family d(y,n) : K*Y — K*7 on a compact parameter space
one can find a map k : CM¥ — K*7 independent of y,n with some M € N
such that the operator

K
Adly,m),k):- & —-K* . .. .. . (3.22)
CM
is surjective. [t may be done at any point yp, 70 using Fredholm property
of d(yo,m0). Since surjective operators form an open set in the space of all
bounded operators, the surjectivity of (3.22) holds in some neighborhood of
Yo, To- By compactness arguments we find a finite covering U;, 1 = 1,2,...,m
and corresponding maps k; : CM — K*7 such that (d(y,n), k:) are surjective
operators in U;. Then (d(y,n),k) = (d(y,n), k1, k2,. .., kn) gives the desired
operator with M = M, 4+ M; + ...+ M, surjective for all y,7. Its kernel

Jyn = Ker(d(y,n), k) C K*" @ CY
is a subspace in K*Y@CM of dimension M since by surjectivity of (d(y,n), k)
dimJy, = ind(d(y,n), k) = indd(y,n) + M =M

because ind d(y,n) = 0. Being of constant dimension this subspace depends
smoothly on parameters y, 7 defining a vector bundle over R? x S9!, Let

(p(y,m),q(y,m)) : Sy = CY (3.23)

be an isomorphism defined at least locally. Assuming for a moment that this
isomorphism may be defined globally on R? x S9!, we obtain an invertible
matrix

72y sy
(d(y,n) k ): K K

& — &
plysm) a(wsm) ) om cM
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which may be extended by homogeneity for |y| < C, 7 # 0 by

(5 DG ) (70)

and then define the needed operator-vaiued symbol r*(y,n) as a matrix

y,n)  emk(n)
(so(n)p(y,n) 90(77)q(y,17)) (3.24)

where @(7n) is an excision function equal to 1 for |7] > ¢ > 0. Clearly,
Ar = r® —r? is a Green symbol since its left upper corner is identically zero.
We may force the operators a(y,n) and r3(y,n) to act in the same space
K*7@CM+N with the help of extra borderings-obtaining new 'symbols of the

form
* x 0 ¥ 0 *
a=1* x 0], =101 0]|.
0 01 * 0 =*

It remains to show that the needed global bordering (3.24) actually exists.

Lemma 3.6 Let

H H
( ai(z) a(z) ) ®» — D (3.25)
azi(z) ax(z) CN N

be an invertible family on a compact manifold V. Then ayy(z) is a Fredholm

operator in H and for any family of its parametrices d(z) there exists a global
invertible bordering

(40 K2, 5 s e
p(z) q(z) |~ cM CM .

Proof. Let



be inverse matrix for (3.24). Then
1 —byyay = bizazy; 1 — anbiy = agaby.

The operators on the right-hand sides are finite-dimensional, whence by, ()
is a family of parametrices for ayi(z). Consider a homotopy of parametrices

d(z,t) = (1 = t)by () + td(z)

t € [0,1]. Reasoning as before for (3.22) and using compactness of V x [0, 1],
we find a map k(z,t) : C¥ — H such that the operator

H
(d(z,1),k(z,t)): & — H
S oM ,

is surjective. Moreover, we may take k(z,0) = b)2(z). Then
J = Jpy = Ker(d(z, 1), k(z, 1))

is a vector bundle over V x [0,1]. Show that this bundle is trivial, that is
there exist M linearly independent sections of J. For £ = @ such a basis is

given by the column matrix
(112(.’13') 0
(122(11‘) 0
0 1

where 1 means (M — N) x (M — N) identity matrix (we assume M > N).
For ¢ € [0,1)] the existence of the basis follows from the covering homotopy
theorem for the principal frame bundle GL(J) [9].

Let the column matrix

H
_ u(mat) .M
e(z,t) = ( of ) :CY — CGE{ (3.26)

of M linearly independent vectors of @ C¥ denote the global frame of J.
Then the global trivialization of J is a row matrix (p(z,t),q(z,t)) which is a
left inverse for (3.26), for example, we may take it in the form (e*e¢)~'e*. O
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4. Let us proceed with the construction of the parametrix. At the pre-
vious step we have constructed r® = r? + Ar with a Green symbol Ar such
that oA(r®) is invertible for  # 0. Then

Pa=1-8
with a Green symbol 4° and
oa(r®)oa(a) = 1 — aa(b®).

By construction the left-hand side is invertible, so is the right-hand side. By
Lemma (2.4)

(1= oa(®®))™ =1+ w(y,n)

with a Green symbol w(y, ) defined for n # 0." Multiplying it by an excision
function ¢(n) equal to 1 for n large, we obtain a Green operator-valued
symbol

wi(y, 1) = ¢(n)w(y,n) € R.
Define r* = (1 4 w;)r®. Then
rfa=(1+w)1-)=1-b*

where by € RZ is a Green symbol such that oA(b*) = 0. By definition of
Green symbols b* is a classical one and o,(b*) is its homogeneous leading
part of degree 0. Since oa(b*) vanishes identically, the highest degree of
homogeneity is equal to —1, thus b* € R3'.

5. At the last step we construct the final correction 7% such that

1-rPa=0"€Rg

and b® = 0 outside a compact in R??. To this end observe that 4* € Rg'
satisfies the following estimate

I ()b* (w, ma(m)ll < Cl) ™

where || - || means the operator norm in the space

1:([\'3: M P CM"'N, K2m g CM+N)
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with any s1,s2 € R and 11,72 € (—¢,€). Thus, the operator

K7 (m)(1 = 64y, m))w(n)

is invertible for large 1 and so is 1 — b*(y,n). Thus, using Lemma 2.4 once
more, we may write for large 7

(1 =0"(y,m)™ =1 +way,n)

with a Green symbol ws(y,n) defined for || > C > 0. Multiplication by an
excision function which is equal to 0 for |7| < C and to 1 for |n| > 2C yields
a Green symbol

ws(y,n) = p(nw(y,n) € RG".

We set r° = (1 + ws(y,n))rt. . .
Thus, we have constructed a left parametrix »° such that

1 1% € RG'

and vanishes outside a compact in R?? (for large y it is evident from stabi-

lization conditions which are respected at each step of our construction}).
The same reasoning gives a right parametrix with the same properties,

so any of these parametrices is a two-sided parametrix. This completes the

proof of Theorem 3.1. O
The proof of Theorem 3.2 will be given in the next section.

4 A regularized Trace of a Product

Consider two operators A, B € ) with operator-valued symbols a(y,n) and
b(y,n) of the form (2.9). In this section we study the operator

)l
v =aB- Y S 0p@za(y, mozbiy, ). (1.1)

lal<n &

Using the notation

—7)lel
aobly =Y. (—C;?-—Bﬁa(y, 1)955(y, 1)

|a|<N
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for the truncated Leibnitz product of symbols we may rewrite (4.1) in a more

compact form
Cn = AB — Op(a o bln).

The basic property of this operator is described in the following lemma.

Lemma 4.1 For any fized v € (—¢,€) there exists a 6 > 0 such that the

operator
Cn : W 5 WotNmts (4.2)

is bounded for any s € R.

The crucial point is that the regularization procedure (4.1) gives not only
better smoothing properties but also better weights.

Proof. First introduce some notations. -Let a(y,7)-€ R™ be an operator-
valued symbol stabilizing to 0 and acting between the spaces

K o Km0 m).

Denote by
a(6,6) = [ e a(z, €)da.
its Fourier transform with respect to y. Then for any p > 0 we have

I~ (m)a(g, ma(mll < Com[C]7" 0]

where the norm means the operator norm in the above-mentioned spaces.
This estimates are fulfilled by definition of the symbol classes

S™(R¥, K*7, Ke=ml),
We shall briefly write them in the form
£~ (m)a(¢,m)r(n) = O]~ [I™).

Note that multiplication by [¢]? for any ¢ € R does not change this form.
Now, let us return to (4.1) with A,B € )®. In terms of the Fourier
transform the operator B acts as

Bu(n) = [ b(n - & &)u(€)de.
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Applying this formula once more, we obtain

ABu(¢) = [ [a(¢ —n,mbln - €, ©)a(e)dedn.
By Taylor’s formula

a(¢ —n,m) =

= % L 08(C ~ 7, O)n — 7 + An(C — n,m,)

|| <N

The sum here corresponds to the sum in (4.1), so for the remainder Cy we
have

Cru(c) = [ [ Bn(¢ = n,m, Ob(n — ¢, €)(§)ded.

Using the integral form for the remainder in Taylor s formula

RN§ 7?’7716)
=V [(A-% 3 ZaOE € +tln - )n - e

]a|—N

where @(®) mean derivatives with respect to the second argument, we see that
the Schwartz kernel Ky ((,£) of the operator Cy may be represented in the
form

]\N(Carl
=N / HN-1dt f ) -a,(‘ﬂg € —0,€ +10)0°b(0, £)db. (4.3)

lal=N &

Supposing that the symbols a(y,7n), b(y,n) act between the spaces K*" —
K*" and using Lemma 2.6, we see that a(®)({ — £ —0,€ +t0) acts between
K*7 — K**No+8 with some positive §. Since b(6,€) : K* — K*7 is
bounded it implies the boundedness of

Kn(C,€) s K7 — KetV+s, (4.4)

To estimate the norm in wedge Sobolev spaces we apply a standard trick and
introduce a new kernel

En(¢,6) = [N (O KN (G OR8] (4.5)
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Then the norm of the operator with the kernel (4.4) in the spaces
Wsl"f _) W3+N,’)'+5

is equal to the norm in L? of the operator with the kernel (4.5). Now,
5 (E)B(6, €)m(€) = O((0]7*),
KTHE+10)a' (¢ — €~ 0,6 + t0)r(E + 1) =
=O([¢ — €~ 0]™[¢ +10]™™)

and we obtain the following norm estimate for the operator with the kernel
(4.5)

I, &)l =
_ / V=14t / (1N |61 (€ + t8)w(6)]

xO([¢ = & = 6]7°[¢ + t8]7Y)||x ™ (¢ + 6) ()| O([6)7)[€] ~*db- (4.6)
Next, we apply estimate (1.11) and Peetre’s inequality to get

516 + t0)]] < cmax{ - Lflw]w € E_ﬁg} }

<Cl¢- &M < Cl¢ — eaM](1 — YoM
< ClC—¢&— oMM,

This term may be omitted since there are factors [( — £ — 8]7°° and [#]~*° in
(4.5). Similarly,

M M
e+ 0)ste)] < Oma{ L7 R < clape

and we may also omit this term. Finally, Peetre’s inequality yields
[+ 07N < CloV e~
Substituting into (4.6) and using repeatedly Peetre’s inequality we get

IK(, Ol =
=[O+ NI¢ - € - o1[6) a8

= [o(¢ - € - 0)<[g))do
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Choosing M sufficiently large, we obtain

R N e

and similarly

JIR(C,&)l1de < oo.

It means that the operator in L® with the kernel T(—(C,f) is bounded proving

the lemma. O
In particular, for N = 1 we get that the operator
AB — Op(a(y,n)b(y,m)) : W*" — WoHi+e (4.7)
is bounded.

Proof of Theorem 3.2. Let Ro = 'Op(vi(;:.;,.n)) Gyobea.pseudo-
differential operator with the symbol r(y,n) constructed in Theorem 3.1.
We define

N-1 N-1
Rn=Ro Y (1~ ARo)* = 3 (1~ RoA)* Ry,
k=0 k=0
so that
1 -RyA=(1-RA", 1-ARy=(1- AR)".
Now,

1 — RoA = Op(r(y,n)a(y,n)) — RoA + Op(1 - r(y,n)aly,n))

By (4.7) the first two terms give a bounded operator from W7 to Wet1w+s,
The third term belongs to V5! by Theorem 3.1, thus it is also bounded from
W7 to Wt Both terms stabilize to 0. Thus, the operator

(1 — ReA)N : W o WHNovte y pyreny

for N > g+ 1 4+ n belongs to the trace class by Corollary 1.4. The same
reasoning may by applied to (1 — ARg)V. O
Define the regularized trace of the product of A and B by

—3)lel
TrnAB = Tr{AB~ > ( a? Op(&?a(y,n)affb(y,n))}, (4.8)

|a]<N

provided the trace on the right-hand side exists.
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Theorem 4.2 Let A, B € )° and stabilize to . Then the regularized
trace Try AB ezists for N > g+ 1 + n and does not depend on the order of
factors, that is

TrnyAB = TryBA. (4.9)

Proof. The existence follows directly from Lemma 4.1 and Corollary 1.4.
Integrating the kernel (4.3) over diagonal { = £, we obtain

TryAB =
=N f / /0 oM T 5@3&(—0,5+t0)003(0,§)d0dg.

laf=N 7"

Next, we integrate by parts in ¢ and change variables ¢ = £ +t0, 8/ = —0.
It yields

TINAB =
=N f f /Ol(l—t)“”lﬂlttr 2 %a(ﬂ',f')(0’)“8"iA(—0’,§’+t6’)d0’d§’.

lal=N
This expression coincides with the corresponding expression for Try BA if one

changes the order of factors under the trace sign. This proves the theorem.
a

5 The index Formula

We are now in a position to derive an index formula for an elliptic wedge
operator starting with the general formula

indA = Tr(l - RNA) — Tr(l - ARN) (5.1)

for a Fredholm operator A : Hy — H,. Here Ry : Hy — Hy is a parametrix
of A up to trace class operators. In our case Hy = H, is the wedge Sobolev
space W*7 and A € )” is an elliptic operator stabilizing to identity.

After analytical preparation of the preceding sections the scheme of [1, 2]
goes almost without changes.

We begin with a definition of the algebra of formal symbols where the
algebraic index lives, confining ourselves to a particular case of the general
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definition in [2]. Here we denote the formal parameter by h (instead of A in
[2]) as it is usual in deformation quantization.
The algebra A of formal symbols consists of formal power series

a(y,m, h) = ghkak(y, ") (5.2)

with
ar(y,n) € S°(R™, K** o CM, K*" & CM).

We also suppose that a stabilizes to a constant (times identity operator) at
large y. The formal Leibnitz product is defined by

— o (_z)|°| o o
aob=- Z : h,l <'+?’-+"Té‘ﬁ a-pé)g bq ‘ - (53)

[o],p,q=0

A frace ideal J € A consists of formal symbols whose coeflicients are
Green symbols vanishing outside a compact in R* ( that is not only for large
y but for large n also). For a € J define its formal trace by

o) hk—q
Tra=)Y_ . /R?q trax(y, n)dydn (5.4)

k=0

where tr means the trace of coefficients in the cone algebra. Being Green
operators they are trace class operators in K*" @ CM, the integral in (5.4)
converges because ¢ are compactly supported. So, Tra is a formal Laurent
series in h with negative exponents not exceeding ¢. Integration by parts
shows that Tra o b =Trb o a if one of the factors belongs to 7.

Next, define elliptic formal symbols and their indices similarly to (5.1).
The symbol a € A is called elliptic if there exists a symbol r € A such that

l1-roa, 1—aoreJ. (5.5)
We define an algebraic index setting
inda=Tr(l1-r0a)=Tr(l—aor). (5.6)

A basic property of the algebraic index is its stability under homotopies
(see [2] or more recent paper [7]). As a consequence we obtain that the
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formal Laurent series (5.6) consists of the constant term only, since there is
a homothety

H,\ : a’(y: 7, h) = a(y? ’\n, Ah)

of the algebra A not affecting the index [2, 7]. Thus, the algebraic index may
be treated as a number.
For an elliptic operator-valued symbol

a(y,n) € RO(RY, K" @ CV, K*" g CV)

satisfying stabilization conditions we may define its index in two different
ways. First, the operator A = Op(a{y,n)) is Fredholm in the space W*7,
and we have its analytical index defined by (5.1). On the other hand, the
symbol a(y,n) may be considered as a formal one consisting of the leading
term only. Show that there exists a r(y,n, h) € A satisfying (5.5). To this
end let us denote by ro(y,n) the parametrix constructed in Theorem 3.1.
Again ro(y,n) is treated as a formal symbol consisting of the leading term
only. For such symbols we consider two products: the Leibnitz product rooa
in the algebra A and the pointwise product ro(y, n)a(y, n) for operator-valued
functions. We define

fae]

r(y,mh)=ro0 Z(aro —aorg)* (5.7)
k=0

where the exponent ok means the k-th power with respect to the product o.
Clearly, (5.7) is meaningful as a formal symbol since arg—aorg has vanishing
leading term.

Lemma 5.1 The symbol r given by (5.7) is a parametriz of a in the
algebra A, that is satisfies (5.5).

Proof. A direct check shows that (5.7) is a right parametrix. Indeed,

[>a}

l—aor=1-— (aoro—arg—i—aro)oZ(aro——aorg)*’k =
k=0
= Z (aro — a o r)° ™Y 4 (1 — arg) 0 Y (arg—ao 7o)
P k=0
(o o]
—Z(aro-—aorg)k (1 — arg) 02(17"0-(107‘0 )oK, (5.8)
k=0 k=0
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This expression belongs to J since (1 — arg) does (it is a Green operator in
K*Y @ CM with compact support in y,7). Similarly, one can check that

00

r = Z(rga — 790 a)°k o1y
k=0

is a left parametrix, that is 1 ~r,0a € J. In this case r; — r € J since we
have
rnoaor=rn=r (modJ).

Thus, r is a two-sided parametrix. d

Now, the algebraic index of a(y,n) is defined by (5.6) and the first part of
the index theorem claims that both indices, analytical and algebraic, coincide.
This statement is a simple consequence of Theorem 4.2. Indeed, for

r= Rhri(y,n)

k=0

Lemma 2.6 implies that
ri(y,n) € RER¥ K" gCM, K" gCM)

since 7 contains k derivatives with respect to € applied to a(y,n) or ro(y, 7).

Introducing a notation
N-1

TN = Z Tk(y,ﬂ)

k=0

for partial sums of formal series at h = 1, we may define a parametrix
Ry = Op(r|n)

slightly different from that constructed in Theorem 3.2. Then we have the
following chain of equalities starting with the analytical index and finishing
with the algebraic one:

Tr(1 — Op(r[w)Op(e)) — Tr(1 — Op(e)Op(r|N)) =

= Tr(1 — Op((r|~ 0 a)|v)) — Tr(1 — Op((a o rln)|v)) =

= Tr(1 — Op({(r o a)|{n)) — Tr(1 — Op((a o r)n)) =
=Tr(l1—7r0a)—Tr(l —aor). (5.9)
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The first equality is due to Theorem 4.2 since

Tr{Op(r|n)Op(a) — Op((r|n 0 a)[n)}

is a regularized trace of Op(r|y) and Op{«). The second equality follows
because the difference

Op((r|n 0 a)|n) — Op((r o a)ln)
may be written as a finite sum of the terms
TrOp(8¢ 4T, a)
with || < N,k < N,k + |a| > N. For N large enough this is equal to
TrOp(B?aé?:rk)

as may be seen integrating by parts . Finally, the last equality in (5.9) follows
since the algebraic index contains the constant term only (and thus does not
depend on N) for sufficiently large N.

The second part of the index theorem which claims that the algebraic
index is equal to the topological one given by (0.2) is a general fact for the
algebra of formal symbols R?, see [2]. Recall briefly how the proof runs.

Given a,r € A satisfying (5.4) we construct matrices

P0=E0G=(i)o(1—roa, r)=
_ l—rca r’
“\ao(l—roa) aor }’

(7)o =)

Since G o E =1, P° and P! are projectors:
P°opP®=P° Plop!=P.
Moreover, P° — P! € J and

inda = Tr(P° = P).
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By periodicity theorem for the symbol algebra {2] this quantity may be ex-
pressed in terms of the leading symbols

1

a(y,n) ) (1 =roa, o) =

po(y,n) = e(y,mg(y,n) = (
_ ( 1 - rga o )
L a(l =rea) arp

1

inda = W ./;12'7 tI‘(PgdPg A dpg)q

and it remains to return to the symbols a(y,n) and ro(y,n). Straightforward
calculations show that

in the form

padpy A dpy = e(dg A de + gde A gde)g = e(drg A da + roda A roda)g,

so that
tr(pydpy A dpg)? = tr(dro A da + roda A roda)?.

This completes the prool of the index theorem.
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