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o Introduction

In this paper we derive an index farmula far an elliptic operator in thc so­
called wedge algebra introduced and developed by the second author and his
school [4, 5, 6]. We confine ourselves to the most simplest case both fraln
analytical and topological point of view. The simplest wedge is a direct
product W = IRq X X/\ where IRq is called the edge and X/\ = X X IR+
is a stretched cone over a smooth compact manifold without boundary X.
Sometimes we will call IRq the base and X/\ the fiber of the wedge.

The analysis of pseudo-differential operators on such a 111anifold is nat­
urally performed in the fralnework of operator-valued symbols: we consider
pseudo-differential operators on the base IRq with symbols a(y,7]) taking val­
ues in the so-called cone algebra with aSY1nptotics C(X/\) on fibres. In general,
the cone algebra with asymptotics deals with meramorphic Mellin symbols.
For the index theory a minimal asYlnptotic information is sufficient: we con­
sider Mellin symbols hololnorphic in a narrow strip S = {~z-(n+l)/2+,o E

(-e, e)} around a fixed weight line r(n+l)/Z-')'o' In other words, we deal with
empty asymptotic data in the weight strip. The cone anel the wedge theories
under these assumptions are much sin1pler than in the general case. For the

·Supported by the Deutsche Forschungsgemeinschaft
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reader's convenience we give abrief description of the cone and wedge alge­
bras in our particular case. The proofs are mostly omitted or sketched, for
lTIOre details the reader is referred e.g. to [6].

A general concept of pseudo-differential operators with operator-valued
symbols acting in Hilbert spaces was studied in the work [3]. Index theory
for such operators includes the following problems:

1. elaborate a notion of topological index (t-index) and the corresponding
concept of elliptici ty (t-ellipticity),

2. the same problem for analytical index, in other words, one has to elabo­
rate the notion of ellipticity (a-ellipticity) implying tbe Fredholm prop­
erty of tbe operator,

., 3. prove the index theorem, that is show tbat both indices coincide if the
symbol is both a-elliptic and t.,.elliptic.

In the case of the wedge algebra the operator-valued symbols a(y, 1]) in ques­
tion are operator families on r"'(IRq) = IR 2

Q. The minimal assumptions for
item 1 is that for any point (y, 1]) the symbol a(y, 1]) is a Fredholm operator
invertible outside a compact set. Under these assumptions the so-called in­
dex bundle iod a(y, 1]) is defined as an element of K c(IR 2q) ~ Z (see [3]). The
topological index of the operator A = Op is defined then with the help of
the ehern character

indtA = 1. ch{incl a(y, 1])} E Z.
R2q

The second item is more subtle. 0 f course, the symbol classes sm (IRqX IRq)
similar to the scalar-valued case may be introduced by means of the estimates

(0.1)

It turns out, however, that these estimates together with t-ellipticity do not
imply a-ellipticity (see [3]). This is because they do not control fibrewise
properties of a~affa(y,1]) such as compactness for lßI > m or the Hilbert­
Schmidt property giving only norm decay for large 1]. In [3} the symbols of
order 0 with compact fibre variation were introduced for which t-ellipticity
and estimates (0.1) do in1ply a-ellipticity in appropriate Sobolev spaces, and
the index theorem was proved.
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For the wedge algebra we can not apply directly the methods of [3] since a
non-trivial twisted group action on fibres is involved in this case. Instead we
use the notion of ellipticity for wedge operators in terms of their interior and
edge principal symbols (see e.g [6]). lt irnplies the Fredholm property in the
spaces W"" via paralnetrix construction. At the same time this construction
provides fibrewise parametrices which are precisely inverse operators for large
y,1]. Thus, t-ellipticity also holds, and we prove the index theorem in the
fonn

ind A = (2 \ I { tr(dr A da + (rda )2)". (0.2)
7fZ qq. JR2q

Here A = Op(a(y, 1])) is an elliptic wedge operator, r(y, 1]) its fibrewise
parametrix up to trace class operators. Observe that the integrand in (0.2)
is a differential form.~ith COfppa5=t suppo~t. repres,entipg ~e C~~~Jl.,ch~ra~~er "
eh{in cl a (y, 7J) }. ' .

The proof is based on an analytical approach suggested in [1] and algebraic
machinery clevelopecl in [2]. We introduce the so-called a/gebraic index in the­
algebra of formal operator-valued symbols as an intermediate step between
analytical and topological indices. The analytical part of the paper consists
in thc theoreln on the regularized trace of a product. In section 1 we briefly
discuss the cone and the wedge Sobolev spaces [("" and IV"", especially
trace class operators in these spaces. In section 2 the needed special cases
of the cone and wedge algebras are discussed. Here the fibrewise properties
of the derivatives in (0.1) are controlled by a special grading of W"". The
next section deals with the parametrix construction. Our treatment is rather
brief, Inore details Inay be found in [6] and references therein. In section 4
the theorem on a regularized trace of a product is proved. 'vVe have made
some improvements cOlnparing with the original proof in [1] allowing to avoid
an analytical continuation in orders for operator-valued sYlnbols. The proof
of the index fonnula is briefly discussed in section 5 following [1, 2].
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1 Cone and Wedge Sobolev Spaces

1.1 Cone Sobolev Spaces

By a stretched cone X/\ with a base manifold X we mean a cartesian product
X X IR+ with the action of the group IR+

A(X, t) = (x, At) (1.1 )

A E IR.+, (x, t)'E X X IR.+. The baseX. is supposed to be a ,smooth compact
n-dimensional manifold without boundary. For a coordinate neighborhood
U c X we denote by U/\ = U X IR.+ the stretched conical neighborhood in
X/\. We use a notation Vl:l. C IRn+l for a geometrical conical neighborhood
corresponding to a coordinate neighborhood V C sn on the unit sphere in
JRn+l, The group IR+ acts on Vl:l. by homotheties. By a conical coordinate
diffeomorphism X : U/\ -t Vl:l. we mean a diffeomorphism which commutes
with the action of R+. The inverse diffeomorphism

(1.2)

may be thought of as a passage to polar coordinates.
There are several modifications of the Sobolev spaces adopted to the

conical structure.
1. The spaces [{ß(X/\). For a function u E Cr(X/\) with support in a

stretched conical neighborhood U/\ we take its push-forward

under conical coordinate diffeomorphism (1.2) and define

The general case may be reduced to the above special one by taking a
finite coordinate covering Ui of X and the corresponding partition of unity
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Pi(X). Für a stretched conical neighborhood ut we take a coordinate diffeo­
morphism Xi: U[' ~ \!i~ and set

111l1l~'(XA) = L Ilxi*Piull~'(Rn+I)'
i

(1.3)

It may be easily verified that the norm (1.3) does not depend on the covering,
partition of unity and coordinate diffeomorphisms up to equivalence.

2. The weighted Sobolev spaces H3''f(X''). Again we n1ay consider
a special case of u(x, I) E Cü(XI\) with support in a conical coordinate
neighborhood Ul\. Let u(~,z) denote the Mellin transform of u(x, t) with
respect to 'l, that is

u(z) = {O tZ-1u(t)dt,
. .

and the Fourier transforn1 with respcct to x. Then

where f(n+l)/2-1 = {z: 3{z = (n+l)/2-,} is aso-called weight lineon the
complex plane.

Like before we can reduce the general case to this special one.
3. The cone spaces [(ß';(XI\). Take a cut-off function w(t) E Cü (IR+)

which is equal to 1 near I = 0 and set

So, the space [(ß,'"Y is a "mixture" of the weighted space Hß,; near t = 0 and
the usual Sobolev space H3(JRn+l) near t = 00. The choice of w(t) does not
affect the nonn (1.5) up to equivalence.

For any fixed cut-off function wo(t) E Cü(IR+) equal to 1 near t = 0 we
have foul' bounded multiplication operators

;!: [(3'1 ~ H 3,; (1.6)

H3,"'1 ~ [(3,; (1.7)

[(3,; ~ Hß (1.8)

H ß~ /(8,"'1. (1.9)
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The group IR.+ acts on any of these functional spaces since it acts on cones.
It is convenient to modify this action by a factor, namely

!!.±.1
(/'CAu)(t,x) = .-\~u(.-\t,x). (1.10)

A general result concerning strongly continuous actions of IR.+ on Banach
spaces consists in the following estimate for the norm of /'CA

(1.11)

for some C > 0 and M 2 1 (see [8]). For our spaces H"(IR.1l.+1), H",-r(X A
),

J(",-r(X A
) the estimate (1.11) for the action (1.10) may be proved directly.

There are continuous embeddings

Lemma 1.1 For 'l/;(x) E C~(IR.n+l) denote by M(.-\), A ;::: 1 a multipli­
cation operator

M(A) : H"(JRn+l)~ H,,-N (JRn+l), (1.12)

N ~ O. Ij N > (n + 1) /2) then M (A) is a Hilbert-Schmidt operator and the
Jollowing estimate holds Jor its Hilbert-Schmidt norm

(1.13)

Proof. Applying Fourier transform to both sides of the equation

v(x) =,p G) u(x),

we obtain
v(6) = J"n+l~(.-\(6 - ~))u(~)d~.

To represent this operator as an integral operator between L2-spaces, intro­
duce the following functions
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Ul(e) = (e)3 U(().

The operator (1.12) may be rewritten as

The Hilbert- Schmidt norn1 of the operator M(A) is equal to the L 2-norm of
its kernel !«(6,e), so that

-IIM(A)II1-s,=·j·I!«(6"e)l~deld~

(6/ A)2(s-N) -- 2

=J (~/>.)2. 11{.>(6 - ~)I d6d~.

By Peetre's inequality

( t /.\)2(3-N)
~1 < C((t _ t)/.\)2 13-NI
(~/ .\)2(3-N) - ~l ~ •

Since A '2: 1, the right-hand side does not exceed C((1 - ()2 1,,-NI, whence

11 M(.\)1I7IS ::; c J(~l - ~?ls-NII~(~1 - ()1 2d6 J(~/A)-2N d(

::; Cl A;'+1 J(() -2Nd~

proving the lemma.
o

Lemma 1.2 Let w(t) E Cr(IR+), w = 1 neur t = O. For.\ '2: 1 let
M(.\) he a 1nultiplication operator

(1.14)

whe're N '2: 0, J 2:: O. If N > (n + 1)/2 and J > 0) then 111(.\) is a
Hilhert-Schmidt operator and the estimate (1.13) holds.
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Proof. Take cut-off functions wO(t),Wl(t),W2(t) E Cr(IR.+) equal to 1
near t = 0 and such that

Then for any ,,\ ~ 1 we have

w (f) = wa(t) +(1- Wa(t»W G)
which gives a decornposition of M("\) into a surn of two multiplication oper­
ators

where

Mt: K&'"Y(X") ~(t) H&''Y(X'') wo(9 H&-N''Y-8(X'') ~(tf I(&-N''Y°-8(X'')·

M
2
("\): K&''Y(X'') l-wo~t) HIJ(X") w(tl H3-N(XI\) t-wl~t) I{3-N(Y-8(X").

By (1.6)-(1.9) the extreme left and right operators in these sequences are
bounded, so it is sufficient to estimate Hilbert-Schmidt norms of muItiplica­
tion operators in the middle. For the operator

the desired estimate follows directly [rom Lemnla 1.1. Since Mt does not
depend on "\, it is sufficient to prove that

H&''Y(X'') wo(t; H3- N,'Y-8(X")

is a Hilbert-Schmidt operator for N > (n + 1)/2, 0 > O. Using partition
of lluity, we come to the mllltiplication operator wo(t)p(x) where p(x) is
supported in a coordinate neighborhood U C X. Using Mellin transform
with respect to t and Fourier transform with respect to X, we get

for v = wopu. The flluction

i
oo

1 i oo
dwo(z) = tZ-1wo(t)dt = -- t Z

-

d
wo(t)dt

o Z 0 t·
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is holomorphic in the whole plane C except the first order pole at z = °and
decreases rapidly along verticallines rß. In particular, if zEr(n+l)/2-, and
Zl E r(n+1)/2-I'+O with 0 > 0, then

for any N > O. We proceed further similarly to Lemma 1.2. Introducing

VdZI,6) = (1 + 1~112 + lz112)("-N)/2v(zl'~)

UI (t,~) = (1 + 1~12 + IzI 2 )"/2fi(z, ~),

we come to an integral operator
. . . .

VI(ZI,~) = JJ«(zl,6,z,~)fil(Z,~)dzd~

between L 2-spaces whose kernel is

Thus, for the Hilbert-Schn1idt norn1 of All we obtain

By Peetre's inequality

The integral over 6, Zl converges since wand p are rapidly decreasing func­
tions while the integral over ~, Z converges, provided N > (n + 1)/2.

o
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1.2 Wedge Sobolev Spaces

The simplest model of a st1'etched wedge is a cartesian product

W = IRq X X A = IRq X IR+ X X (1.15)

where X A = Ii+ X X is a stretched cone with a base manifold X of dimension
n. In Iocal charts on X the points of Ware represented by tripIes

(y, t, x) E IRq X IR+ X Rn.

The wedge Sobolev spaces W"'-Y are adopted to the fibering structure (1.15).
The function u = ll(Y, t, x) E C~(W) is considered as a function on IRq with
values in the cone Sobolev space [(",'"Y(XI\). Introduce the so-called smooth
norm Junction [71] for 71 E IRq which is greater than or equal to 1 everywhere
and [7]] = 1~1 for sufficientIy large I~I ~-C:-Obviously·we·have·

[7]] rv (1]) = (1 + 11]1 2)1/2

where rv means that two-sided estimates hold

[1]]
o< Cl S f0 S C2 .

We also introduce a notation

K(7]) = K[tl]

for the action (1.10) on I(S,'"Y(X A
). Then the norm in W"'')' is given by

(1.16)

where
u( 7]) = Fy~l'/ {u(y, t, x)]

is the Fourier transform with respect to y. A detailed exposition of the
wedge Sobolev spaces (as weH as the cone Sobolev spaces K""'Y) may be found
in [4, 8]. Here we would like to emphasize one interesting and important
property of these spaces. Although the fibering structure of the wedge is
involved in the definition (1.16) it turns out that for functions with supports
away from the edge the norm (1.16) is equivalent to the usual Sobolev norm
in HS (IRq+n+1) [6].

For any N, fJ ~ 0 there is a continuous embedding W"'1' y W,,-N,'"Y- 8• We
are interested in the Hilbert-Schmidt properties of this embedding.

10



Theorem 1.3 Let w(t) E cgo (IR.+), w(t) = 1 near t = 0) ep(y) E
Cü(IRq) and let

(1.17)

be a multiplication operator followed by embedding. Then M is a Hilbert­
Schmidl operalo1' for 0 > 0 and N > (q +n + 1) /2 .

Proof. We proceed siInilarly to Lemma 1.1. Suppressing dependence on
x E X denote

v(y, t) = cp(y)w(t)u(y, t)

01' applying the Fourier transform with respect to y E IRq

(1.18)
+ , ... ,. •

Introducing the functions

Ul(1J, t) = [ry]"K:- 1(1J)u(7], t)

VI (111 , t) = (1]l]"-N K:- 1(111)V(1]1 , t)

we represent the operator (1.18) as an integral operator

is a function in (1]1, 1]) E IR. 2q with values in the space .c( [(""-Y, [(s-N,"t-o).
Using Lemma 1.2, we will show that !( (171,1]) is a Hilbert-Schmidt operator
and estimate its Hilbert-Schmidt norn1. Apart from a constant factor our
operator is
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Applying (1.11) and then using Peetre's inequality, we get

where 11 11 means the operator norm in I(8-N,."y-8" Next, hy Lemma 1.2 the

Hilbert-Schmidt norm of the multiplication operator by w (~) acting from
K8(Y to I{8-N,'Y- 8 may be estimated as C(7])(n+l)/2. Since

we come to the following estirnate

11 K( 1]1,1]) IIHS ::; C[1]1 - 1])ls-NI+M 1<f5( 1]1 - 1]) 1[1]]-N+(n+l)/2.

Thus,

The first integral converges since <f5 is a rapidly decreasing function while the
second oue converges in virtue of the inequality 2N > n + 1 + q. 0

Corollary 1.4 For 8 > 0, N > n +q+ 1 the operator M given by (1.17)
belongs to the trace class.

Proof. Let Wl (t) , 'P (y) be other functions w it h cornpact supports ancl
such that W(t)WI(t) = w(t), 'P(V)'PI(Y) = 'P(Y). The operator M may be
factorized by

both factors heing the Hilhert-Schmidt operators, whence the assertion fol­
lows. 0
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2 The Cone and the Wedge Aigebras

2.1 The Cone Algebra

We will need the very special case of a cone algebra with aSY7nptotics. For
reader's convenience we give here its brief description, the wedge algebra will
be considered in the next snbsection. As a rnle, the proofs are omitted, more
detailed exposition may be fonnd in [6].

The operators of the cone algebra are defined first on functions

and then are· extended· by. continuity ~to -the, cone.Sobolev .spaces .

(2.1 )

with same SI, 82, fl, 12 ERn. Oue of the indices Sb 82 may be chosen arbi­
trarily. Ir for any SI E !Rn we nlay take 82 = 81 - m the operator is said to
be of order m (luare precisely, not greater then m). If (2.1) holds for any
SI,82 E Rn, the operator is called smoothing.

The indices fI, '/2 are more rigid, neither of them, in general, may be
chosen arbitrarily. We suppose that there are two fixed weights al, 0:2 such
that for sufficiently small c: > 0 (2.1) holds for any fl E (al - C:, al +c:) and

'/2 = 0'2 + '/1 - 0'1 E (0'2 - C, 0'2 + c).

These two weights al, 0'2 will be called weight data. Ir '/1, 12 luay be chosen
independently within the weight intervals

'/1 E (al - C:, al + c:), '/2 E (a2 - C:, 0'2 +c), (2.2)

the operator is called fiattening (with respect to the given weights 0:1,0'2)' If
the operator is both smoothing and flattening, it is called a Green operator
(with respect to the given weights CYI, 0:2)' The set of Green operators is
denoted by Ca = Ga (a1, 0:2)'

The operators (2.1) of finite order form an algebra (provided the indices
match) and Green operators fornl an ideal. Since 1(8" are dual spaces, the
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adjoint operator A* belangs to the algebra if A does, moreover, A'" E CG if
A E CG .

Now we define the cone algebra C = C(X"). An operator A of order
m E IR (notation A E Cm

) consists of three summands

A = AF + AM + AG =
=woo(t)t-mOPF(ai(t, tr))woo(t) +

+wo(t)t-mOPM(av(t, z))wo(t) + AG (2.3)

called Fourier, Mellin and Green operators respectively. Here Wo (t)) Woo (t)
form a parti tion of uni ty on Il4, Wo (t) _ 1 near the vertex t = 0 and has
compact support, woo(t) = 1 - wo(t), the functions wo,woo are equal to 1 on
the supports of wo,woo respectively and.wo, 1 -:- woo.E C~(l~+.) ....

The first item in (2.3) is a usual Fourier pseudo-dijJerential operator

(2.4)

with a Fuchs-type symbol ai(t, tr) (the subscript i stands for interior). The
values of the symbol are pseudü-differential operators of order m on X, so in
a loeal coordinate chart on X we have

The second item in (2.1) is a Mellin pseudo-diiJerential operator

1 lr 100 (tl) z dt1OPM(av(t, z))u(t) = -2. dz - av(t, z)u(td-·
?TZ 1(n+l1/2-...,. 0 t t1

(2.5)

(2.6)

Here av ( t, z) (v stands for vertex) is a holamorphie function in a weight-strip

S = {jRez - (n +1)/2 - 101 < c}

for same fixed 10 and c > 0 with values in pseudo-differential operators on
X, so that in a coordinate chart on X we have

on any line rß = {Wz = ß} c S unifonnly in Iß - (n + 1)/2 +10 1::; co < c.
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The operators (2.4), (2.6) under these asslllnptions have bounded exten­
sIOn

(2.7)

for any s E Rn and / E (/0 - c, rO + c). Without loss of generality we may
take rO = 0 in the sequel.

The operator (2.4) and (2.6) must be compatible in the sense that for any
functions 'P, 'ljJ E Cü(XI\) the inclusion

(2.8)

holds (see [6, 8.1.3, Theorem 2]). The notation L -00 means smoothing opera­
tors. Observe that (2.8) is also an infinitely flattening operator since 'P, 7/J _ 0
in the neighborhood of t = 0.. .

The last item in (2.3) is a Green operator usually with respect to the
weights /0, /0 - m. In this case the whole operator A = AF +AM + AG acts
in the spaces (2.7). Sometin1es (these cases will be specified) we will need
Green operator with respect to the weights /0, rO - l with I 2:: 7n. In these
cases (2.7) implies

(2.9)

because of the embedding

"Ve also will use an obvious Inodification of operators (2.3)

According to these decompositions the operators are represented by 2 x 2
matrices. The first two items in (2.3) act in direct summands KIJ,'Y, so, more
accurately, they should be represented by a lnatrix

(2.10)

However, we will not use these pedantic notations keeping in mind that A F

and AM euter only the left upper corner of the full matrix. As for the Green
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item, it is represented by a full matrix which admits an extension

(2.11)

for any 81,82 E IR», ,1,/2 E ('0 - c"o +e).
Let us list some important properties of the cone operators (2.3).

1. If A E Gm I and B E Cm2 then AB E Gm I +m1 , so C is an algebra called
the cone algebra. For the interior and vertex symbols of the product
we have the following asymptotic sums

. (2.12)

~ 1 k k ( )av 0 bv '" t'o k! 8z av (t8d bv • 2.13

These expansions are called Leibnitz produets for interior (2.12) and ver­
tex (2.13) symbols. If the symbols ai, av and bi , bv satisfy compatibility
conditions (2.8), then (2.12) and (2.13) are automatically compatible.

2. Green operators form an ideal Ca in the cone algebra. The whole
calculus is performed lllOdulo Green remainders. In particular, the
choice of cut-off functions Wo, Woo as weIl as the partition of unity Wo, W oo

is unessential modulo Ca.

There is another ideal denoted by CM +G which consists of smoothing op­
erators (2.3). Since the Fourier item A F is necessarily flattening (since
Woo = Woo = 0 near t = 0), it means that smoothing AF are actually Green
operators. So, we may assume that ai == 0 including the item AF into AG.
The operators from CM +G are called slnoothing Mellin operators. It is espe­
cially important to specify the weight data since the information concerning
orders is "forgotten" for smoothing operators. For the Mellin operator

(2.14)

with av E S-oo natural weight data are ,O"O - l (I has nothing to do with
the order which is -00).
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Remark 2.1 The smoothing operator (2.14) is in fact a Green operator
with respect to the weight data ')'0, ')'0-l if av(O, z) = O. Indeed, it is flattening
since av may be written in the fonn av(t, z) = tb(t, z) with some smoothing
symbol b(t, z) and the factor t gives a gain of weight at least by 1. Thus, any
smoothing Mellin symbol nlay be decomposed

into a Mellin sYlnbol not depending on t and a symbol vanishing at t = O.
It means that the corresponding operator (2.14) modulo Green operators
may be represented by a symbol independent of t (of course, all the Mellin
symbols in question are holomorphic in the weight strip S).

Remark 2.2 Any cone operator (2.3) is uniquely defined modulo CM +G

by its interior symbol ai(t, tT). Indeed, there is a standard way to construct
a Mellin symbol av ( t, z) holomorphic in the whole plane z E C and satisfying
the compatibility condition (2.8) [6, 8.13, Theorem 2]. This proccdure will
be referred to as "Mellinization". Any other choice of the compatible Mellin
symbol differs by a cone operator with smoothing interior sYlnbol, so the
difference belangs to the ideal CM+G.

We finish our description of the cone algebra by two ilnportant additional
properties of Green operators.

Lelnma 2.3 For any G1'een ope1'alor G E Ce with respect to the weight
data ')', fand any cut-off function w( t) E Cü(IR+) the operator

wG : J{~"'Y --+ I(~'''''

belongs to the trace class.

Proof. Indeed, the operator may be factorized

with N > n + 1 and 0 > O. The second operator belongs to the trace dass
(cf. Corollary 1.4). 0
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Lemma 2.4 In the assumption 01 Lemma 2.3 let

1 +G : !(8,'Y --+ I{~''Y

be invertible for af, least one s = So. Then it is inve'rtible 101' any S E IR n and
(1 + C)-l - 1 is a Green operator.

Proof. If u belongs to the kernel of 1 + C, then u = -Cu E K~''Y for any
s. So, the kernel does not depend on s. The same is true for the cokernel.

Next, denoting
GI = (1 +G)-l - 1,

we have

G~ ~ -C(~ + Cd.

Since 1 + GI is bounded in the space 1{~''Y and G belongs to the ideal Gc , it
follows that GI also belongs to GG.

o

2.2 The Wedge Algebra

We consider now our main object the wedge algebra Y for a model wedge
W = IRq X XI\. = IRq X IR+ X X. Let 1n E IR and l ~ m. We defille a
wedge operator of order m with respect to the weight data 10, 10 - l as a
pseudodifferential operator on lR. q with a symbol a(y,1]) whose values are
cone operators from Cm satisfying the conditions below. We use notation

According to (2.3)

(2.15)

This operator dependiQ-g on parameters (y, 1]) E IR2q is considered in the
spaces

a(y,7]): E --+ E
with
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for / E (/0 - c, /0 + c).
First, we suppose that the estimates hold

(2.16)

Here "'(1]) = "'[17] means the action (1.10) in the spaces I(S{'( and a trivial
action in CN±. The symbol spaces defined by estimates (2.16) will be denoted
by sm (IR~ X IR~, E, E) 01' silnply sm (IR2q

). 'vVe wi II also use the spaces Sd (IR~ x
IR~, E, E) for which

00

a(y,1]) I"V Lam -j(y,1])
j=O

with am-j E sm-j (1R. 2Q
) being homogeneous of order 1n - j for large 7]:

(2.17)

for A 2: 1, 1171 2: c > O. Any such function defines uniquely a purely
homogeneous function am-j(Y, 1]) for 1] =f:. 0 satisfying (2.17) everywhere with
any ..\ > O. Conversely, having a homogeneous function am (y,17) of order m
we define a symbol am (y,1]) = X(17)a m (y,1]) by means of a cut-off function
X(17) which is equal to 0 for 11]1 ::; c/2 anel to 1 for 11]1 ~ c. Clearly, this
symbol satisfies (2.16). .

Next, we would like all the three items in (2.15) to satisfy estimates (2.16)
separately. To this end we Lake aF(y,1]) and a,H(Y, 1]) in the form

aF(y,1]) = woo (i[1]])t-m OPF(ai(Y, t, t7], tr))woo(t[1]])

aM(Y, 1]) = wo(t[1]])t-m OPM(av(y, t, t1], z) )wo(t [1]]).

(2.18)

(2.19)

Here OPF, ÜPM lnean Fourier anel Mellin pseudo-differential operators with
respect to the variable t (cf. (2.4), (2.6)). The interior and the vertex sYlnbols
ai and av satisfy the same conditions as for the cone algebra with regard to
the specific dependence on 1]:

1. ai(Y, t, t1], tr) is a pseudo-differential operator on X with
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2. av(y, t, t1], z) is holomorphic in the strip

z E S = {Wz E ((n + 1) /2 - 'j'o - c, (n + 1)/2 - ,0 + c)}

for same c > 0 and on any weight line rß

(2.21 )

uniformly in ß = (n + 1)/2 - ,0 -, with 1,1 ~ co < c,

3. the compatibility condition holds

OPF(ai(y, t, t7], tr)) - OPM(av(y, t, t7], z)) E COO(IR~, L-OO(X"j IR~))

. . .. (~.22)

(see [6, 9.2.3, Theorem 1]).

As for the Green itern aa(y, 7]) we assurne

aa(y, 1]) E Sd(IR.~ x IR.~, J(Sl,'ll 0 CN- ,K tJ
2t'tl 0 CN+) (2.23)

for any S1) 82 E !Rn, 1/1 - ,o1 < c, 1/2 - /0 + LI < c.
Similarly to the cone algebra the Green symbol is given by 2 x 2 matrix

while aF and aM enter only the left upper corner of the matrix.
Instead of (2.20) we mayaIso assurne that in a local chart U C X the

operator ai(Y, t, i1], tr) is given by a complete symbol ai(y, t, x, t7], tr,~) with

(2.24)

Following [6], we call such symbols ai edge-degenerate. The space of the
operator-valued symbols a(y, 7]) with the above properties (2.20)-(2.23) will
be denoted by nm (the weight data are tacitly meant). So, ym is the space
of operators Op F ( a(y, 7] )) wi th a(y, 1]) E nm . The properties of the wedge
operator are mostly similar to those of the cone operators.

1. Any A E ym acts continuously in the wedge Sobolev spaces

A : Ws,..." -+ ws-m,'l-l

for any s E IR n and , E ('0 - c:, {o + c).
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2. The wedge operators form an algebra, so that for A E ym i , B E
ym2 AB E ymi+m 2.

3. The ideals Cc, CM +C in the cone algebra generate corresponding ideals
R c , R M+c and Yc, YM+C by the requirement that the sYlnbols a(y, 77)
take values in Cc or CM+c.

These ideals have an additional filtration Ra, R'M+c, y(}, YM+C defined by
the order 1n of the operator-valued symbol a(y, 17). In cantrast to the cone
algebra this order is not forgotten, it enters the relations (2.23), (2.16). All
the properties of these ideals such as Lemlnas 2.3, 2.4 anel Remarks 2.1, 2.2
remain valid fib1'ewise, that is for a(y, Tl) considered at any fixed value of y, 17
as an operator in the cone algebra. Because of the edge-degeneracy Remark
2.1 takes a more sharpened form:

(2.25)

for a smoothing Mellin sYlnbol av(Y, t, tTl, z).
To get global properties of A = Op(a(y, Tl)) E Y from the fibrewise prop­

erties of the symbol a(y, Tl) E R we need some stabilization conditions for
large t anel y.

Definition 2.5 lVe say that A E Y stabilizes to 0 ij there is a constant
C > 0 such that for any f1tnetion u(t, y) E C~(IR.+ X IRq, C~(X)) supported
outside a ball t 2 + IYl2 ~ C2we haue Au = O. Ij A = 1 + B whe1'e 1 means
an identity operat01' and B stabilizes to 0) we say that A slabilizes to 1.

For exan1ple, if the Green iteln ac(y, 77) in (2.15) is absent, this definition
means that the sYlnbols (Li(Y, t, tTl, tTl) and av(y, t, t1], z) vanish for IYl2 + t 2 2::
0 2• The case when A stabilizes to 1 gives analogaus conditions: ai == 1 for
IYl2 + t 2

~ C 2
•

The following lemma is cfucial for the index theory. Roughly speaking, it
says that derivation along the base covariable 1] not only gives bettel' norm
decay for large 1], but improves fibrewise properties of the symbol.

Lemnla 2.6 Let A E Rm with respeet to the weight data ",-I (l ~ rn)
und let a(y,17) stabilize to O. Then JOT IßI > 0 and some 0 > 0

(2.26)
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Observe that (2.26) is a sharpening of (2.16) since the space E = [(s-m,"r-1

in (2.16) is replaced by [(,,-m+IßI,-y-l+S which has bettel' smoothness and
weight.

Proof. Let us consider first a Green symbol

(2.27)

From (2.17) it follows that for a homogeneous function am-j its derivatives
a~am-j have the same degree of homogeneity as am-j itself, while each deriva­
tion with respect to 7] diminishes this degree by 1. Hence,

a;a~aG(Y' 1]) E S;-IßI(IR. 2q, ](61'''r. EB CN -, [("2,'"'f2 EB CN+)

that is a~a~aG is again a·Greenvsymbol.of..the.·order- m ·--IßI-with~respect

to the same weight data r, r - l. But for Green symbols we may restrict
weight intervals 11 E (, - 8" + 8), '2 E (, -I - 8" -I + 8) to embedded
ones rl E (, - 8/2" + 8/2), ,2 E (, - l" - l + 8). It means that the
Green operator with respect weight data ", - I is also a Green operator
wi th respect to f" - l +8/2. It remains to consider the operator-valued
symbols of the form

a(y, 1]) = aF(Y, 77) + aM(Y, 1])

= woo (t[1]])t- m OPF(ai(Y, t, t1], tr))woo (t[1]])
+wo(t[TJ])t-mOPM(av(y, t, t1], z))wo(t[1]])

omitting the Green items. Conjugation by "'(1]) = "'['11 yields

",-l(1])a(Y,1])"'(1]) =

= [1/1mr
m

woo (t)OPF(ai(Y, [~J' t [~J' tr))woo(t)

+[1/]mrmwO(t)OPM(av(Y, [~]' t [~]' z))wo(t).

(2.28)

(2.29)

The operator (2.29) is bounded in the norm of L(](",'';, ](,,-m,'Y-m ) for any
Y, 1], we need to show that apart from the factor [1]]m it is uniformly bounded
with respect to y,1]. It is really the case since the variables y, t1]/[1]), t/[77]
vary over compact sets (details may be found in [6, Chapter 9]).
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Let us apply a/ß7]k to (2.28). Denüting für brevity

a:(y,t,ij,r) = a~ ai(y,t,i],r)
7]k

a~(y,t,i],z) = o~ av(y,i,i],z)
7]k

we get

8
~-l(7])-aa(y,1])K(7]) =

7]k

= [1]]m- 1t-m+1woo (t )OpF(a:(y, _[t] , t [1]], tT) )woo(t)
. . . . 7] 1} .

+[7,]m- 1r m
+

1wo(i)OPM(a~(y, [:7]' i [~]' Z ))wo(t)

+[1]]m-lt-m+lwoo(t)OPFW~( t) aa[1]]
7}k

+ [1}]m- 1t-m+1wo(t)OPMw~(t) 8
8

[7]]
1]k

+[ry]m-lt-m+lw~(t)OPpWoo(1 - wo) aa[1}]
1]k

+[1}]m-lt-m+lw~(t)OPMwO(1 - woo ) °a[1]]
7}k

+[ ]m-lt-m+l I (t)(Op O)~ ~ 8[7]]1] Wo Al - PF wowoo -
a7}k

where

(2.30)

t 7}
OpF = OpF( (li(Y, [ry]' t [1}]' tT))

t 1}
OPM = OPM(av(y, [7]]' t [1}]' z)).

The first twü summands in (2.30) have the same fürm as (2.29) with 1'11, re­
plaeed by 7n -1, henee they are unifürmly bounded in .c( !(S,-Y, !(s-m+l,-y-m+l )
apart from the faetor [1]]m-l. The rest of the sUlnmands are infinitely smüüth­
ing and infinitely flattening für fixed y, TJ. Für example, the third summand
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is smoothing because the supports of Woo and w:x, do not intersect and is
infinitely flattening because Woo vanishes near t = O. The last summand is
slTIoothing due to the compatibility condition (2.22) and flattening because
wb = 0 near t = O. Taking into account the factor [ry]m-l we see that all the
terms but two first ones in (2.30) are Green symbols of order 'In - 1 with
respect to any weight data. Homogeneous components may be obtained by
the Taylor expansion of symbols ai, av in t :

and similar expansion for av • In subsequent considerations such Green sym­
bols may be thrown off. Finally, B/8Yk applied to (2.28) do not affect orders
and weights, so Ba/BYk. is an ,operator-::valued. symboLof the.same type. as,
a(y,7]).

Thus, using induction, we obtain

for a(y,77) given by (2.28).
It remains to observe that for l :2: m and lßI > 0 we have an embedding

]{3-m+IßI,-y-m+IßI Y I(3-m+Iß1,,-m+8

for a J > 0 sufficiently small.

3 Ellipticity and Parametrix Construction

D

In this section we consider elliptic operators of zero order in the wedge alge­
bra. We also take ,0 = 0 considering operator-valued symbols

for any s E IR. and r E (-6, €). In other words, a (y, 7]) E n° with respect to
tbe weight data '" and A = Op(a(y,77)) E yo. Throughout this section we
assume also that all the operators (and symbols) stabilize for lyl2 + t 2 :2:' C2

either to 0 01' to identity. Now, we define two principal symbols for the cone
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and wedge operators. For a eone operator A of the form (2.3) (with m = 0)
its inteTior principal symbol is defined by

(3.1)

für t > 0, (T,17) =J o. Here ai(O)(t,x,1:'~) is the homogeneous part in (1=,~)

of the highest degree °of the funetion (2.5) (with m = 0) written in the
loeal coordinates on X. Similarly to the smooth ease, the ehoiee of loeal
coordinates is unessential, so that (3.1) is a function on T*(intX A

) \ O.
Next, the conormal sY1nboi of A is defined by

(3.2)

It is an operator acting iI?- Sobolev spaces on X and depending o~ a parameter

z E r(n+l)/2-T

For the wedge operator of order 0 its interior principal sYlnbol is defined
similarly to (3.1)

O"t/>( A) = ai(O)(Y' t, X, t1}, tT, ~) (3.3)

where ai(O) nleans the homogeneous component of the highest degree zero of
the function (2.24).

Finally, the principal edge sY1nboi of A E YO is an operator-valued function

(3.4)

defined for 1} =J 0, homogeneous in 1J of the highest degree 0:

(3.5)

For the operator A = üp(a(y, 11)) with a(y, 17) given by (2.15), (2.18), (2.19),
(2.23) the operator (3.4) is equal to

0",,( A) = wa(t 11JI)ÜPM(atl(y, 0, t1J, z) )wo(t 11J1) +
+Woo (tl17l)üPF(ai(Y, 0, t1}, tT))woo(tl1Jl) + aG(O)(Y' 1J) (3.6)

where aG(O)(Y' 1J) means tbe homogeneous component of the highest degree
o of the classical operator-valued symbol ae. Of course, homogeneity is
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understood in the sense of (3.5). Tbe expression (3.6) may be rewritten (at
least formally) as a limi t

(3.7)

where a(y,1]) E 'R,o is the operator-valued symbol (2.15). Although the sym­
bol a(y,1]) is by no means classical, its principal edge symbol a/\ may be
thought of as a homogeneous cOInponent of a(y, 1]) of the highest degree 0 as
(3.7) shows. In fact, the homogeneity of (3.6) in the sense of (3.5) is easily
seen.

The principal symbols may be defined in the case m =f:. 0 with obvious
modifications, for example, a1ji(A) = t-mai(m)' We conf1ne ourselves to the
case m = 0 only.

All the introduced symbol maps are homomorphisms: for Al, A2 belong­
ing to Co 01' to :va we have obviously

a1ji(A I A2 ) = a1ji(Ada",(A2 ),

aM(A I A2 ) = aM(AdaM(A2),

0"/\(A I A2 ) = a/\(AI)a/\(A2 ).

(3.8)

(3.9)

(3.10)

Since o/\(A) is a cone operator for any y, 1] =J. 0 it has a conormal symbol
which may be found using (3.6) by throwing off the Green part and putting
t = O. This yields

(3.11 )

independent of 1]. Gf course, aM 0' /\ is also a homomorphism.
Along with the notations O'",(A), 0'/\ (A), O'MO'/\(A) we will use analO­

gaus notations G'1j;(a(y, 1])), G'/\(a(y, 71)), O'MG'/\(a(y, 1])) for the operator-valued
symbol a(y, 1]) E Ra.

Next, we define elliptic operators in the cone and wedge algebras Co 01'

YO postulating that both principal symbols are invertible. So, an operator
A E Co is elliptic if the following two conditions hold.

1. G'1j;(A) is invertible, more precisely, ai(O)(t, T, x,~) is invertible for all
t ;::: 0, x E X and (T,~) =f:. O. This condition is usually called interior
ellipticity.
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2. O"M(A)(z) : HtJ(X) -+ HtJ(X) is an invertible operator (at least for one
8 = 80) for all z E r(n+l)/2--r (conornlal ellipticity).

Similarly, an operator A E yo 01.' an operator-valued symbol a(y, 77) E R O is
called elliptic if interior ellipticity holds as in item 1 above and besides

2. er" (A)(y, 71) is an invertible operator (3.5) for all 7] i= 0 for at least one
s = So (edge ellipticity).

In the rest of this section we are dealing with parametrix constructions
allowing one to obtain both t-ellipticity and a-ellipticity (see Introduction).
Dur main theorem reads as folIows.

Theorenl 3.1 Let a(y, 7]) E R O be elliptic and stabilize to identity. Then
there exists an ope1'ator-valued symbol r(y, 7]) E 'R0 such that

1 - r(y,"17)'a(y, 71), 1 - a(y, 7])r(y, 7]) (3.12)

are C7'een sY'TTLbols vanishing outside a compact set in (y,7]) E IR 2
n.

Having constructed the symbol 1'(y, 7]) we use it as an initial step to
construct successively more and more precise parametrices RN = Op(rN(Y, 77)
in the algebra yo.

Theorem 3.2 Let A E 'R0 be elliptic and stabilize to identity. Then for
any intege7' N > 0 there exists an operator 'RN E YO such that

are Green operators 01 01·de7' - N (that is belong to YeN).

A similar theorem holds for the cone algebra. For further references let
us formulate it separately.

Theorem 3.3 Let A E Co be elliptic and stabilize to identity. Then there
exists an operator R E Co such that

1 - RA, 1 - AR E CG .

The last theorem is, of course, a parameter-independent particular case of
Theorem 3.1. However, we need it in the proof of Theorem 3.1, so Theorem
3.3 must be proved independently. \Ve obtain such a proof as a result of two
initial steps in the proof of Theorem 3.1
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Since Green operators in the cone algebra are compact (they even belong
to the trace dass by Lelnma 2.3) rheorem 3.3 means that the operator A
with invertible interiOJ.' and conormal symbols is a Fredholm operator in the
space [(4"''1. We need also an inverse st~tement: if A E Co is a Fredholm
operator in ]("'''1 for at least one 8 = 80 then both its principal symbols
(interior and cononnal) are invertible. For the interior principal symbol this
statement is a usual consequence of elliptic theory in the smooth case. For
the conormal symbol it may be proved using the same ideas, see e.g. [4].

The above theorems assert not only the existence of the parametrix hut
also its belonging to a certain dass. Lemma 2.4 gives a simple example of
such astateInent. The proofs ofTheorems 3.1,3.2,3.3 are actually reductions
of Inore complicated cases to this simplest one.

Proof of Theoren1 3.1. We divid,e .to.e prqof intq several steps.
1. For an operator-valued symbol a(y, 1]) E 'R0 consider the corresponding

complete interior symbol ai(Y, t, x, t1], tr,~) in local coordinates on X with

(3.13)

Although the symbol classes Srzt in (3.13) are defined with respect to all
the variables y, t, x and corresponding covariables Tl, r, e, we treat y,7] as
parameters which are not involved ioto the Leibnitz product. In particular,
ry is a large paralueter of parameter-dependent elliptic theory. Because of
stabilization conditions we may assume that y, t vary on a compact set.

Now interior ellipticity iInplies that the symbol ai(y, t, x, try, tr,~) is ellip­
tic in the usual sense of parameter-dependent elliptic theory. Thus, we may
coustruct the Leibnitz inverse for ai, that is the symbol rl (y, t, x, t1], tr, ~)

with
(3.14)

such that

(3.15)

(Y,1] are parameters). These local complete symbols define a family of
pseudo-differential operators on X

(3.16)
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:

such that the operator-valued function TI (y, t, ij, r) is smooth up to t = o.
Such a family allows "Mellinization" , that is one can construct another family
r~(y, t, ry, z) sInooth up to l = 0 and holomorphic in z E C such that the
operators üPF(rl(y, t, t1], tr) and üPM(r~(y,l,i17, z)) are cOlnpatible in the
sense of (2.22).

Finally we define an operator-valued symbol

r 1(y,1]) =

= Woo (t[77])üPF(r;(y, t, i17, tr))woo (t[1]])

+wo(t[17])OPM (r~(y, t, t1], z ))wo( t [1]])

belonging to RO(lRq x lRq
, ](~"''f, K~"''f). If necessary we may border this symbol

by zeros to obtain a 2 x 2 Inatrix with the given left upper corner r 1(y, 1]).
Thus, at the first step we' h~we con"stiucted an operator-valued syinbol

r 1(y,7]) E RO satisfying thc relation

(3.17)

in the cone algebra with a slnoothing b1(y, 7]). Indeed, the interior synlbol
of (3.17) differs fronl 1 by a smoothing symbol in virtue of (3.15). In other
words, we have b1 E RCXt+a"

Remark 3.4 If a stabilizes to 1 then necessarily N+ = N_, so that a(y, 1])
acts in the space ](6"',( ffiCN . By construction our symbol 1'1 (y, 77) also satisfies
stabilization conditions, but it stabilizes to the Inatrix

(3.18)

2. At the second step we correct r1(y, 1]) to obtain a symbol r 2(y, 1]) E RO

which is a more accurate parametrix of a(y, 7]), namely,

(3.19)

Consider the edge symbol O",,(a) given by (3.6). By the edge ellipticity it
is an invertible (and hence Fredholm) operator in the space K~" EB CN for
7] =I=- O. In its turn, this property necessarily implies conormal ellipticity of
t he Fredholm operator 0"" ( a ). Thus,
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has an inverse
(3.20)

independently of 1]. Now, taking conormal symbols C!MC!/\ in (3.17), we get

r~(y,O,O,z)av(Y,O,O,z)= 1 - b~(y,O,O,z)

with b~ rapidly decreasing in the strip z E S. By (3.20) we may rewrite the
last equality in the form

r~ (y , 0, 0, z) = a~ 1(y , 0, 0, z) + c( y, 1] ) , (3.21 )

wi th c(y, z) = a;; 1(y, 0, 0, z )b~ (y, 0, 0, z) which also decreases rapidly in the
strip z E S. Thus, the operator-valued symbol

is a smoothing Mellin one, and we set

Now, by construction

so that
C!Mc!/\(l- r2(y,1])a(y,1])) = O.

But the smoothing Mellin symbol vanishing at t = 0 is a Green symbol (see
Remark 2.1), implying (3.19).

Remark 3.5 For the parameter-independent case with N = °these two
steps prove Theorem 3.3.

3. At this step we const ruet the further eorreetion r 3 = r 2+~r wi t h ~r E

R~, sueh that C!/\ (r3
) is invertible for 1] =I- 0. So far we may affirm only that

c!/\(r2
) is a Fredholm operator because of conormal ellipticity: C!MO'/\(r 2

) =
(O'Mc!/\(a))-l is invertible. Its index does not depend on y, 1] for 1] =j:. 0 and is
equal to 0 since, for large y, r 2 stabilizes to the matrix (3.18) in KEJ,..., EB CN ,

so that both kernel and cokernel coincide with CN .
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(3.22)

There is a standard way to obtain an invertible operator starting with a
Fredholm one by bordering the latter with finite-dimensional operators. This
procedure looks as folIows.

Denoting the principal homogeneous edge symbol O"A(r2 ) by d(y,77) we
may restrict ourselves to the conlpact set of paralneters Y, TJ with ]yl ~ C
(because of stabilization condition) and 1771 = 1 because of the homogeneity

d(y, ATJ) = ~(A)d(y, A)r.:-1(A).

For a Fredholm family d(y, 77) : f{~,"Y --+ f(~,"Y on a compact parameter space
one can find a map k : CM --+ j(!I,"Y independent of y, TJ with some M E N
such that the operator

K!I,"Y

. (d(y,.77Lk) : -·EB ---+~I(!I,'Y...

CM

is surjective. It may be done at any point Yo, "10 using Fredholm property
of d(yo, 770)' Since surjective operators form an open set in the space of all
bounded operators, the surjectivity of (3.22) holds in some neighborhood of
Yo, TJo· By compactness arguments we find a finite covering Ui, i = 1,2, ... , m
and corresponding maps ki : CMi --+ ](!I,'Y such that (d(y, 77) 1 ki ) are surjective
operators in Ui . Then (d(y, TJ), k) = (d(y, 77) 1 k1, k2l .•• 1 km) gives the desired
operator with M = Mt + M 2 + ... + M m , surjective for all Y, 17. Its kerneI

J y ,1j = Ker(d(y 1 TJ), k) C ](8'1 EB cM

is a subspace in !(~" EI? CM of dinlension Iv! since by surjectivi ty of (d(y, TJ) 1 k)

dimJy,1j = ind(d(Y l 17),k) = indd(Y,TJ) + M = M

because ind d(y 1 TJ) = O. Being of constant dilnension this subspace depends
smoothly on parameters y, TJ defining a vector bundle over IRq x Bq-I. Let

(p(y, 1]), q(y 1 1])) : Jy ,1j --+ CM (3.23)

be an isomorphism defined at least locally. Assuming for a mOlnent that this
isomorphism may be defined globally on IRq x 8 9-

1
, we obtain an invertible

matrix
[(~,' [(!I,...,

(
d(y,1]) k ). EB ---t EB
P(Y,77) q(y,1]) . CM CM
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which may be extended by homogeneity for lyl ::; c, ry i- 0 by

(
~1'71 0) ( d(y, R) k ) (KI171 0) -1

o 1 p(y, ~) q(y, ~) 0 1

and then define the needed operator-valued symbol r3 (y, '1]) as a matrix

(
r2(y,ry) ep(1])k(1]))

cp(ry)p(y,ry) cp(TJ)q(y,1])
(3.24)

where ep(17) is an excision function equal to 1 for 1171 ~ c > O. Clearly,
.ßr = r3

- ,2 is a Green symbol since its left upper corner is identically zero.
We may force the operators a(y,1]) and ,3(y,1]) to act in the same space
I{~''"Y EBCM +N with the help·of extra borderings-obtaining·new·symbols of the
form

It remains to show that the needed global bordering (3.24) actually exists.

Lemma 3.6 Let

(3.25)

be an invertible Jamily on a compact maniJold V. Then an (x) is a F,edholrn
operator in H und JOT any Jamily oJ its parametrices d(x) there exists aglobai
invertible bordering

(d(X) k(X)).
H H
EB ----t EBp(x) q(x) .

CM CM

Proof. Let

( bl1 (x) bI2 (X) ) .
H H
EB ----t EBb21 (x) b22 (X) .

CN CN
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be inverse matrix for (3.24). Then

The operators on the right-hand sides are finite-dimensional, whence bll (x)
is a fanüly of parametrices for all(x). Consider a homotopy of parametrices

d(x, t) = (1 - t)bll(x) + td(x)

t E [0,1]. Reasoning as before for (3.22) and using compactness of V x [0,1],
we find a map k(x, t) : CM --+ If such that the operator

H
(d(x, t), k(x, t)): ffi -r H

CM

is surjective. Moreover, we may take k(x,O) = b12(X). Then

J = Jx,i = Ker(d(x, t), k(x, t))

is a vector bundle over \I x [0,1]. Show that this bundle is trivial, that is
there exist M linearly independent sections of J. For t = 0 such a basis is
given by the column matrix

(

a12(x) 0)
a22(x) 0

o 1

where 1 means (M - N) x (M - lV) identity matrix (we assume M 2: N).
For t E [0,1] the existence of the basis follows [rom the covering homotopy
theoreln for the principal frame bundle GL(J) [9].

Let the column matrix

(3.26)

of M linearly independent vectors of J1 EB CM clenote the global frame of J.
Then the global trivialization of J is a row matrix (p(x, t), q(x, t)) which is a
left inverse for (3.26), for example, we lnay take it in the form (e*e)-le*. D
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4. Let us proceed with the construction of the parametrix. At the pre­
vious step we have constructed r 3 = r 2 + !J.r with a Green symbol !J.r such
that a,,(r3

) is invertible for '" # O. Then

with a Green symbol b3 and

By construction the left-hand side is invertible, so is the right-hand side. By
Lemma (2.4)

(1 - a,,(b3 ))-1 = 1 +w(y, 1])

with a Green symbol w(y, 7]) defined for 7] -j:. 0.' Multiplying it by an excision
function 'P(11) equal to 1 for 11 large, we obtain a Green operator-valued
symbol

W1(Y, 1]) = "'(7])w(y, 11) E n~.

Define r 4 = (1 + wdr3
. Then

where b4 E Rß is a Green synlbol such that a,,(b4 ) = O. By definition of
Green symbols b4 is a classical one and a,,(b4 ) is its homogeneous leading
part of degree O. Since a ,,(b4

) vanishes identically, the highest degree of
homogeneity is equal to -1, thus b4 E Rc/.

5. At the last step we construct the final correction r 5 such that

and b5 = 0 outside a compact in 1R2Q • To this end observe that b4 E R c/
satisfies the following estimate .

where I1 . 11 means the operator norm in the space
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wi th any 81, 82 E IR and 11,12 E (-E, c). Thus, the operator

is invertible for large 17 anel so is 1 - b4(y, 17). Thus, using Lemn1a 2.4 once
more, we may write for large 1]

with a Green symbol W2(Y, t]) defined for 1711 2:: C > O. Multiplication by an
excision function which is equal to 0 for 1171 < C an,d to 1 for 1171 > 20 yields
a Green symbol

W3 (y ,1]) = cP (1] )W2 (y, 1]) E Rc/ .
We set r5 = (1 + W3(Y, 1]))r~.

Thus, we have constructed a left parametrix 1,5 such that

and vanishes outside a cOlnpact in 1R 2q (for large y it is evident from stabi­
lization conditions which are respected at each step of our construction).

The same reasoning gives a right paralnetrix with the same properties,
so any of these parametrices is a two-sided parametrix. This completes the
proof of Theorem 3.1. 0

The proof of TheoreIn 3.2 will be given in the next section.

4 A regularized Thace of a Product

Consider two operators A, B E YO with operator-valued symbols a(y, 1]) and
b(y, ry) of the form (2.9). In this section we study the operator

(_i)lcr l er er
ON = AB- L ,Op(8tja(y,1])8y b(y,1])). (4.1)

lerl<N Q.

Using the notation
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for the truncated Leibnitz product ofsymbols we may rewrite (4.1) in a more
cornpact form

GN = AB - Op(a 0 bIN).

The basic property of this operator is described in the following lemma.

Lemma 4.1 For any fixed / E (-c, c) there exists a J > 0 such that the
operator

(4.2)

is bounded for any S E lR.

The crucial point is that the regularization procedure (4.1) gives not only
better smoothing properties but also better weights.

Proof. First introduce some notations..Let a(y,7])·E ·R~ be an .operator­
valued symbol stabilizing to 0 and acting between the spaces

Denote by

a((,~) = Je-ix(a(x, ~)dx.

its Fourier transform with respect to y. Then for any p > 0 we have

where the norm means the operator norn1 in the above-Inentioned spaces.
This estimates are fulfilled by definition of the symbol classes

We shall briefly write them in the form

Note that multiplication by ((Jq for any q E IR does not change tbis forn1.
Now, let us return to (4.1) with A, B E yo. In terms of tbe Fourier

transform the operator B acts as
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Applying this formula onee more, we obtain

By Taylor's formula

a(( -1],17) =

= L ~a~a(( - 1]) ~)(1] - ~)a +RN ( ( - 1], 1]) ~).
lal<N Ct.

The sum here corresponds to the sum in (4.1), so for the remainder ON we
have

C-;;u( () = JJRN ((- '7, '7, 0/;('1 ~ (, (~u(()d(d'l'

Using the integral fOrIn for the remainder in Taylor)s formula

where (i(a) mean derivatives with respect to the second argument) we see that
the Schwartz kernel J{N(C~) of the operator CN may be represented in the
form

](N(C 1]) =

= N r1

(1 - t)N-1dl J L ~a(a)(( - ~ - 0, ~ +to)oab(0, ~)dO. (4.3)
Ja lal:=N a.

Supposing that the sYlnbols a(y) 17), b(y, 1]) act bctween the spaces K S
'''( --+

J{~,"Y and using Lemnla 2.6, we see that (i(a)(, - ~ - (), ~ + tO) acts between
J{~'''( --+ J{3+N,,+S with some positive J. Since b(8)~) : J{3" --+ Kß" is
bounded it implies the boundedness of

(4.4)

To estimate the nornl in wedge Sobolev spaces we apply a standard trick and
introduce a new kernel

(4.5)
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Then the norm of the operator with the kernel (4.4) in the spaces

W","Y -1- W,,+N,"Y+8

is equal to the norm in L2 of the operator with the kernel (4.5). Now,

tb-l(~)b(8,~)fl:(~) = 0([8]-00),

X;-l(~ + tB)a(a)(( - ~ - 8,~ + tO)x;(~ + tB) =

= 0([( - ~ - 8]-00[~ + tO]-N)

and we obtain the following norm estimate for the operator with the kernel
(4.5)

11 [( ((, ~) I1 =

= l (1 - tt- 1dt J[(]'+NIIII:-1(~ + tlJ)lI:(m

xO([( - ~ - B]-oo[~ +tB]-N)IIx;-l(~ +tB)x;(~)IIO([B]-oo)[~]-"dB. (4.6)

Next, we apply estimate (1.11) and Peetre's inequality to get

1 { [(]M [~ + tB]M}
11x;- (()I\;(~ + tO) 11 ~ Cmax [e + t8]M l [(]M

~ C[( - etO]M ~ C[( - ~O]M[(l - t)O]M
::; C[( - ~ - 8]M[0]M.

This term n1ay be omitted since there are factors [( - e- 0]-00 and [0]-00 in
(4.5). Similarly,

-1 { [~]M [~+ tO]M} M
111\; (~+ tB)x;(e) 11 ::; Cmax [e + tO]M' [e]M ::; e[o]

and we mayaiso omit this term. Finally, Peetre's inequality yields

Substituting into (4.6) and using repeatedly Peetre's inequality we get

IIK((,e)ll =

= JO([(],,+N[e]-,,-N[( - ~ - OJ-oo[O]-oodO

= J0([( - ~ - 8]-00 [8]-00)d8.
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Choosing M sufficiently large, we obtain

J --; JJ d(dB11/\ ((,~) Ild( ::; C [( _ ~ _ B]M[O]M < 00

and similarly

J11!«((,~)lld~ < 00.

It means that the operator in L2 with the kernel !«( (,~) is bounded proving
the lemma. 0

In particular, for N = 1 we get that the operator

AB - Op(a(y, ry)b(y, 1])) : W~,')' -4 ws+1 ,')'+s (4.7)

is bounded. .. . . . _.....,.
Proof of Theoren1 3.2. Let Ra = Op(1'(y,1])) E .va be a pseudo­

differential operator with the symbol r(y,1]) constructed in Theorem 3.1.
We define

N-I N-l

RN = ~ L (1 - ARo)k = L (1 - RoA)kRo,
k=O k=O

so that

Now,

1 - RaA = Op(r(y, 1])a(y, 1])) - RaA + Op(1 - r(y, 1])a(y, 1])).

By (4.7) tbe first two tenns give a bounded operator froll1 W~,')' to VV~+1,')'+8,

Tbe tbird term belongs to Yä 1 by Theoren1 3.1, thus it is also bounded from
W~,i to W~+l,')'+S, Both tern1S stabilize to 0, Thus, the operator

(1 - RoA)N : H18 ,')' -4 W~+N,')'+8 y W~,')'

for N > q + 1 + n belongs to the trace dass by Corollary 1.4. Tbe same
reasoning may by applied to (1 - ARo)N. 0

Define tbe regularized trace of the product of A and B by

TrNAB:= Tl' {AB - L (-it'Op(o;a(y, 17)o:b(y, 17))} ,
lol<N a.

provided tbe trace on the fight-hand side exists.
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Theorem 4.2 Let A, B E YO and stabilize to O. Then the regularized
trace TrN AB exists for N > q + 1 + n and does not depend on the order 01
lact0 TS) that is

(4.9)

Proof. The existence follows directly from Lemma 4.1 alld Corollary 1..4.
Integrating the kernel (4.3) over diagonal ( = ~, we obtain

TrNAB =

= N JJf\1 - t)N- 1dt tr L ~aea( -B, ~ + tB)oab(O, ~)dOd~.
Ja lal=N a.

Next, we integrate by parts in ~ and change variables f = ~ + tO, 0' = -0.
It yields

TrNAB =

= N JJ fl (1 - t)N-1dt tr L ~a(O', ~')(O')Cta~b( -O',~' + tO')dO'de'·
Ja lal=N a.

This expression coincides with the corresponding expression for TrNBA if one
changes the order of factors undel' the trace sign. This proves the theorem.

o

5 The index Formula

We are now in a position to derive an index formula for an elliptic wedge
operator starting with the general formula

indA = Tr(1 - RNA) - Tr(1 - ARN ) (5.1)

for a Fredholm operator A : Ho --+ H1• Here RN : H1 --+ Ho is a parametrix
of A up to trace dass operators. In our case Ho = H1 is the wedge Sobolev
space Ws,.)' and A E YO is an elliptic operator stabilizing to identity.

After analytical preparation of the preceding sections the scheme of [1, 2]
goes almost without changes.

We begin with adefinition of the algebra of formal symbols where the
algebraic index lives, confining ourselves to a particular case of the general
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definition in [2J. Here we denote the forn1al parameter by h (instead of Ain
[2]) as it is usual in deforn1ation quantization.

The algebra A of f01inal sY7nbo/s consists of formal power series

with

00

a(y, 7], h) = L hkak(Y, 7])
k=o

(5.2)

ak(y, 7]) E SO(IR2\ [(!J{Y ffi eh! , I(!J,-y ffi eM ).

We also suppose that a stabilizes to a constant (times identi ty operator) at
large y. The formal Leibnitz product is defined by

00 ( ')1 0 1
a 0 b = ..~ ...h10,I+p+q -l ac;a' ac;b

~ 0'1 7] P y q
lol,p,q=o

-, -' (5.3)

A trace ideal .J E A consists of formal symbols whose coefficients are
Green symbols vanishing outside a cOInpact in IR. 2

q ( that is not only for large
y but for large 71 also). For a E .J define its formal tr'ace by

00 hk
-

q 1.
Tl' a = L -(2) trak(Y, TJ)dydTJ

k=o 7f q R2q

(5.4)

where tr means the trace of coefficients in the cone algebra. Being Green
operators they are trace dass operators in I(!J{Y ffi CM , the integral in (5.4)
converges because ak are cOlnpactly supported. So, Tl' a is a fonnal Laurent
series in h with negative exponents not exceeding q. Integration by parts
shows that Tl' a 0 b =Tr boa if one of the factors belongs to .J.

Next, define e/liptic formal syn1bols and their indices similarly to (5.1).
The symbol a E A is called elliptic if there exists a symbol r E A such that

l....:..roa,l-aorE,J.

We define an a/gebraic index setting

ind a = Tl' (1 - r' 0 a) - Tl' (1 - a 0 r).

(5.5)

(5.6)

Abasie property of the algebraic index is its stability under homotopies
(see [2] or more recent paper [7]). As a consequence we obtain that the
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formal Laurent series (5.6) consists of the constant term only, since there is
a homothety

H), : a(y, 7], h) M a(y, AT], Ah)

of the algebra A not affecting the index [2, 7]. Thus, the algebraic index may
be treated as a number.

For an elliptic operator-valued symbol

satisfying stabilization conditions we may define its index in two different
ways. First, the operator A = Op(a(y, 'rJ)) is Fredholm in the space W",,'"Y,
and we have its analytical index defined by (5.1). On the other hand, the
symbol a(y, 7]) may be considered as a formal one consisting of the leading
term only. Show that there exists a r(y, 7], h) E A satisfying (5.5). To this
end let us denote by ro(y, 1J) the parametrix constructed in Theorem 3.1.
Again TO(y,,,.,) is treated as a formal symbol consisting of the leading term
only. For such symbols we consider two products: the Leibnitz product 1'00 a
in the algebra A and the pointwise product To(y, 7] )a(y,,,.,) for operator-valued
functions. We define

00

r(y, 7], h) = 1'0 0 E(a1'o - a orotk

k=O
(5.7)

where the exponent ok means the k-th power with respect to the product o.
Clearly, (5.7) is meaningful as a formal symbol since aro - a 0 1'0 has vanishing
leading term.

Lemma 5.1 The symbol l' given by (5.7) is a parametrix 0/ a in the
algebra A, that is satisfies (5.5).

Proof. A direct check shows that (5.7) is a fight parametrix. Indeed,

00

1 - a 0 l' = 1 - (a 0 1'0 - a1'0 + ara) 0 E(a1'0 - a 0 1'0 t k =
k=O

00 00

= 1 + L:(a1'o - a 0 1'ot(k+l) + (1 - aro) 0 L:(aro - a 0 1'otk

k=o k=O
00 00

- L:(a1'o - a 0 rotk = (1 - aro) 0 L:(aro - a 0 1'o)ok. (5.8)
k=O k=O
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This expression belongs to .:J since (1 - aro) does (it is a Green operator in
K6,.-Y EB CM with cOInpact support in y, 77). Similarly, one can check that

00

1'1 = L:(roa - 1'0 0 atk
0 1'0

k=O

is a left parametrix, that is 1 - 1'1 0 a E .:J. In this case 1'1 - r E .:J since we
have

rloao1'=rl=1' (mod.:J).

Thus, r is a two-sided paraInetrix. D
Now, the algebraic index of a(y, 7]) is defined by (5.6) and the first part of

the index theorem claims that both indices) analytical and algebraic, coincide.
This statement is a simple consequence of Tpeorem 4.2. Indeed, for

00

r = L hkrk(Y, 1])
k=O

Lemma 2.6 implies that

since 1'k contains k derivatives with respect to ~ applied to a(y, 77) 01' ro(y, '1]).
Introducing a notation

N-l

rlN = L rk(y, 17)
k=o

for partial sums of formal se~'ies at h = 1, we may define a parametrix

slightly different from that constructed in Theorem 3.2. Then we have the
following chain of equalities starting with the analytical index and finishing
with the algebraic one:

Tr(l - Op(riN )Op(a)) - Tr(l - Op(a)Op(rIN)) =
= Tr(l - Op((1'[N °a)IN)) - Tr(1 - Op((a °rIN)IN)) =
= Tr(l - Op((r 0 a)IN)) - Tr(l - Op((a 0 1')IN)) =
= Tr(l - r 0 a) - Tr(l - a 01'). (5.9)
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The first equality is due to Theorem 4.2 since

Tr{Op(rIN)Op(a) - Op((rjN 0 a)IN)}

is a regularized trace of Op(r IN) and 0 p(Cl). The second equali ty follows
because the difference

may be written as a finite surn of the terms

TrOp(8frk8;a)

with lai< N, k < N, k + lai 2:: N. For N large enough this is equal to

as may be seen integrating by parts. Finally, the last equality in (5.9) follows
since the algebraic index cOlltains the constant term only (and thus does not
depend on N) for sufficiently large N.

The second part of thc index theorem which claims that the algebraic
index is equal to the topological one given by (0.2) is a general fact for the
algebra of formal symbols IR. 2(}, see [2J. Recall briefly how the proof runs.

Given a, r E A satisfying (5.4) we construct matrices

pO = E 0 G = ( ~ ) 0 (1 - r 0 a, r) =

= (ao1(~~;:a) a:·r)'
pt = ( ~ ) (0, 1) = (~ ~).

Since G 0 E = 1, po and pI are projectors:

Moreover, po - pI E J and

ind a = Tr(PO
_ PI).
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in the form

By periodicity theorem for the sYIllbol algebra [2] this quantity may be ex­
pressed in tern1S of the leading symbols

pg(y,7/) = e(y, 7))g(y, 7/) = ( a(:,7)) ) (1 - raa, ra) =

- (a(\ __r::~) ::0)
ind a = (2 \ ' 1. tr(pgdpg 1\ dpg)q

7fl qq. R2q

and it remains to return to the sYIllbols a(y, 1]) and iO(Y l 1]). Straightforward
caiculatiolls show that

pgdpg A dpg = e(dg 1\ de +gde 1\ gde)g = e(dio A da +1'ada A rada)g,

so that
tr(pgdpg A dpg)q = tr(dia 1\ da +1'ada A 1'ada)q.

This con1pletes the proor of the index theoreIll.

45

,~



References

[1] B. V. Fedosov. Analytic formulas for the index of elliptic operators
Trans. Moscow. Math. Soc., 30: 159-241, 1974.

[2] B. V. Fedosov. A periodicity theorenl in the algebra of symbols. Mat.
Sb., 105: 622-637, 1978 (Russian).

[3] G. Luke. Pseudodifferential operators on Hilbert bundles. J. Diff. Equ.,
12: 566-589, 1972.

[4] B.-W. Schulze. Pseudo-differential Operators 011 ManiJolds with Singu­
larit i es. North-Holland, AmsterdalTI, 1991.

[5] B.-W. Schulze. Pseudo-diiJerential Boundary Value Problems, Conical
Singularities, and Asymptotics. Akademie-Verlag, Berlin, 1994.

[6] Yu. Egorov and B.-W. Schulze. Pseudo-Differential Operators, Singu­
larities, Applications. Birkhäuser, Boston, Basel, Berlin (To appear).

[7] B.V. Fedosov and H.-W. Schulze. On the index of elliptic operators
on a cone. Schrödinger Operators, Ma'1'kov Semigroups, Waue/et Analy­
sis, Operator Aigebras, pages 347-372. Advances in Partial Differential
Equations. Akademie Verlag, 1996.

[8] T Hirschmann. Functional analysis in cone and wedge sobolev spaces.
Ann. Global Anal. Geometry, 8: 167-192, 1990.

[9] Sze-Tsen Hu. Homotopy The01·y. Academic Press Inc., New York, 1959.

46


