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Abstract: We introduce a concept of asymptotic Fredholm module to prove

a non-vanish.ing theorerll for K-theoretic indices of elliptic operators over nOll

compact spaces. The non-vanishing theorem is applied to study positive scalar

curvature and spectrum of Laplacian on non-corllpact spaces.

1 Introduction

In this paper we shall introduce a concept of asymptotic Fredholm module

over a C*-algebra to study non-vanishing of K-theory information. In thc

case of non-cornpact spaces we shall use vectol' bundles of small variation to

construct asymptotic Fredholm rllodules and COlllpute their pairings with K

theoretic indices of elliptic operators. The conlputation of K-theoretic indices

is used to study non-existence of metries with positive scalar curvature and

the spectrum of thc Laplacian operator acting on the space of L 2-forms.

This paper is written while the author is visiting thc Max-Planck Institute

of Mathcmatics in Bonn. Thc author would like to thank the hospitality of

the Max-Planck Institute.

*Research supported in part by the National Sciencc F'oundation

1



2 Asymptotic Fredholm modules

In this section we introcluce the concept of asymptotic Frccillolm module and

define its pairing with K-theory.

Let A be a C*-algebra. We consicler scquence of tri pIes (Enl ePnl Fn) where

n E Z+, thc set of positive integers, En is a separable graded Hilbert space, cPn

is a graded map froIn A to B(En ), the algebra of all bounded operators acting

on En , and Fn is a linear bounded operator in B(En ) with degree 1.

Definition 2.1 A sequence of triples (Eu, ePn, Fn) is called an asymptotic Fred

holm module over A if

(1) [Fn , ePn(a)], (Ft; - I)ePn(a), and (Fn - F~)ePH(a) are cornpact for all a E A;

(2) for all a, b E A, A E C, the following norm limits vanish:

lim (<Pn(a + Ab) - ePn(a) - AePu(b)) = 0
n-)ooo

lim (ePn (ab) - ePn (a)ePn (b)) = 0
n-+oo

Ihn (ePn(a*) - ePn(a)*) = O.
n-too

Notice that the concept of asymptotic Fredhohn module is an asymptotic

version of the usual concept of Fredholnl Inodule (17) [16] and is dosely relateel

to the concept of asyInptotic morphisIn introclllccd by Connes and Higson [7].

An asyIl1ptotic Fredholm module (Enl ePnl Fn) is said to be degenerate if

(Fn,ePn(a)], (F~ - I)ePn(a), and (Fn - F;)ePn(a) are 0 for all a E A.

A particularly uscful dass of asymptotic Freclhohn modules are asymptotic

quasihomomorphislllS , an asymptotic version of Cuntz's quasihomomorphisms

[9].

For each n E Z+l let Hn be a Hilbert space, let q)~O) anel eP~l) be 11laps from

A to B(Hn ), thc algebra of all boundeel operators acting Oll H n .

Definition 2.2 A sequence 0/ pairs (4)~~), q)~l)) is said to be an asymptotic

quasihomomorphism over A if

(1) 4>~O) (a) - eP~l) (a) are compact for alt a E A;

(2) for alt a, b E A, A E C, i = 0, 1, the following norm limits vanish:
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J1n~:J1>~)(ab) -1>~)(a)1>~)(b)) = 0

J1~(1)~)(a*) -1>~)(a)*) = O.

Notice that an asymptotic morphism ePt (in the sense of Connes and Higson)

from A to !{, the algebra of all compact operators, naturally gives rise to an

asymptotic quasihomolnorphism (4)n, 0).

An asymptotic quasihomomorphism (4)!~) J 4>~1)) gives rise to an asymptotic

Fredholm module (Eu, 1>u, Fn ) defined by: EH = H n EB H n with the grading

operator 1 EB -1, 1>n = 4>~O) ffi eP~l), and

We shall show that every asymptotic Fredhohn module is equivalent to an

asymptotic homomorphism.

An asymptotic Fredholm module (EnJ 4>n, Pu) is said to be unitarily equiv

alent to another asymptotic Fredholm Illodule (E~, 4>~, F~) if there exists a

unitary in B(En , E~) interwining ePn with 4>~, allel Fn with F~.

An asymptotic Freclholm lllodule (EnJ 4>n, P'1) is said to be a compact

perturbation of another asymptotic Freelhohn Illoelule (En, 4>n, F~) if (Pn 

F~)4>n(a) is compact for all a E A.

We define an equivalence relation on thc set of all asymptotic Fredholm

modules over A to be the equivalence relation generated by unitary equiva

lence J compact perturbation anel addition of clegenerate asymptotic Freclholm

modules.

The following useful lemlna is an asylnptotic version of a result of Cuntz

[9).

Lemma 2.3 Every asymptotie Fredho17n module is equivalent to an asymp

totie quasihomomorphism.

Proof: Let (En, 4>n, Fn) be an asymptotic Freclholm module over A. We can

assume F~ = Fn by replacing Fn with (Fn +F,:)/2 (this is a compact perturba

tion). We can further assume IIFnl1 :::; 1 by replacing Fn with its cOlnpact per

turbation g(Fn ), where 9 is the continuous fUl1ction 011 IR such that g(x) = -1
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für x::; -1, g(x} = x für -1::; x::; 1, and g(x} = 1 für x 2:: 1. (En,rf;n,Fn) is

equivalent tü (En EI1 En, rf;n EB 0, Gn), where the gracling on En EI1 En is given by

the grading operator fl = t: ffi -f (f is the grading operator on En ), and

Notiee that Gn = G~ = G~l. Let E~ = EH EB En, rf;~ = rPn EB O. (En EB

En, cPn EI1 0, Gn) is equivalent to (E~ EI1 E~, rf;~ EB 0, On EB -Gn ), where the grading

operator on E~ EB E~ is defined to be f' EB -f'. But this is unitarily equivalent

to (E~ EB E~, (ad U)(cP~ EB 0), F), where

This gives rise to an asymptotic homomorphisnl. •

With the help of Lemma 2.3 we ean now define the pairing between asymp

totic Fredhohu modules and K-theory.

"Ve shall first assulue that our asynlptotic Fredhohn module is an asymp

totic quasihomomorphism (cP~~), cP~l)). Let p be a projection in M k (A)+ repre

senting an element in j(o(A). <p~o) and 4>~/) can be naturally extended to maps

from A+ to B(Hn ). Let

where f is a continupus function on IR such that f(x) = 1 all x E [2/3,4/3]

anel f(x) = 0 for all x E [-1/3,1/3]. By the properties of asymptotic quasi

homomorphism we know that there exists N > °such that (p~o), p~l)) is a

pair of projections in B(Hn ) such that ]J~O) - ]J~ll) is compact for all n > N.

This implies that p~1)p~O) is a Fredholnl operator frolu p~O)Hn to p~l)Hn für all

n > N. We define the pairing between the asyluptotic quasihomomorphism

(et>~O), cP~l)) and the K-theory element [p] by:
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Where n > N and index(p~l)p~O)) is the Fredhohn index of thc operator p~l)p~O)

f (O)H t (l)Hrom Pn n 0 Pu n'

The pairing of a general asymptotic FrecIhohll Inodule with the K-theory

can be defined by using the asymptotic qllasihoIllOmorphism equivalent to thc

given asymptotic Fredholm module in thc proof of Lemlna 2.3.

3 Vector bundles with small variation

In this section we introcluce the concept of vector bundles with small varia

tion over a non-compact proper metric space X and show how to construct

asymptotic Fredholm modules using vector bunclles with small variation.

Let X be a proper metric space. Recall that thc properness of X Ineans

that every closecl ball in X is compact.

Definition 3.1 A sequence 0/ compactly supported vector bundles Vn (n E Z+)

over X is said to have small variation if each Vn can be represented by a

projection Pn in !vlkll (Co(X))+ for S01ne positive integer kn such that for every

r > 0

,~~~ SUP(x,y)EXXX:d(x,y):srIIPn(x) - Pn(v)!1 = 0,

where Co(X) is the algebra 0/ all continuous functions vanishing at infinity

over X J M kn ( Co (X)) is the the algebra 0 f alt k71 X kn rnatr'ices over Co (X) ,

and M kn (Co(X))+ is obtained /rom M kn (Co(X)) by adjoining an identity.

A sequence of vector bundles with SIllall variation asYlnptotically does not

distinguish points within bounded distance. So it can be considered as a

notion of "Iarge scale" vector bundle. The concept of vector bundles with

slnall variation is in spirit closely related to the conccpt of ahnost Hat bundles

[5] [13] although there does not seem to be a direct connection between the

two concepts.

Next we shall use a sequence of vector bundles with slnall variation to

construct an asymptotic Fredhohn module over the C*-algbera C*(X). C*(X)

plays a key role in the index theory for non-colnpact spaces since its I(-theory
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is thc receptacle of ](-theoretic indices of elliptic operators on X. For the

convenience of the readers we shall briefiy recall the definition of C*(X).

Throughout this paper an X-module is a separable Hilbert space equipped

with a faithful anel non-elegenerate representation of Co(X) whose range con

tains no non-zero cOlnpact operator.

Definition 3.2 Let Hx be an X -module. The support of a b071nded operator

T : Hx ~ Hx is defined to be the cornplement (in ..:\ x J\) 0/ the set 0/ all

points (x, y) E X x X for which there exist functions f E Co(X), g E Co(X)

such that gT f = 0, and f(x) i:- 0, g(y) #- 0.

Definition 3.3 Let Hx be a X -mod7Lle; let T be a bounded linear operator

acting on Hx.

(1) The propagation of T is defined to be: sup{d(x, y) : (x, y) E Supp(T)};

(2) T is said to be locally compact if fT and T f are cornpact for all f E Co(X).

Definition 3.4 ([19J) Let Hx be an ); -module. C* (X1 Hx) is defined to be

the C* -algebra generated by alt iocally compact operators acting on Hx with

finite propagations.

It is easy to show that C* (X, Hx ) does not depencl Oll the choice of Hx

(up to isoIllorphislu) [19). For this reasoll C*(X, H x ) will sOIuetimes be ab

breviated as C* (X) .

Let

where in is the rank of the vector hunelle \In in thc Definition 3.1 and kn is as

in Definition 3.1. Define

where the grading operator on En is defined to be 1 EB -1. Vve clefine a graded

map 1Jn from C* (J\) to B(En ) by:
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where 1Jn,O is the *-homorllorphism frOIll C* (X) to B(En,o) defined by:

for all a E C*(X), and 1Jn,l is the map [rom C*(X) to B(En,t} defined by:

for all a E C*(X). Vvithout loss of generality we can choose Pu such that for

each n there exists a compact subset !(n of ~\ for which

for all x E X - ](n' Let an be a unitary operator from En,l to En,o such that

(1) Supp(anv) ~ !(n if Supp(v) ~ !(n, wherc Supp(v) is the complement of

the set of all points x in X such that there exists j E CO(X), j(x) i=- 0, Iv = 0;

(2) QnV = V if Supp(v) ~ X - Kn-

We define an operator Fn on En by:

A mctric space X is said to have bOllIldcd gcornctry if there exists a snb

space r such that

(1) there is c > 0 such that d(x, r) ~ c für all :1; E X;

(2) for each r > 0, there is N(r) such that thc Ilumbcr üf elements in Br(" r)

is at most N(r) for all , E r, where BrC')/, r) = {x Er: d(x, ,) ~ r}.

Lemma 3.5 !f X is a proper metric space with bounded geometry, then the

sequence 0/ triples (En,tPn, Fn) defined as ahove is an asymptotic Fredholrn

module ouer C*(X).

Prüof: All we need to do is to verify that

for all a anel b. It is enough to show that for any operator a acting on Hx

with finite propagation

(1)
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We assurne that a has propagation r. Thc bounded geometry property of

X itnplies that we cau decompose X = Ui~l Xi for SOIlle finite m such that

Xi n Xii = 0 if i =1= i' ,and each Xi is thc disjoint union of a sequence of

uniformly bounded Borel sets {Uii }j such that d( Uij , Uijl) > r if j =1= j'. Let

Xii be the characteristic function of Uii' The representation of Co(X) on

Hx can be extended to that of the algebra of bOllnded Borel functions. The

properties of thc decolnposition of X alld thc fact that a has propagation r

imply that there is C > 0 such that

But

(3) IIXij(Pn(EB~::la) - (EB7;'1 a)Pn)Xilj' II

~ IlXii (Pn - P(xii))(EBf::l a)Xiljlll + IIXij (EBf::1 a)(Pn - Pn (Xiijl) )Xi'j' 1I

+1 IXi,j (EBf::la)(Pn (Xii) - Pn (Xiljl) )Xiij' 11 J

wherc Xij is a point in Uij and xi'i' is a point in Ui']"

(3), together with (2) and the slnall variation property of Pn , implies the

desi red identity (1). •

4 A non-vanishing theorem for K-theoretic in

dices over non-compact spaces

The nlain result of this section is the followillg:

Theorem 4.1 Let X be a non-compact ]Jroper rnetnc space witk bounded ge

ometry, and let [D] be a K-homology dass in ](o(X) = 1(1{(Co(X), C). 1/ Vn

is a sequence 0/ vector bundles Vn with srnall variation on X and (Enl 1>n, Fn )

is its associated asymptotic Fredholm module, then
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for all n > N, where N is some large integer, and< [D], [~~] > is the pairing

between the J(-homology class [D] and the K-theory class [~l] - [X X ein]

(ln is the rank of the vector bundle \1;1).

Proof: Dur theorem fo11ows from LeulnHlS 4.3 and 4.4 in this section. •

vVe emphasize that < [D], [Vn ] > is computable. In thc case that X is a

complete Riernannian manifold, < [D], ['~l] > can be computcd by thc Atiyah

Singer index fonnula. For example, if X is a cOlnplete Riemannian spin man

ifold and D is a Dirae operator, then < [D], [l~l] >=< A(X)ch(Y;l)' [M] >.

Roe's index theorern [19] obtained using the Higson corona vX is a special

case of Theorem 4.1 since every element in the range of thc boundary map from

](l(VX) to ](o(Co(X)) has a sequence of representatives with small variation

(see [26] for more details on the boundary lnap).

The fo11owing non-vanishing theorem is a consequence of Theorem 4.1.

Corollary 4.2 Let X be a non-compad proper- rnetric space with bounded

geometry and let [D] be a K-homology dass in 1(0 (..-Y). 1f ther'e exists a se

quence of vectoi bundles Vn with small variation on X such that the pairing

< [D], [lIn ] >-I- 0 fOT infinitely many n, then Index([D]) -I- 0 in ](o(C*(X)).

For the convenicnce of readers we sha11 briefty recall the definition of the

index map from !(i(X) to Ki(C*(X)). A K-hornology clclSS [D] in Ko(X) can

be represented as a pair (Hx EB Hx , D), whcre thc grading on Hx EB Hx is

given by thc grading operator 1 EB -1, and D is a boundcd operator of degree

one on Hx EB Hx such that (D· - D)j, (D 2
- !)j and [D, f] are compact

operators for an f E Co(X). If X is a completc Ricmannian manifold, then

Dirac type operators on X naturally givc risc to K-homology classes.

Without loss of generality wc can assumc D· = D , liDli::; 1. Let {Uih

be a locally finite alld uniformly bounclcd opell covcr of X and {ePih be a

continuous partition of unity subordinate to the open cover. Define

1 1

D' =L 4>1 DcjJ;,
i
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whcre the infinite SUIn converges in strong topology. It is not difficult to vcrify

that (Hx EB HXl D') is equivalent to (Hx EB HX1 D) in I(o(X). vVrite

D'=( 0 A).
A* 0

Let So = 1 - AA*l SI = 1 - A*A. We define

(
I - S~ (S1 + Sn A* )

Jndex[D] = .
BoA 83

Similarly we can define the index nlap froIn Je (X) to J{1 (C*(X)).

Let Hn,o be thc graded Hilbert space EB~~1 (Hx EB Hx ) with the grading

operator (0 = EB~~ 1(1 EB -1). Define Dx x C' n to be the operator EB~~ I D acting

on Hn,o. Let Hn,1 be the graded Hilbert space Pn(ffi~!;;I(Hx ffi Hx )) with the

grading operator (1 = Pn ( ffi~~1 (1 ffi -1)) 1 whcre Pn is as in Definition 3.1.

Define DVn to be thc operator Pn(EB~!;;ID) acting on Hn,l' Let an be as in

section 3 and let ßn be the operator frolll Hn,l = Pn(EB:::IHx)EBPn(EB~::IHx) to

Hn,o = (EB~~l Hx ) EB (EB~~l Hx ) defincd by: ßn = an EB an' Let Hn = Hn,o EB Hn,1

be the graded Hilbert space with grading given by ( = €o EB -(1. Define D n

to be the operator D xxc1n EO EB D Vn (1 acting on the gradcd Hilbert space Rn.

Let

Cn = (0 ßn).
ß~ 0

Finally we define an operator Gn of degree one on the graded Hilbert space

Hn by:

Gn = Dn + Jl - D~ Cn.

We ean easily check that G~ = I mod 1(, Heuce wc can definc index(C n ) to

be the Fredhohn index of the operator Cn IHn ,+ frolll the positive eigenspace

Hn ,+ of ( to thc negative eigenspace Hn ,- of €.

Lemma 4.3

< [D], [Vn ] >= 'index(Gn ).

Proof: Let a be a continuous non-negative function on X such that O'(x) :S 1

for an x E X, a(2;) = 0 for an x E 1(n and a(:c) = 1 for an x outside
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same compact subset of X, where /(n is as in Seetion 3. The K-theory el

ement [Vn ] - [X X Clll] can be represented as a Kasparov 1110dule (E, </J, F)

for (C, Co(X)), where E is the graded Hilbert module over Co(X) defined by

E = (E9~~lCO(X)) EB Pn(ffi7~lCO(X)) with thc grading given 1 EB -1, </J is the

hOITIOmorphisnl frolu C to B(E) satisfying </J(l) = I, anel

F=(O a).
a 0

We neeel to cOlupute the Kasparov product (E, </J, F)0co(..'\)(D, Hx EB Hx ).

To da this we first ielentify E0co(x)(Hx EB Hx ) with Hn by the following

isoluorphism h:

l k A A

for all ((EBi~ 1xd EB Pn(EBi~l Xi+l n )) ®Co(X)Y E E®co(x) (Hx EB Hx).

Next we shall show that Cn is Dn-connection in the sense of Connes

anel Skandalis (8]. Given x E E, let TI. be thc operator fronl H x EB H x

to E®co(x) (Hx EB Hx ) defined by: TI.y = X®co(X)y for all y E Hx EB Hx ·

vVrite x = (EB~~lXi) EB Pn(EB7~lXi+ln) according to the decomposition E =

(EB~~lCo(X)) EB Pn (EB7~1Co(X)). Using the iSOInorphisIu h we can identify TI.

with the operator from Hx EB Hx to Rn defincd by:

for all y E Hx EB Hx . Now we can easily check that

for a homogeneous eleluent x. Similarly we can verify that

Hence by definition Cu is Dn-connection.

Using thc isomorphism h we can identify thc operator F®I from E0Co(x) (HxEB

Hx ) to E®co(x) (Hx EB Hx ) with tbe operator froIu Hn to Hn defined by:

" (0 a)F®I=
a 0
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with respect to the deCOInposition Hn = Hn,o EB Hn,l' We can verify that

[F~],Cu] = J1- D~(F~])2 1nod ](.

Now by Definition 18.4.1 and Theorenl 18.4.3 in [I) our leInma follows [rom

the above identity and the fact that On is Dn-connection. •

Lemma 4.4

for alt n > N, where N is same Zarge integer.

Proof: Let Hx anel H'x be two X-modules, E = Hx EB Hx with tbe grading

operator 1 EB -1 and E' = H'x 61 H~,\ with the grading operator 1 EB -1;

let (T, T', U) be a tripie where T is an operator of degree one acting on E

satisfying T* = T,IITII :::; 1, T 2 - I E C*(..-Y,Hx ) EB C*(X,Hx ), T' is an

operator of degree one acting on E' satisfying (T' )* = T', IIT'II :::; 1, (T')2 - I E

C*(X, H'x) EB C*(X, H'x), anel U is a unitary operator of degree 0 from E to

E' such that T 2
- U* (T' )2U is conlpact. vVe shall first dcfinc the index of the

tripie (T, T', U). Let

Let So = I - AA*, SI = I - A*A. V'le defille

e(T) = ( I - Sr (SI + SDA* ) .
50 A 53

e(T) is similar to thc following projection

p(T) = e(T)e*(T)(I + (e(T) - e* (T))(e* (T) - e(T)))-I.

Sinlilarly we can define p(T'). We define ind(T, T', U) to be the element in

Z = KJ«(C, C) represented by thc quasihomoIllorphism (<p,4/) from C to C,

where c/J is the hOlnonlorphism [rom C to B(Hx EB Hx ) satisfying 4>(1) = p(T),

and 4>' is thc homolllorphism from C to B(Hx EB Hx ) satisfying 4>'(1) = (U EB

U)*p(T)(U EB U).
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Without loss of generality we can assurne that D has finite propagation.

Using identity (1) in the proof of LeIllIlla 3.5 it is not difficult to see that

for a11 n > N, where N is some large integer lV.

Let T = D If"'1ln , T' = Dv, , U = ßn*. Let
XX\L.. n

(
T EoU*JI - (T')2U )

B = (aU JI - (T')2U U*T'U '

B' = ( T' El JI - (T')2 ) .
EI JI - {T')2 T'

Notice that B is an operator of degree one acting on Hn,o EB Hn,o with the

grading operator EO EB -EO, and B' is an operator of degree Olle acting on

Hn,I E9 Hn,l with thc grading operator EI EB -EI' We can easily verify that

B 2 = ! mod !( aud (E'F = !. Observe that we are using the same matrix

trick here as in the proof of Lemma 2.3.

It is easy to see that

ind(U*T'U, T', U) = o.

Hence

(2) ind(T, T', U) = ind(T EB U*T'U, T' EB T', U EB U)

= ind(B, B', U EB U),

where the last equality follows from the fact that B - (TffiU*T'U) is an element

in C*(X, Hn,o ffi Hn,o), and B' - (T' EBT') is an eleIllent in C*(X, Hn,l EB Hn.1).

The invertibility of B' implies that

ind(T, T', U) = index(B),

where index(B) is the Fredholm index of BIH+ froll1 the positive eigenspace

H+ of the grading operator EO EB -EO to the negative eigenspace H_ of EO ffi -EO'
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An easy conlputation shows that

(

D,. ",lnCO j: - D 2
",In ßn )

G - A X\L, XX\L,
n- .

JI - D~n ß~ DVnEl

Let V be the unitary operator of degrce 0 frorn Hn,o EB Hn,o to Hn,o EB Hn ,1

defined by V = 1 ffi U. Vle have

This implies that

(EO 61 EI )Gn = V B';* nwd JC

Hence we have

index(Gn ) = index(B).

Now our lemma follows [rolli (I), (2) anel the above identity.

5 The odd dimensional case

•

In this section we shall briefly discuss an odd diIneIlsional analogue of Theorem

4.1.

Definition 5.1 A sequence 0/ elements in 1(1 (Co (..r\)), the compact supported

KI-group 0/ X J is said to have small variation ij it can be represented by a

sequence 0/ unitaries U n (n E Z+) in Alkll (Co (.,\))+ /01' sorne positive integer

kn such that /or eve1'Y r > 0

where Co(X) is the algebra 0/ all continuous functions vanishing at infinity

over X J Mk n ( Co (X)) is the the algebra 0f all kn x kn rnatrices over Co (X) ,

and Mkn (Co(X))+ is obtained /rom A1kn (Co(X)) by adjoining an identity.

We shall associate a sequence of elements with snlall variation in K 1(Co(X))

to an asymptotic Fredholm module over SC*(..r\) 1 the suspension C*-algebra
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over C*(X). Recall that for any C*-algebra A, SA is defined to be the

C*-algebra {] E C([O, 1], A) : ](0) = ](1) = O}. For each n, define a

projection Pn in A12kn (SCo(X))+ by: Pn = Wt(un)(I EB O)(Wt(Un ))-I, where

Wt(u) = (u EB I)Vt(u- 1 EB I)Vt\ anel

Vt = (eOS(1rt/2) -Sin(1rt/2)).

sin(1rt/2) cos(1rt/2)

Pn is a sequence of projections with snw.ll variation. The method of Section

3 can be then useel to construct an asyrnptotic Fredholm 1110dule (En,rPn, Fu)
(associated to Pu) over SC*(X). (Eu, rPn, F71 ) can be llsed to construct a

pairing with K 1(C*(X)) as follows. For any unitary U in iVlk(Co(X))+ rep

resenting an element [u] E ](1 (C*(X)), there is an assochtted projection p(u)

in iVfk(SC*(X))+ defined by: p(u) = 'Wt(u)(I EB O)(Wt(U))-l. Thc pairing

< (En, if>n, Fn), [u] > is defined to be the pairing of the asymptotic Fredholm

module (En , rP, Fn) with p(u) for large n as in Section 2.

Theorem 5.2 Let X be a non-compaet proper' metde space with bounded ge

ometry and let [D] be (L K-homology class in ](1 (X) = K ](1 (Co(X), C). ]f U n

is a sequence of elements with small var'iation in ](1 (Co()()) and (En,rPn, Fn)
is its associated asymptotic Fredholm module, then

for alt n > N, where N is some large integer, and< [D], [un ] > is the pairing

between the K-homology class [D] and the K-theory dass ['lln].

The proof of theorern 5.2 is sinülar to that of Theorern 4.1 anel is therefore

omitted.

6 Applications

In this section we shall apply our main results to study the positive scalar

curvature problein anel thc spectrum of Laplacian. For simplicity we shall

concentrate on the even dimensional case, Le. the case of vector bundles with
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snlall variation. The ocld dimensional analogues can also be proved using

Theoreru 5.2.

We shall first introduce a concept of large scale equivalcnee.

Definition 6.1 ([li}) Let d1 and d2 be two 1netrics on aspace X. d1 is said

to be large seale equivalent to d2 if fOT any l' > 0 thcTe exists R > 0 such that

(1) if d1(x, y) ~ r for any pair of points x and y in X, then d2(x, y) ~ R;

(2) if d2(x, y) ~ r for any pair of points ;1; and y in )(, then d1(x, y) ~ R;

Notice that the eoncept of a sequence of vector bundlcs with small variation

is invariant uuder large scale equivalence of metries.

Thc following result follows from Corollary 4.2, thc invariance of vector

bundles with snlall variation under large scale equivalence and a standard

Lichnerowicz type argument.

Theorem 6.2 Let M be a spin complete Riernannian rnanifold with bounded

geometry. 1/ there is a sequence of vectoT bundles 1~~ on NI with small varia

tion such that < A(A1)ch(Vn ), [M] ># 0 for all n, then there is no complete

Riemannian metnc on M which is lar'ge scale equivalent to the given metrie

and has uniforn~ positive scalar curvature.

The above rcsult indicates that thc existence of vectors bundles of small

variation has stronger geometrie implication than the existence of almost Hat

bundles sinee thc eoncept of almost Hat bundles does not seCIn to be invariant

uneler large seale cqllivalcnee.

Theorem 6.3 Let AI be a complete oriented Ric1nannian manifold mitk bounded

geometry. 1/ there is a sequence of vector b1lndlcs l;;'~ on !vI with small variation

such that < L(NI)ch(Vn ), [M] ># 0 fOT all 11, tILen 0 belangs to the spectrum

0/ Laplacian acting on the space 0/ L2-fo1ins.

The above result follows from ThcoreIn 4.l.

An idea of GrolllOv anel Lawson in [13] cau be used to eonstruct vector

bundles of small variation over a proper Inetric space X as folIows. Let In be

a sequence of continuous Inaps frOIU X to a cOInpact Inetric space Y such that
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(1) für any E > 0, r > 0, there exists N such that d(fn(X), fn(x')) < E für all

n > N anel d(x,x') < r;

(2) fn is constaut outside a cOInpact subset 1(n of ./Y.

If V is a vector bundle over Y 1 then f~V is a sequenee of vector bundles of

SIllall variation over X. The most interesting case is perhaps when Y = Sk,

the standard sphere of dimension k.

Rccall that X is said tü be unifonnly contractiblc if for any r > 0, there

exists R > r such that cvery ball B(x,1') can bc contractcd to a point within

B(x, R).

Question 6.4 11 X is a uniformly contractible Riernannian lnanifold with

bounded geoemrty, do there exist a sequence of continuous maps fn from X

to sdim(M) satisfying the above conditions (1) and (2) such that each In has

nonzero degree?

A positive answer to the above question wOl1ld imply Grornov anel Law

son's eonjeeture that uo eompact 1«(1r, 1) Inanifolcl adIllits a llletrie with pos

itive sealar curvature anel Gromov's eOlljeeture that the Laplaeian acting on

the spaee of L 2-fonlls on a uniformly eontraetiblc RieInannian manifold with

bounded geometry eontains °in its spectruIll.
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