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1. Introduction

In earlier works (Bunting et ale (1987), Masood-ul-Alam
I

(1987» positive~mass theorem has been used to prove uniqueness

theorems for certain asymptotic~lly Euclidean ?tatic space-times.

In this paper we mQdify the technique to prove the spherical

symmetry of a static stellar model whenever there exists a

spherically symmetrie model with the same equation of state

p = p (p) and surface potential V..
6
.,.' provided %% is 11 small ll in

sorne appropriate sense. (For precise statements see theorem 2 and

corollaries 1 and 2 where a rneasure for ~ is given. dp canap
be allowed to be large near the surface of the star; see theorem

3) • Roughly the argument is as follows. If 9 be the Riemannian

metric on a t = constant hypersurface of a static stellar model

then we can find a function n = n (V) such that the metric n2
g

is asymptotically Euclidean with zero mass and it has scalar cur-

vature P(V) (W (V) - jvVl 2 ) . Now for " smallll .g.g we can have
o ap

P(V) ~ 0 and W (V) ~ IVV!2 . Hence in this case the positive­
o

mass theorem gives n2g to be an Euclidean metric and the result

folIows. We now state the corollary of the positive-mass theorem

we are going to use (notation: greek letters a,ß, ... , run from

1 to 3 and italic letters i,j, ... , run from 0 to 3) .

Theorem 1. Let (N,y) be a complete oriented three-dirnensional

Riemannian manifold which is asymptotically Euclidean in the sense
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that N is topologically Euclidean outside a eompaet set and

in the standard eoordinate system (x o ) in m3
the metrie

satisfies the deeay eondition

y aß:::: (1 + 2-m/ Ix I) Ö°ß + a°ß

2Ix I :::: L (x
To

)2
T~:::: 1 ,2 , 3

If the sealar eurvature of y is non-negative and the mass

rn :::: 0 , then (N,y) is isometrie to m3 with the standard

Euelidean metrie.

Theorem 1 was proved by Sehoen and Yau (1979), (an alternative

proof was given by Witten (1981); see also Parker et al. l1982).For

a proof suitable to our purpose as regards asyrnptotic deeay of

y and regularity of y (we shall assurne y to be C1 ,1) we

refer to Bartnik, (1986).

We give some preliminaries about static stellar model in

§ 2. In § 3 we consider spherieally symmetrie models and list

some results which are needed in later sections. In § 4 and

§ 5
0
we give the main results and complete their proofs. The

strongest result obtained is the proposition 1 which however is

too technical. The weaker results involve much simpler conditions

on the equations of state and are given in § 5. In the conclusion
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we comrnent on the possibility of generalizing the method to re-

move the conditions on dpcrp . ~

2. Static stellar model

By a (nonsingular) static stellar model we shall mean a

geodesically complete spacetime (M , 4g) such that

(i) M C
OO

is a manifold diffeomorphic to N x lR where I

for each t E lR I

3-manifold.

N = N x {t}
'-t

is an oriented spacelike

(ii) The Lorentzian metric 4g can be written as

~~g ::: - V
2 (dt @ dt) + 9 ( 2 • 1 )

(iii)

where V 'is a positive function (calIed the potential) I

9 is a tensor such that 9 restricted to N is a

complete Riemannian metric on N I and V and gare

independent of t .

4(M, g) satisfies Einsteinls equation

. 4 1 4 4
R.<.c. ( g) . . - -2 Sc.a.laJt ( g) g.. =

.' '<"j '<"j
4

8lT [ (p + p) u .u . + p 9 . .]
.<.. j '<"j

(2 .2)

where u. is a unit timelike vector field, and p and
.<..
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p are bounded rneasurable functions. These functions

are, respectively, called the density and pressure. It

is clear that they are independent of ~.

(iv) p and p are related by an "equation of state" of the

form p = p ( p) , wi t h ~ c.:: 0 .

(v) There exists a bounded open set Q c N such that

p = p = 0 on N ~ Q and in Q p > 0, p > o. Q

and N ~ Q are called the fluid (ar star) and the

vacuurn respectively.

(vi) 4(M, g) is asymptatically Euclidean in the following

sense : >-

There exists a compact set N
1

c N such that N ~ N is diffeo-
1

rnorphic to m.3 ~ 8
1

(0) where B1 (0) is the closed unit ball

centred at the origin and with respect to the standard coordinate

system {x et
} in ]R3 we have on N ~ N

1

v = 1 - m/ Ix I + v

(2.3)

(2 • 4)

where haß = O(lxj-2) , ah
aß

= o(lxl- 3 ) , aah
aß

= O(]xj-4) ,

v =o(lxl- 2
) , av = o(lxl- 3 ) and aav = o(lxl- 4

) as lxI -+ 00

The constant m 1s called the rnass of the stellar model.
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Remark 1. For the sake of simplicity, we 5hall make following

regularityas5umption5. V and gare globally C1 ,1 and C3

on Q and N ~ Q . (It i5 weIl known that V and 9 will then

be autometically analytic in N ~ Q . 'See Müller zum Hagen (1970)).

aQ 15 assumed to be smooth. Furthermore we shall assurne that p

is a ( Iocally) C1 ,1 function of p on (0,00) and

f~ ( p (.6) + ~) -1 d.6 < 00 for finite p . In particular the last con-

°dition allows the " po l y tropic ll equations of state'of the form

q < 1 and A =.constant. It is wellknown (Künzle et

al. (1980), Masood-ul-Alam (1987t) that if p is a Lipschitz

function of p then p has a discontinuity on aQ. See also

Remark 4 below.

Remark 2. (2,2) decomposes into

= V-
1

V ß + 41T (p '- p) 9 ß
~a a

(2 .5)

6V = 41TV(p + 3p) (2 .6)

where j denotes the covariant derivative with respect to 9

and 6 denotes the Laplacian with respect to 9 .

Remark 3. (2.3) and (2.4) follow.naturally from (2.5) and (2.6)

under mild asymptotic decay conditions (see Beig (1980), Bunting

et al. (1987) for details) .
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Remark 4. The contracted Bianchi identity (in a suitable weak

sense) for 9 implies that p is a Lipschitz function on N

and

P"a.
.!~

-1
V (p + p) V;.'a

It follows that (see Künzle and Savage (1980)) p and p are

functions of V and aQ i5 a level set of V. The above

equation becomes

-1
=-V (p+p). ( 2 .7)

Since we are assuming that f~ (p(~) +~)-1d~ < 00· for p < 00 ,

we can integrate (2.7) to get

(2.7')

where V == V(p)
,6

at p == 0 •

It is eonjeetured that the stellar model defined above is

spherically symmetrie. This seems to be physieally obvious. Also

there are ':partial" resul ts due ·to Av.ez.,. -KÜDz-le ..--< f97-i"(,';"Müller zum

Hagen ·.. Ll9 7 q) I'.,., Kün z le et .. al-.;· -' ('1 980,), , - and Lindplom ~ (19ß.o ,- ·1'9 e1) ." -.""
- ." ~

_!I0wever a'--r..igorous.--a-nalyttcal pr9Q.f-of the- .conjecture in full

generality is still lacking.

. .
One quantity which proves,to be very,important (see Lindblom
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(1980) is the tensor Ra80 defined by

(2 .9)

R is the scalar curvature of 9 • For a 3-dimensional Riemannian

metric, RaB8 = 0 if and only if the metric is (locally) con­

formally flat. A straightforward but tedious calculation using

(2.5) and (2.6) yields (Lindbiom) ,

!J.W - V- 1W _ V~i."a + 8TTW (p + p) - 8TT VP V ja
,j a . ja

3 -11 [2 2 2 2- 4" w vw - 1 6 TI V (p + 3 p)

+ 4TT V (p + 3 p) W-1 V W;..a
; a

(2.10)

where 2 'aß
W c Iv'v leg V. V. ß, a , and indices are raised with respect

to 9 .

3. Spherically symmetrie stellar model

In this seetion we list some results related to the spherically

symmetrie stellar model. These are required for later reference.

Most of them are wellknown while the remaining ~re not difficult

to obtain. The metric (for details see page 608 in Misner et al.)

has the form
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where ~ and 9
44

are functions of 4 only and where

, , 2
d.r.: d 2 . 2 d 2= e +.6 -tn e <p (3.2)

The pressure p and density p = p(p) rnust satisfy the relation

(for !t ~ 4 , the value, of
.6

at

Defining

Jt 2
»I = m(Jt) = Ja 47TP~ d~

we ean write the rnetric as

4g =

-(1 - 2'mJt- 1 )dt2 + (1 - 2m4- 1 )-1 dJt 2 + 4 2 d L 2 !l. > Jt.~

(3 • 3)

(3 • 4 )

(3 .5)

(3 .6)

(3 .7)

...-.J

where m = m(lt) is the mass of the stellar model. The desired
~

regularity of g' is obtained in the harmonie coordinates relative

to t'.~g-,-. ·~~t-~follows-..from -(=i~L,.... (3_~·4.), ~(-3.5l-an.d_~~-_the r~.g~larity
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assurnption in Rernark 1 that near the " centre" (i.e. Jt = 0):

we have

(3 .8)

( 3 • 9 )

where subscript e is used to denote the value of any function

at the centre.

It is wellknown (Buehdahl ~959) ,Bondi (1964» that for a non­

singular spherically symmetrie stellar model with ~ ~ 0 we

have a lower bound for V~ a V(Jt~)

Buehdahl (1 981) : Leeture 12 )

1
> ­3

and "'4Jt9 . We have (see

(3.10)

We shall denote the upper bound for

9JtJt < a. •

by a constant a.

(3.11)

It was shown by Bondi that (for p > 0) a. == (17 - 12/2)-1 RJ 34. ~

If P l;: kp with k > 0 , and ~ ~ 0 , this value ean be redueed

further. (For example, when k ::::: 3 we have a < (:) . For details

see figure 1 and the subsequent diseussion in Bondi (1964».
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An important quantity is the function n = n(v) which

makes n29 Euclidean. Writing 9 = n- 2 (d~2 + ~2"'~~E2) where

~ = ~(~) we find that n(~) satisfies the following equation

-1n dn = (;;::- _ 1)
dtl g~~

-1 d~
~

dtJ
(3.12)

Differentiating the above equation relative to ~ and using

W :
o

= .-v~~(dV)29 ([)i (3.13)

as weIl as equations (2.6), (3.3) and (3.4) we get the crucial

indentity ( which expresses the fact that Seata~(n29)=O )

In vacuum region we take

(3.14)

n (V) = ~ (1 + tI) 2 11 > 11,6 (3.15)

so that n~ 1 towards infinity. n is C1 ,1 in the neigh-

bourhood of the surface aQ. This is clear from (3.12) and (3.14)

dJt
since i8 continuous across aQ Since we are assuming 9

dtl
to be smooth in the interior of the fluid, . g W~~J-. also be C1 ,1

in the neighbourhood of the centre of the fluid. In fact calcu­

lations up to order ~2 near the centre yields (one can use

(3 . 8 ) and (3 . 9) ) ·
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-- 'i'1 -- -- -1 dn 2 [ --2 ...... ...... ...... (cf01]· 2 381Tp-81TV(p+3p)Sl - = (161T /15) 5p -6(p +p)p ~. !L +O(Jt) •
dJJ c., c. c. c. eIP c

(3.16)

. The method we shall demonstrate in this paper, will work only

if the expression is nonnegative. This ex-

pression vanishes in the vacuum. Since p vanishes at the

boundary of the fluid, this quantity is nonnegative in Q near the

boundary whenever p~ = P(fL~) > 0 • This follows from (3.14) and

the fact that
A -1 A -1 ...... 2 r--- 1

2mJt [(mit + 41fPfL ) (1 + y...... )]

gJtfL
is

strictly less than unity for Jt E (O,Jt~] • It follows from (3.16)

that for sorne equations of state this expression would not be

nonnegative near the centre. On the other hand we have the following

lemma.

Lemma 1.

that

As usual we assume p ~ 0 , --p ~ 0 ,
dp

~ 0 , suppose
d'iJ

(3.17)

Proof: Let 6 = 8np - 81T'V (p + 3p) n- 1 dn
dl1

Then differentiating 6 and using (3.14) we get
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2 [ dp 2~2 ~ ~ 2 -1]::: 6 - 4np + 16n (p + 15) + 64n v (p + 3p) Wo 6
dp

Hence for 6 < 0, ~ > 0 . But it follows from (3.16) that

6 tends,"'--ts~~z~ro a5" Jt -t- 0 • Hence the lemma follows. [J

Now we shall describe some of the properties of the function

Wo(V) · For the spherical stellar model the tensor Raß8 vanishes

so that we have from (2.10)

dWo
2

d Wo 3 (,dWoj2 ~ ~ -1
W -- - - - '+ {8n'V(p+ 3p) -1" W}

o d~2 4 dV ° dV
(3.18)

The value of
dW

°
d7f

at the centre will be important. At ~ ::: 11
c.

we have Ric.(g)aß = (16n/3)P9aß • Hence using (2.5) we get

dWo (l1 ) -c. (8n/3) 11 Cf) + 315 ) •c. c. c. (3.19)

For future reference we also need the forrnulae cornputed in the

following lemma.

Lemma 2.

d {71 -1 dW0 ~ ~}
- v - - 8n (p + p) :::
d'tt d'tf

'"' -3 ~ -1 dJt
4(3m/t - 4np)Jt

dV
(3.20)
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f"<J f"<J '" -3 f"<J
4lT(p + 3p) + 2(3mlt - 41Tp) (3 .. 21)

Remark 5.. Note that sinee p is a noninereasing function of

11 we have
'" -3 f"<J

3mit - 41T P ~ 0 ..

Proof: We show that

1 dW '" -3
11 - ----2 - 8lT (p + p) = - 4mlt

dIJ
(3.22)

An easy way to do this is to deeompose ~ along the level sets

of ~ and in normal direetion .. We have

1 dW
=-~+HIW

2 d11 0 0

Now the mean eurvature H of the level set is given byo

H = 21t- 1 /f"<J1t1t • Henee using (3.3) and (3.6) we get (3.22) I fram
a 9

whieh the lemma follows easily. 0

4. The conformal metrie n2 (V)g

Let

Dur aim in this section 1s to prove the proposition 1 below.
4 .

(M, g) be a stellar model with equation of state p = p(p)

and surfaee potential (i.e .. the value of V at dQ)V~ • Suppose

there exists a (nonsingular) spherieally symmetrie stellar model

with the same equation of state and surface potential

V '= 11 we define the functions n2 eiF)c.
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and W (LI) as those obtained from n2 ( V)
o

"~

by replacing V by V.

,..,
and W (V)

o
respectively

Remark 6. Also for V ~ ~ we have p(V) = p(~) andc.
p(V) = p(~) . This follows from (2.7') and the fact that corres-

ponding to p = 0 we have V~ = ~~ .

Now let ~ = ~(V) . Then by virtue of (2.5) and (2.6) we find

" 2 2
that the scalar curvature R(~ g) of the metric ~ 9 is given by

"2 -2[ -1 d~R(~ g) = 2lP 8np - 8'ITV(p + 3p)lP av
( 4 • 1 )

The next step is to show that

For V ~ 11 we take 4J ( V) = n (V) . Then using the definition of
c.

n (V) and W (V) , Remark 6 and (3.14) we get
0

R(02 g ) 2n-2{2n-1 d2n -2 (~)2} (Wo _ W) V '= 11 (4.2)= --0 ,
dV 2 c

W is as in (2.10) . R(n 2
g) vanishes in vacuum.

V ' = ~n6 V is not less
m-<..n N

than ~ and W (V) '= W . In lemma 3 below we show this in casec. 0

the spherically symmetrie model satisfies certain condition. We

deduce a Robinson-type identity to which we"can apply the maximum

principle. One problem arises because apriori it is not known
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that V . ~ ~ • Hence we extend W (V) beyond Vc. by taking
m~n c. 0

it to be the solution of the ODE

dW
o

=dV (8lT/3) V(p +.3p) , ( 4 • 3)

with W (~ ) = o. W (V) so extended is C1 ,1 (see equations
o c. 0

(3.19) and (3.20)). It is now defined all over N . We shall now

prove the following lemma.

where

Then V. ~ ~ and W ~ W in Q.
m~n c. 0

Proof: Für V ~ V
h

we have

[V
-1 { 2 -1} 1° r 2 -1 -1 { 3 -1 dWo }1(W-Wo)(b-V) aJ +l-4(b-V) +W 4lT(p+3p) -:"2 V dV J

[ {
dw }-1 0 2 -1

+ 3V dV - 16TT (p + 3p) V(b - V )

(4.4)

(4.5)
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{
dW }d· -1 0 2 -

+(lV v dl/-81T(P+p) ]<W-WO)(b-V) 1

o for V '= 7Jc.

I =

(16TT /3) W (p + p) ~ for V. ~ V < 11 •
o up ~n c.

(4.6)

( 4 • 7)

I .

To obtain (4.6) we first use (3.18), (2.6) and the definition

·of I above, to deduce that,

d2W dW 1 dW
Wo dV 20 + F /::,v - V- F Wo + 81T(p + p)Wo - 81TV *Wo

3 (dWo )2 2 2 2 dW o-"4 crv - 1 6TT V (p + 3 p) + 47T V (p + 3p) CfV =

Straightforward calculation using (2.10) now yields (4.6). For

V > V we use the following form of the Robinson's (1977)
.6

identity

(4.8)

Now (W - W ) (1 - V2 ) -3 goes to zero as V tends to 1. Hence
o
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by applying maximum principle to (4.8) in the domain N ~ Q

we get that either w- W ;:il ,0
o

at aQ or w-w
. 0

attains a

positive maximum at a point T
1

E aQ and at T
1

( 4 • 9 )

where na is the normal to aQ at T
1

(pointing inward to

N ~ Q) We now show that either W;:il W in Q or inequality
o

(4.9) is contradicted. We shall apply maximum principle to (4.6)

in Q. Note that by virtue of (4.4) the coefficient of

(w - W ) (b - V2 ) -1 in .(4.6) is nonpositive. Furthermore, byo -

virtue of the definition of W (see the statement following
o

(4.3» and Theorem 7.8 in Gilberg et. al. (1984) W - W be­
o

longs to the'Sobolev space W2 ,3(Q) . Finally we note that forioc.
V ~ V we can stay away fram the critical points of V be­

c.

cause at these point we have w- w ~ 0o and hence maximum of

is not reached near these critical points(W-W)(b-V 2 )-1
o

unless W- W ~ 0o in Q. (For v ~ ~ the term involving
c.

W- 1 in (4.6) vanishes by virtue of (4.3)). Now applying the

weak maximum principle of A.D. Aleksandrov (Theorem 9.1 in

Gilberg et al.) we find that either w- W ;:il 0
o in Q or

positive maximum of (w"- w ) (b - V2 ) -1 is reached at a point
, 0

T
2 E aQ . If the second case occur we can take T2 = T1 since

W has the maximum value over aQ at the point. T1 . But in a

neighbourhood of T1 in Q W-W is C2 and we can use the
0

strang maximum principle (Theorem 3.5 in Gilberg et al.) and
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the boundary point lemma (Lemma 3.4 in Gilberg et al.) to

deduee that at T, ,

(4.10)

Sinee 212b - V = - (1 - V )
h 3 h

and a(W - W ) n is continuous acrosso a.

aQ , ( 4 • 10) contradicts (4. 9). Hence we have w- W ~ 0
o

in Q •

In particular 7J :i V .
c m-<.n CJ

We are now in a position to prove the following proposition.

.Proposition 1~ Suppose 4
9 and 4g are such that (4.4)

holds (in particular this implies Vmin ~ ~e) • If in addition

r2(7J) satisfies

V ~ 11 c. (4.11)

then (N,g) and V are spherieally symmetrie. In fact

'i"f 4.......
is isometrie to (Al, g) •

4(M, g)

Proof: From (4.1) and Lemma 3 we get that the 5calar curvature

of the metric n2
g (which is now defined over all N since

V . ~ ~) is nonnegative. But n2g i5 asymptotically Euclidean
m-<.n c.

with mass zero. Thu5 by the corollary of positive-mass theorem

(stated above as theorem 1) 9 is conformally Euclidean, n2

being the conformal faetor. Hence the result follows by standard
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argument (Lindblom (1980) or by straight forward integration

o f ( 2 . 5 ) and (2 . 6) . Cl

By virtue of the" existenee of spherieally symmetrie stellar

model, most probably the two.conditions appearing in Proposition

1 (viz. (4.4) and (4.11)) are conditions on the equation of state

and the surface potential V~. Equivalent eonditions involving

only the equation of state and V may be diffieult to obtain.
~

However, in the next section, we give some sufficient conditions

involving only these two objects.

5. Nain results

We now ask for which equations of state, spherically symmetrie

stellar models satisfy inequality (4.4). Although this inequality

is always satisfied near the surface aQ (see later), in general

towards the interior it my be violated. It follows from lemma 2

that for a physically reasonable stellar model the expression on

the left hand side of (4.4) is strictly positive. But, unfortunately,

d { 1 dW }the expression d17 "V- ~-8'JT(p+p) 18 nonnegative. However this

quantity vanishes for a unifo~ density star, an0 ~rovin.ed
dp
dP

1s "8mall enough" we can expect (4.4) to hold everywhere. We shall

give some sufficient conditions (both dependent and independent of

the value of ~h ) such that the equations of state satisfy in­

equaltity (4.4).
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Using lemma 2 we find that for v ~ V , (4.4) is equivalent
c.

2TIV(p + 3p) (
2 d~) A -3 -1 d~

~ b - V - ltV CIJi. (3mlt - 4TIp) lt
d'U

( 5 • 1 )

We now estimate (3~lt-3 _ 4TIP)lt- 1 dlt
d7J

Lemma 4. As usual let
........
P 2: 0 , p ~ 0 , d({ ~

.=..r::. l;" 0 . Then
dp

Proof: Using (3.3) - (3.6) we get

[
d........,A - ]-3 lt lt ................ -3........ ........ 2

+ 411 Jt f 0 f.6 ~ (p + p) (3m( T) T - 411 p) 9 JtJtT d T .6 d.6.

This implies

A _ 3 .-.J • 2 2 { dp . }
3mJt - 4 TI P ~ (1 6/1 5) TI lt -!l U P --;: (i) + p) (f)' + 3p) 9ltJt

(O,Jt) dp

2 {dP ........................} A -3 ........+ (4TI/15) lt ~up -::: (p + p) 9 lt -6UP (3m (~) -b - 4TTp (~)) •
(O,lt) dp lt (O,lt)

Thus for

Jt.
2 < [( 8TI / 1 5 ) -6 U P { d~ (p + p) 9Jt~} ] - 1 ,

(O,lt) dp
(5 .3)
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(5.4)

rn~~-3 ~ (4/3)n~p~-3Now using (3.3) and ,~ ~ ,~ we find that (5.2) holds

for !t satisfying (5.3). On the other hand for ~ not satisfying

(5.3) we have

-1 d~ {d~ ~ ~ }-1 ~ -3 ~ -1~1t~
~ - S (8/15)7f ~u.p .::.r:. (p + P)9

1t
/t V (m!t + 4np) 9 •

d~ (O,lt) dp

Hence the result follows because of the fact that

decrease as !t increases. 0

p and

Frorn lemma 4 and (5.1) we find that if for

2 2
V (p+3p) 2 {* } ~ ~!t!t2:" (4/5) (b - V) ~u.p (p + p) (p + 3p) -6u.p {g }g

(~ V) P (0 It) !L1t"
Q' - '

(5.5)

then (4.4) is satisfied for V 2:: ~ • For
Q

v < ~ it i5 easy to
Q

show that (4.4) is equivalent to

2 2 Q.Q
V (p + 3p) a (2/3) (b - V ) dp (p + p) • (5.6)

Now glt/t 2: 1 and by virtue of (3.11) we have an absolute upper

bound a for 9/t!L. Hence a sufficient condition"on the equation

of state such that (4.4) 1s satisfied is given by

V
2

(p + 3 p) 2 a (4 a / 5) (b - V
2

) -6 u. P {* (p + p) (p + 3 p) }
(O,V) P

( 5 • 7)
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Clearly (5.7) 'is a condition on the equation of state and V
.6

onlYi by virtue of (2.7') p and p are uniquely determined

as functions of V, once the equation of state and V~ are

given. Thus we get the following theorem.

Theorem 2. Let 4(M, g) be a (nonsingular) static stellar model

(asymptotically Euclidean in the sense of assumption (vi)) with

bounded fluid region Q such that aQ is a smooth level set

V = V of the "potential" V. Suppose in addition to satis­
.6

fying the usual conditions (viz, P 2: 0 , p ;?; 0 , dp ~ 0ap and

f~ (p(~) +.6)-1 d.6 < 00 for finite p) p=p(p) satisfies the

following two conditions

and

5p2 ~ 6p(p + p) * (5 .8)

2 2x (p+3p) ~ ( 4 a/ 5) (b - x2) .6 up {* (p + p) (p + 3 p)1
' (O,x) p

(5.9)

If there exists a spherically symmetrie' (nonsingular) static

stellar model 'i'1 4......(M, g) with the same equation of state p = p(p)

and surface potentia~ V
.6

synunetric. In fact (M, 4g)

, then

and

is also spherieally

are isometrie.
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Proof: Because of (5.10), (5.7) and hence (4.4) is satisfied.

By virtue of lemma 1, 4.11 is also satisfied. Hence we can use

proposition 1. 0

We can get a condition independent of V as follows.
.6

Equation (2.7) 1s invariant under the transformation

v~ constant x)! and also we have

the following lemma.

1
V.6 > 3 · Hence we can prove

Lemma 5. Let y (p) :: .;. e.xp (- Jg (p (.6) + .6) -1 d.6) • Then

2 2Y (p+3p) ;;: (4a/5) «11/27) - y2) .6up {* (p + p) (p + 3 P)}
(O,y) P

(5.11)

irnplies (5.9)".

Proof: We have X :: Tlj where T :: 3V > 1 • Multiplying (5.11)
.6

by 2
T and noting that

11/27 -2
T b

we get (5.9). 0

Hence theorem 2 implies the following corollary.

Corollary 1. Conclusion of theorem 2 remains valid if (5.9) 1s

replaced by (5.11).
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Inequality (4.4) allows only small values of
dp
dP

towards the interior. For example, even in the case of a spherical

star it gives that at the centre

in 5.12 would depend on the

Hence (5.11) allows still smaller values of

the actual numerical value of

. Of

(5.12)

cour~'e

Remark 8. Suppose P
h

* 0 where Ph B p(p) at p = 0 . Then it

is possible to estimate V from below in terms cf V
h

P and

P
h

• Hence we can replace the second condition in theorem 2 with

a simpler cortdition. Furthermore by virtue of (3.10) even the

dependence on V~ can be rernoved. Although this condition

restricts dp
cw to :: ~- ' ..... srnaller values, i t is much simpler and

gives a better feeling about the nontriviality of theorem 2 at

first sight.

For example, since ~ {V (p + 3p)} ~ 0 we have

V(p+ 3p) ~ VhP~ • Thus we have the following corollary to theorem" 2:

Corollary 2. The conclusion of theorem 2 remains valid with

condition (5.9) replaced by the following condition

5 p~ ~ 4~-". ~ (p + p) (p + 3P) (5.13)
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For nontrivial condition we need P
h

* 0 in theorem 2 and

its corollaries 1 and 2. However the inequality (4.4) is auto-

matically satisfied near the surface aQ (see below) and we

can allow P to decrease rapidly to zero in this narrow range.

EfJ2
pThus du can be allowed to become large near

in (5.1) is automatically satisfied if

aQ • The inequality

(5.14)

This is the case near the surface of the fluid because at

we have

11 = V
h

(5.15)

Thus as 11 decreases from V.6 ' the -·'T~ft. hand side of inequali ty

(5.14) remains negative until (say) Y = 111 (~1) E (11e'V~) where

it becomes zero. The following lemma gives an estimate of 11
1

from above in terms of V
h

•

Lerruna 6. There exists a solution 11 = 11
2

of

2 9 2 2 2 3 2 2 2 5/2
V.6 +"2 (b - V.6) io 9 {( b - 11 ) / (b - V.6) } - "2 11 {( b - Vh ) / (b - 11 )} = 0 ( 5 • 16)

in the range [11
1

,V
h

) • In particular on ['V'2'V.6] (5.14), and

hence (4.4) holds.
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Proof. By virtue of (3.22) and (3.20)
" -3
m~ .is nonincreasing

in ~. Hence using (3.3), (3.4) and (3.6) we get

Now on CD'1' V.6 ] we have - d (to 9 (b - t1 2
)) ;;;: 2Jt.- 1

dlt • This implies

that on [t1
1

, V.6 ]

Finally using

(5.17)

we get tha t on [111 ' V.6] ,

11 5/2
11~ d ~ l 112 (b _ '{12 ) { (b - V2 ) / (b _ 112 ) } [ V2

"(]X 2 .6 -!l

9 2 't12 2-1
+ 2" (b - V.6) to 9 { (b - ) / (b - V.6) } ] •

where at 't1 = V
h

equality holds. Thus the expression
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is negative at V
h

and nonnegative at ~1 . Hence this ex-

pression i'5. nonpositive on [~2,VhJ c [~1 ,VhJ where 11· is as in
2

the statement of the lemma. Since tt
1 < 11

2
(5.14) holds on

[11
2

,V
h

J . D

Remark 9. Note that tt
2

i5 the unique solution of (5.16) in the

range (V , ,V ) •
m.<.n h

Thus we can improve theorem 2 to obtain the following result.

Theorem 3. The conclusion of theorem 2 remains valid if the con-

dition (5.9) holds only for x E (0,11
2

) where 112 = V2 (V
h

) is

as in lemma 6.

6. Conclusion

Given a stellar model we try to find a conformal transfor-

mation such that the resulting metric of the ~ = constant hyper-

surface is asymptotically Euclidean with mass zero and has non-

negative scalar curvature. If there exi5ts a spherical·\ .s.t§!_r~;}\li-th·~.,T"'
.;. ~ - _ • .r" .... -

the-~-same ..._equat,iö~~f<st'~te _,an9.-the. 'value-~of . Vh ' then we' can

find such a conformal transformation provided the equation of

state i5 restricted to satisfy two conditions implying small

dp \ap . In this case the scalar curvature of the conformal rnetric on
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the t = constant hypersurface is of the form P(V) (w - W)
o

where P(V) '= 0 and W ~ W • We use the first condition (for
o

examp1e, (4.11) or (5.8))to have P(V) ~ 0 . If we cornpare

(5.8) with the Harrison-Whee1er equation of state we find that

(5.8) is satisfied for centra1 density up to

P = 2.39 x 10- 17 (=: 3.22 x 10 11 gm/ern3 ) at which stage the " corn­

pressibi1ity index ll (r = (p + p) P-1 E!:)2) drops discontinuous 1y
ap

be10w 1.2 due to "neutron dri p ", (see page 624 in Misner et al.

See also chapter 10 in Harrison et al. (1965)). As density in-

creases, r increases rapidly above 1.2 again. But without

further analysis it is not c1ear how badly P(V) becornes ne-

gative in case it does. The second condition (viz, 4.4 or (5.9))

is used to show that W ~ W . Such a condition is artificial as
o

we expect w. ~ W to hold in any case. As expected this condition
o

is very badly violated by the Harrison-Whe~ler equation of state.

For example, rough calculation shows that even (5.12) can be vio-

lated by a faetor of 50 ~ 500 at density

p = 7.42 x 10-23
(!:! 1 x 10 6 grn/ern

3
. 11c./V.6 ean be easily caleu­

lated from the eolurnn for 11 n" in Table 13 on page 109 in

ean be estirnated from 5.16). In fact,Harrison et al. Then V,6

the function (b - V2 )-1 whieh has been used to multiply W-wo

in the Robinson-type identity viz. (4.6), is an artificial choice.

This ehoice is not bad towards aQ but in the interior one would

not expeet such a simple function to work nicely. Perhaps following

the methods due to LindbIom (1981) one can get better identities

implying w ~ W • In general, however, we like to show that
o
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Ti (~2 g) = P-( V) (W - W) is nonposi tive. One ean try to find a
o

" 2
seeond order quasilinear elliptie PDE for R(Q g) with non-

negative right hand side

It may be possible to remove the assurnption of the existenee

of spherieally symmetrie stellar model having the same surfaee

potential V~ by eomparing the given nonsingular stellar model

with the one obtained,by integrating the " spherieally symmetrie

field equations ll from aQ inward"with the same V~ and mass

m • Q need not to be eonneeted and Wo need not to be

globally a single-valued funetion of V). A result of the form

W ~ Wo < 00 would possibly then allow one to find a suitable

eonformal funetion Q, globally defined on N.
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