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1. Introduction

In earlier works (Bunting et al. (1987), Masocod-ul-Alam
(1987)) positive-mass theorem has Seen used to prove uniqueness
theorems for certain asymptotically Euclidean static space-times.
In this paper we modify the technique to prove the spherical
symmetry of a static stellar model whenever there exists a
spherically symmetric model with the same equation of state
p = plp) and surface potential UﬁJ, provided %% is "small" in
some appropriate sense. (For precise statements see theorem 2 and
corollaries 1 and 2.where a measure for %% is given. %% can
be allowed to be large near the surface of the star; see theorem
3). Roughly the argument is as follows. If g be the Riemannian
metric on a t = constant hypersurface of a static stellar model
- then we can find a function @ = Q(V) such that the metric ng
is asymptotically Euclidean with zero mass and it has scalar cur-
vature P(V) (W _(V) - |VU|2) . Now for "small" %% we can have
P(V) 20 and W_(V) 2 IVU[2 . Hence in this case the positive-
mass theorem gives ng to be an Euclidean metric and the result
follows. We now state the corollary of the positive-mass theorem

we are going to use (notation: greek letters o,8, ... , run from

1 to 3 and italic letters 4i,f, ... , run from 0 to 3).

Theorem 1. Let (N,y) be a complete oriented three-dimensional

Riemannian manifold which is asymptotically Euclidean in the sense



that N is topologically Euclidean outside a compact set and

in the standard coordinate system (xa) in :m3 the metric

satisfies the decay condition

Yap = (14'2m/lx|)6a84'aa8
where a _, = O(|x|_2) da_, = O(|x|_3) 3da_,= O(|x|;4) as
aB 1 ! aB
lez= (xT)z_}w
t=1,2,3

If the scalar curvature of ¥y 1is non-negative and the mass
no=0 , then (N,y) 1is isometric to ®> with the standard

Euclidean metric.

Theorem 1 was proved by Schoen and Yau (1979), (an alternative
proof was given by Witten (1981); see also Parker et al. (1982). For
a proof suitable to our purpose as regards asymptotic decay of

1.1

y and regularity of vy (we shall assume Yy to be C ) we

refer to Bartnik, (1986).

We give some preliminaries about static stellar model in
§ 2. In § 3 we consider spherically symmetric models and list
some results which are needed in later sections. In § 4 and
§ 5 we give the main results and complete their proofs. The
strongest result obtained is the pfoposition 1.which however 1is
too technical. The weaker results involve much simpler conditions

on the equations of state and are given in § 5. In the conclusion



we comment on the possibility of generalizing the method to re-

move the conditions on g% .

2. Static stellar model

By a (nonsingular) static stellar model we shall mean a

geodesically complete spacetime (M,4g) such that

(i) M is a € manifold diffeomorphic to N x IR where,

for each £ €R , Nt = Nx {¢t} is an oriented spacelike

3-manifold.

(ii) The Lorentzian metric 4g can be written as

49 =-v2(dt ® dt) + g (2.1)

where V ‘'is a positive function (called the potential),
g 1is a tensor such that g restricted to N is a
complete Riemannian metric on N , and V and g are

independent of <t .
(iii) (M,4g) satisfies Einstein's equation
.4 1 4 4 4
&Q(QMJ—ESmwwdg)gi.-BﬂHp+Muﬂg+ngJ (2.2)

J J

where ui is a unit timelike vector field, and p and



p are bounded measurable functions. These functions
are, respectively, called the density and pressure. It

is clear that they are independent of <£.

(iv) 'p and p are related by an "equation of state" of the

form p = p(p) } with g% 2 0 .

(v) There exists a bounded open set ¢ < N such that
p=p=0 on N~Q and in ¢ p>0, p>0. @
and N ~ @ are called the fluid (or star) and the

vacuum respectively.

(vi) (M,4g) is asymptotically Euclidean in the following

sense ;-

There exists a compact set N1 c N such that N ~ N1 is diffeo-

morphic to RS ~ 31(0) where 31(0) is the closed unit ball

centred at the origin and with respect to the standard coordinate

system {x%} in R we have on N ~ N1

848 = ‘1+2"'/I"|)‘5a8+has (2.3)
V=1=-m/}x| +v (2.4)

-2 -3 -4
where haB=O(|x| ) Bhas=°(|x| ) aaha8=0(1x| )
v =o(|x|—2) , v = 0(|x|-3) and 33v = O(|x|_4) as |x| = =

The constant m is called the mass of the stellar model.



Remark 1. For the sake of simplicity, we shall make following

1 and 03

regularity assumptions. V and g are globally C
on Q¢ and N ~ § . (It is well known that V and g will then
be autometically analytic in N ~ § . See Miiller zum Hagen (1970)).
90 1is assumed to be smooth. Furthermore we shall assume that p

'l function of p on (0,) and

is a (locally) C
Ig (O(A)-+6)-1d6 < o for finite p . In particular the last con-
“dition allows the "polytropic" equations of state of the form
p = qu ' g <1 and A =.constant. It is wellknown (Kiinzle et
al. {1980), Masood-ul-Alam (1987)) that if p is a Lipschitz

function of p then p has a discontinuity on 09Q . See also

Remark 4 below.

Remark 2. (2,2) decomposes into
RA =y -
Lc (g)aB v ULGB+ ar (p p)gaB (2.5)

AV = 45V (p + 3p) {2.6)

where 7} denotes the covariant derivative with respect to g

and A denotes the Laplacian with respect to g .

Remark 3. (2.3) and (2.4) follow naturally from (2.5) and (2.6)
under mild asymptotic decay conditions (see Beig (1980), Bunting

et al, {1987) for details).



Remark 4. The contracted Bianchi identity {(in a suitable weak
sense) for g implies that p is a Lipschitz function on N

and

__ -1
Pig = v (D"'P)Vi‘a .

-

It follows that (see Kiinzle and Savage (1980)) p and p are
functions of UV and 99 is a level set of V . The above

equation becomes

%='V_1(D+P) . (2.7)

Since we are assuming that Ig (p(s) +4)ﬁ1dé < o for p < o ,
we can integrate (2.7) to get

1

Vip) =V, exp (= [H(p(r) + 07 dD) (2.77)

where |."/5 = V(p) at p =10 .

It is conjectured that the stellar model defined above is
spherically symmetric. This seems to be physically obvious. Also
. there are partidl results due to Avez, -Kiinzle..(1971)°,. ‘Miller zum
Hagen’ (1970)"" Kinzle etnal£=01980[,‘and Lindblomm(198§/1981).«v
ﬁowever.aﬂcigorous;ahalyt;pal proof” of thegconjecturé in full
generality is still lacking.

R o - - E
LN :

One gquantity which proves to be very.impértant (see Lindblom



(1980) is the tensor RaBﬁ defined by

_ . _p; l _
RaBG - RLC(Q)GB;G R&C(g)a6i84'4 (9a6R+B QGBRrﬁ) (2.9)
R is the scalar curvature of g . For a 3-dimensional Riemannian
metric, Ra86 = 0 1if and only if the metric is {locally) con-

formally flat. A straightforward but tedious calculation using

(2.5) and (2.6) yields (Lindblom),

14, -1 aBS _ .o -1, ia ) a
7 VTR RS = A vTTe v I% s gw(p+ p) - Bup, U
-2 0 v |% - 16122 (p + 3p) 2 (2.10)

1

+4mV(p+ 3p) W u_aw"“

r

where W = |VU|2 s.gaBV,GU.B and indices are raised with respect

to g

3. Spherically symmetric stellar model

In this section we list some results related to the spherically

symmetric stellar model. These are required for later reference.
Most of them are wellknown while the remaining are not difficult
to obtain. The metric (for details see page 608 in Misner et al.)

has the form

4'5 = - 'Uzd,tz + E)md)Lz + }LZd-;Z (3.1)



where V and 5&1 are functions of £ only and where

2

dI. d82-+6in26dw2 .

The pressure

(3.2)

P and density p = p(p) must satisfy the relation
(for n < &é , the wvalue of x at 23Q)
gnp = 23T Yy 2 gy (3.3)
BI .
~ __,-1d -2 . ~nh
8mp = -4 —%I—+ £ (1=-97) (3.4)
dp _  ~ ~ =1 dV
HE ==-(p+pP)V I (3.5)
Defining
~ ~ }L 2
m = m(r) = IO dmps“ds (3.6)
we can write the metric as
V2412 4 (1 - 2mn’1)_1da2 + n2d 72 nson,
49 = (3.7)
- -2 def e (-2 ) T P e aPd s s a
where

m(nb) is the mass of the stellar model. The desired

regularity of g‘is obtained in the harmonic coordinates relative
to V2% .. -

~It-follows.from 13T3Lhﬁ(334),;48,51'andjthe regularity



assumption in Remark 1 that near the "centre" (i.e. 1 = 0):

we have
B =5 -2/ +B ) (5 +3p 4%+ 0(n>) (3.8)
C [ C C [
Ty =3 - ~ e g (dBY 2 3
plr) = p, (2v/3)(pc+pc)(pc+3pc)\dz cn +0 (n7) (3.9)

where subscript ¢ 1is used to denote the value of any function

at the centre.

It is wellknown (Buchdahl (1959),Bondi (1964)) that for a non-
singular spherically symmetric stellar model with %% 2 0 we
have a lower bound for VA = V(nd) and §™ . We have (see

Buchdahl (1981) : Lecture 12 )

1 \
VA >3 . (3.10)
We shall denote the upper bound for En& by a constant a
It was shown by Bondi that (for p > 0) a = (17-—12»/5)-1 & 34, -
If p 2 kp with kR > 0, and dp 2 0 , this value can be reduced
further. (For example, when k = 3 we have a < 6 . For details

see figure 1 and the subsequent discussion in Bondi (1964)).



_10_

An important quantity is the function § = Q(V) which

makes 0%5 EBuclidean. Writing § = 0 2(dr?+1%'dz?) where

# = n(n) we find that (V) satisfies the following equation

m119=(ﬁ_¥1){4ﬁ£ (3.12)
dV Ipn dV :

Differentiating the above equation relative to ¥ and using

e dV?
Wi =3 (az) (3.13)

as well as equations (2.6),(3.3) and (3.4) we get the crucial

indentity ( which expresses the fact that Scaia&(92§)=0 )

2 2
20”1 48 -;9*2(52) = {enB-anV(3-+3B)Q'1 as } w;1 (3.14)
dv dV dV
In vacuum region we take
1 2 o~
Q(V) = 1 (1+7) v > vé (3.15)

so that Q@ —> 1 towards infinity. @ 1is C1'1

in the neigh-
bourhood of the surface 23Q . This is clear from (3.12) and (3.14)
since dr is continuous across 230 . Since we are assuming E

dV
to be smooth in the interior of the fluid, @ Widl also be ¢C

1,1
in the neighbourhood of the centre of the fluid. In fact calcu-
lations up to order &2 near the centre yields (one can use

(3.8) and (3.9) ).



_‘]1_

815 - 8V (5 + 3/ )]n o) . (3.16)

_ 2 2~ e
= (16m /15)[5pc 6(pc+pc)r9( )

%ﬂ%}

an
dv
The method we shall demonstrate in this paper, will work only

2. 2 :
140 -Z(QQ\ is nonnegative. This ex-

if the expression 20 ——5-9 )
dV dV

pression vanishes in the vacuum. Since P vanishes at the

boundary of the fluid, this quantity is nonnegative in @ near the

-~

boundary whenever S¢ = B(né) > 0 . This follows from (3.14) and

the fact that Vo~ 92 - oma 1[(mn—1+4ﬁpn ) (1 +/ )17 s

dV 8nn
strictly less than unity for 2 € (O,nA] . It follows from (3.16)
that for some equations of state this expression would not be

nonnegative near the centre. On the other hand we have the following

lemma.
Lemma 1. As usual we assume p 2 0 , E 2 0, dp z 0 , suppose
dp

that

552 2 6(3+ PP L2 (3.17)

dp
Then 87p - 81V (p+ 3p)Q 1da 20 .
dv
Proof: Let {4 = BNE-BNV(E-+3E)Q-1 é% .
d

Then differentiating § and using (3.14) we get



- 12 -
16V (p + 3p) é% = 52-[4NE-+16ﬂ gg (B-FE)4—64ﬂ2v2(5+~33)2w;1]6
d dp

. 64112[5'52 —6p(3+p L2
p

Hence for 4 < 0 , %% > 0 , But it follows from (3.16) that

§ tends~tdo~zero as® 4 — 0 . Hence the lemma follows. -

Now we shall describe some of the properties of the function

wO(V) . For the spherical stellar model the tensor RaBG vanishes
so that we have from (2.10)
iy du 2 g dug
wo 5> = 3 (——~)W-{BnV(p+-3p)-—V W}t —
dV dV O dV
(3.18)
~8n VL (3B - 160223+ 3p % = 0 .
o}
dV
dwo
The value of _6_ at the centre will be important. At V = VC
p .

It

we have Ric(ﬁ)ae (16ﬁ/3)3§a8 . Hence using (2.5) we get

dw, .
— (V)
dV ¢

(an/s)”v(2 (Ec+3b‘c) . (3.19)

For future reference we also need the formulae computed in the

following lemma.

Lemma 2.

di .
4 {’U"1 —-—°-8n('5+",5)} = 4@Bm 3 -4y A2 (3.20)
dV dv dV



Bn(p+3p)-iv —= = 4n(p + 3p) + 2(3ma” " - 4mp) (3.21)

dV

Remark 5. Note that since p 1is a nonincreasing function of

7 we have 3mn_3-4ﬂ3 20 .

Proof: We show that

....‘| dwo ~o ~ ~ —3
v E%T-_Bn(p+ p) =-4mr (3.22)

An easy way to do this is to decompose iV along the level sets

of V and in normal direction. We have

dw

-1 _o
W = 5 7 -+Ho/w; .

Now the mean curvature HO of the level set is given by

HO = 2&-1/§nn . Hence using (3.3) and (3.6) we get (3.22), from

which the lemma follows easily. |

4. The conformal metric QZ(V)g

Our aim in this section is to prove the proposition 1 below.
Let (M,4g). be a stellar model with equation of state p = p(p)
and surface potential (i.e.the value of V at BQ)Ué . Suppose
there exists a (nonsingular) spherically symmetric stellar model
(ﬂ,4§) with the same equation of state and surface potential

(i.e. v, = Vb) . For V 2 VC we define the functions &2 (V)
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and wo(V) as those obtained from 02(V) and wo(U) respectively

e

by replacing V by [

Remark 6. Also for V 2 Vc we have p(V) = (V) and
o(Vy = p(V) . This follows from (2.7') and the fact that corres-
ponding to p = 0 we have Vé = Vé .

Now let ¢ = @(V) . Then by virtue of (2.5) and (2.6) we find

that the scalar curvature R(ng) of the metric ng is given by

R(0%g) = 2w_2[8ﬂp-8ﬂl’(p+3p)w-1 g%’
(4.1)
2 2
-1 d%¢ =2 (dy 2
o L5 () o
{ dv dv
For V 2 Vc we take (V) = @(V) . Then using the definition of

Q(V) and wo(v) , Remark 6 and (3.14) we get

R(2%g) = 2072 {2077 o -2 (a0 _yy v (4.2)
g) = qv2 dv 0 ’ c :

W dis as in (2.10) . R(ng) vanishes in wvacuum.

The next step is to show that Vmin = ing V 1is not less
: N
than VC and wo(u) 2 W . In lemma 3 below we show this in case
the spherically symmetric model satisfies certain condition. We

deduce a Robinson-type identity to which we can apply the maximum

principle. One problem arises because a priori it is not known
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~

that V . 2 VC . Hence we extend _(V) beyond V, by taking

it to be the solution of the ODE

diw
0 —
7 = (81/3)V(p+3p) , Vs vc (4.3)
with wo(vc) =0 . wo(V) so extended is C1’1 (see equations

(3.19) and (3.20)). It is now defined all over N . We shall now

prove the following lemma.

Lemma 3 .. i Suppose
dwo 2, d -1 dw
161V (p + 3p) - 3 i 2 (b-V") IV {V HVQ-Bn(p+-p)} (4.4)
where
1 2 2
b = 3 (1 +2V/5) > Vé (4.5)

Then V

v

nin VC anq w,ozWw in Q.

Proof: For V £ V6 we have

W
_ 2 - a 2 - -~ _
[v 1 {(w-wo)(b-v ) 1}(1] +[-4(b—v ) ey {4Tr(p+3p) -2 v ,_0}1
fw-w) (b-v3~ 1%
(@) o

dw
. [ {31}'1 av—°-16ﬂ(p+3p)} Uib-vH
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d [~1 Y 2,-1
*EIU{V Hv--sn(p+p)}](w—wo)(b-v) (4.6)
oyl (1,301 aps 3 -1 _ 2
= (b- V%) [4vw RygsR  *+3 Vv w) | I]
with
0 for V2V
c

1= (4.7)

| (16m73) W_ (p+p) P for V. SV <“u‘c .

To obtain (4.6) we first use (3.18), (2.6) and the definition

"of 1 above, to deduce that,

d?u_ du_ _q du_ y
w, 2 + oo AV =V H-U—wo+8n(p+p)w0—8nlfa%wo
dw 2 dw
3 2 2
-3 (WQ) — 161202 (0 + 3p) 2 + 4nV(p + 3p) Ew—° = 1

Straightforward calculation using (2.10) now yields (4.6). For
v > UA we use the following form of the Robinson's (1977)

identity
W (-3 w-w)y 1% = iR RS 3w 8(1- v8) 2wy |2
o a aBd

[avw (1 - v%) 3777 (4.8)

Now (w-wo)(1- V2)-3 goes to zero as V tends to 1. Hence



by applying maximum principle to (4.8) in the domain N ~ @
we get that either w-wo s 0 at 9¢ or w-—wo attains a

positive maximum at a point T, € 3Q and at T

1 1

2, -1 o 2. -2 o
{1 Vé) (W'-Woﬂan 4—6V6(1- Ué) (w-wo)gqn < 0 (4.9)

where n® is the normal to 30 at T1 (pointing inward to

N ~ Q) . We now show that either W = wo in 0 or ineguality

-~

(4.9) is contradicted. We shall apply maximum principle to (4.6)

in @ . Note that by virtue of (4.4) the coefficient of

1

(w-wo)(b-uz)', in (4.6) is nonpositive. Furthermore, by

virtue of the definition of wo (see the statement following

(4.3)) and Theorem 7.8 in Gilberg et. al. (1984) w-wo be-

longs to the Sobolev space wiai(Q) . Finally we note that for

V 2z Uc we can stay away from the critical points of V be-

cause at these point we have W-—WO € 0 and hence maximum of

-1

(w-wo)(b- Uz) is not reached near these critical points

unless w-—wo £0 in Q . (For V s Vc the term involving

-1

W in (4.6) vanishes by virtue of (4.3)). Now applying the

weak maximum principle of A.D. Aleksandrov (Theorem 9.1 in

Gilberg et al.) we find that either w-wo £ 0 in ¢ or

-1

positive maximum of (Wf-wo)(b— V2) is reached at a point

T2 € 90 . If the second case occur we can take T2 = T1 since

W has the maximum value over 93¢ at the point T1 . But in a

2

neighbourhood of T1 in ¢ w-—wo is C and we can use the

strong maximum principle (Theorem 3.5 in Gilberg et al.) and
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the boundary point lemma (Lemma 3.4 in Gilberg et al.) to

deduce that at T1 ’

2, -1 o 2,-2 o
(b UA) (W wokan + 2{b - Vé) (w-wo)végan 2 0 (4.10)
Since b- V2 =1 (1- UZ) and (W-W® ) n® is continuous across
b 3 4 o' a

30 , (4.10) contradicts (4.9). Hence we have w-wo $0 in Q .

In particular Vc S Voin - O

We are now in a position to prove the following proposition.

Proposition 1: Suppose 4g and 45 ‘are such that (4.4)
holds (in particular this implies V . 2 Vc) . If in addition
Q(V) satisfies

2 2
20" 5‘—‘22—9“2(43) >0, VzUV (4.11)
dV dV c

then (N,g) and V are spherically symmetric. In fact (M,4g)

is isometric to (3.45)

Proof: From (4.1) and Lemma 3 we get that the scalar curvature
of the metric ng (which is now defined over all N since

Umin 2 VC) is nonnegative. But ng is asymptotically Euclidean

with mass zero. Thus by the corcllary of positive-mass theorem

(stated above as theorem 1) g 1is conformally Euclidean, 92

being the conformal factor. Hence the result follows by standard



~argument (Lindblom (1980) or by straight forward integration

of {(2.5) and (2.6). (]

By virtue of the existence of spherically symmetric stellar
model, most probably the two .conditions appearing in Proposition
_j_(viz. (4.4) and (4.11)) are conditions on the equation of state
and the surface potential l/“S . Equivalent conditions involving
only the equation of state and Vé may be difficult to obtain.

However, in the next section, we give some sufficient conditions

involving only these two objects.

5. Main results

We now ask for which equations of state, spherically symmetric
stellar models satisfy inequality (4.4). Although this inequality
is always satisfied near the surface 32 (see later), in general
towards the interior it my be violated. It follows from lemma 2
that for a physically reasonable stellar model the expression on
the left hand side of (4;4) is strictly positive. But, unfortunately,

dw
the expression %V {U-1 HVQ-Bn(p+-p)} is nonnegative. However this

quantity vanishes for a uniform density star, and nrovided %%
is "small enough" we can expect (4.4) to hold everywhere. We shall
give some sufficient conditions (both dependent and independent of
the value of Vd ) such that the equations of state satisfy in-

equaltity (4.4).
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Using lemma 2 we find that for V 2 vc , (4.4) is equivalent

to

27V(p + 3p) 2 (b- v2 - nv gg) (3;1_3— 4ﬂp)n_1 dxr (5.1)

v

1 dr
dv

We now estimate (3mn_3-4ﬂp)n_

~

Lemma 4. As usual let p 20, p =20, 40 5 o . fThen
. dE .

(3ma"3 - 4y A7) % < (8w/5) (gup} {% (o+p) (p+ 3'5)'§M}Tf_1 G+ 15 (5.2
PN} Nap

Proof: Using (3.3) - (3.6) we get

3 n dp

~

- 4np = 16112[313[[6
dp

3ma” (P+P)(D+ 3'5) g'MTdT]Azdé

+ 4n&_3jg[f: 5% (E-+E)(3;(T)T_3“4HS)E&&TdT]62d6.
p

This implies

(0,1)

3ma”3 -4 0% s (16/15) w242 sup { d—fz (p+p) (7 + 3]5')5“}
(0,2) % dp
+ (41/15) 4% sup {d—ﬁ ("5+‘5)’g“m} sup (3m(s)s > - 45 (8))
(0,4) \dp (0, 1)
Thus for
2 dp o~ e Y]]
A% < | (87/15)  sup {—~ (p+p)gMH , (5.3)

dp
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- 471p £ (32/15)-n2 sup {5§(3+-5)(34-35)§n&} n? (5.4)

(0,1) ‘dp

3ma 3

Now using (3.3) and ma3 3 (4/3)n3n‘3 we find that (5.2) holds
for 2 satisfying (5.3). On the other hand for 4 not satisfying

(5.3) we have

V4% < (8/15) sup {QE (E*—ﬁ)ﬁ&n}v'1(;n‘3-+4n5)'15““ .
dV (0,4) \dp

Hence the result follows because of the fact that p and p

decrease as 4 increases. O

From lemma 4 and (5.1) we find that if for V 2 7V ,

c
2 2 . 2 d ~ ~RR
Vo (p + 3p)™ 27 (4/5) (b~ V") éup{ (D+p)(o+3p)} sup {g,, 1g (5.5)
( V)H% (0,n)

then (4.4) is satisfied for V 2 Vc . For V < Vc it is easy to
show that (4.4) is equivalent to

2 2, d

v 3 2/3)(b-V . 5.6

(p+3p) 2 (2/3)( )3%(p+p) (5.6)

Now En& 2 1 and by virtue of (3.11) we have an absolute upper

bound a for Hence a sufficient condition on the equation

pn -
of state such that (4.4) is satisfied is given by

V2(0+ 3p)2 2 (4a/5)(b-U2) sup {%E (Q'*P)(p-+3p)} (5.7)
(o,v) %P
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Clearly (5.7) 'is a condition on the equation of state and Vé
only; by virtue of (2.7') p and p are uniquely determined

as functions of V , once the equation of state and Vé are

given. Thus we get the following theorem.

Theorem 2. Let (M,4g) be a (nonsingular) static stellar model
(asymptotically Euclidean in the sense of assumption (vi)) with
bounded fluid region § such that 293¢ is a smooth level set

vV = VA of the "potential" V . Suppose in addition to satis-
fying the usual conditions (viz, p 20, p 2 0 , %% 2 0 and
fP (p(s) +5)7'ds < = for finite p) p=p(p) satisfies the

following two conditions

502 2 6plp+p) 32 | (5.8)
and
x*(p+3p) 2 2 (44/5)(b—x2)(8u§){§% (o+p)(o+3p)} (5.9)
where «x(p) = V,exp (- fg (p(T) +T)-1d;) .

If there exists a spherically symmetric (nonsingular) static
stellar model (ﬂ,qa) with the same equation of state p = p{p)
and surface potential Ué , then (M,4g) is also spherically

symmetric. In fact (M,4g) and (ﬂ,4§) are isometric.
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Proof: Because of (5.10}), (5.7) and hence (4.4) is satisfied.
By virtue of lemma 1, 4.11 is also satisfied. Hence we can use

proposition 1. a

We can get a condition independent of VA as follows.

Equation (2.7) is invariant under the transformation

V —> constant x ;¥ and also we have Ua > % . Hence we can prove

the following lemma.
Lemma 5. Let yl(p) = % exp (-jg (p(é)-Fé)-1dé) . Then

2o+ 3007 2 (4/5) ((11/27) = ¢) sup {98 (oep) o+ 3p ) (5.10)
(0,4) 7P

implies (5.9).

Proof: We have x = 1y where 1 = 3Ué > 1 . Multiplying (5.11)

by T2 and noting that

2

11/27 = (1+2v§f ) > T—2(1+2Vf) = 1%

W=

1
3
we get (5.9). 0

Hence theorem 2 implies the following corollary.

Corollary 1. Conclusion of theorem 2 remains valid if (5.9) is

replaced by (5.11).
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Remark 7. Inequality (4.4) allows only small values of %%
towards the interior. For example, even in the case of a spherical

star it gives that at the centre

dp 2 2.1 ,~ ~ ~ ~ -1
(%)c s (5/2V2 b=V E, -3, B, 4B (5.12)

Hence (5.11}) allows still smaller values of (g%)c . Of éourse
the actual numerical value of (g%)c in 5.12 would depend on the

. 2 2
ratio Vc /(b-Vc) .

Remark 8. Suppose Py * 0 where Py p(p) at p = 0 . Then it
is possible toestimate V from below in terms of l/6 , p and

P Hence we can replace the second condition in theorem 2 with

4
a simpler condition. Furthermore by virtue of (3.10) even the
dependence on VA can be removed. Although this condition

restricts %% to ~-" . smaller values, it is much simpler and

gives a better feeling about the nontriviality of theorem 2 at

first sight.

For example, since gV {V(p+3p)} & 0 we have

Vip + 3p) 2 pré . Thus we have the following corollary to theorem-2:

Corollary 2. The conclusion of theorem 2 remains valid with

condition (5.9) replaced by the following condition

Spi 2 45} g% (p+ p)(p+ 3p) (5.13)
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For nontrivial condition we need Py # 0 in theorem 2 and
its corollaries 1 and 2. However the inequality (4.4) is auto-
matically satisfied near the surface 093¢ (see below) and we
can allow p to decrease rapidly to zero in this narrow range.
Thus g% can be allowed to become large near 3¢ . The inequality
in (5.1) 1s automatically satisfied if

b-sz-w%%go (5.14)

This is the case near the surface of the fluid because at V = Ué

we have

dV _
=

AV %(1-u§) = {b-vf) (5.15)

o W

Thus as V decreases from V‘5 r the “1T€ft hand side of inequality
(5.14) remains negative until (say) V = V1(n1) € (VC,UA) where
it becomes zero. The following lemma gives an estimate of V1

from above in terms of V6 .

Lemma 6. There exists a solution 7V = V2 of

5/2

2.9 2 2 2 3 2 2 2 B
Vi+ts (b=V5) £og {(6=T )/ (b-v)} -5 T H(b-v)/(b-V)} =0 (5.16)
in the range [V1,UA) . In particular on [VZ’VA] (5.14), and

hence (4.4) holds.
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~

Proof. By virtue of (3.22) and (3.20) m 3 is nonincreasing

in 41 . Hence using (3.3), (3.4) and (3.6) we get

on g% 2 V2§, n2n T

Now on [71,V6] we have -d(ﬂog(b-vz)) 2 22" 'dn . This implies

that on [V1,VA]
nozoa (-3 /(-T2

Hence on [V1,U6] we have
Un

3 2 2. -1 2,2
2579 n(b'?’ (b-v3)

B

n
Finally using

2 2,71/2:,2 9
(V) 2 {(b—vb)/(b—Tl ) }* v, +3

~

1
g/L)L

(b~ v2) Log {(b-V?) /(b= V51117

(5.17)

we get that on [V1,Vé] ’

5/2

e 80 202692 (- v3) /b -T0)) (02
+2 (b-2) Log ((6-V%)/(b-V5) 117

where at V = VA equality holds. Thus the expression
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5/2
2.9 2 2 2 -
[V +5 (b=Vy) Log {(b=-T)/(b-V()]]

1-3 Vb -v3) /(0 -73)) 1

is negative at V, and nonnegative at Vl . Hence this ex-
pression i's nonpositive on [VZ'UA] c [71,U6] where V2 is as in
the statement of the lemma. Since V., < V., (5.14) holds on

1 2
[Vz,vé] ] (u]

Remark 9. Note that Vz is the unique solution of (5.16) in the

range (Vmin'ué)

Thus we can improve theorem 2 to obtain the following result.
Theorem 3. The conclusion of theorem 2 remains valid if the con-
dition (5.9) holds only for x € (0,?2) where Vz = Vz(ué) is

as in lemma 6.

6. Conclusion

Given a stellar model we try to find a conformal transfor-
mation such that the resulting metric of the £ = constant hyper-
surface is asymptotically Euclidean with mass zero and has non-
negative scalar curvature. If there exists a spherical. star with77
thé-*Samemeguatiéﬁ$df%Staté;and'thefvalueiof' Ué , then we can
find such a conformal transformation provided the equation of
state is restricted to satisfy two conditions implying small

dp

EE . In this case the scalar curvature of the conformal metric on
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the £ = constant hypersurface is of the form P(U)(wo-w)
where P(V) 2 0 and wo e W . We use the first condition (for
example, (4.11) or (5.8))to have P(V) 2 0 . If we compare
(5.8) with the Harrison-Wheeler equation of state we find that
(5.8) is satisfied for central density up to

-17

p = 2.39x 10 (=3.22x 1011 gm/cm3) at which stage the "com-

pressibility index" (I' = (p+ 10)10—1 %g ) drops discontinuously
below 1.2 due to "neutron drip", (see page 624 in Misner et al.
See also chapter 10 in Harrison et al. (1965)). As density in-
creases, [' increases rapidly above 1.2 again. But without
further analysis it is not clear how badly P(V) becomes ne-
gative in case it does. The second condition (viz, 4.4 or (5.9))
is used to show that wo 2 W . Such a condition is artificial as
we expect wd 2 W to hold in any case. As expected this condition
is very badly violated by the Harrison-Wheeler equation of state.
For example, rough calculation shows that even (5.12) can be vio-
lated by a factor of 50 ~ 500 at density

=23 (=1x 108 gm/cm3 . VC/Ué can be easily calcu-

p = 7.42 x 10
lated from the column for "n" in Table 13 on page 109 in
Harrison et al. Then Vé can be estimated from 5.16}. In fact,

the function (b - '/2)_1

which has been used to multiply w-wo

in the Robinson-type identity viz. (4.6), is an artificial choice.
This choice is not bad towards 3¢ but in the interior one would
not expect such a simple function to work nicely. Perhaps following

the methods due to Lindblom (1981) one can get better identities

implying wo 2 W . In general, however, we like to show that
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R(ng) = P(V) (wo-w) is nonpositive. One can try to find a
second order quasilinear elliptic PDE for R(ng) with non-

negative right hand side !

It may be possible to remove the assumption of the existence
of spherically symmetric stellar model having the same surface
potential U6 by comparing the given nonsingular stellar model
with the one obtained by integrating the "spherically symmetric

field equations” from 39 inward with the same V and mass

%)
m . ( Q need not to be connected and wo need not to be
globally a single-valued function of V ). A result of the form

W g wo < «» would possibly then allow one to find a suitable

conformal function Q, globally defined on N .
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