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Introduction

Conformal field theory has not only useful application to string the-
ory and two-dimensional critical phenomena but also has beautiful and
rich mathematical structure, and it has interested many mathematicians.
Conformal field theory is characterized by infinite-dimensional symmetry
such as Virasoro algebra. Especially, its correlation functions are char-
acterized by differential equations arising from representation of infinite-
dimensional Lie algebras. { [BPZ], [KZ], [EO], [MMS].) Physically, corre-
lation functions should have the properties such as locality, holomorphic
factorization and monodromy invariance (duality). To build conformal
field theory having such properties, usual approach is to construct holo-
morphic (chiral) conformal blocks which are the half of the theory and to
study its monodromy. {[TK1}, [TK1], [FS], [Va], [Ve], [MS1], [MS2].)

In the present paper, mathematically rigorous formulation of holo-
morphic (chiral) conformal field theory with gauge symmetry (affine Lie
algebra §) (Wess-Zumino-Witten model) over curves of arbitrary genus is
given by means of operator formalism. A curve in our theory may have
ordinary singularities corresponding to a point of the boundary of the
moduli space of curves. The fundamental object in our theory is the space
of vacua. This is a linear functional on the direct product of representa-
tion spaces of § giving vacuum expectation value (correlation function).



Our formulation of conformal field theory is a natural generalization of
the one developed in [TK1].

Let g be a simple Lie algebra over the complex numbers C and § the
corresponding affine Lie algebra. We fix a positive integer £ and consider
integrable highest weight representation of § with level £. Such represen-
tations are parameterized by a finite set of highest weights P,. Let %) =

(C; @1,Q2,...,QnN; t£°°),t(2°°), - ,tgf)) be an N-pointed stable curve
with formal neighbourhoods. (For details see Definition 2.1.1 below.) To
each pointQ; we associate a representation of g corresponding to A; € P;.
Then to X(*) and X = (M,...,AN) we associate the space of vacua
v}(x(w)) and its dual space vx(x(w)). The space of vacua v}(xtw)) is
defined by the gauge condition. (See Definition 2.2.2 below). It will be
shown that v;.(x(w)) does only depend on the first order infinitesimal
structure X of X(). (See Remark 4.1.7 below.)

Let ﬁ;?\,r) (resp. “JTE(gf}v) be the moduli space of N-pointed stable
curves with formal neighbourhoods (resp. first order infinitesimal struc-
tures) and 7{®®) : ¢l ?ﬁf_(q?;v) (resp. 7« . c) - ﬁg}v) be the
universal family of N-pointed stable curves on it. Then, the collection of
the spaces of vacua V;-(x(“’))’s (resp. the dual spaces of vacua vx(x(w)))
forms a sheaf V;-(w) (resp. V:i-oo)) on ‘ffg??v) and it is the pull back of a
sheaf V}(l) (resp. V§l)) on g—ﬁgz)v

Precisely speaking, there exist no universal families of N-pointed sta-

ble curves over the moduli spaces ﬁf;?;v) and ?ﬁi;f}v Therefore, we have
to consider local universal families. Namely, we define the sheaves of

vacua V}(S(m)) and V}(S(l)) (resp. VX(S("")) and VX(S(I))) attached to
local universal families F(®°) = (7(®) : cl) — B(=), s(loo),sgw),... ,
sg\?o); Z£°°),Z§°°),...',z§3°’) and 31 = () ;. c() 5 BO); sgl),sgl),... ,
35\1,); f(ll), Egl), .. ,ES&)), respectively. The sheaves V}(S("o)) and V;\-(S(‘”))
(resp. V}(ﬁ(l)) and V;\'(S(l))) are Og(o-modules (resp. Op)-modules).

If a local universal family §'(V) is a subfamily of F the restriction of the
sheaves V1 F1Y and V+(FV) to the subfamily are the sheaves vi 3
By A X

and V:\'(S'(l)), respectively.
In the following we shall analyze the structure of the sheaves V;.(S(l))

and V:\-(ﬁ(l)). Though our arguments below often use specific coordinates,
they have intrinsic meaning and we could argue as if there were universal
family over the moduli space of N-pointed stable curves with infinitesimal



structures. Fancy mathematical tool to treat the above situation is the
theory of stacks ([DM]). But in the present paper we choose primitive
approach described above. Using the idea of Beilinson-Manin-Shechtman
[BMS], we construct an Oguy-module of Lie algebra Dy, (- log DW:¢,)
(the sheaf of twisted first order differential operators) acting on Vj-\.( 3

and VX(S(I)), which is the geometric counter part of the Virasoro algebra
with central charge ¢, defined from the representations as the Sugawara
form. (For details see §5.)

Main results of the present paper are the following.

1) V;.({s"(l)) and V;\-(&(l)) are coherent Ogay-modules. (Theorem
Theorem 4.2.4 and Corollary 4.2.5.) Hence, the space of vacua V;.(f(“’))
and V:\-(%(W)) are of finite-dimensional. Moreover, V:{-(E(l)) and Vx(,'f(l))
are locally free sheaf of finite rank, that is, a vector bundle over B,

(Theorem 6.2.1and Corollary 6.2.2.)
2)  The sheaf Dy, (—log DW; ¢} of twisted first order differential

operators acts on V{-(S(l)) and V:\-(S(l)). (Theorem 5.3.3.) This defines
projective flat connections on V;-(S(l)) and vx(s(ll) with regular singu-
larities at the locus DV < B corresponding to singular curves. The
connections are nothing but the Word-Takahashi identity. Moreover, the
solution sheaf of 'Dé(,)(— log D); ¢,) gives what physicist call current con-
formal blocks.

3) V}(S(I)) has a factorization property. {Theorem 6.2.5.) Hence
the dimension of the space of vacua V:\-(x(“’)) does only depend on the
genus of the curve C' and X = (A1,...,An) and can be calculated by a
maximally degenerate curve by using the fusion rule. Moreover, the proof
in §6 shows that we can construct a canonical basis of flat sections of
V;-({S’(l)) from the data on the boundary.

Our result in this paper may be regarded as an infinite-dimensional
version of the Beilinson-Bernstein theory [BB|, [BK] for representations
of finite dimensional simple Lie groups. Here three notions, Virasoro
algebra, moduli space, and the braid group and the mapping class group
correspond to simple Lie group G , the Flag manifold G/P and the Weyl
group of the original theory, respectively.

Let us explain briefly the content of the present paper. In §1 we shall
give basic results on integrable highest weight representations of an affine
Lie algebra §. The energy-momentum tensor will be defined as the Segal-
Sugawara form. Also the automorphism group D = AutC{(£)) of the field
of formal Laurent series C((£)) will be introduced and its properties will



be studied.

In §2 we shall first define the notion of an N-pointed stable curve with
n-th infinitesimal neighbourhoods ¥(® or with formal neighbourhoods
X(®) and define the space of vacua V;-(ﬁm)) and its dual space of vacua

V;\-(E(“’)) attached to X{°), The important properties of the space of
vacua such as a propagation of vacua will be proved. Also we shall define
correlation functions of current will be defined and studied their proper-
ties. The propagation of vacua and the properties of correlation functions
will play an essential role to construct our conformal filed theory.

To study the properties of the space of vacua we need to vary the
moduli of N-pointed curves with infinitesimal structures. In §3 we shall
study local universal family of such curves. The content of this section is
well-known to the specialists. Since the results in this section are scattered
into many references, we shall describe some details of deformation theory
of N-pointed curves with infinitesimal structures. We shall use freely the
standard technique of the cohomology theory of sheaves which can be
found, for example, in [Ha] or [BS].

In §4 we shall define the sheaf of vacua associated with a local universal
family of N-pointed stable curves with formal neighbourhoods (1r(°°) :
Cl) —, pleo). 3(1°°), 3(200), . ,sf{'ro); i§°°),'t'§°°’, e ,El(\?o)). We shall show
that the sheaf is coherent Opguy-module. Here, Gabber’s theorem [Ga]
plays an essential role.

In §5 we shall define the sheaf of twisted first order differential opera-
tors D) (— log DM ¢,) acting on V:\-(ﬁ(l)) from left and on v;.(s(l)) from

right. The sheaf defines an integral connection on VX(3(1)) and V}(S(l))

with regular singularities on the boundary corresponding singular curves.
Finally in §6 we shall show that the sheaves Vx(ff(l)) and V}(E(l)) are

locally free and have the factorization property. Hence the dimension of

the space of vacua can be calculated by a maximally degenerate curve by

using the fusion rule. Moreover, the proof shows that we can construct a

canonical basis of flat sections of V;.(S(l)) from the data on the boundary.
The main results of the present paper was announced in [TY).

Notations

¢ : simple Lie algebra over the complex numbers C.

-A : set of all non-zero roots of g.

Ay (A~ ) : set of all positive (resp. negative) roots of g.

# : the maximal root of g.

ut := —w(u) where w is the longest element of Weyl group of g.
( , ): Cartan-Killing form of g normalized as (6,6) = 2.



Vi ( VI ) irreducible left (resp. right) g-module with highest (resp. lowest)
weight A.

P, : set of all dominant integral weights.

g : affine Lie algebra attached to g. (Definition 1.1.1)

£ : level of a representation of §.

Pii={)ePr|0<(6,)) <t}

(A A) +2(A p) 1 ,
Ay = h = = d g* is the dual Coxet
A 20 0 where p 2ae§+aan g* is the dual Coxeter
number of g.
_t-dimg
C2(9"+8)

Ha ( Hf\ ) : integrable highest weight left (resp. right) g-module with
highest (resp. lowest) weight A.

FJHy ( F*H} ) : filtration of My (resp. H}). (See 1.3).

Hs:=Hy B¢ - B¢ Hay where X= (A,...,AN) € (P)V.

Hh=H] ®c - ®cH],

C((£)) : field of all formal Laurent series. That is, the quotient filed of
the formal power series ring C[[¢]].

X(n):=X@®¢", where X € g.

X(2) = Enez X(n)z™1

T(z) : energy-momentum tensor. (Definition 1.2.1)
X[f] := Resz=0(X(2)f(2)dz) for f(£) € C((£))-

Tl i= Resumo(T(2)8(2)dz) for L= £(z) 2= € O((2)) o=
D = AutC((¢))

DF = (he D |AE) =€ +apf? 4}

(d) = cuens%

d
() := C[[E]]E”“gg
Gh] := exp(—=Tl]) for h € D! where h = exp(}).
) =(C; Q1,Q2,...,QN; tg"),t(zu), .. ,tf{,')) : N-pointed stable curve
with n-th infinitesimal neighborhoods. (Definition 2.1.3)
x() = (C; Q1,Q2,...,Qn; tgw),tgm),... ,tf.so)) : N-pointed stable
curve with formal neighbourhoods.
§v == @O, 9® C((¢)) ® Cc (Definition 2.2.1)
8(X)) == g ® H(C, 00 (* £, @5)
V;.(I(m)) ( V3(X)) ) : space of vacua (resp. dual space of vacua)
associated with X(®), (Definition 2.2.2)



T:M (T; M) : tangent (resp. cotangent) space at a point = of a complex
manifold M.

Q% : sheaf of Kéhler differentials of a curve C.

wyx : dualizing sheaf of a complex space X.

Q}M/N : sheaf of relative 1-form for a surjective holomorphic mapping
7 : M — N of complex manifolds.

Opm/n = Homo, (Qy/n,Oum) : sheaf of relative holomorphic vector
fields.

wpmyn : relative dualizing sheaf.

©u(—log D) : sheaf of vector fields on a complex manifold M tangent to
an effective divisor D of M.

™ = (71'(") ccm) o g, sg"),sg“),... ,3?;) ; fgn),fgn),. .. ,E%‘)) : lo-
cal universal family of N-pointed stable curves with n-th infinitesimal
neighbourhoods. (Definition 3.1.1 and Theorem 3.1.5)

Fo) = (7™ . ) - B}, 35"),35"),... ,353); Zﬁ"’,ig"),. . ,‘t'g:,')) : local
universal family of N-pointed stable curves with formal neighbourhoods.
2™ . critical locus of (). ((3.1-8) and Lemma 3.1.6)

D™ : discriminant locus of ™. ((3.1-9) and Lemma 3.1.6)

?‘Z(;o) = Op(e) ®c Hz

—

1) .= Home, (5, Ogiw)

V:\-(S(“)) : dual sheaf of vacua attached to a family F(*). (Definition
41.2)

V;{.(S‘(m)) : sheaf of vacua attached to a family F(®). (Definition 4.1.2)
V;(3W) : dual sheaf of vacua attached to a family F). (Lemma 4.1.6)
V}(S(l)) : dual sheaf of vacua attached to a family FV). (Lemma 4.1.6)

DLy (—log DW; ¢,) : sheaf of twisted differential operators.
{w; z} : Schwarzian derivative.

§1. Integrable Highest Weight Representation of Affine Lie Al-
gebra

1.1 Affine Lie algebra.

In this subsection we recall basic facts on integrable highest weight
representations of affine Lie algebras. For the details of integrable highest
weight representations of affine Lie algebras we refer the reader to Kac'’s
book [Ka]. |

Let g be a simple Lie algebra over the complex numbers C and b its
Cartan subalgebra. By A we denote the root system of (g, h). We have



the root space decomposition

g=h® ZGa-

a€A

Fix a lexicographic ordering of hy once for all. This gives the decompo-
sitton A = A4 U A_ of the root system into the positive roots and the
negative roots. Let § be the maximal root. We normalize the Cartan-
Killing form

( ’ ) rgxg—C

with the property

(1.1-1) (8, 0)=2.

Note that the Cartan-Killing form has the following property.
(1.1-2) (X, Y], 2)+ (Y, [X, Z])=0.

Let Py be the set of dominant integral weights of the Lie algebra g.
There is a one-to-one correspondence between the set of finite dimensional
irreducible representations of g and the set P, of the dominant integral
weights of g.

By C[[£]] and C((¢)) we mean the ring of formal power series in ¢ and
the field of formal Laurent power series in £, respectively. Namely

Cllel = {3 a” |a, € C,

C(E) ={ 3 b€ [by € C, m e Z).

v=m

Definition 1.1.1. The affine Lie algebra § over C((¢)) associated with
g is defined by

(1.1-3) 8=90C((¢))®Cc

where c is an element of the center of § and the Lie algebra structure is
given by
(1.1-4)
[X® (€)Y ®g(&)] =
[X.Y]® f()g(8) + e (X,Y) Res{g(£)df (£)),

for

X, Y € g, f(£), 9(§) € C((¢)).



Note that usually the affine Lie algebra is defined over C[¢,£71] but
for our theory we need to define it over C((£)). Put

(1.1-5) 8+ =0 C[)l¢, 3-=8®C[¢1¢
We regard §+and §- as Lie subalgebras of §. We have a decomposition
(1.1-6) =0+090CcohB-.

Fix a positive integer £ (called the level) and put
={XePy|0Z(0,)) <}

Proposition 1.1.2. For each A € Py there exists the unique left ﬁ-mbdule
H  (called the integrable highest weight §-module) satisfying the following
properties.

(1) Vx = {|v) € Hy| 8+|v) = 0} is the irreducible left g-module
with highest weight A,

(2) The central element ¢ acts on Hy as £ -id.

(3) ™M, is generated by V) over §- with only one relation

(1.1-7) (Xp® &) 0NHy) = 0

where Xy € g is the element corresponding to the maximal
root @ and |A) € Vj is the highest weight vector.

Similarly we have the integrable highest weight right §-module ’H}
which will be discussed in 1.3 below.

1.2 Segal-Sugawara form.

In the following we use the following notation freely.

X(n)=X®¢&", Xeg

=Y X(n)e ™!
neZ
where 2 is a variable. Then the normal odering § 3 is defined by
X(n)Y(m), n < m,
SX(n)Y(m)g =< H{X(n)Y(m)+Y(m)X(n)) n=m,
Y(m)X(n) n > m.
Definition 1.2,1., The energy-momentum tensor T'(2) is defined by
1 50 a0
(1.2-1) T(z) = ) E JHz2)J%(2) S



where {J,J%,...} is an orthonormal basis of g with respect to the
Cartan-Killing form ( , ) and g* is the dual Coxeter number of g.

Put

(1.2-2) L,= > z o J*m)J%(n—m)g.
' g + e)mez a=1
Then we have the expansion
=Y Lpz ™2
nez

The operator L, is called the Virasoro operator which acts on .

Lemma 1.2.2. The set {L,} forms a Virasoro algebra and we have

Cy
[Lny Lim] = (n = m)Lpym + ﬁ(ns — n)bntm,0

[Ln, X(m)]=-mX(n+m), forXe€g
where
_ tdimg
=1t
is the central charge of the Virasoro algebra.

For X € g, f = f(2) € C((2)) and L = )= € C((2)) - we use the
following notation. ¢ “
X[f] = Res(X(2)f(2)d2)
T[] = ljfg(T(z)f(z)dz).
Lemma 1.2.3. X|[f] and T'[l] act on H) and we have
- X[fl=X® f(£),
(1.2-3) (T, X[f]) = = X[ 1)),
([Tlh), Tlkl] = =Tl L]+ 15 ReSU’ Bdg).

1.3 Filtrations and 'HA.

Let us introduce filtrations {F, } on C((z)), 8 and H,. For any integer
p put

(1.3-1) F,C((8)) = €77Cl¢]],
_ [ 8®F,C((6)) p<0
(132) o= { g® F,C((¢)) +Cc p>0.



To define a filtration {F,} on H), we first define the subspace H,(d) of
M) for a non-negative integer d by

(1.3-3) Ha(d) = {|v) € Ha| Lol|v) =(d+ Ay)lv)}
where
_ (WA +2(00) _1
Ay = A"+ 6 p= §a§+a.

For a negative integer —d we define

Ha(=d) = {0}.
Now we define the filtration {F,H,} by
P
(1.3-4) FyHy =) Ha(d)
d=0

Note that all the filtrations defined above are the decreasing ones.
Put

(1.3-5) H}(d) = Homg(Ha(d), C).

Then the dual space 'H:'\ of H, is defined to be

(1.3-6) H} = Homg (H;,C) = H 7'(
d=0

By definition H:‘\ is a right §-module. A increasing filtration {F p'HI\} is
defined by

(1.3-7) FPH = T #i(a)

d>p
There is a canonical complete bilinear pairing
(1.3-8) (] ):H xHy—C,
which satisfies the following equality for each a € §.
(u|av) = (ualv), for all (u| € Hl and |v) € Hy.

Note that the filtrations {F,} and {FP} define the topology on H, and

’Hl, respectively. With respect to this topology 'Hi is complete and is the
integrable highest weight right §-module with the lowest weight A. Put

Vi={@eni| (a-=0}

10



It is easy to show that VI = 'H;(O) and V,f is the irreducible right g-
module with lowest weight A\. The integrable highest weight right g§-
module with lowest weight A is generated by V| over §4 with only one
relation

N(X_g @M =0,

Lemma 1.3.2.

X(m)Ha(d) C Ha(d—m)
Lm'H,\(d) C 'H,\(d - m)
H.(d) X (m) C Hi(d+ m)
Hi(d)Lim € HL(d+m).

1.4 D = AutC((¢)).

Let D be the automorphisms group AutC((£)) of the field C({£)). The
group is infinite-dimensional and is regarded as the automorphism group
AutC[[¢]] of the ring C[[¢]].

Lemma 1.4.1. There is an isomorphism

n=0

— h(£)

where for hy, hy € D the composition hyohg corresponds to a power series

ha(ha(£)).

In the following we often identify the group D with the set of power
series given in the right hand side of (1.4.1). For each positive integer p
put

(L4-1) D > { Yanf™ | a#0}
h

(1.4-2) DP = {h(€) = € +a,P* +... ).
Then this defines a decreasing filtration

D=D">D'>D%>....

Put
d
(1.4-3) d= ?[[f]lfa d
- - r+1 %
(1.4-4) & = ClIENe™ &

11



for each positive integer p. We have a decreasing filtration of ideals
d=d">d'>d’>

For any element ! € d and f(¢) € C[[¢]] define exp(L){ f(£)) by

o0

(145) xp(O(f(€)) = 3 ().

k=0
This is well defined and exp(l) is an element of D.
Lemma 1.4.2. The exponential mapping

exp: d — D
I — exp(l)

is surjective. Moreover, for each positive integer p we have
exp(d’) = DP

and the exponential mapping is injective on d.

For each positive integer p and an element { € d¥ define exp(T'[{]) b

(1.4-6) exp(T[l]) = i_o: k—T[l]L

Lemma 1.4.3. exp(T{l]) is well-defined and is a continuous linear opera-
tor on Hy and Hf\. Moreover, it induces the identity operator on GrEH),
and Gr},"HT\.
Definition 1.4.4. For an automorphism h € DP, p > 1, G[h] is defined
by
(1.4-7) G[h] = exp(-TT]),
where
h = exp(}.
Note that by Lemma 1.4.2 Glh] is well-defined.

Theorem 1.4.5. For h € D! and f € C((¢)) we have the following.
1) GhI(X® f)Gr =X ®h(f).
2) G[hg]G[h)] = [h2 o] h1] for hi,he € D.

3) GINTHGR™ —T[ad(h)(l)]+—ReS({h( ); £3€(£)d€)

12



d
where {h(£); €} is the Schwarzian derivative and [ = f(f)% € C((E))&
Corollary 1.4.6. For f € C((¢)) and X4 € ga, @ € A the action of
X;{[f] =X,® f on Hy and 'H} are locally nilpotent.

§2 Pointed Stable Curves and the Associated Vacua
2.1 Pointed stable curves.

Definition 2.1.1. Data X = (C; @1,Q2,... ,Q@n) consisting of a curve
C and points @1,... ,@Qn on C are called an N-pointed stable curve, if
the following conditions are satisfied.

(1) The curve C is a reduced connected complete algebraic curve
defined over the complex numbers C. The singularities of the curve C are
at worst ordinary double points. That is, C is a semi-stable curve.

(2) @1,Q2,...,Qn are non-singular points of the curve C.

(3) If an irreducible component C; is a projective line (i.e. Riemann
sphere) P! (resp. a rational curve with one double point, resp. an elliptic
curve), the sum of the number of intersection points of C; and other
components and the number of Q;’s on C;j is at least three (resp. one).

(4) dimcH'Y(C,0¢) =g
Note that the above condition (2) is equivalent to saying that Aut(X)
is a finite group so that X has no infinitesimal automorphisms. In the
following we often add the following condition (Q) for an N-pointed stable
curve X.

(Q) Each component C; contains at least one Q;.

The meaning of the condition (Q) will be clarified in the following Lemma
2.1.4 and Lemma 2.1.5. By virtue of Proposition 2.2.3 below the assump-
tion is not restrictive. (See Remark 2.2.5.)

Definition 2.1.2. Let C be a curve and @ a non-singular point on C. An
n-th infinitesimal neighbourhood t™ of C at the point Q is a C-algebra
isomorphism

(2.1-1) t™: Ogo/mg™ = Cl[¢])/(€™*)

where mg is the maximal ideal of O¢ g consisting of germs of holomorphic
functions vanishing at Q.

Taking the limit n — oo in the isomorphism (2.1-1), we have an
isomorphism

(2.1-2) 1) : B g = Cl[€])
The isomorphism t(*) is called a formal neighbourhood of C at Q.

13



Definition 2.1.3. Data X = (C;Q1,Qa,...,Qn; t, 657, ... ,t&))
are called an N-pointed stable curve of genus g with n- tb mﬁmtesimaI
neighbourhoods, if

(1) (C; @1,Q2,...,Qn)is an N-pointed stable curve of genus g.

(2) tg-") is an n-th infinitesimal neighbourhood of C at @;.

An N-pointed stable curve X(®) = (C; @1,Qz,...,Qn; tg°°),t(2°°),
(°°)) with formal neighbourhoods is defined similarly.

Lemma 2.1.4. Assume that an N-pointed stable curve ¥(o0) = (C; @,
Q... ,QnN; tgoo),tgm),. . ,tgsc')) with formal neighbourhoods
satisfies the condition (Q). By t; we denote the Laurent expansions at

-1
Q; with respect to a formal parameter £; = t()77(¢). Then, the follow-
ing homomorphisms are injective.

(2.1-3) . .
t=@t; : H(C,O(» _Ele)) — P C((&)
j= 1=1

(2.1-4)
0 N N
t=ot;: H(C,wc(x E Qj)) — @ C((&;))d¢;
=1 i=1
where w¢ is the dualizing sheaf of the curve C.

By this Lemma H%(C, O(mz:QJ ) (resp. H%(C, wc(*ZQJ can be
=1

regarded as a subspace of @J=1C((£j)) (resp. @Y 1C((EJ))dEJ) There is
the residue pairing

(2.1-5)
@?:1 C((¢;)) x J-l C((&))d¢; - C
((f(&1), - F(En), 9(6n)dEr, -, g(EN)dEN) — E Res(f(¢;)9(&5)d¢;)-

i=1 &=0
The following Lemma is well-known and plays an important role in our
theory.
Lemma 2.1.5. Under the residue pairing H%(C, O(* Ef’;l Q;)) and HY(C,we(* Ef;l Qi)
are the annihilators to each other.

2.2 The space of vacua associated with ¥{®),

First we generalize the notion of an affine Lie algebra to the one over
the direct sum of the fields of Laurent series EB:],-\;IC((fj)) and the one

over the data x(oo) = (Ca QI’QZ':’ . :QN; t(loo)!tgoo) t( ))
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Definition 2.2.1. Let g be a simple Lie algebra over the complex rum-
bers C. The associated affine Lie algebra §y over EB?;I C((¢;)) is defined
by

N
(2.2-1) v = P e®C((¢5)) ® Ce

j=1
with the following commutation relations.

(2.2-2)
@, X; ® fj, 0l Y; ® gj] =

N
®i211X;, V5] ® fig; + ¢ 3 (X5, Y;) Res(dfg),
j=1 =
¢ € Center

where EBleaj means (aq,dz,...,ay). The Lie subalgebra g(X()) of
@n associated with X(®) = (C; ©Q1,Q2,... ,Qn; t(1°°),tg°°),... ,tf\?o)) is
defined by

N

8(X*) = g @ H°(C,0c(+ 1 @5)).

=1
Here we regard H(C, O¢(* E;—V:I Q;)) as a subspace of GB;'-\_;IC((f)) by
the mapping ¢ given in (2.1-3).

Note that the Lie algebra §(%(°)) has no centers. By Lemma 1.2.3 we
use the notation X|f;] instead of X ® f;(£;). Also we sometimes use the
notation X|[f] instead of X @ f for a meromorphic function f on the curve
C, if there is no danger of confusion.

Let us fix a positive integer £. For X = (A1,...,Ax) € (P}, a left
gn-module H; and a right §y-module ’H:[\- are defined by

H:\‘ZH,\1®---®HAns
Hl=H]&...8M],,

where the left §y-action on H; is given by
(@1 X5 fiDl1 ®...vw)

N
= Z |‘Ul ®...v511 @(Xj[fj])'vj ® Vj41--. @'UN)
ij=1

15



The right gx-action on 'H} 18 defined similarly. In what follows we use
the following notation.

pi(X[fiDlv1 ® - - - un®)
=|v1Q- Quj—1 ®(X[f;])v;) ®vj41® - Q un)
pi(X[f]) = pi(X[t; ()]}

for a meromorphic function f on the curve C.

The complete pairing ( | ) defined in (1.3-8) defines a complete
pairing .
(2.2-3) (| )i xHg—C
which is §y-invariant:

(upi( X [fillv) = (ulps(X[f5]v)
Definition 2.2.2. Put
V(X)) = Mg /(X )y
VHE) = {(¥] € HL| (¥la=0 for any a € G(X(*))}.
We call V;{.(ff(“)) the space of vacua associated with X(°) and VX(I(°°))
the dual space of vacua associated with X{°),

Note that we have an isomorphism
VH(E()) > Homc(V5(X¢), C).
The above pairing (2.2-3 ) { | ) induces a complete pairing

(1) VHE) x vy (=) — C.

For X(®) = (C; @1,Qz2,-..,QN; tgw),t(zw),... ,t%'ro)) let P be a non-

singular point of the curve C and ¢ a formal parameter of C' at P. Put
i(‘x’) = (C; Qh ces )QN) QN-I-I; tgm)s e 1tg\?°)1t%.'3.)1)

where Qn4+1 = P and tga_)l =t.

Now let us describe the properties which we call propagation of vacua.
Since there is a canonical inclusion

Hy — HX ® Ho
[v) — [v) ®10)

16



we have a canonical surjection

;ML Lent — 7{}.

Proposition 2.2.3. The canonical surjection T* induces a canonical iso-

morphism
Vi (EO) o v,

Figure 1.

Proof.  For an element (¥| € V}O(i(‘x’)) put (¥ = *((¥]) € 'H:E\..

Choose f € HO(C, Oc(*z =1 @j)), X € g and |u) € H;. Then by our
definition we have

N
_z<w|p, XUDI) = 3 (#1pi(X1/Dlu @ 0).

On the other hand, since f is regular at the point Qx4 = P, we have

(¥lon+1(X[f])|u ®0) = 0.

Hence we have

N N+1
> (Foi (X[l ®0) = 3 (Elpi(X[/DIu®0) = 0.
j=1 i=1

Thus we have (¥| € V;-(J"C(m)) and we have a linear mapping
v}’o(i(m)) — VI(x(9)),

First we shall show that the linear mapping +* is injective.
Assume that (¥]| = .*({(¥|) = 0. By induction on p we show that

(2.2-4) (Tlu@v) =0, forall ueH; and v € FyHo.

17



By our assumption we have
(¥|u) = (¥|u® 0) = 0.

Hence (2.2-4) is true for p = 0. Next assume that (2.2-4) holds for p.
Choose an element X(m)|v) € Fpr1Ho, where |v) € FpyHp. Choose a
meromorphic function f € HY(C, Oc(* E;V_"il Q;)) and a positive integer
M such that

(2.2-5) f=n" mod (nM)
and that
(2.2-6) X@ntlw)y=0 forall k> M.

Then we have
(¥lu® X(m)v) = (‘T’Iu ® (X[f])v)

= = Z(‘I’IPJ(XU])“ ®v)

j=1
=0
since by the induction hypothesis (¥|p;(X[f])u ® v) = 0. Thus (2.2-4)
holds for p + 1. Thus (¥|u ® v) = 0 for any |[u @ v) € H; ® Ho. Hence,
(¥| = 0.
Next we shall show that .* is surjective. For that purpose, to a given
(¥] € Vi(.'f(w)) we attach an element (¥| € Homc(Hy ® Ho,C) =

Hs ®’H1 The linear functional (¥| is defined inductively as a linear map-
pmg of H; ® FyHy to C as follows. First define

(V]u®0) = (¥|u) for any u € Hy.

Then we have
N N

> (i (X [gD)|u @ 0)) = 3 (¥|p;(X[g])|u) = 0

i=1 i=1

for any element g € H°(C, Oc(*z 21 Q5))-

Now assume that (¥] is defined as a linear mapping of M5 ® FyHo to
C with

N
(2:27) > (i (Xlghu@ ) =0

18



for any |u ® v) € Hy ® FyHo and g € HY(C,Oc(* E;-V__.l @;)). Then, on
My ® Fpr1HMo the linear mapping (¥| is defined by
(2.2-8)
- N -~
(Plu ® X(m)v) = — 3 (¥|(p;(X[/D)u®v) forany u€ Hy,ve FHo
i=1

where a meromorphic function f is chosen in the same way as in (2.2-
5) and (2.2-6). It is easy to show that this is well-defined and has the

property
N4l

> (Blei(X[f) =0

j=1
for each element f € HY(C, O¢(* )___::?r:"il @5))- A straightforward calcula-
tion shows the equality
(Fu@ X ()Y (ma)o) — (Fu @ ¥ (ma) X (ma o)
= (Pu® ([X,Y](m1 +ma) + £ (X, Y )m16m; +m;,0)v)-
This equality shows that the (¥| is defined at least as a linear mapping
form H; ® Mo to C, where M) is the Verma module associated to the
trivial representation of the affine Lie algebra 8.
To show that (¥| is a linear form on Hy ® Ho, it is enough to show
the equality
(2.2-9) (Tlu ® Xg(—1)4*1[0) = 0.
+ To prove (2.2-9) we first show
(Tlu ® Xo(—1)"[0) =0
N+l
for sufficiently large n depending on |u). Let f € HYC,O0c(x 3" @Q;))
i=1

be a meromorphic function on C which satisfies the conditions (2.2-5)
and (2.2-6) for m = —1. By Corollary 1.4.6 there is a positive integer n
depending on Ju) such that for any 7, j = 1,..., N, we have

(2.2-10) pi(XolfN)Fluy =0, if k>n/N.
Applying the formula (2.2-8), by (2.2-10) we obtain
(TJu®X5(~1)"0) = (¥|u ® (Xs[f])"|0)

n! ~ N
=0 N @ sl @)

Trol
ni+..tny=n PLN2: TN

J
=0.
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Figure 2.

Put
E=X_4(1), F=X4-1), H=I[E,F].
Then {E, F, H} forms a 51(2, C)-triplet. Let U, be a vector subspace of
the Verma module Mo such that (¥| is zero on Clu) ® My and N, the
(2, C)-module generated by |0). Then the above equality (¥|u®F"|0) =
0 means that the s[(2, C)-module R, = N, +U, /U, is of finite dimension.
Since we have
H|0) = £]0),
by representation theory of 51(2, C) we conclude that F¢+1|0) = 0 in R,

This means that _
(Tlu ® Xp(—1)4+1[0) = 0.

Thus we obtain (¥] € V}O(i(w)) such that 7*((¥]) = (¥|. The details of
the above argument can be found in [TK1, 2.3)). Q.E.D.

Corollary 2.2.4. There is a canonical isomorphism
Vi(X()) 2 Vs (X))

Remark 2.2.5. Proposition 2.2.3 and Corollary 2.2.4 say that in the
study of the space of vacua and its dual space attached to an N-pointed
stable curve with formal neighbourhoods we can add as many points with
formal neighbourhoods as possible we need. Therefore, as we mentioned
above, we can always assume that the condition (Q) is satisfied. Below
this fact will be often used and play an essential role to prove important
theorems.

For an element i € P, put

uh = —w(p)

where w is the longest element of the Weyl group of the simple Lie algebra
g (in other word, w(A4+) = A_). Note that pt is also characterized by
the fact that —pu! is the lowest weight of the g-module Vi
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For an N-pointed stable curve X(®) = (C; Q1,Q2,...,QnN; t§°°’,
tgoo), . ,tgso)) with formal neighbourhoods, assume that the curve C has
a double point P. Let v : C — C be the normalization at the point P.
(See, for example, [Se, Chap. IV, §1].) Put »~}(P) = {P', P"}. Further-
more we introduce formal neighbourhoods #¢ and ") at P’ and P",
respectively.

In the proof of the following Proposition 2.2.6 we shall use the results

of Theorem 2.4.1. We shall not use Proposition 2.2.6 in the proof of the
theorem.

Proposition 2.2.6. Under the above notation, for an N-pointed sta-
ble curve X(®) = (C; Q1,Qz,... ,QN; t(1°°),t‘2°°),... ,tg@o)) with formal
neighbourhoods, put X(°) = (C;P',P",Q,... ,QN;t'(m),t”(m),tgm),

. ,tsso)). Then there is a canonical isomorphism
t F(o0)y ~ pix(eo)
V], 1(E) 3 W)

Figﬁre 3.

Proof. The diagonal action of g on V;, ® V,+ makes V, ® V.
a g-module and it contains a trivial g-module with multiplicity one.
Let [0, ,t) be a basis of the trivial g-submodule of V,; ® V,;+ such that
T(|0,,ut)) = [0,t,,), where T is a canonical isomorphism

T:V#®Vp' — V#f ®V“
defined by T(a ® b) = b® a. Hence H, ; ; contains a subspace
'Hp’ﬂf’x D |0, ut) @ H; ~H;.

For any element (¥| € V; ot :\-(i(‘”)), define (¥| € ‘H} by

(¥|®) = (¥[0,,+ ®®) forall |®)€ Hs.
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Then, for any meromorphic function f € H%(C, O¢(* 23’-‘7:1 Qj)) we have

N
§<WIPJ( (M) = Z_%(Wl(owmp,(xm) )
" Nez _
= Zl (U)o (X110, ® ) =0
J:

since if we regard f as a meromorphic function on C, we have f(P') =
F(P") and ppi(X[f])|0, 1) + ppe(X[f])|0, 4t) = 0. Hence we have

N

N
Y (¥|p;(X[f]) =0 forany fe HYC,0c(x Q;)).

j=1 j=1
Thus we have a canonical C-linear mapping
pf F(o00) t 1 ar{00)
by vm’x(x ) — V:\.(i ).

We shall show that the mapping ¢, is injective. For that purpose, first we

show that for (¥| € 1,((¥]), (¥] € V:: " X(i(m)) we have

(2.2-11) (¥|X(P)|®)dP = (¥|X(P)|0, ,+ ® B)dP

Note that by Claim 3 of the proof of Theorem 2.4.1, the expansion of the
left hand side of (2.2-11) at @Q; with respect to the formal parameter ¢;
has the form

Z<‘I’|PJ n))|®) f—nﬁld‘f.v

neZ
Similarly the right hand side of (2.2-11) has the expansion

3 (Upi (X (n)]0, 0 ® B dE;

neZ
= Ez({i’l(oﬂ,p*) ® Pj(X(”))‘I’)fj_n_ldfj
ne
= Z (|pi (X |‘I’>E_n_ldfg
nezZ

Hence the equality (2.2-11) holds. Similar argument shows the equality

(¥[X1(P1) .. . Xn(Py)|®@)dPr...dPy =
(F1X1(PL) .. Xag(Pag)|0, 0 ® 8Py ... dPyy .
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Now assume that (¥| = 0. By Theorem 2.4.1, 3) we have
(F1X2(Py) ... Xag (Par) o (X2 (m))0p 0 ® @) = 0.
Applying again Theorem 2.4.1, 3), we obtain

(¥|pp (X2(n2) X1(n1))0,, 0 ® &) =0
(Flop(X1(n1))ppn(X2(n2))0, 0 ® B) =0
(%) ppr(X1(n1)X2(n2))0, 0 ® $) = 0.

Repeating the same process we can show that
(V|®) =0 forany € H, X

since H, ® M+ is an irreducible § x §-module. Hence ¢, is injective. Thus
we have a C-linear homomorphism

@V

(F(o)) By vf(x(oo)).
e ot X

Next we shall show that ¢ is injective. For that purpose, to the points P’
and P” we associate right g-modules and integrable right §-modules.
Fix an element (¥| € V}(f{(m)). Let h be a meromorphic function on

C such that
N
heHYC,0; E

(2.2-12) h(P") =1
r(P") = 0.

If b’ satisfies also the properties (2.2-12), then A — A’ can be regarded as a
meromorphic function on C and h — b’ € H(C, Oc(* ):}v.:l Q;)). Hence,
for each |u) € Hy

N

2 (¥lpi(X[h])|u)

i=1
is independent of the choice of a meromorphic function h satisfying (2.2-
12). For each element X € g define (¥|pp/(X) € Homg(Vy, C) by

N
(Fler (Of) = = (XD, 14} € Vg
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where h satisfies (2.2-12). This is well-defined.
Next for X,Y € g define (¥|pp:(X)pp(Y) € Homg(V5, C) by

N
(Tlop (X)pp(Vlu) = 3 (¥lp;\(X[ha])ps, (Y[he])|w)
n1=1j2=1
|u) € V:\'
where h; and hy satisfy (2.2-12). The definition is independent of the
choice of h; by the same reason as above. That the definition is in-
dependent of the choice of hy is proved as follows. Since hadh; is a

meromorphic one form on C having poles only at @i,...,QnN, we have
)'_‘, =1 Resg;(hadh;) = 0. Therefore, we have the equality

N

2 (¥l (X Tha])psu (Y ha]) )
J1uda
N
= Y (Ulpa(Y{hal)ps, (X [Ra])lw) + 3 (¥l (1X, Y][haho])|u)-
J1#s2 i=1
The right hand side of the equality shows the independence of the choice

of hg, since hyhy also satisfies the properties (2.2-12). Moreover the above
equality shows the equality

(¥l(pp (X)pp (Y) — pp(Y)pp (X) = (¥|pp (X, Y]).

In this way we can define a right g-module U((¥|) C Hom¢(V5, C) at
the point P’. By the same way we can construct a right g-module at the
point P”.

More generally, we can define an integrable right g-module U ((¥]) c
Homg(Hy, C). For example, (¥|pp/(X(n)) is defined as follows. Let g be
a meromorphic function on C such that

g€ H(C,04( ZQ,

(2.2-13) g=¢" mod (f) at P/
g9(P") =0

where ¢ = ¢71(¢) is a formal parameter at the point P’. Then, define
(|pp (X(n)) by

(C|pp (X (n))lu) = E(‘I’ng Xlg])u)-
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The definition is independent of the choice of a meromorphic function
g satisfying (2.2-13). Similarly we can define (¥|pp/(X(n))pp(Y(m)) €
Homc(Myz, C) and we have the equality

(2.2-14)
({(op (X (n))pp (Y (m)) = (Tlpp (¥ (m))pp (X (n)))
= (¥lop (X, Y)(m +n)) +£- (X, Y)nbupmo(¥].

In this way we can construct a right §-module U({¥]) C Homg(Hy, C).
Since the action of pj(Xa[g]), Xa € ga is locally nilpotent by Corollary
1.4.6, the action of ppi(Xa(m)) on U((¥|) is locally nilpotent. Hence
U((®|) is an integrable right §-module of level £.

Thus to the point P’ we associate a right g-module

upviEeN) = U v

(FleVi(x)

and an integrable right § — module

opviE=n) = U )

(¥levi(x(=)

oflevel £. Since V;{.(I(m)) is finite-dimensional, by Theorem 4.2.4, U (V}(lf(w)))
is a finite-dimensional right g-module. By (2.2-14) we have an irreducible
decomposition

UVE) = @ v
pneP,
T E)) = @ ML

N3y

(2.2-15)

Now we are ready to prove the injectivity of ¢«. For an element (‘T’I €
#pf (x(m))) put (¥| = ¢,((¥]) and choose a meromorphic function h

on C satisfying (2.2-12). Then we have

(Clpp(X1): - pp(Xi)lu)
N

=(-1* 1):. l(q’lpjl(XI[h])“'pjk(Xk[h'])lu)
n=l.. =

= (=) (Flpp (X1(0) - PP Xk (0))|0y ot ® w).
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Since ppi(X1(0)) - - - ppr(Xi(0))]0,, 1 )’s generate an irreducible left g-module
isomorphic to VJ, we conclude

U((]) C Vo
Hence, for (¥,] € V;’“":\.(i(“’)) and (¥, € Vu’u*’x(ff(“’)), we have

V() NU(T)) = 0.

This means that ¢ is injective, since ¢, is injective.
Finally let us prove that ¢ is surjective. By (2.2-15) for an element

(¥] € v;{.(x(m)) we have a decomposition

(U= (T, (¥4 € VIO
per,

We construct (¥,| € Homg(H,, s 5, C) as follows. First note that V,, @
Vit is generated by elements

pp(X1) - -pp (Xa)ppe (Y1) - ppr(Yim)|04 ut)
Xi,...,X,,11,..., Y, €g.

Moreover, (¥,,| defines a right §-module U({¥,]) C Homg(Hy, C). For
each element |v) € H; define

(T 4]0, . ® V) = (¥|v).
Define

(‘i’;t'PP'(Xl) - pp(Xa)ppr (Y1) -+ - ppo (Ym)Oﬂ,m ® v)
= (=1)™(Wulpp (X1(0)) - - pP(Xn(0)) pp (Yn(0)) - - - pP(¥1(0))0).

This is well-defined, since the diagonal action of g on C|0, ) is trivial.
This defines (¥,] € Homg(V, ® V4 ® H;,C). Now assume that we
have already defined (¥,| € Homg(FpH, ® FyH,t ® Hy, C) for non-
negative integers p and g. Choose an element pp:/(X(m))|u @ v’ @ v) €
Fpp 1M, ® Fy®H,yt with [u®u') € FH, ® FyH 1. Choose a meromorphic
function f on C such that

N

f e HYC, Ox(* Y Qj +*P' +xP"))
j=1

F=€™ mod (¢™) at P’

F=0 mod (¢"™) at P".
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Here we choose the positive integer M in such a way that pp/(X(n))|u) =0
and pp«(X(n))|u) = 0 for all n > M. Then we define
~— N —~—
(Culpp (X (m))lu @ v’ @ v) = = 3 (Vuloj(X[f)e ® v’ @ v).
j=1

By the similar argument to the proof of Proposition 2.2.4 we can show
that the definition is independent of the choice of a meromorphic function
f satisfying the above conditions and we have

(U,] € Home(FprHyu ® FyM, ® Hy, C).
Similarly we can define
(¥,| € Homg(FyHy ® Fop1My, ® Hy, C).
In this way we can show the existence of
(E’,J € Homg (M, ® M, @ Hy, C).
Moreover, we can show that

(Tl e V! | (FE),

it A
By our construction we have ¢,({¥,]) = (¥,|. QE.D.

Corollary 2.2.7. There is a canonical isomorphism

(°°) @ v x(OO))

pEPr

Example 2.2.8. Let us consider the space of vacua v§(x(w)) with C =

P, We use the results in 2.4, especially Theorem 2.4.1.
Let z be a global inhomogeneous coordinate of P1. For N points
ay,...,an € C, put

uj=z—-a; j=1,...,N

and
X(*®) = (PLay,... ,an;u1,... ,un).

Fix X € (PY)N. Let us consider a homomorphism

i: V(&) — Homg(V5,C)
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defined by
((¥)([®o)) = (¥|®0o), [Po) € V5.
Let us show that the homomorphism ¢ defines an injective homomorphism

(2.2-16) i : V(X)) & Homy(V3,C).

For that purpose, for an element X € g first consider a meromorphic one
form F = (¥|X(z)|®o)dz in Theorem 2.4.1. By Theorem 2.4.1, 5) we
have

(2.2-17) (U)X (2)|Bo)dz = fj

= aj

(¥]oj(X)®o)dz

since the left hand side minus the nght hand side is a holomorphic one
form on P!, hence zero. By Theorem 2.4.1 3) we have

(¥[p;(X(n))@0) = Res(uj(¥|X(2)|®o)dz).

Since (¥|X(z)|®o)dz is a global one form on P?, we have

N
> (¥]pi(X)®o) = E Res ((¥]X(2)|®o)dz) = 0.
i=1 i= 1

Hence, i((¥|) € Homy(V5,C). By the similar arguments, by Theorem
2.4.1, 4) and 5) we have :

- (X,Y)
(z —w)?
+ m(\1:|[X, Y)(w)|®0)dzdu

N

+2

=1 aj
N

+Z

The right hand side is uniquely determined by i({¥|). In this way we can
show that i({¥|) determines uniquely the correlation functions of currents

(‘I’lX](Zl) e XA(ZA)“I)‘])dzl . dzA
hence, determines uniquely the bilinear pairing

11 x(oo

(U] X (2)Y (w)|®o)dzdw = 2(|®o)dzdw

(¥|Y (w)|®o)dzdw

(0| X(2)|®o)dzdw.
J

(¥,1®))  — (¥[D).
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Hence the mapping 1 is injective.

Finally consider the case N = 3. In this case the image i(v}(x(w))) C
Homg(V%, C) is characterized by the fusion rule ([GW], [TK1], [TK2]).
For X = (u,v,)\) € P, put

(22-18) Wy, = {¢ € Homy(V, ® V, ® V3, C) | condition (x) }

where the condition (%) is given as follows. Let 8 = CXy & CX_o &
C[Xg, X_g] be the principal 3-dimensional subalgebra of g, and let

t/2
Vi= @D Wy
j=0
be the decomposition to the spin-j homogeneous components of 8g-modules.
Then the condition () is

(*) ¢le.h®Wu..‘®WA.j =0 if h+i+j>L

2.3 Action of D.

For an N-pointed stable curve X(°) = (C; @1,Q2,...,@QnN; t(1°°),
tgm),. .. ,tg?o)) of genus g with formal neighbourhoods and an N-tuple
h= (R1,...,hy) € DBV let us define ko X() by

(231)  FoXC)=(C;Qu ..., Qnimot, ..., hyot$Y).

This defines a left D®N action on the set of N-pointed stable curves of
genus g with formal neighbourhoods.

By Lemma 1.4.2, for an element h € D!, there exists the unique
derivation { € d' with h = exp(l).

Definition 2.3.1. The (D!)®V.actions on H; and 'h’,:f\. are defined by

N
(2.3-2) (G[~]|®) = _1_Ilpj<exp<—T[L,-1))l<I>>,
N
(2.3-3) (¥|G[A] = _1_11<\IJ|pj(exp(—T[1,-1)),
where
eN

R=(hi,... k) € (D) hj=exp(ly) L ed".

Lemma 2.3.2. For an element k € (DV)®¥, we have

ViR o () = Yi(x)G(R)!.
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Remark 2.3.3. The above Lemma says that the space of vacua attached
to X(®) = (C; Q1,Q2,...,Qn; t(lm),tgw), e ,tg\?c’)) does essentially de-
pend on the first infinitesimal neighbourhoods. This fact will be clarified
in §4 below.

2.4 Correlation functions

Let C be a semi-stable curve and w¢ its dualizing sheaf. Put CM =
M

pr——e— .

C x ... x C. Then CM has singularities of codimension 1, but still we can
define the dualizing sheaf wenm, since CM is locally a complete intersection.
(See, for example, [BS] or [Kl].) Moreover, we can show that

WoMm = ng

where 7; : CM _ C is the j-th projection and we define

wEM = rtwe @ Tiwe ® ... ® Thwe -

(See, for example, [KI].) Since CM has singularities for a singular semi-
stable curve, the (4,j)-th diagonal A;; = {(Py,...,Py)|Pi = Pj} of CM
is only a Weil divisor and not a Cartier divisor. But it is well-known that
2A;; is a Cartier divisor.

Theorem 2.4.1. Fix (VY| € V’{.(x(‘”)). For each non-negative integer M
the data
X1, Xz,..., XM € 8, |Q)EH§:

define an element
F = (9|X1(P1)X2(P2)... Xps(Pp)|®)dP1dP; .. .dPys

of
M N
HO(CM,ng( Z *Ag; + Z Z *wi_l(Qj)) ,
1<i<j<M i=135=1

where Ayj = {(Py,...,Pn)|Pi = P;} is the diagonal. The meromorphic
form has the following properties.

0) For M =0, F =<V¥|®> is the canonical pairing induced by the
pairing (2.2-3).

1) F is linear with respect to |®) and multi-linear with respect to
X;’s.

2)  For any permutation o € Gy, we have

F = (V]| Xo(1)(Po1)) Xo(2)(Pa(2)) - * Xo(a)(Po(ar))|2)dP1dP; .. .dPy .
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For example, for a transposition (¢,i 4 1) we have

F = (U[X1(P1) - Xic1(Pie1) Xit1(Piy1) Xi(F)
Xiva(Piv2) .. Xas(Py)|®)dPidP; ... dPy .

3) Fork =1,...,N and & = t,(®)"Y(¢), if £ is a holomorphic
coordinate, the we have the equality

fc . 2:57’:_153(@|X(s;)X1(P1)X2(P2) - Xm(Pa)|®)

= (V| X1(P1) X2(P2) - - - X (Pu)lpe(X(n)) @)
where C}, is a contour rounding only Qy, and containing no other Q;’s nor
P;’s,

4)  For a local holomorphic coordinate z around a nonsingular point
we have the following equality.

(R|X(PYY (P X1(P1)X2(Py) - - - Xpe(Prr)|®)

- (z(f’.) (—X;z;)v))z (U1 X1(P1)X2(P2) - - Xp(Py)| @)

+ e X YIP )X (PO Xa(P) - Xar (Pl ®)

+ regular at P = P'.

5)  For a local holomorphic coordinate z around Q; and for |®) €
Vi = Vi, ®--- @V, we have an equality

(Y| X (P)X1(P1)X2(P2) - - - Xps(Pur)|®)
= m(‘l’lxﬂﬁ)%(&) - Xm(Pu)lpi(X)®)

+ regular at P = Q;.

These functions F' are called correlation functions of currents.

Proof. Choose M + 1 non-singular points Py, Py, ..., Py, P of the

curve C and their formal neighbourhoods tﬁl,tﬁz, ciey tg\?j_)M 41+ Put

X = (C;Qu -, QN QN1 QNadeni et ar)

o) = (C;Qu, - QN QNa1s- - Qi o 85 00)
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where Qn4i= P, t=1,... ,M and Qn4+pm+1 = P. By Proposition 2.2.3
there are canonical isomorphisms
epg - VIEE) v§’ﬁu(§£(°°))
g Vi (R eVl (X))

+1
k

where 0z, = (0,... ,0). For (¥| € V}(x(”)) put

(U] = epr((¥]), (¥ = eara((T)).
CramM 1. Forany [u) € Hy®H;, and X € g, (¥|a® X (—1)|0)dn defines
a cotangent vector of the curve C at the point P.
Proof.  Choose a meromorphic function f € HY(C,Oc(*(P + Q1))

on C such that

f =771+ regular at P

f=0 mod ({;"') at Qj, j#£1

(00)-1

where n = t3,7,7(€), §; = t§.°°)_1(§) and n; is sufficiently large so that
pi(X[f])|@) = 0 and f is holomorphic at Q;, j # 1. Then we have

(Tlz ® X(-1)|0) = (¥[z ® (X[f])I0)
= ~(@p(XI)T®0).
Hence, if we change a formal neighbourhood tg}o,i)_l by ‘i(ﬁo _*)_1, we have

~ _ 7{oo0)—-1

=Ty E)=am+an’+..., a#0
(Vi@ X(-1)[0); = a7 (¥]E ® X(-1)|0),,.

This implies that (¥]Z®X (=1)|0) depends only on the first order infinites-
imal neighbourhood and (¥|2 @ X(—1)|0),dn € THC is independent of
the choice of a formal coordinate.

CLAIM 2. Put
wj = Z <‘AI}IPJ(‘X(n))Iﬁ)£;n_1d£J y J=12,...,N+M
n€Z
-1
where £; = tg-oo) (€). There is a meromorphic 1-form

N+M
we HYC,we(* 3. Q;))
=1
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on C such that
Hw) = (w1,w2,... ,WN+M)
where the mapping t is defined in (2.1-4).

Proof.  For an element f € HO(x 2N+M Q;)) let f;(¢;) = Eas,j)f;-‘
be the formal Laurent expansion of f a.t the point Q; by the formal

parameter §; = £ 7' (¢). Hence t(f) = (fu(€1),... . fu+nm(Ensnr))-
Then we have

N+M N+M
Z RES fi(&5)w5) E Z ‘I’IPJ n))lu)a; G)
j=1 &=0 j=1 neZ

= (#X ® (D) =0

since (¥|X @ t(f) = 0 by our assumption. Therefore, by Lemma 2.1.5
there exists an element w € H°(C,wc(* E?r:lM Q;)) with t(w) = (w1,.. .,
wn+s)- This proves Claim 2.

-~

CLAIM 3. As a cotangent vector at P with formal parameter n, (V|2 ®
X(-1)|0)dn and w coincide.

In the following we express w by
w = (U} X (P)|@)dP

Proof.  Since (‘T’lﬁ@X(—l)IO)dﬂ is a cotangent vector at P, we may
assume that 7 is a local holomorphic coordinate of C at P. Choose a
meromorphic function f € H*(C,Oc(*(P + Q;)) on C such that

f =n"1 + regular at P
f=0 mod (€) at Qj, j#4,1<jSN+M

where n; is sufficiently large so that p;(X[f])|Z) = 0 and fw is holomor-
phic at Q;, 7 #4,1 < j < N+ M. Then we have

N+M

(la® X(-1)|0) = — 3 (¥lp( XD

‘L:=1
= —(¥|pi(X [DI).
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On the other hand, at the point P we have

Resp(;w) = Resp(f)
N+M
== };Z: ReSQk(fw)
=1
= —ResQ..(fw)

= — Res (fi(f.’) b (E‘IPi(X(n))|ﬁ)€f"_ld€i)

n€Z
= _A(‘ilp;(X[f])lﬂ
= (¥]z ® X(-1)|0),

This proves Claim 3.
Now we are ready to prove Theorem 2.4.1. Put

[%) = |[u® X1(-1)0® - - ® Xpr(—1)0).
The above argument shows that
(TlE) = (Plu® (X1(-1)0® - - ® Xar(~1)0)

is regarded as an element of T, C®---® T, C, if P, # Q; and P; # P,
j # k, and depends meromorphically on P,. Hence, by the Hartogs theo-
rem, it defines an element of H(CM, wg():;q A5+ M, E;v:_.l *17H(Q5))-
We denote this meromorphic section by

(‘I’lxl(Pl)Xz(Pz) e XM(PM)lu)dpldpz PN dPM .

The assertions 0) and 1) are clear by our definition. For the assertion 2)
note that the meromorphic form defined above from the data

X = (C;Qur. ., QN Py, Pt 150)

and the data

.

xgo = (CI Q1,- - 1QN:P0(1)v" . sPa(M);tgm)y-- . 1t53°))
o) ke Y
N+e(1) '*N+o(M)
are the same. This implies the assertion 2).
The assertion 3) follows from Claim 2.
Let us prove the assertion 4). Let the point P' be in a small neigh-
bourhood U of the point P with local coordinate z with center P. Let us
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choose a meromorphic function f € HY(C,Oc(xP + ):ﬁ":"'lM *Qy)) such
that
f=2z"14regular at P.

Moreover, changing the local coordinate at P if necessary, we may assume
that f = z71. Then w = z — z(P') is a local coordinate of C at P'. As a
M

e ey
cotangent vector at each point of (P,P') x C x ... x C,
F = (V| X(PYY(P)X1(P1) ... Xs(Pa)|®)dPdP'd P,

is equal to ~
(¥*|X(~1)0p ® Y(-1)0p ® B)dzdw
where - t , -
7*| = . ) (00)
@)= (), e VIES) SV (B
and

|8) = ®) ® X1(~1)0) ® ... ® Xpr(—1)0) € Hz @ H, .

Then we have
(2.4-1)

(P*X(~1)0p ® Y(~1)0p ® B) = — (T|(X[f])Y(-1)0p @ &)
NtM -
- X (FY(-1)0p ® p(X[£])]$).
k=1
The second term of the right hand side of (2.4-1) is written as
N+M B
= 2 (YY(P)|pu(X[f])®)dP’
k=1
hence, it is holomorphic at the point P/. On the other hand, putting
a = z(P') we have

(XUDY(-1)lop) = (X[——= DVl Diop)

- (B - 28 0.

Hence the first term of the right hand side of (2.4-1) has the form
- (XY
O @pp). . Xu(Puie)

- B g, v Xae(Banl).
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Since —a = z(P) — z(P'), we have the desired result.
The similar argument proves the assertion 5). Q.E.D.

Furthermore we can show the following Proposition.

Proposition 2.4.2.
1) Fork=1,...,N, we have

f(.;Qw(iik_siwl(‘I‘IT(EL)XI(Pl)Xz(Pz) X(Pur)|®)

= (Y[ X1 (P1)X2(P2) ... Xpa(Prr)lor(Ln)®),

where

1 dimg ¢dim g
im { X ) - e

T(z) = 2(g* +1) oz,

2)  For a holomorphic coordinate transformation w = w(z) we have

(\PIT('w)Xl(Pl)Xz(Pg) e XM(PM)I‘I’)dwz
= (¥|T(2)X1(P1)X2(P2) . .. Xps(Ppp)|®)dz?

- S fw() X () Xa(Py) ... Xia(Pag) @)

where {w(z); z} is the Schwarzian derivative.

§3 Universal Family of Pointed Stable Curves

3.1 Deformations of pointed stable curves.

Let C be a compact Riemann surface of genus g. Infinitesimal deforma-
tions of the Riemann surfaces are parameterized by the cohomology group
HY(C,©¢), where O is the sheaf of germs of holomorphic vector fields on
C. (See, for example [Ko|.) More generally infinitesimal deformations of
the data ¥(™ = (C; Q1,Q3,...,Qn; t(n) t{") .. ,tf{,l)) of an N-pointed
Riemann surface of genus g with n-th mﬁmtesmla.l neighbourhoods are
parameterized by the cohomology group H}(C,0¢(—(n+1) Ef‘.’_.l Q;). If
C is a singular stable curve, then the cohomology group is replaced to the
cohomology group Ezty, (Q5,0c). (See, for example, [Ar], [DM, §1],
[SGA7, Exposé VI, 6], [Bin].) Here, Q} is the sheaf of Kihler differen-
tials of the curve C. (See, for example, {Ha, Chap. II, 8] or [Se]. In our
situation, we may regard the exact sequence (3.1-3) as a definition of the

36



sheaf Q}.) Put O¢ = Homo, (2%, Oc). There is an exact sequence
(3.1-1)

N
0 — HY{(C,Oc(~(n+1) Z_: Qj))

- E:Btoc(ﬂc,OC Tl + 1 E QJ

- HO(C,M}JC(QQOC)) = 0.
If the stable curve C has ¢ double points Py, P,... , P, then we have

C, ifQ=P;, i=12...,q
im_t%oc(ﬂlc,oc)q={ j

0, otherwise.
Hence we have
H°(C, Eztp, (R, Oc)) = CT
Each element of H(C, ©¢(—(n+1) E?:x @;)) corresponds to an infinites-
imal deformation of the data X(™ = (C: Q1,Qa,...,Qn; ™, (", ..
tg,')) preserving the singularities.

Definition 3.1.1. Data (7 : Y — B;s1,82,...,5n;t (1"), ("),.. ("))
are called a (holomorphic) family of N-pointed stable curves of genus
g with n-th infinitesimal neighbourhoods, if the following conditions are
satisfied.

(1) Y and B are connected complex manifolds, 7 : ¥ — B is a
proper flat holomorphic map and sy, s2,... , 8y are holomorphic sections
of m.

(2) For each point b € B the data (Y} := 7~1(b); s1(b), s2(b), ... ,
sn(b)) is an N-pointed stable curve of genus g.

.

(3) Z;") is an O p-algebra isomorphism

5V Oy /I = Op[iEll /(™).
where I,; is the defining ideal of s;(B) in Y.
(00) (200)

Similarly we define a family (7 : Y — B;s1,52,...,55;t

gy

Ef,f,”) ) of N-pointed stable curve of genus g with formal nelghbourhoods.

Proposition 3.1.2. Let (x : Y — B;s1,32,.. 3N,t(n) (n),... ,Zg‘))
be a family of N-pointed stable curves of genus g WJth n-th formal neigh-
bourhoods. For each point b € B, there exists a C-linear mapping

N
(3.1-2) ob: TpB — Ea:tbn(ﬂh,on(—(n +1) ) 5;(b)))
i=1
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where Y, = 771(b).

The linear mapping pj is called the Kodaira-Spencer mapping of the
family (7 : Y — B; sy, 82,. .. ,sN;f(ln),f("), - ,'t'g',')) at the point b.

Since the proposition plays an important role in our formulation of
conformal field theory, we give rather detailed discussions about a proof.
For the fundamental properties of the functor Ext we refer the reader to

[Ha, Chap. III, 6]. Put C =Y}, Q; = s;(b). Let Ic be the sheaf of the
defining ideal of C in Y. There is an exact sequence

3.1-3 0 Ic/I2 - QL @Oc — QL — 0.
C Y C

This gives a locally free resolution of the sheaf QL. The sheaf I /1% is the
conormal sheaf of the curve C in Y and we have a canonical isomorphism

(TyB) ®c O¢ ~ Ic/1¢ .

Hence there are canonical isomorphisms

(3.1-4) Homg,(Ic/1%,0¢) ~ Ty B ®c Oc,
(3.1-5) Homoc(ﬂ%; R0, Oc,Oc) ~ Oy o, Oc¢.
Put

=0y ®o, Oc, I'=T,B ®o. Oc.
In other words, we have an exact sequence
0— 08¢ = I° = I' - Ezty, (5, 0c) — 0.

Then applying Home,.( ,Oc¢) to the exact sequence (3.1-3) and using
the canonical isomorphisms (3.1-4) and (3.1-5), we obtain a complex of
sheaves

(3.1-6) 015 ' 5o

The cohomology groups of the complex (3.1-6) are Eztg, (2%, Oc). That
is, we have

= Ker {m, : I° = I'} = O,

Ezt’
Ext! = Coker {r, : I® = I'}.

Note that the map =, in (3.1-6) is surjective outside the double points
Py, Ps,..., Py of the curve C. The cohomology groups Eztg, (¢, Oc) is
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calculated as follows. Choose an open covering U = {U)} e of the curve
C. Let C*(U, I"™) be k-th cochains with values in the sheaf I™. Put

Kr= @ Cc*u,rm.
k+m=n
We define the differentials § of { K™} as follows. For any element {¢o} €
COU, I = K° we define

6°{ga} = ({m(da)}, {85 — ¢a}) € C°WU, ") @ CH U, I°) = K.
For each element ({pa}, {fa8}) € CO(U, I*) & CH{U, I°) = K we define

8'({¢a}, {6ap}) = {(08 — ¢a) — mu(bap)} € C'WU, I') = K.

Other §*'s are defined to be the zero map. Then {K*,6°} is a complex
and if the covering is good, namely each open set i), is different from C,
then we have

Ezt} (9%, Oc) = Ker 6™ /Imé*~1.

Assume that the covering U is good. Assume further that each of the
points @;’s and P;’s is contained in only one open set U,. For each tangent
vector 8 € T,B of B at b, there is a vector field g on a neighbourhood of
b. Then there is a lifting 8, on U, \ T of the vector field 8, where U, is
an open set in Y with U, = UsNC and T is the locus of double points of
fibres of w. Put

wa =0 ¢€ Ho(uasTb®OC)
bap = (0 — 8a)|uurus, € H'(Ua NUp, Oy ®0, Oc).

Then ¥(8) = ({¢a}, {fap}) is an element of K and by definition we have
81(®(6)) = 0, hence defines an element [¥(8)] of Exty,(Qc, Oc). Thus
we have a C-linear mapping

po: TpB — Emtéc(ﬂc,Oc).

This is the Kodaira -Spencer mapping of 7 : Y — B at b.

So far we do not consider the points @; and n-th infinitesimal neigh-
bourhoods. To define the Kodaira-Spencer mapping of the family (7 :
Y — B;sy,s9,... ,sN;EE"),fgn), ... ,Eg}‘)) we need to be careful to choose
a lifting fq of 6, namely the lifting should respects the n-th formal neigh-
bourhoods. For simplicity assume that the point @; is contained in an
open set U;. Choose local coordinates (uq,usg,...,un) of B with cen-

ter b. Then we can choose local coordinates of ¥ with center @; as
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(u1,42,... ,Um, z). We may assume that U{; is contained in the coordinate
neighbourhood of @; with the above coordinates. By these coordinates

_ P .
the vector field f is expressed in a form Zak(t)aT. Then, as 6; we
k

choose the same form ) a“t)%. Other lifting is given by a form
k

0 )
Zak(U)E + A(‘u., Z)E .

To preserve the n-th formal neighbourhoods A(u,2) has the zero of or-
der n 4+ 1 at @);. Precisely speaking, if we choose the lifting éj above
then we have an element ¥(8) as above. This lifting does depend on the
choice of the local coordinates. If we choose other local coordinates, ¥(8)
changes by adding 6°({¢«}). #u corresponds to an infinitesimal change
of local coordinates of U,. Hence ¢, needs to preserve the n-th formal
neighbourhoods. Let I2,, be a O¢-submodule of I° defined by the exact
sequence

N
0~ Oc(~(n+1) Y Q) — I%; B I
i=1

Then the element defines a cohomology class [¥(8)] of the complex {K7 .,
8*} where we define

Ki= mﬁ?‘:pcm(us ),

where ID, is defined above and I}, ; = I'. The cohomology group of the
complex {Ky,,,8%} is Exty, (Qf, Oc(—(n + 1) T Q;)). Hence [¥(6)] is
an element of Emt%,c(ﬂl ,Oc(—(n+1) ¥ Q;)). This defines the Kodaira-
Spencer mapping of the family (7 : Y — B;sq,s9,... ,sN;ZS"),Zg"), cee
fg:)). We thus prove the Proposition 3.1.2.

A sheaf version of Proposition 3.1.2 is the following.

Corollary 3.1.3. If (x : Y — B;sy,82,... ,sN;'t'g"),fg"),... ,25\';)) is a
family of N-pointed smooth curve of genus g with n-th infinitesimal neigh-
bourhoods, the Kodaira-Spencer mapping p, induces an Opg)-module
homomorphism

N
p: @B(n) — Rlﬂ's.n)(@c(n)/s(»)(—(n + 1) Z 3)_(3(11)))).
j=1
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Definition 3.1.4. A family (#® : ¢ - B, sgn), sg“), e ,8‘(;;); fg"),
fg"), .. ,fg,')) of N-pointed stable curves of genus g is called a local uni-

versal family, if the Kodaira-Spencer mapping

N
ps: Ty — Ezt%)c.(ﬂbc.,oc_(—(n +1) 5 s;")(s)))
=1

is isomorphic at each point s € B™).
The following theorem plays a crucial role in our conformal field theory.

Theorem 3.1.5. For each N-pointed stable curve X(® = (C; @1, Q,

LON; tg"),tg"), . ,tg:)) of genus g with n-th infinitesimal neighbour-
hoods, there always exists a local universal family (7r(") . ¢ — B
: sg"),sg"),... ,sg‘);fgn),fg"),... ,ES;:)) with point z € B™ such that
Cy = w(")_l(a:) ~ C and that with respect to this isomorphism we have

Qi =s{"(z), £ =4lc..

Proof. The theorem is a consequence of a deformation theory ([Ar],
[Sc], [SGA 7], [Bin]). Since we need an explicit description of a local uni-
versal family F(1) below, we give a method to construct a local universal
family.

By our assumption, the curve C has only ordinary double points.
Hence, by a deformation theory, there exists a versal family 7 : C — B
with specified point € B such that C, = 7~ 1(z) ~ C. Here, "versal®
means that the Kodaira-Spencer mapping

pz : ToB— E:t:t};c= (Q%;-,, Oc.,)

is isomorphic. (Since the automorphism group of C' may be infinite, the
family = : C — B may not be universal at the point = but semi-universal.)
Put

BO) =N\ (U A;; | J{ singular points of C¥ })
i<y
where

Aij={(ml"-',$N)€CN| 2.’=:Bj}

is the (4,7)-th diagonal. There is a natural holomorphic mapping p :
B — B. Put also
cO=c X5 B
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and let 7(9) : ¢(©) — B be the projection to the second factor. By our
definition, (Q1,...,Qn) € p~Y(z). Put 2o = (Q1,...,Qn) € BO). Then

we have w(o)—l(zo) = C; X zg =~ C. Moreover, we can define holomorphic
sections
s;O) : 8O - 0

s(Py,...Py)) = (P;, P1,..., Py) € C x5 BO.

Then we have sg-o)(a:g) = (Qj,20). It is easy to show that FO = (z(® :

cl0) o B(O); s(lo), ceey 353)) is universal at each point of BO),
Next we construct the family F(1). For that purpose, put

(0) —
Tago)c = U Ta.(io)(y)cy.
yEB®)

Thus T,0C(® consists of tangent vectors of C(%) at 350)(3(0)) tangent to

the fibres of =(®, Ts(_o)C(O) is a holomorphic line bundle over B, Put
further ’

T;((o)c(o) = Ta(.o)C(O) — zero section
J J
B(l) = Ti‘o)c(o) Xpgo) * - Xg@) T>(<°)
81 "N

ct) = ¢ X 5o) B .

Let 7)) : ¢ — B be the projection to the second factor and p; :
B(M) — B the natural holomorphic mapping. The holomorphic sections
35-0) lifts to holomorphic sections sg-l) . B o ¢ by

y— (s)(p1(v)), ).

Moreover, for each element y = (vy,... ,vn) € B, by using the canon-
ical isomorphism Oc(l)/Ia(-l) ~ Ogu), we can define Ogu)-module homo-

morphism

iﬁ-l) : OC(’)/I,Z(.U — Ogay ® Ogo)é

fooom (P, v

where we regard v; as a derivation.
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Note that the first order infinitesimal neighbourhood tg-l) of the curve
C defines a derivation v; € T C by

() = £(Q) +vi( )€

where f is a holomorphic function at the point Q. Hence the data X¥(1)
-1 ..

define a point z; € B with p1(z1) = z0. Moreover, (D) (z1) is iso-

morphic to the curve C and with respect to this isomorphism we have

(@) =Q;, Blo=1".

It is easy to show that our family V) = () . ¢V 5 BV, sgl),sgl),
., 35\1,) : Zgl),fgl), - ,Zg)) is universal at each point of B,
Similarly, using the n-th jet bundle, we can construct local universal

family of N-pointed stable curves with n-th infinitesimal neighbourhoods.
Q.E.D.

Let (7™ : ¢ — B™), sgﬂ),s(z"),... ,35(;); Zﬁ"’,ig"),... ,ff,\',')) be a
local universal family of N-pointed stable curve of genus g with n-th
infinitesimal neighbourhoods. Put

(3.1-8)
£ = {Pec™|dnl) : TpC™ — Ty pyB™ is not surjective }
(3.1-9)

D = 7 (g,

The set (") is called the critical locus of the family and D(™ is called the
discriminant locus of the family. The following lemma is a consequence
of the deformation theory of singular curves with ordinary double points.
(See for example [Ar], [DM, §1] or [SGA 7, Exposé VI, 6}.)

Lemma 3.1.6. For a local universal family ('Jr(") . cn) — B, sﬁ"),

sg"), vy sg;) ; f&"), Zg"), cevy ZS;:)) of N-pointed stable curve of genus g with

n-th infinitesimal neighbourhoods, assume 3g — 3+ N > 1.
1) We have

dimB™ =39 -3+ (n+ 1)N
dimC™ =39 — 2+ (n + 1)N.

2) The critical locus £(™) is a smooth subvariety of codimension 2 in
c,
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3) The discriminant locus D™ is a divisor with normal crossings in

B

3.2. Kodaira-Spencer mapping.
Let us consider a local universal family §™ = (#( : ¢(®) - B,

3(1"), sg"), e 35\?) ; Zg"),fg"), ... ,Zg{,‘)) of N-pointed stable curves of genus

g with n-th infinitesimal neighbourhoods. In the following we need to
consider locally a family F(™). For that purpose we introduce the following
local coordinates of C(®).

For a point P € E(™ of the critical locus of 7(™), we can choose
local coordinates (uy,us, ... ,up—1,2,w) of C™ with center P and local
coordinates (71, 79,...,7ar) of B™ with center 7(®(P) such that the
holomorphic mapping (™) is given by

(ulvuz)"' ,'U.M_]_,Z,‘UJ) — (uliuz'.l"' ,’U.M_I,Z'UJ) = (TlsTZv" ')TM)'

In other word, we have

(n)t {uk, k—1,2,,M—1
s T =
zw, k=M.

For a point P € C(™ \ (") we can choose local coordinates (w1, uz,
..., up, 2) of C(™) with center P and local coordinates (11,73, ... ,Tar) of
B(™) with center 7(™)(P) such that the holomorphic mapping is given by

(u1,u2,...,upm-1,2) — (ur,u2,... ,up) = (11,72, , THf) -

An O¢my-module Q. /B is defined by the following exact sequence

-1
n 1 1 1

The sheaf Q. /B 18 called the sheaf of germs of relative 1-forms of the
family 7(®) : ¢ — B("). Let us describe the sheaf QL /B(=)> by using the

above local coordinates. In a neighbourhood of a point P € ¢ \E(“), the
sheaf 0} /8= 18 locally isomorphic to O¢mdz. In a small neighbourhood

of P e E(“), we have an Op)-module isomorphism
(32-1) Qé(")/B(“) o~ (Oc(n)dz + Oc(n)dlU)/Oc(u)('UJdZ + Zd'lU) .

Moreover, we have the following lemma.
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Lemma 3.2.1. The following sequence

—1
(3.2-2) 0 — 7" O B0, Octm) = g —= Vw jpm — 0

is exact and gives a locally free resolution of the sheaf Qé(,) /B

Let Wetn) /B be the relative dualizing sheaf of x(n) . clr) o Bln)

Since €™ and B™ are non-singular and (") is flat, we have an Og(n)-
module isomorphism

[ 3
-1
wc(n)/B(:‘) o~ (UJC(H) ® 7l'(ﬂ) w (»)

where wy is the dualizing sheaf (canonical sheaf) of a complex manifold
Y. (See, for example, [Kl].) The relative dualizing sheaf Weew) /B(w) 18
described locally as follows.

In a small neighbourhood of a point P € (™ \ £(® we have

1
wc(n)/B(..) = QC(n)/B(n) ™~ Oc(n)dz.

In a small neighbourhood of a point P € £, we have

Wen) /8w Ocm(dz A dw) ® (dTM)-l
In particular, we have

d
Oc(,)f if 240

dw
c(u)? if w -'/—' 0

We) /B(n) =

with relation

dz d
dz  dw _ .
z w
if zw # 0.

Lemma 3.2.2. There exits an exact sequence
1
00— QC(n)/B(n) — Wee) /Bn) > Weis) /B ®Oc(") Ogm — 0.
Proof.  The mapping Qé(n)/B(") — wee/pem s given locally in a

neighbourhood of a point P € (") \ £(?) by

dz —— dz
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and in a neighbourhood of a point P € (™ by

dz — 2(dz A dw) ® (drag) !
dw — w(dz A dw) ® (dry)™!.

In particular, we have
d
dz — z;z if27#0
dw — w?w ifw#0.

This proves Lemma 3.2.2. v Q.E.D.
Lemma 3.2.3. Put

(3.2-3) Ocweygem = Homo  (Qm 1801, Octm)-
Then O¢(-) /B(») IS an invertible O¢)-module and there is an isomorphism

(3.2—3&) @c(n)/g(..) ad Hmnoc(“)(wc(n)ls(n), OC("))-
Hence, @C(")/B(") is an invertible sheaf.

Proof. By (3.2-2) it is easy to show that in a neighbourhood of a
point P € C™ \ £(® we have an isomorphism

0
Ocm /8t 2 Ocimr 5~

and in a neighbourhood of a point P € (™ we have an isomorphism

9 0
.2‘ n )y o n - r-umm B
(3.2-4) Ocm /B = O )(Zaz waw)
By this fact and (3.2-1), we have the desired result. Q.E.D.

From the exact sequence (3.2-2) we obtain the following Corollary.

Corollary 3.2.4. The following sequence
-1
0— @c(n)/s(u) — Oy — 7™ Ogm ® O
— Bztp  (Qpm g Ocm) = 0

of Oc(»)-modules is exact.

Lemma 3.2.5. There exists an exact sequence

(3.2-5) 00— @B(..)(—log D(n)) — 93(.) 4 wS")G)E(..) — 0
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where
@B(n)(_log D(n)) = { v e eB(n) ‘ U(ID(I)) C ID(u) }

and Iy is the sheaf of the defining ideal of D™ in B(™),

Proof.  First note that the sheaf @ge)(— log D(™) is a sheaf of germs
of vector fields on B(™ tangent to D™, Since #(® : ¢™ — B(™ js a local
universal family, using the Kodaira-Spencer mapping and (3.1-1), for each
point s € B™ we have an exact sequence

0 — HY(C,,0¢,(—(n+1) f:lsi(s))) - T,B™
j=

— H%C,, Eztp,, (0f,,0c,)) — 0.

Each element of H!(C,, ©¢,(—(n +1) E;-Ll 3j(8))) corresponds to a tan-

gent vector of B(™ at s preserving the singularities of C,. Hence the sheaf
version of the above exact sequence is the exact sequence (3.2-5). Q.E.D.

-

Theorem 3.2.6. Let (1r(“) ™ B("); sﬁ"),sg"),--- ,s?}); tgn),ign),

. ,ZS(;)) be a local universal family of N-pointed stable curves of genus
g with n-th infinitesimal neighbourhoods. Then there exists an Opg)-
module isomorphism

(3.2-6) p: 04(—log D™) 5 R'm,(Octm /am (—(n + 1)S™))

where we put Sgn) = 8;‘(3(")) and $™ = E;'v=1 Sgn)'

Proof.  Applying Homp_,( ,Ocw) to the exact sequence (3.2-2),
we obtain the following exact sequence

(3.2-7)
-1
0— ec(..)/B(.., — Oc) ) Opm ® Ocn)

1 1
= Ezty ., (e gmr Ocen ) — 0.

This exact sequence splits into the following short exact sequences.

(3.2'8) 0 — ec(u)/B(n) —)ec(u) —Kf M - 0.
0> M- W(")_IGB(u) ® Ocm
(3.2-9) - %c(,) (Qé(..) /B> Ocm) — 0.

Let T be a sheaf of germs of holomorphic vector fields on C™ pre-
serving n-th infinitesimal neighbourhoods. The sheaf 7 is given by

(3.2-10) T ={v € O |v(ls) C I3*'},

47



where we put S = E;-Ll S;. The sheaf T is an Og(s)-submodule of ¢
and coincides with ©¢) outside Uj-v=1 S;. For a point P € S; we let
(u1,ug,...,up,2) be local coordinates of C(") with center P such that
(u1,us2,... ,up) are the coordinates of B(™) with center 7{")(P) and that
S; is defined by the equation z = 0 in a neighbourhood of P. Then, in a
neighbourhood of P the sheaf 7 is generated by

om0 0 5

0z’ Ouy’ ' Ouy

as an Og=)-module. Hence T is locally free on cn),
Let us consider the exact sequences (3.2-8) and (3.2-9). Since the
support of E_:g_t,bc(n)(ﬂé(,)/s(_,,oc(,)) is in (") the sheaf M is equal to

w(")—IOB(u) ® Opmy on O \ £(*), By using the above local coordinates
of C(™ with center P € S;, the restriction of k to 7 in a neighbourhood
of P is given by

0

(9
’—»ZB uzauJ

a(u, z)z ("'H) -}-ZB u, z) B
3

Hence k : 7 — M is surjective and its kernel is ©¢s) g (—(n + 1)5(™)
in a neighbourhood of P. On the other hand, on B(™ \ Uf;l S; the sheaf
T is equal to ©p(n. Thus we have an exact sequence
(3.2-8a) 0 = Opm/sm(—(n+1)S™) 5 T = M — 0.
From the exact sequence (3.2-8a) we obtain a long exact sequence
(3.2-11)
0- 7r£n)(9C(-)/3(n)(—(n +1)s™) S AT
— Ws.")M 4 Rl‘lri")(@c(..)/g(..)(—(n + l)S(")))
— Rl'rr.(.")T — lerf.n)M - 0.
Put By = B™\ D™, ¢y = 7M™ (By), mp = 7|Co. Then on By,
TosM = Opgx) and the homomorphism p is the Kodaira-Spencer mapping

by Corollary 3.1.3. Since our family is a local universal one, p is isomorphic
on By. Therefore, the shea.f homomorphlsm T in (3.2-11) is isomorphic

on By. But on By we have 7" (@c(..)/g(..)( —(n +1)S™)) = 0. Therefore,

(")T = 0 on By. As 7 is locally free, s ™) is torsion free, hence 1r( 1=
"0 on B™), This also implies

(3.2-12) vr,‘."’(ec(-)/mn)(—(n +1)s™) =0
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on B™,
Next we show that p in (3.2-11) is isomorphic. For that purpose it

is enough to show that R7MT is locally free. Because, if RN T s
locally free, as p is isomorphic on By, Cokerp is a torsion subsheaf of
R11r£")T, hence zero. By the cohomology theory of coherent sheaves,

xX(T ® O¢,) = dimg H%(C,, T ® O¢,) — dimg H(C,, T ® Oc,)

is independent of s € B(™), where C, = 7" ~}(s). (See, for example, [BS).)
Moreover, if dimg H(C,, T ® O¢,) is independent of s, say k, since we
have H%(C,,T®0¢,) = 0, R Tisa locally free Ogs)-module of rank
k on B(™). Therefore, it is enough to show that H%(C,, 7 ® O¢,) = 0 for
all s € B, '

Since C, is a locally complete intersection in €™, we have an exact
sequence

0— 8¢, = O ®0O¢, = O¢,(N) — E_a:t_é)C.(ro‘,Oc,) — 0

where N is the normal bundle of C, in C(™) which is a trivial bundle of
rank 3g—3+4(n+1)N. (See, for example, [Ar].) From this exact sequence
we obtain two short exact sequences

0_) OC. — @c(u) ®OC' - M3 -— 0,

0— M, - Oc,(N) = Eztp, (e, Oc,) — 0.

Similarly as above we have an exact sequence

N
0— B¢, (—(n+1) ZQJ) - TQ0¢c, - M,—0,
i=1

where Q; = s;j(s). This gives a long exact sequence
(3.2-13)
0= H®Cy,0c,(~(n+1) 3 Q;))
— H%(C,, T ® Oc,) —» H(C., M,)
5 HY(C,y,00,(~(n+1)3Q;)) = HY(C,, T ® Oc,).
The cohomology group H°(C,, M,) parameterizes infinitesimal displace-
ments of C, in C{™. (For the details see Tsuboi [Ts], where the theory is

formulated without n-th infinitesimal neighbourhoods, but the extension
of the theory to our situation is immediate.) Since 7( : ¢(® — B
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is a local universal family, infinitesimal displacements of C, in ¢™ and
infinitesimal deformations of C, coincide. Hence the homomorphism p in
(3.2-13) is isomorphic. Hence we have H%(C,, T ® O¢,) = 0.

Finally we show that 7{"™ M is isomorphic to ©gm(—log D™). From
(3.2-9) we obtain an exact sequence

0= UM = Ope 5 Wsn)(ELtloc(,,(Q}:(-) /80 Oc)) -

The homomorphism t is the same to the one appearing in the exact se-
quence (3.2-5). Hence t is surjective. Therefore, by Lemma 3.2.5 "M
is isomorphic to ©g)(— log D™). Q.E.D.
Remark 3.2.7. The homomorphism p in the above Theorem 3.2.6 is also

called Kodaira-Spencer mapping. The above proof shows that there exists
an exact sequence

-1
0— @c(n)/s(n)(—(n + 1) z: Sj) —>T - ﬂ(n} 93(-;) ® Oc(n)

— Emtloc.(ﬂlc., Oc,)— 0
where T is a subsheaf of O defined in (3.2-10). Choose a small Stein
open set U C B™ and a vector field v € HO(U, O gy (— log D™)). Choose
also a Stein open covering {U;};jes of 7™ ~1(U4). Then v also defines an el-
ement 7MWy € Ho(uj,w(")‘leg(.) ®O¢m ), whose image to Mbc_ (Qc,,
Oc,) is zero, since the tangent vector v is a direction of an infinitesimal
deformation preserving singularities. Therefore, if I{; is small enough, we

can find an element v; € H%(U;, T) which is mapped to 7™y, Then, we
have _

Vi = vj —v; € HO(U,' nU;, ec(.,)/s(q)(—(n + 1)5))

and {v;;} defines an element

[{vi;}] € H' (=™ U), 8¢ s (—(n +1)8)).
The mapping
v — [{vi;}]

is nothing but the Kodaira-Spencer mapping p in Theorem 3.2.6.

3.3. Tower of local universal families.

Let 30 = (2@ . c® - BO), 3(10),3(20), e ,353)) be a local universal
family of N-pointed stable curve of genus g. The proof of Theorem 3.1.5
says that the family F© can be constructed from a local versal family
7 : C — B of the semi-stable curve C. The following theorem is an easy
consequence of the proof of Theorem 3.1 5 and plays an essential role in
our theory.
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Theorem 3.3.1. Let (70 : ¢ - BO), 350),320),... ,35.3)) be a local
universal family of N-pointed stable curves of genus g. Then for each
non-negative integer n we have a local universal family ™ = (x(® : ¢(
— B, 3(1"),3(2“),. . ,sf{:) ; fg"),f("),. . ,fg}‘)) of N-pointed stable curve
of genus g with n-th infinitesimal neighbourhoods such that the following
diagram is commutative.

C - O — ) ... ¢ — ) ..

(331) | ! ! ! !
B - BO — B ... p» L p=+t) ...

which is compatible with sections and infinitesimal neighbourhoods. Here,
w : C — B is a versal family of semi-stable curves associated with the
family 70 : (0 — B©), (See the proof of Theorem 3.1.5.)

By the theorem, as a limit, we have a family (7r(°°) . ¢(®) o Bleo)
; sgm),sgw),... ,sg?); fgw),fgm),. .. ,fg-p)) where C(®) and B(*®) are re-
garded as infinite dimensional complex manifolds and each fibre of (%)

consists of an N-pointed stable curve xloo) = (C; Q1,Q2,...,QnN; t§°°),

1t U N

of genus g with formal neighbourhoods. Moreover, there
exist canonical holomorphic mappings ¢ : ¢{®) — ¢(®) and ™ .
B(®) — B, The group D®¥, D = AutC((£)) acts on B(*) from left.
(See (2.3-1).)

Remark 3.3.2. More generally, in Theorem 3.3.1 by the proof of Theo-
rem 3.1.5 we can always assume that for n > p the holomorphic mapping
B™ — B®) is a principal fibre bundle with structure group (Gy )",
where the group Gy, , is the subgroup of ring automorphisms Autc(C[£]/(£7))
which induce the identity automorphism of the ring C[£]/(£P). Moreover,
the diagram

cmn — ¢
l l
Bn) _—, g

is cartesian. That is, ctm = ¢l x B(=) B®), In the following we always
assume that the families ™)’s have this property.

Corollary 3.3.3. A (DP)®¥_invariant holomorphic function on B(®) js
the pull-back of a holomorphic function on B?).
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In the following we generalize Corollary 3.3.3 to the case of sheaves on
B(*),

Lemma 3.3.4. For any non-negative integer n the following sequence

(3.3-2)
0 —»90(.,“)/3(.“) (—(n + l)S(fH'l))
- ecu-)/s(n)(—(n + l)S(")) ® Op(asny

N 1 2
- ec("“)/B("ﬂ) ® (GBj-*-l( n(t+1) I;(tﬂ))) -0

of Op+ry-modules is exact, where we put S( P) slP )(B(P)) 5P =
T, 8 and Iy is the sheaf of defining ideal of s,(") inCw).

Similarly the following sequence of Ogs+:)-modules is exact.
0 = Opnt /B —Opa+n(—log D)
(3.3-3) — Ogm(—log D™) ® Opgass) — 0.
Let us define a sheaf © g (— log D{*)) on B(*) by
(3.3-4)  Opten(—log D™} = lim O g (- log D™) ®0 ) Opieo)-

By Theorem 3.2.6 we have the following Proposition.

Proposition 3.3.5. There is a canonical Og(«)-module isomorphism

p: Ope) — li‘ﬂl(Rl‘lr-(-n)@c(n)/B(n)(—‘(ﬂ + l)S(n+1)) ® Opgiea )-

For a local universal family §(® = (x(® ;¢ - g7, s( ") (") N
(n) t(n) ("),... y 1 f,?)) we let [ st be the sheaf of the deﬁmng 1deal of

S}n) = s(o")(B(")) in C*). In the followmg we use the following notation.

0**(-.) = llm OC(n)/I (,,) ,

)(p) = 11m Ocm (pS(") ) ;’},"}1 for each positive integer p,

K:S?}n) - lﬂogjn)( ).
p

Also we fix an element §; € 1 g(m such that

& =5"71¢) mod ().
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Then there is an Og(»)-module isomorphism
(3.3-5) @g}n) ~ Ogm [[¢;]]
(3.3-6) Kgm = Ogm((§5)) -

Note that the first isomorphism is canonical up to the order n in £;. Taking

the limit, for a local universal family (#{) : C(®) — B(c0), 3500),3%00),

. ,35.30) ; E§°°),Z(2°°), cen ,ZS.?O)) we introduce the similar notation and we

have canonical Og(~)-module isomorphisms

(3.3-7) Ogier 2 O[]
(3.3-8) Kg-;_oo) =~ Ogea)((€5))

where ¢; = fgm)'l(f). The filtration {F,} on Oge) and Kgeo) are defined
by 7 El

(3.3-9) FpK e 2 O [[§511657-
Define
(3.3-10) G);g}n)/g(s) = Mos(,.)(@gjm@g«jn))
(3.3-11) Ot /g (P) = Moa(“)(@qnh@gn@))
(3.3-12) Ot er (*) = 1im Oy o) (P)
P
= Dero,,, (Kgm, Kgm)
d
o 03@)((5;‘))35-

Also we introduce the filtration on 93:5_..)/3(,,)(*) by

(3-3‘13) Fpeg‘jn)/ﬂ(“)(*) = eg‘zn)/B(')(‘“‘(p + 1)) .

Proposition 3.3.6. Assume that the condition (Q) in 2.1 is satisfied for

each fibre of a local universal family ™ = (=™ . c¢(® - B, 35"),

I ST

1) There exists an Og)-module surjective homomorphism

N
(3.3-14) 6 €D Og0m gem(*) = Ogeny(~ log D™) — 0.
=1
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2) Ker8™ is equal to the following sheaf

(3.3-15) 7 (¢ (¥S™)) @ EB O 5w /g =(n+1))).
j=1

Proof. By the following exact sequence
0 — O¢m /g —(n+ 1)S™) = B¢ty am ((m — n — 1)5™)

d
- O ®fL, Ol ™ - 0.

d¢;

we have a long exact sequence
0— 7r.. ((GC(n)/B(n)( -_n - 1)5(")))

- O)1(BfL Opm P — )—'le (Octm /g (—(n +1)S™))

&;
— RIWS.")GC(.)/B(.,)((m -n- 1))5(11))

If m is sufficiently large, the last term of the above exact sequence vanishes
and we have an Og)-module isomorphism

d
—m+k
Bt Opm €l ™ —

d§;

Hence, taking m — +00, we obtain the following exact sequence

o~ eﬂu)/g(,)(m -n- 1)/93.}..)/8(")(—(11, -+ 1))

0— Wyl)(@c(-)/s(-)(*s(n))) - 63;!’_-193-}“.)/3(-)(*)/eg’(j")/g(n)(_(n +1))
— R (8¢ s (~(n + 1)5™)) - 0.

By Theorem 3.2.6 we have the desired result. Q.E.D.

Remark 3.3.7. The geometric meaning of the above homomorphism 6(*)
is as follows. By (3.3-12) there is an OB(,.)-module isomorphism

Og0m () = Opo (&)

;-

.. . . . d

This isomorphism is canonical up to the order n in §;. For (f; E, cee
1
d d d

IN=="), fi—— € Ogm((£;))—— let us consider the first order infinitesi-
mal coordinate change
(3.3-16) & — & +€f(&)-
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This defines a first order infinitesimal deformations of each fibre of our
family 7 : ¢(®) — B(™). Moreover, since we do not change the co-
ordinates around singular points of the fibre, the first order infinitesi-
mal deformation preserves the singularities. Hence, it defines a vector -
field on B(™ preserving the discriminant locus. This is nothing but our

d
(n) — —_
0 ((fldfl,”"deEN)).

Now let us consider the tower (3.3-1) of local universal families. The
proof of Proposition 3.3.6 shows that there exists the following commuta-
tive diagram.

OB(n+l) nd 0

N N
®j=1e§}"+1)/5(n+1)(*) - G3j=1e§§")/s(n)(*)®05(“)

N 18

98(n+1)(_ log .D("+1)) — Og(n)(— log D(n)) ®OB(") OB(n+1) - 0

! !
0 ‘ 0
Taking the limit n — oo, we obtain the following Theorem.

Theorem 3.3.8. Assume that the condition (Q) of §2 is satisfied.
1)  There exists a surjective Og(e)-module homomorphism

X d
6: Os(w)((Ej))Ef — B (—log D)) — 0.
i=1 7
I N d
2)  The restriction of 6 to @j<, C((ﬁ_,))z&—
J
~ d
6: @ C((&)) 7 — Ot (— log D)
j=1 J

is a Lie algebra homomorphism.
3)  The further restriction of 6

N
0: € Il 7= — Op(~Iog D)
j=1 i

coincides with the differential of the action of (‘DI)EBN on B(>),
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4) We have

LA
Kerf = #.Eoo)(@c(m)/gtm)(* 3 S,(~°° ))-
=1

Og(w)((fj))% has a structure of Og)-Lie algebra given by a Lie

j
bracket [ , ]o defined by
(3.3-17)

1£(65) i

d&,’*" d&; dé;

where f(§;) and g(¢;) are local sections of Og)((£;)). But the Ogeo)-
module homomorphism (%) is not a Lie algebra homomorphism. This
is because f(¢;) is a Laurent series whose coefficients are holomorphic
functions of the parameter space B(®). To obtain a Lie algebra homo-
morphism we need to introduce the following Lie algebra structure on

(&) ] g(fJ) (f(f:)) f(fJ) ( (€)=

d
Ogm((€
B (( J))d{,
. d .
Definition 3.3.9. On OB(W)E we introduce a bracket [ , ] by
j
d
i

d d d
+6(f & (9)—1— (g Ej)(f)_j'

Proposition 3.3.10. The bracket {3.3-20) induces a Lie algebra struc-
ture on OB(m)((f,’]))d‘Z hence also the one on @ _IOB(M)((EJ))d(; With

respect to this Lie aIgebra structure, the homomorphism 6 in Theorem
3.4.4, 1) is a homomorphism of Lie algebras.

Proof. As was explained in Remark 3.3.7, (fldfi’ . ,fN f ) and
1
d d
(g1=—,-.. ,gn——) define the first order infinitesimal deformations of
dy N

each fibre of the family F™) defined by

A: & — & +eafi(s§)
B: & — &+ e20;(5,65)
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respectively, where s denotes the parameters of the base space B™ . If we
first deform fibres of F™ infinitesimally by A then deform them by B,
we obtain
(3.3-18)

& — &itefi(s, &) + e29i(s,§5)

+ €162 (9(")(gjd€ij)(fj(3,€j)) +9j£;:(fj(3,fj))) .

Because, by applying the infinitesimal deformation B each fibre of =(™)
: (™ - B(™ deforms infinitesimally, hence it changes the parameter s,
and we need to add the effect of this fact, which is nothing but the third
term of the right hand side of 3.3-14. Reversing the order of infinitesimal
deformations, we have
(3.3-19)

& — &itefi(s, &) + 6295(3 §5)

ety (e( s g e, ) + - (oo s,)) .

By subtracting 3.3-18 by 3.3-19, the coefficient [§{")(A), 8(*)(B)]of €;¢; is
equal to #("~1)([A, B]). Taking the limit n — co we obtain the desired
result. Q.E.D.

§4 Sheaf of Vacua Attached to Local Universal Family

4.1 Sheaf of Vacua.
Let §*) = (7(0) ; (o) - ploo); () o)
(00))

(00) . E(OO) E(OO)

be a local universal family of N-pointed sta.ble curves of genus
g Wlth formal neighbourhoods. We assume that each fibre of the family
F(®) satisfies the condition (Q) in 2.1. Main purpose of the present section
is to define the sheaf of vacua V}(S(“’)) of attached to the family.

Definition 4.1.1. The sheaf gy of affine Lie algebra attached to the
family %(®) is a sheaf of Opg(y-module

gy = 8 8¢ (GNBI Oge) ((€5))) ® Opteoy - €
with the following commuta.t;o_n relation.
[©1X; ® £, ®;11Y; ® 9] =&L1(1X;, V5] ® (fi95))
D i(Xj, Y;) Res((9;f;)
¢ €Center "
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where
X5, Y5€9, fi9; € Opea((§))-

In the above formula @ﬁv:la_,- means (dj,...,a,). We shall often use
this notation below. We also put

(4.1-1) §n+ = 98¢ (81,05 [[§]14))
(4.1-2) gv-=08®c (69;-\’:103(00) [f_,‘_l]fj_l)
@ E ga ®c C. 1a
a€A_
where

Ia = (la L., 1) € ®§V=IOB(°°)((£.‘I'))'

Then by the commutation relation defined in Definition 4.1.1, gy 4+ and
gn_ are subalgebra of §y. Further put ‘

(4.1-3) 5(E) = g ®c 17O (x5)))

where we define

There is a sheaf version of homomorphism defined in (2.1-3), by using

the formal neighbourhoods tg-w).

t: Wsm)(OB(oa)(*S(OO))) — 63;;105(@((51'))

and we may regard §(F(®)) as a Lie subalgebra of §x.

Fix a non-negative integer £. For any X = (Ay,...,An) € (P, we
define
(4.1-4) H) = O ®C My,
(4.1-5) ﬁg.(“’) = Homo ., (Tig»oo),ag(m)).

The pairing (2.2-3) induces an Og(w)-bilinear pairing

(4.1-6) ()" @A - Opee
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which is complete with respect to the filtration introduced below. The
sheaf of affine Lie algebra gy acts on Hf-\.m) and ‘H}(OO) by

(4.1-7)
N
(@L1(X; ® %%E}‘))(F® %)) E Y (anF) ® pj(X;(n))|¥)
ne i=1n€Z
(4.1-8)
N
(2] ® F)(@21(X; ® 3 ant})) Z > ((2lej(X;(n)) ® anF

nez i=1n€eZ

where F € Og, |¥) € My, (9] € ’H} and p;(X;(n)) means the action

of X; ®¢} on the j-th component of H; and ’h{}‘\.. Then, the above pairing
( | )is @n-invariant. That is, we have

(Va|®) = (V]|ad) for any a € gn.
Definition 4.1.2. Put
Vs(3)) = HE 75(3)HE
VI(3) = Homo, ., (V3(3"), Opte).

These are sheaves of Qpg)-modules on B(*®). The sheaf V;-(;f(c’o)) is
called the sheaf of vacua attached to the family (). Note that we have

VIE) = {(¥] € H™| (Tla=0 for any a € §(F™)}.
The pairing (4.1-6) induces a non-degenerate Og(oo)-bilinear pairing
(1) VEHE) @ Vy(3™)) — Oper.

Lemma 4.1.3. Let X(%) correspond to a point s € B{®), By the canon-
ical isomorphism Opg(x) ,/Ms =~ C, where m, is the maximal ideal of the
stalk Og) ,, We have the following canonical isomorphisms.

H) @ (Oper /M) = H
N ® (Ope) 5/ M) ﬁN
5(5)) ® (Op(e o /M) = (X))
( ) ® (O 5/ M) = V5 (X))
HE™) @ (Opien o /m,) = HL.
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Moreover, the action of g on ﬁg.m) defined in (4.1-7) and the action of §n
on Hy are compatible with respect to the above canonical isomorphisms.

Proof.  The first, second and the fifth isomorphisms are clear from
the definition. Note that we have

7™ (Opiem (k81)) = lim 1O (e (£5))
k

and 7% (O g0y (£S(®))) comes from 7™ (Opem (kS™)). If k is sufficiently
large, we always have the base change

N
75 (Ocm (ES™)) @0, (Opem) o/ Ms) & HY(C,, Oc, (kS 58(s)))
j=1

since we have

N
H'(Cn Oc.(k Y2 o7(s) = 0
J:
where C, = 7(™~1(s). (See for example, [Ha, Chap. III, Corollary 12.9]
or {BS, Chap. III Corollary 3.5].) This implies the third isomorphism.
Finally let us consider the following commutative diagram of exact
sequences

0

4

BEENATYeC, 5 (3(3) e C)H ®C,)

la le
#Pec, 2 H;
l l
v3ehec, S V(X))
l l
0 0

where we put C, = OB(m),,/m_.,. The above argument shows that the
mapping [ is surjective and the mapping < is isomorphic. Hence, the
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commutativity of the diagram implies that the mapping v induces iso-
morphism between the Im(a) and Im(e). Therefore, the mapping § is

isomorphic. QE.D.
Define the action of (DI)QN on Oy ((€5)) by
(4.1-10)
h n n N ®N
A(Y an€}) = 3 Lp(an)h;(€}) for h=(hy,...,hn) € (D)
neZ neZ

where L}-; is defined for any F € Op(o) by
Ly(F)(s) = F((k™"03)), se€B.

Note that the action of ('Dl)eN on B(®) is defined in (2.3-1). (See also
3.1.)

Define the action 7 of ('Dl)eN on ﬁf-\-m) by
(4.1-11) w(R)(F ® |¥)) = L;(F) ® (o(G[h)))|¥)
for h € (’Dl)eN. (See (2.3-1).) Also we define the action 7 of (’Dl)eN o
g~ by
T(h) (@1 X; ® f; ®a- c) = @11 (X; ® hi(f;) ® Ly(a) - ¢

n

-~ N
for i = (hy,... ,hy) € (DV)®", X; €9, fi € Ogea((§5)) and a € Og().
The following Lemma is an easy consequence of the definition of the
actions of (’Dl)eN and Theorem 1.4.5, 1).
N

Lemma 4.1.4. ﬁ(ﬁ(m))%g’o) is stable under the action of ('Dl)GB on
q7(00
HE.

Let us consider the tower of local universal family (3.3-1) of N-pointed
stable curves of genus g with infinitesimal neighbourhoods. As was ex-
plained in 3.3, 1) : ¢{) — ¢(1) and M) : B o B are principal
fibre bundles with structure group (‘DI)QN. Put

HY = {f e HS) | n(h)f = f forall ke (DH)®"}
B0(E) = { £ € BE)| 7(R)f = f forall ke (D)™}
By Lemma 4.1.4, ('DI)QN acts on Vx(s(m)). Put

-~ fnd o .N
VY = {9 € V5(F) [ n(R)g = g forall K e (D)™ }.
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Then ’7.'2(..1), §(W(F(*)) and fiﬂl) are 'l,b(l)_lO ay-modules and we can show
by X B
that there are canonical isomorphisms:

o _
) @yor-10,, Oate 2 H5”

ﬁ(l)(s(oo)) ®¢(1)"1OB(” OB(N) = ﬁ(s(m))
V5 By-to,, O = V3(E*)

Lemma 4.1.5. On BY) there exist sheaves 'Hf-\.l), 3(FW) and V(W) of
Opg)-modules such that

HY =y HY,
§OF) = M7 (EW),
PO = 07 (3,
Moreover we have a non-canonical isomorphism
3(F) ~ g®c rﬁl)Ocu)(*S(l)) :
where SO = £, s((BW),

Similarly we can define the sheaves ﬁ:f\-(l) and V;.({S’(l)) on B,
Lemma 4.1.6.

Vi(3™) = 1P /53R,
Vi(EW) = Homo,,, (V3(3™), Opo)
={(g e Y| (¥la=0 forall aed3FV)}
Remark 4.1.7. We deﬁné
V(W) = V3 (3W) @0, (Opm ./ M)

where the point s € BY) corresponds to X(1). Then by Lemma 4.1.3 and
Lemma 4.1.5 we have a canonical isomorphism

Vi(£W) o Vy(E())

where ¥°) is an N-pointed stable curve with formal neighbourhoods
whose restriction to the first order infinitesimal structure is X(1).

4.2. Coherency.
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In this subsection we shall prove the coherency of the sheaf V;\-(S(l)).
First we introduce filtrations {F,} which play an important role in the
proof of coherency. The filtration {F,} on @;-V:lOg(m)((fj)) is defined by

F(@li0p((6)) = X (@N1F08=((65)), pEZ
n+..pN=p

where
Fy0p)((£)) = Ogion [[€]1677-
The filtration {F,} on gy is defined by

8 ®c Fp(® 108 ((£))) ® Opeor ¢ p20

4.2-1 Fany =
( : o { 8 ®c Fp(®IL,0p ((45))) p<0.

The filtration {F,} on ﬁf-\.w) is defined similarly as in (1.3-4) by using the
eigenvalues of the operator Lg. Namely, we define

FPTt'(i'OO) = Z Opi) Oc (FleAl @ Fp,Ha, ®... ®FPNHAN)'
i+t tpN=p

Hence we have

FoH{™ = Ogi @ V2, ® ... ® Vi
GrIHE) = Ogiy ®C GriH;.

Let us assume that our local universal family %) has holomorphic
sections a{,l), k=1,2,...,n such that aﬁl)(B(l))’s are disjoint from each
other and also disjoint from S;-l) = s:(,-l)(B(l))’s. Moreover, we assume that
each irreducible component of each fibre m{1)~1(s) contains sufficiently

(1

many o;, '(s)’s. These assumptions are always satisfied, if we choose B©)

sufficiently small. These sections induce the sections a}fo) of the family
F(). Put

Ao = 1) Oy (1) = 3 o(B)).
k=1

Further put

8(Ao) = g ®c Ao
Vi(Ao = ﬁ&“)m’}“).
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Since Ap is a submodule of 7r£°°)(0c(oo)(*5’(°°))), 9(Ap) is a Lie sub-
algebra of §(F(>)). Hence there is a canonical Ogw)-module surjective
homomorphism

(4.2-2) Vi(Ao — V5(5>)).
(c0)

Since the sections o), ° come from the sections o;,

Lemma.

Lemma 4.2.1. H'f-\‘oo) is stable under the action of (D! )eN on ﬁg.oo).

{0), we have the following

Thus we can define

(o) = {19) € Vy(Ao| (R ¥) = |¥) for any Ke (D)™ }.

Then we have
(1
v}{(AO = Op(e) ®¢(1)-108(1) V;(\- )(Ag) .

Lemma 4.2.2. There exists a sheaf Vg\-l)(.Ao) of Ogu)-module over B
such that "
P(Ag) = M7V (4y)

Moreover, there is a surjective Ogn)y-module homomorphism
1
(4.2-3) V() — V5(3™M).

Proposition 4.2.3. The sheaf V;.l)(Ao) is a coherent Ogu)-module.
As a corollary, by Lemma 4.2.2 we obtain the following theorem.

Theorem 4.2.4. The sheaf V:\-(S(l)) is a coherent Ogn)-modaule.
By Lemma 4.1.6 we obtain the following Corollary.

Corollary 4.2.5. The sheaf V;\t(ﬁl)) is a coherent Ogn)y-module.

The rest of this subsection is devoted to proving Proposition 4.2.3.
First we note that by Proposition 2.2.3 and Lemma 4.1.3 there is a canon-
ical OB(m)-module isomorphism

0

Vf\',o(ggoo)) ~ V3(3*)) ®0 Opgteor

Bloo}

where 3800) is a local universal family obtained from ¥ by adding one
more section with formal neighbourhood. The base space of the fam-
ily 3(()00) is denoted by B(()oo). There is a natural surjective holomorphic
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mapping ¢ : B((,w) — B(®), The argument in 4.1 shows that there is a
canonical isomorphism

Vi,o(88") = V3(3) ®0,,) Ogn-

Since the natural mapping B(()l) — B is an analytic fibre bundle, hence
smooth, if vx,o(sg”) is a coherent B‘()l)-module, then V:\-(ﬁ(l)) is a coherent
Opgay-module. Therefore, to prove Proposition 4.2.3 we may assume that
the number N is large enough so that there exists an integer ko such that

(4.2-4) RO (k8D = 3 oM (BM)) = 0
k=1
for all integers k > kp. Put
A‘gl) = ng)Oc(l)(*S(l) - E O'S)(B(l))) .
k=1

Then, there is a natural imbedding
1
Ay = 15 050:((6))-

The filtration {F,} on &Y, Op)((¢;)) induces the filtrations {F.} on
A and &, 050 ((¢))-

CLAIM 1. (D1)$N acts on Wsw)(Oc(m)(*S(w) - k=1 aioo)(B(w)))) and
its invariant part is equal to qb(l)_l.Agl).

CLAIM 2. There is an injective Ogqy-module homomorphism
GrE A © R=Grf (@050 (676

where the homomorphism is induced by taking the principal part of a
Laurent expansion at Q); by the formal parameter {;. Moreover, the image
is an ideal of the ring R and the cokernel of this imbedding is locally free
Ogy-module of finite rank.

Proof. By a short exact sequence

0= Opiy(= 3 o (BW)) 5050 (kT oV — 3 oV(BMDY)
k=1 k=1 k=1

— @N1(8%,050¢;") = 0
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we have a long exact sequence

- wﬁl)(OBu)(k > ‘-"il) -y US')(B(U)))

k=1 k=1
= ol ek Opm§; ' ! )0,3(1) -3 0,(:)(3(1)))
k=1
= R7N0gm (kSM - 5 oM(BM)Y)
k=1

By our assumption the last term vanishes for all £ > kg for a sufficiently
large positive integer kg. Moreover, by our assumption for each point
s € B() we have

dime HY(C\,Oc. za(l)(s))

= dimg HY(C,,we (3 alV(s))
k=1

=g—14n

where C, = 7()-1(s). Hence R'ni)Ogu (- Ty o) (BM)) is locally
free of rank ¢ — 1 + n. Hence Coker 7 is same for all k > kg. Let
&, fi(¢;) € R be theimage of GrF AW and @ 19;(¢;) € R where f;(¢;)
and g;(¢;) are homogeneous polynomial in ¢;” 1 If N is sufficiently large,
for example N > 2g — 2 + k, by adding an element of h;({;) € Fp_lAgl)

to £3(65)9i(&5), ®N1(£;(€)9;(é;) + Rj(€;)) is in the image of the above
homomorphism 7. This shows that the image is an ideal of R. Since a

constant function in A(()I) is only zero, the injectivity is easy to prove.
Q.E.D.

We introduce the filtration {F,} on H g.oo) by the induced one from
77
N

CLAIM 3. We have a canonical Og)-module isomorphism
GT‘,F'HS\I) ~ Ogn) ®c GTF'H:\-.

Proof.  Since (’Dl)eN acts on GrF'H( ) as identity by Lemma 1.4.3,
there is a canonical mapping

GriH() - Ogw ®c GriH;.
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It is easy to show that the mapping is injective. Also by a direct calcula-
tion show that the mapping is surjective. Q.E.D.

Put (1) Dy (1)
H =AM

CLAIM 4. We have
1
GrFV (o) = GrFHD 16r EH'D
Define

5(AY) = goc AV

oy = 08¢ (B, 05076 @ Y 90 ®c Cla.
OGAG

The filtrations {F,} on ﬁ(Afjl)) and gg)_ is defined similar to (4.2-1)

except that ﬁ(A((]I)) has no center. Now Claim 2 implies the following
Claim 5.

CLAIM 5. There is a natural injective Og)-module homomorphism
Gr?ﬁ(Agl)) — GrF (1)

and the image .IS an ideal of the sheaf of Lie algebras g( ) . Moreover, the
cokernel Grf gN_ /Gr, g(A((] )) is a locally free Oguy-module.

Note that we have a canonical isomorphism

Grloli) /6T a(Ay") = Grl (gl /a(A5)).
Cuamv 6. GrF(aly) /8(ASY) acts on GrEV() ()

Put
M = 6rEvO( )
a=Gn(NJaA9»

Note that Hf-\.l) and § are Ogu)-modules. Moreover, § is a locally free
Opgm-module of finite rank and it is a sheaf of Lie algebras. Let 7: be

the image of V), ® ... ® V), to Hf-\ol). Then we have

—(1) =
My =U(g)V3
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where U(9) is the sheaf of the enveloping algebra of §.

Now we introduce filtrations {G,} on U(g) and Hf-\-l). First we define
inductively the filtration of U(§) by

Gp(U(9)) =0 for p< -1
Go(U(9)) = Ogu - 1a
G1(U(9)) = Opo - 1a + Ogn)B

------

)
The filtration on HE-\') is defined by

G,MS) = Gy(U(B)) -V

Then, since § is locally free, by the Birkoff-Witt theorem we have the
following claim.

CLAIM 7. Gr€(U(®)) is the polynomial algebra S*(§) over Ogu) and we
have _(1)
G * _
GrM; = S*(8) V.
In particular GT,GHE-\»I) is a finite S*(g)-module.
Put
R=S5"@), M=GrSM.
Then R is a sheaf of polynomial algebra of finite many variables over Op)
and M is a finite R-module. For each point s € B by R, and M, we
denote the stalks of R and M over the point s, respectively. Then R, is a

polynomial algebra of finite many variables over Og) , and M, is a finite
R,-module. Put

Ann(M,) = {a € R,]av =0 forall v € M, }.

Ann(M,) is an ideal of R,.

Now we are ready to apply Gabber’s theorem [Ga] to 11_4’?,2, U(8),
and the filtration {G.}. First of all R, = U(§), is a Noetherian ring and
A_J_g-l’i is a finitely generated U(§),-module. Gabber’s theorem says that

the radical / Ann(M,) of Ann(M,) is closed under the Poisson bracket

{ , }induced by the filtration {G,}. In our situation § can be regarded
as a subset of R,, since we have

B C GrU(8)s/GroU(8)s C
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Hence for elements X, Y € § we have

{X,Y}=[XY]
where the right hand side is the bracket of the Lie algebra §. We de-
note the images of X, ® {’_—1’ X_a®lp, €Ay inFby Xo® Ej—l and
X_o ® 15. Then, by the integrability of the representations, some posi-
tive power of X, ® fj‘l and X_, ® 1a annihilate generators of M, over

R,. Hence, X, ®£j'l, X_a®1a € \JAnn(M,) for a € A4. Then, by
Gabber’s theorem we have

Ho® & =[Xa®&5,X_a®la] € \/Ann(M,).

Similar argument for Xo ® £; %, p > 2 shows that

Ann(M,) D §.
Thus /Ann(M,) is a maximal ideal of R,, hence R,/Ann(M,) is a fi-

nite Opn) ,-module. Since M, is a finite (R,/Ann{M,))-module, M, =
Gr?ﬁ?l is also a finite Oga) ,-module. This implies the following claim.

CLAIM 8. H?) = Ger?)(.Ao) is a finite Oga) ,-module.

Now Claim 8 implies that V;l)(.Ag)_, is a finite Ogq) ,-module, hence
V:(\.l)(Ao) is a coherent Oguy-module. This proves Proposition 4.2.3.

§5 Integral Connection with Regular Singularity

In this section we shall define a sheaf of twisted first order differ-
ential operators D, (—log DM;¢,) acting on the sheaf of vacua and
the dual sheaf of vacua. In the following we formulate left action of
Dhuy(—log DM ¢y) on Vi(FM). The right action of Dy, (—log DW; ¢y)
on V}({S"(l)) is obtained easily by using the canonical pairing { | ) in-
troduced in §4. That is, we have

(¥|D®) = (¥D|®)

In this section we use the same notations as those in §4.
5.1. Sheaf Virg,,(cv)
Let () = (7r(°°) : ¢leo)  pgloo). 3(1°°),sg°°),... ,sng); fgw),fgm)
e Egﬁo)) be a local universal family of N-pointed stable curves of genus

b
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g with formal neighbourhoods. In §4 we defined the sheaf V;(3(*)) and
V}(§()) associated with the family ). Let Virg(cy) be a sheaf of
an Og(x)-module on B() defined by

%3‘(@ @OB(“) (&) 73 )@Os«n)
=1
Let
(5.1-1) p:ﬁ'g(m,(c,, @OB(W) (&) )d‘f
j=1 J

be a natural projection. By Theorem 3.3.10 there is a surjective Og(co)-
module homomorphism

f: @0!3(&)((51 ) — O (e (— log D),
j=1
Put =0op.

Definition 5.1.1. On %‘g(m)(c") we define a Lie algebra structure as
follows.
1)  Opg(e) is the center.

d
2) Let [ , ] denote the Lie bracket on @ﬁlog(w)((fj))d—g- de-

7
fined in Definition 3.3.9. For & = (1},23,... i), &=, 5,... , i) €

d
D1 0p ((6)) 77

define the bracket [ , ]vir by
d¢;’

N 3
(E,0) (Ol = [ + 53 5 e (‘P S (5,)d£)

7
where £} = (6} -

3) For Vi, V2 € Vzrs(m)(c,,) and f € Og(o) the bracket [ , ]y, has
the properties

[V, Valvir = f[V1, Valvir — ?(V 2)(F)Va

[Vh fv2]Vtr = .f[vh V2]V:r )(f)VZ
It is easy to see that the above definition indeed defines a Lie algebra
structure on Virg () (Cv). In the following we often use the notation { , ]
instead of [ , v
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Lemma 5.1.2. The following exact sequence of Og()-modules
— N d

0= Ope) &= Virge(c) — ®Os(w)((fi))—d$, -0
j=1 7

is an extension of the sheaves of Lie algebras with respect to the Lie
algebra structure defined above.

The sheaf %‘g(w)(%) of Lie algebras acts on ﬁg.m) = Ope) ®c Hy
in the following way.
For F € Opg, |®) € Hy a.nd V = (f,7) € Virg,,(c,) with £ =

(Ll,lz,... ,LN) € 63;-":103(@0)((5,-)) r € Og(e), We define

d¢;’
(5.1-2)
D(V)(F ®|®))
N .
= 6(2)(F) ® |®) —F®(§pj(T[El)lfI>))+rF® |$).

Proposition 5.1.3. ForV € 1l’}?';'sr(m)(c,,) the above action D(V') is well-
defined and has the following properties.
0) We have
D(fV)= fD(V) forany f € Ogeo) -
1) ForWh,Vae ﬁ'g(m)(ct,) we have
[D(V1), D(V2)] = D([W1, Valvir) -
2) For f € Ope and |®) € ﬁ%m), we have
D(V)(£1®)) = 8(V)([)|®) + fD(V)|®) .

By the natural inclusion

(dl @C [f:r]]fJ_ = @OB(M( & )

] dg;

(dl)GBN can be regarded as a Lie subalgebra subsheaf of ﬁ'g(w)(cu). B
the direct calculations we can prove the following two propositions.
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Proposition 5.1.4.

1)  The restriction D|(d")®" is equal to the differential of the action
of(TDl)eaN on :ﬁf-\-oo).

2) For an element

- _ N
X =(Xy,...,Xn) € @9 ®c Ogee ((§5))

i=1
and an element V € ﬁ'g(w,(c,,), we have
D), X] = 3(V)(X)
as operators on ﬁg.m).
Proposition 5.1.5. 1717;'3:(‘”) (cy) preserves ﬁ(ﬁ”))ﬁgx) .
(cy) acts on VX(S(“’}).

Proposition 5.1.7. Let Bg.., = wﬁw’(ec(m),s(m)(*s(w))) be the kernel
of the homomorphism 6 given in Theorem 3.3.8. There exists a unique
Opg(=)-module homomorphism

Corollary 5.1.6. ﬁ'g(

o0}

a: By — Ope
such that for any fe B3y We have
D((£,0)) = a(f) - id

as a linear operator acting on V;\-(S(W)). Moreover, for any h € ('DI)G)N,
we have

a(n(R)(®) = Ly(a(B) € Opteo)-

Proof.  Let X(*) be an N-pointed stable curve with formal neigh-
bourhoods corresponding to a point s € B(*), By Lemma 4.1.3, by taking
the tensor product ®OB(“,), ./ M, there are canonical reduction homomor-
phisms

. 37(0)
Ly H:\' —_ H:\'

Ly ! V:\'(ff(oo)) — V:\-(:f(m)).

The actions of T'({;) = Lpez Lnfj‘"'z on the j-th components of %gm)
and VX(S(“’)) are defined by the same way as those on #; and vx(ae(w)),
respectively. Then, for any |®) € V;(F(*)) we have

pi(T(&5)ea(1®)) = es(p5(T(£5))12)) -
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In what follows, for (¥| € V}(x(“)) and |®) € Vy(F(™)) we use the
following notation freely.

(T]|0) = (¥]es(®)) -

Then for (¥| € VL(X(=)), |@) € Vy(F)) and & = (Iy, ..., Iv), by
(5.1-2) we have

(5.1-3)
(¥|D((£,0))|%0) = - Z(‘I’IPJ(T[L])I%)

=1

N
Z_: £(&5)(W]p;(T (&) ®o)d¢;)

d
where [; = ¢; (E,) T . On the other hand, by Proposition 2.4.2 we have
Y

(¥1p; (T(&))| Do) dé]
= (|(T(&))IPo)de]

dim g
= lim {2“ 3 (®|T(2) % (€;)| o) dwde;

a=1
>
2(w — ;)2
Let us choose a meromorphic form w € H 0(6@( 3’!6","@%(2:&)) such that
(A

dwdz
(w—2)?

where 7 : C — B is the local universal family of N-pointed curves
corresponding to our family F(®). Existence of such a form will be
proved in Lemma 5.1.10, below. Let us define a meromorphic form

(T|T(2)|®o)dz? € H(C,w(x T, Q;)) by
(5.1-4)
(U|T(2)|®p)dz?

. 1 dim g . .
= Jim, {m 3 (%076 Do)

(9o dudss |

w(w, 2)dwdz = + regular at the diagonal A

—%w(w, z)(\Il|‘I>o)dwd§j} .

73



Also define S,(z)dz? by
Su(z)d2? = _% lim {w(w, z)dwdz -

Then we have

(5.1-5)  (¥|T(&)|Po)dz? = (¥|T(£)|Po)dz® + cu(¥|®0) S 5(£5)dE?

where Swd(fj)d{? is the expansion of S,(z)dz? at the point Q; with re-

spect to the formal parameter £;.. By (5.1-2) and (5.1-5) we have
(¥1D((Z,0))|®o) = Z Res (£(6(¥IT(¢)|20)dt;)

j=1 &=

+CuEReS i1(65)50w,5(&5)dE;) -

Jl’-

Since £;(2){(¥|T(z)|®o)dz is a global meromorphic one form on the curve
C, the first term of the right hand side vanished. Therefore, if we put

(5.1-6) aw(s, E) =cy- Z Res (£;(&5)Sw,;(&)dE;)

Jl’_

then a(Z) = a, (s, f) satisfies the properties of Proposition 5.1.7. Q.E.D.

Corollary 5.1.8. There exists a canonical Og(e)-module homomorphism
a. B§(m) 7] OB(@O) - OB(M)
such that for V € By, ® Op=) and |®) € V:\-(S("")) we have

D(V)|2) = a(V)|®).

Proof. ForV =(fr)e€ B3y ® Opie) put

-

a(V) =a(f) + .

Then a has the desired properties. Q.E.D.

Remark 5.1.9. We can define a non-canonical Og()-module homomor-
phism
a: Vzrs(m)(c‘,) — Og()
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whose restriction to Bg(m) ® Ope) i8 the canonical homomorphism a in
Corollary 5.1.8. Choose a meromorphic form

w € HY(C® xgo C‘“’,wﬁ'f-’)m(o)(%))

such that dwd
W= + regular at the diagonal A.

(w —z)?
Also define S,dz? by the same way as above and let S, ,j(fj)dff be its
expansion by the formal parameter {; at @;. Then, for an element V=

(B7) € Pirgio(co) with £ = (1. L) € @X10pon(&) 7 alV) i
defined by ’
(5.1-7) a(V)=cy- 2 Res 3(€5)Sw,i(&5)dE;) + 1

=160

where [; = Ej(fj)-d%. Thus the homomorphism a does depend on the
choice of w.

In the proof of the above Proposition 5.1.7 we used the following
Lemma.

Lemma 5.1.10. Let (7(9 :C(® - B®; 5, ... sy) be a local universal
family of N-pointed stable curves. If we choose B(®) sufficiently small,
then there exists a meromorphic form

w e HYCO xgaC®, ) 500 (28))

such that

dwdz
(w— z)?

Proof. The proof of Theorem 3.1.5 says that our family F® is
constructed from a versal family 7 : C — B of semi-stable curves and there
are holomorphic mappings ¢ : C(®) = C and v : B(® — B. Moreover, it is
known that the family 7 : C — B is obtained from a pull-back of a versal
family # : C — B of stable curves ([DM]). Hence we have holomorphic
mappings 55 : € - € and ;,[J : B® 5 B. If the family 7 : C—- B
is a family of smooth curves, the above Lemma is a consequence of the
existence of Szegd kernel. If the family # : ¢ — B contains singular stable

w(w, z)dwdz = + regular at the diagonal A.
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curves, then applying the arguments of Fay [FA Corollary 3.2, Corollary
3.8], we can find a meromorphic form & € H(C Xg =C, Wz ,-(QA)) with

dwdz
(w — z)?

Now the pull-back w of & to C(® x B(©) € is a desired form. Q.E.D.

w(w, z)dwdz = + regular at the diagonal A.

Remark 5.1.11. There exists a sheaf homomorphism
Res} : wity /80 (24) = Oa

defined by
T(w, 2, u)dwdz — a(u)

where

dwdz

T(w, z,u)dwdz = a(u)( + regular at the diagonal A

)2

and (u) is a system of local coordinates of the base space B(%, This is
independent of the choice of local coordinates (w, z) and is well-defined.
Moreover, if w; and w, are elements of H O(C(O) X B(0) C(O),wgg, /B(o)(QA))

with Res?(w;) = Resa(wz), then wy — wy € HO(CO x g C(O),w%/ﬂm).
This fact will be used below.

5.2. Descent to BV,

To define the sheaf of twisted differential operators, first we need to
define the action 7 of D®N on Vzrg(m)(cv).

For A= (hy,... ,hy) € DOV and V = (£,7) € ﬁ'g(w)(c,,), define
(5.2-1) (k)& r) = (x(R)(),")

where for £ = (Liy oo sdv) i = = Y aj(s)€7, we define

ljd%,v IJ
(5.2—2)
= 3 Ly(a¥(s))Ad(h; )(s;fd%),

=L ZRes( DiENENED d).

=1 £J_
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Proposition 5.2.1. For each h € D®N n(h) is an automorphism of the
sheaf Virg(w)(c,,) preserving the Lie algebra structure. Moreover, as an

Opg(oe)-module homomorphism, ©(R) is compatible with the action of Ly.

Remark 52} If we regard gleN as a constant subsheaf of Lie sub-
algebras of Virg..,(cy), then the differential of the action of DON on
%‘g(m) (cy) coincides with the adjoint action of d®¥ on Vir 5 (cy). That
is, we have . .

dn(h)(V) = [¢, V]

where £ = exp(f).
Proposition 5.2.3. For k€ (D1)®" and V € Vir g (cy), we have
m(R)D(V)m(h™") = D(x(R)(V))
as an operator on ﬁf-\.oo) and Vx(i}(‘”)).
Corollary 5.2.4. ForV € Bg.,, ® Op) and s € B(>) we have
a(h(s),V) = a(s, 7(R)V)
where a(s, V) is given in Corollary 5.1.8. Here, we also write explicitly

the dependence of s in the homomorphism a.

Now we are ready to define the sheaf Virg,,(cy) on B, Put

Vir () = { V € Virgey(ca) | 7(B)(V) =V foral Fe (D) }.

Proposition 5.2.5. There exists a sheaf Virg(l)(c,,) of an Og-module
over BY) such that Virga{ce) is a sheaf of Lie algebras and we have

= (1)

-1,
Vir (cy) > M Virga (o)

where (1) : B(®) — B(1) s the canonical holomorphic map. Moreover,
there is an exact sequence

0— 03(1) - V‘i‘l‘g:(,)(cu) - @ﬁ]eg{l)/s(l)(*) — 0

where by (3.3-12) we identify Og(l)((fj))% with @gl)/a(,)(*).
7 ¥

Since the action of %ﬁm)(cu) on V;(F(*)) and the actions of (DI)QN
on Virg,,(¢cy) and V:\-({S’(m)) are compatible, for each V € ﬁ'g(w)(c,,),
we can define the action D(V) on V3(3).
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Put
By ={V € By, | ©(R)V =V forall he(D)® 3.

There exists a sheaf Bg(,) on BM such that we have

(1)~
Bgu) ~ ~ ) B -
. -1 .
Moreover, since on () 9*(1) /B(,)(*) the action of (Dl)eN comes from

the adjoint action on 03(1)((6_1)) , we have an exact sequence
d¢;

(523) 0= Opoy = Virge (o) = ©71(Ogm (%)) = 0

which is an extension of Lie algebras.
Proposition 5.2.6. Bg,, ® (& _1(6-11)/8(1)( —2))) can be regarded as
an ideal of Lie subalgebras of Virg,(c,) and it acts trivially on VX(S(I)).

5.3. Sheaf of twisted differential operators.

Let us define a locally free sheaf Veq)(c,) of rank two on ¢(1)\ ().
It is locally a direct sum

96(1)/3(1)(—25(1)) ® weay /o) -

Let (uy,...,up,z2) and (uy,... ,up) be local coordinates of (1) \ T(V)
and those of B, respectively such that (1) : c® o B jg given by
the projection to the first M-factors. Then an element V € Vpa)(cy) is
expressed by

V = (¥, z)diz’ n{u, 2)dz).

If (u},...,u)y, 2') are other local coordinates, by definition, V is expressed
in the form p
= (. N2 roNg !

V= (u,z)dz,,'rr(u,z)dz)

where
o 't ) g 42
£, ) = fulal, ), 2, 2N )
r =1

B3 i, ) = nluled, 2), 20, ) ()

{z z}e(u(v, 2", z(v/, ') (?l'z_)
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This defines Vz)(cy) as a sheaf of Opay-module over V' \ £(1) and the
relations (5.3-1) show that the projection to the first factor induces the
following exact sequence.

(5.3-2) 0— Weay/gy — Ve (cw) = ecu)/Bu)(-2S(1)) -0

Moreover, since weo) /g and ec(n/gm(—QS(l)) are invertible on C(1),
and £ is of codimension two in C(1), the sheaf Vp(cy) can be extended
to a locally free sheaf of rank two on C(!) by using the above exact sequence
(5.3-2). Thus we may regard the exact sequence (5.3-2) as the one of
Ocay-modules over C(V). Then, by (5.3-2) we obtain an exact sequence

0— Rl?r£1)wc(1)/5(1) — R1ﬁ£1)Vc(1)(cv)
- R11r£l)ec(1)/3(1)(—25'(1)) — 0.

Note that there are canonical Ogay-module isomorphisms

R1W£1)WC(1)/B(1) ~ Oga)
and
9(1) : Rlﬂil)(ecu)/B(n(—25(1))) =~ @B(x)(— 10g D(l)) .
Put '
Dzlsm(" log D, cy) = R11r£1)1/'c(1)(cv).

Then the above exact sequence is rewritten in the form
(5.3-3) 0 — Oguy — Dhoy(—1log DY;¢,) = Oguy(—log DY) — 0.

If we fix w € HY(C® xg0 CO, 0w 5o (24)) with Resi(w) = 1, the
local splitting of the exact sequence (5.3-3) is given as follows.
(5.3-4)

@c(l)/g(l)(°~25(1)) 48] We) /0) o~ Vc(l)(cu)

(b, (2)dz) — (e (f(2) + - H)S(2)de)

where S(z)dz? is a projective connection defined by

dwdz
S(z2)dz* = lim {w(w, z)dwdz — ————}.
(2)42* = Jim (v, duds — =223)
Note that the projective connection does depend on the choice of the

coordinate z and we have
1

S(w)dw? = S(z)dz? + ﬁ{w; z}dz2.
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This fact and (5.3-2) imply that the splitting (5.3-4) does depend on the
choice of a meromorphic form w. By taking the first direct images of
sheaves in (5.3-4), this splitting induces an Ogu)-module isomorphism

(5.3-5) Opum (~ log D) @ Ogay = Dy (—log DW; cy).

Proposition 5.3.1. There exists a canonical surjective Ogn)-module ho-
momorphism

o : Virgy (co) = Dpoy(—log DW; cy)
such that the following diagram is commutative.
1)
Virga(cv) % Dgy(—log DM;ey) — 0
pl l

1)
®L105m/5m(*) = Opmr(-logDV)  — 0.

Moreover, we have
A1) 2
Kerf'’ = Bg(,) ® @ @‘(1)/3(1) —2))).

Proof. By the exact sequence (5.2-3) and by Proposition 3.3.6, we
have the following diagram of exact sequences.

0 — Ogy — Vzrs(l)( ) LA T - 0
I L oW

0 —» Ogy - 'D}B(,)(—logD(l);cv) — ¢ — 0
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where

N
A= B§(1) @ @(93}1)/8(1)(—2))

=1

N

1= @(9‘37.1)/3(1)(*))
=t "’

¢ = Qg (- log V).

By Remark 5.1.9, if we fix w € HY(C ®gw) C(O),wgﬁ)/s(o)(QA)) with

Res4 (w) = 1, there is an Ogg)-module homomorphism

Oy : Vir§(,)(c,,) = Oga.

By using the splitting (5.3-4), define A (61, a,,). Then, it is easy to
show that 5(1) is well-defined and that we have

N

(1
=

Q.E.D.
Next we introduce a Lie algebra structure on Dy, (—log D(;¢,).

Lemma 5.3.2. The above isomorphism (5.3-4) defines a Lie algebra
structure of D}, (— log DW; ¢,) and the exact sequence (5.3-4) is an ex-
tension of the sheaves of Lie algebras.

By Proposition 5.2.6 and Proposition 5.3.1 we obtain the following
Theorem.

Theorem 5.3.3. On V;(3") the sheaf Dy,)(—log DV); c,) of Lie alge-

bras acts as twisted first order differential operators.

Corollary 5.3.4. If B©® is small enough such that we have a splitting
(5.3-5), then the sheaves V3(§) and v;(s(l)) are locally free on B() \
D),

Proof.  Since we have the splitting (5.3-5), ©gq)(—1log D) de-
fines an integral connection with regular singularities on B(). Hence, on

B \ DM we have an integral connection. Therefore, the Corollary is a
consequence of the theory of connections on coherent sheaves. Q.E.D.

By Remark 4.1.7 we have the following Corollary.
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Corollary 5.3.5. Under the same assumption as in Corollary 5.3.4, for
each point s € B()\ D) we have the canonical isomorphism

V:{'(S(l)) ®OB(1) (03(1),3/013) &~ V}(x(l))

§6 Locally Freeness and Factorization

6.1. Family of singular stable curves.

Let U = (2 c() 5 B, 8(11)’3(21)’”. ,sg);f(ll),f(zl),... ,fg))
be a local universal family of N-pointed stable curves with first order in-
finitesimal neighbourhoods. Here we study the behavior of the Dém(— log DV Cv)-
module VX(S(I)) near the discriminant locus D).

Since the problem is local on B®), we take sufficiently small family
O = (70 ;@ o O, O O Oy yith local coordinates
(T1,... ,T3g—3+N) OD B©) sych that the discriminant locus is of the form
D=D1UDyU---UDy, D; ={ (1) | T3g—24n-i =0}, i =1,...,k
and the family 1 is obtained from the family F®. (See the proof of
Theorem 3.1.5.) Choosing B smaller, if necessary, we may assume that

BW = ()N x 8O,

Let (m,... ,mn) be global coordinates of (C*)V. Moreover, we may as-
sume that there exists a meromorphic form

w € H(CO @50 €, Wl 50 (24))
with Res} (w) = 1. Fixing it, we have a trivialization
Diy(—log DW; ¢,) ~ Ogay(—log DY) ® Og.
Let DEI) c BY) be the pull back of D; C B(®, and put
E= (| D, EW= N p{V.

1<i<k 1<i<k

Denote by 7g : Cg — E the restriction of C(® to E. Let #g : Cg — E
be obtained by the simultaneous normalization of g : Cg — E and

0p 0yt B — Ce (p = 1,... k) the cross-sections corresponding to the
normalized double points.
Ce - Cg — O
NTg Tl 8,0 !
s, o', 0"
E — BO,
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We also denote by TEQ) : CE(") — EE'I) (resp. ﬁE(l) . EE(I) - E(l)) the
pull back of 75 : Cg — E (resp. #g : Cg — E) to E(). For simplicity, we

use the notation s; instead of S;o) and 3;_1)' Also by ¢’ and ¢" we denote

the sections of #gq) : EE(I) — EM jnduced from the sections o’ and o
of rg :Cg — F.

Proposition 6.1.1. The family (#g : Cg — Eiop,0p5,(p = 1,... ,k),
3(10), s )) is a local universal family of (N + 2k)-pointed (not neces-
sarily connected ) stable curves.

For the preparation of the next subsection we study the relation be-
tween the family 7 ) : Cgay — B and FV.

For simplicity of notation let us assume that k¥ = 1. Hence, £ = D,
and EO = D{V. Put M = 39— 4+ 2N, 7 = r3,_g4y and

n t=1,...,N
Ti-N t1=N+1,... M

+ ——
=

Hence (uj,ug,...,up,7) are coordinates of BM and EW is defined by
the equation r = 0.

Lemma 6.1.2. If we choose B(® sufficiently small, then there exist local
coordinates (ui,...,upm,2) (resp. (u1,...,up,w)) of a neighbourhood
X ( resp. Y) of a'(EM) )resp. a"(E(l))) in Cgay and a relative vector
field £ € HY(Cpay,Of /g0 (* Tie1 55(E™M))) which satisfy the following
conditions.
1) The sections o' and ¢” are given by the mappings
o (u1,...up) e (un,. .., upn0) = (g, up, 2)
o (ug,. . upy) e (.. upg, 0) = (v, upg, ).

~ 1 8 =~ 1 0
2) lx=zz2—, Clly==x

We—.

27982’ 2 0w
Proof. Letwv: C gt — Cpa) be the simultaneous normalization. Let
(u1,... ,upm,x) (resp. {u1,...,up,y)) be local coordinates of X (resp.

Y') satisfying the condition 1). Since v is isomorphic (the identity map-
ping) on Cpa \ (¢/(EMW) U o"(EM)) = Cgay \ o(EW), by the proof of
Lemma 3.2.3, especially by (3.2-4) we have the following exact sequence.

0 Oc, /B0 = V*(ec o /Ew (=0 "(BW) - ¢"(EM))) S Opay — 0

where O gny-module homomorphism « is given by

(ot 2) 2 b ) o 20 200
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Note that the stalk of v.(Oz (1)/5("(_U’(E(1)) — "(EMY)) at a point
E

o(u), (v) € EM consists of a pair of local holomorphic vector fields
(a(u,z)%,b(u, y)a—y) with a(t,0) = 0, b(y,0) = 0 and the definition

of a is independent of the choice of local coordinates. The exact sequence
induces an exact sequence

0 — H(Cpa,Oc_q,,/pm (kSM))
—H°(Cgo, (g, /pm (kS M - ¢'(EM) - o"(EM))))
= HY(EW,0pm) —» HYCge, Oc,,, /50 (kSD))

for every integer k, where
N
SM = 3 5;(EM).
j=1
If k is sufficiently large, we have
HY(Cpw, Oc,, 50 (kSM)) = 0.
Hence, by the above exact sequence there exists a relative vector field

Z € HO(EE(I), @E' ( )/E(l)(ks(l) - O.I(E(l)) - all(E(l))))
Q1

:HO(CE(U,V,.,(@E ( )/E(l)(ks(l) _ JI(E(I)) _ 0‘"(E(1))))
e

such that

s~

a(f) = 1.

- By the local coordinates given above, ¢ has the form

= a(u,m)i on X

Oz
2= b(u )i on Y
- ' Y ay
with 8a(u,0)  9b(u,0)
a(u, u,0) _
et o =L
Adding an element coming from HO(CE,GCE(I)IE(I)(*S(I))) if necessary,
and choosing B(®, X and Y smaller, we may assume that 93%-‘-’3-)- (resp.
z
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_ab(u,y)) has no zero on X (resp. Y). Now define z = z(u,z) and

Oy
w = w(u,y) by
8z 1
a(u,x)a—z = 35% z(u,0) =0
dw 1
b(u, y)gy- = 3, w(u,0) =0.
Then, by choosing X and Y smaller, (uy,...,up, 2) and (uq,... ,up,w)
satisfy the above conditions 1) and 2). ' Q.E.D.

We let Tz : Eﬁm — EW be a local universal family obtained by
adding the first order infinitesimal neighbourhoods at ¢’ and ¢”. Lemma
6.1.2 says that at o' and 0" we can choose special coordinates 2z and w.
These coordinates induce the first order infinitesimal neighbourhoods of
o' and ¢”, hence, we have a holomorphic section

(6.1-1) j:EW 5 BM),

Let £; be a formal coordinate at s;(E(V)) such that

T(¢ mod I2 ) = €.

Let Zj(f)dis_be the formal Laurent expansion of £ with respect to the
]
formal coordinate ¢;. Thus we have £;(¢;) € Ogw((§;)). Put
(6.1-2) [= (66) s ElEn) o)
. t— 1 ldfla'“)N ngN.

Next we construct the family §1) from the family (Fgw) : Cgay —

EM). s&l),... ,3%);5(11), . ,E{AI,)). Using the notation of Lemma 6.1.2, we

may assume that

X={PeCgy||z(P) <1}
Y={PECE(1)||‘U)(P)I<1}.

For a positive number € < 1 put

XEZ{PGEEU) | IZ(P)| <€}
Ye={P€Cpn||w(P)| <e}

85



A9 =%

Figure 4.

Fix positive numbers €1 < €2 < 1 and let {Us}3<a<s be a finite open
covering of Cpa) \ (X, UYe,) such that

UaNX,, =0, UsNY, =0

forany a=3,...,A.
Now put

D={reC||rl<1}
So={(z,y,7)eC3lay=r, |z|] <1, [yl <1, |r] <1}
S=SoXE
Z={(P,7) €Cgy x D| P €Cgm \ (X UY)

or P e X and |2(P)| > |7|}
W ={(P,7) € Cgy x D| P € Cgmy \ (X UY)

or PeY and |w(P)|>|7|}.

On ZU SUW we introduce an equivalence relation ~ as follows.
1) A point {P,7) € ZN (X x D) and a point (z,y,7,u) € S are
equivalent if and only if
f ) = T ~(1)
(:vaaT ,‘U.) = (Z(P), Z(P)’T, g (P))
2) A point (P,7) € WN (Y x D) and a point (z,y,7,u) € S are
equivalent if and only if

(z,y,7,u) = ( yw(P), T, %S)(P)).

w(P)
3) A point (P,7) € Z and a point (Q,7') € W if and only if

(P,7)=(Q, 7).
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Now put C) = ZUSUW/ ~ . Then it is easy to show that C(V) is
a complex manifold and there is a natural holomorphic mapping #(1 :
¢ — E®M x D. Moreover, since we can assume that s;(E())’s are
contained in Cpa) \ (X UY), we can define holomorphic sections s;’s by

s;j: EMxD = c
(1) = (st),T) €2
By the same way we can define the first order infinitesimal neighbour-
hoods ?j. It is easy to show that (11'(1) : €V = EM x Dysy,... sy

t1,... ,tx) is isomorphic to our original family F(V).
By the same method we can comstruct a family (v : ¢ — E x
D;s1,...,8n) isomorphic to F®. Hence, in the following we identify

F©® and ) with the families constructed above.
For each point (u,7) € E®) x D put

Clury = 7 {(u, 7))
Ua(u,7) = Uy ﬂC(u,T), J<a< A
Ui(u,7) = SN ZNC )
Us(u,7) =SNWN C(u,.,.).

Then, for each 7 # 0, .L{(u, 7) = {Ua(u,T)}1<a<a is an open covering of
the curve C(,, 7).

Lemma 6.1.3. For each point (u,7) € EO) x D with 7 # 0, the image

6 .
p('rE) of a vector field T(% by the Kodaira-Spencer mapping

P T(u,‘r)(E(l) X D) - Hl(c(u,'r), ec(.,f))

is given by a Cech cohomology class {8,p(u,T)} € I?l(ll(u,*r),@c(u_f))
with respect to the covering U(u, ) given above, where
s,
912(1"7) - za
921(u, ’T) = —012(14, T)
0ap(u,7) =0 if (a,8) #(1,2) or (2,1)

Proof. By the above equivalence relation, on Uj(u, ) N Us(u, ) we
have
r
z=—.
w
If Ua(u, 7) N Ug(u,7) # 6 and (o, B) # (1,2) nor (2, 1), then the relation
between local coordinates of Us(u, 7) and Ug(wu, 7) does not depend on 7.
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Hence, by the definition of Kodaira-Spencer mapping (see, for example,
Kodaira [Ko, §4.2]) we have

3] T 8 o)

""(TE) wc’)‘r Bz
prg)n = wee = 25"
o' = Youw 0z
pr)ap =0 if (o) # (1,2) mor (2,1)
Q.E.D.
d
Let us consider the N-tuple of formal vector fields [= (L’l(fl)d£
1

gN(fN)—-) defined in (6.1-2). Since we have Ej(EJ) € Opm((&)),
dén ;i

we may regard Tas an N-tuple of formal vector fields on F that is,

(EJ)deJ € OE(')XD((EJ))
Corollary 6.1.4. On B = EM x D we have
= éj
M = 71—
o) = Tor

where the mapping 8(Y) is defined in Proposition 3.3.6.

Proof.  Since both sides of the above equality in the corollary define
holomorphic vector fields on B(1)| it is enough to prove the equality for
T # 0.

Let us consider an exact sequence

00— @c(:)/B(x)(—S(l)) —+9Cm/3m((m - 1)3(1))
d
+

N m -
= Py O — =0
= @5z OfLy Opor§; ™ 3; —

for a sufficiently large positive integer m. [ defines an element ' of
the third term of the exact sequence. On the other hand, for each
(u,7) € EM) x D, 7 # 0, the meromorphic vector field £ on Cgu) defines

meromorphic vector fields £, on Cy - \ {Uz(x,7) \ (Ui(u, 7) 0 Uz(n, 7))}

and Z:‘ ;wai on Uz(u,T) such that both vector fields have the same

image D in the above exact sequence. Hence, the image of 7 by the map-
ping

ek d
o, @, Opn & ™ —— — R'{(Ocm 5o (—51))

dé;
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is given at a point (u,7) by an element
{fa,6(x,7)} € H'(Cur, Oc,,)

where on Uy(u, 7) N Usz(u, T) we have

012 (u’! T) = Eu,‘l’lU; (u,r) — ?u,TlUg(u,T)

_18 1 6
= 5%z " 25w
_,0
~ 78z

921(11., 7’) = —912(11, T)
and on Uy(u, ) N Upg(u,7) with (a, ) # (1,2), (2,1) we have
8qp(u,7) = 0.

Thus Zdeﬁnes the cohomology class given in Lemma 6.1.3. Hence we have
the equality for 7 # 0. Q.E.D.

6.2. Locally freeness and factorization.

The main purpose of the present subsection is to prove the locally
freeness and factorization properties of the sheaf of vacua V{-(E(l)) for a
local universal family U = (#(1) . ¢ — B, 3(11),321), - ,sj(,\l,); Egl),
fgl), - ,ZE\})). We use freely the notation and convention in the previous
subsection.

Theorem 6.2.1. The sheaf V3(F(1)) is locally free.

Proof. By Corollary 5.3.4 the theorem is true for a local universal
family of smooth curves. Therefore, we assume that the local universal
family Y contains singular curves. For simplicity we only consider the
case k = 1, that is, each singular curve has only one double point. General
case is reduced to this case by the induction on the number k of the double
points of a singular curve.

First fix an element u € Fy.

Claim 1. There exists a bilinear pairing
unique up to the constant multiple such that we have

(X (n)ujv) + (u|X(-n)v) =0
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for any X € g, n € Z, |u) € Hy, |v) € H,e and (| ) is zero on
Hu(d) ® H(d'), ifd # d.

Proof.  Since V), ® V,;1, considered as a g-module by the diagonal
action, contains only one-dimensional trivial g-module C|0, ,+), we have
a bilinear form ( | ) € Homg(V, ® V,,t,C) unique up to the constant
multiple. Assume that we have a bilinear form ( | ) € Hom(FpyH, ®
FyH,+,C) with desired properties. For an element X(—m)|u) € Fpy1 ™M,
with |u) € FyH,, m > 0 and an element |v) € Fyp1H,¢ define

(X(-m)ulv) = —(u| X (m)v).

Note that since X(m)|v) € Fpym-1H,, the right hand side is defined
already. It is easy to show that in this way we can define the bilinear
form ( | ) satisfying the conditions of Claim 1. This proves Claim 1.

Now let us choose a basis {vi(d),... ,vm,(d)} of H,(d) and the dual
basis {v!(d),... ,v™(d)} of H,:(d) with respect to the above bilinear
form ( | ).

Using the holomorphic section j : E() — E() defined in (6.1-1),we
put

(1) * i (1)
Hopt, SEM T p.u* A(SE(")
H1) i)
%A E®) Hx ®OB(1) OE(1).

Then, folz"\ B is locally free and by Theorem 5.3.3 the sheaf of holo-

morphic vector fields © gy operates on it from right as the integral con-

nection. Moreover, the flat sections span the sheaf VH 3 S Ew” Let (¥| be
: (1) 1(1)

a flat section of Va5 pw: Let us define an element (¥ € He ol 7]
associated with (¥|. For that purpose first define (V4] € Hl(g(l)

my s
(6.2-1) (Talu) =3 (¥|vi(d) ® v'(d) ® u),

i=1

(1)
|®) € Hs s

Now define (¥| € 'H” aoyl[71] by

(6.2-2) (B|®) = 78+ i(wd@)r‘i
d=0

Now we shall show that (¥| satisfies the formal gauge condition. To

give the precise meaning of this statement, first we prove the following
Claim.
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Claim 2. There is an Ogn)-module injection
'R'S:I)OC(l)(*S(l)) hd ilE(l)*OE(l()l) (*(0’ + 0‘" + S(l)))[[T]]
B

f - Yo fir*

where
fke%Em.Oa?#*SOL+k@’+aﬂ)
E 1

Proof.  Choose a point P € Cgy which is a double point of a fibre of
wgm. Then we can choose local coordinates (uy,...,up—1,2,w) of c
with center P and those (uy,...,up—_1,7) of B() with center 7(V(P)
such that 7(1) is given by

(uy,. .., upr—1,2,w) = (u1,... ,upr—1, 2w).

(See the beginning of 3.2.) Since f is holomorphic at P, we have an
expansion

f=flu,..upgo,z,w) = Y. faa(u)2™w”

m>0,n2>0

Define gp(u,7,z) by
T e k
gP'(uv 7, Z) = f(ur z, ;) = Egk(u) Z)T
k=0
where

(6.2-3) Gh(,2) = 3 fmp()e™ ",

m=0

Define also hpr(u, T, w) by
hp(u, 7, w) = f(u, -u; ,w) = Ehk('u. w)rk

where

(6.2-4) | ha(u,w) = 3 fun(w)u

n=_0

For a point @ € Cgu) which is not a double point of a fibre, we can
choose local coordinates (uy,...,up—1,7,2) of ¢ with center Q such
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that 7(1) is given by the projection to the first M factors. Then we have
an expansion

o0
flul,...,upm—-1,7,2) = Z fox(u, z)T
k=0

It is easy to see that {gx(u, 2), hx(u,w), fo(u,2)} defines a local holo-

morphic section of the sheaf 7 g)+Ozu) (*S™M 4+ k(o' + o")). This proves
™

Claim 2. °

Claim 3. We have

E(Q|2PJX®fL = 0.

j=1
That is (¥| satisfies the formal gauge condition.

Proof. By definition, for any |®) € 'Hf\llﬂl) we have

[= )

N
STUIY pi(X © fi)mh|®)

i=1 k=0

o0 00 My

)3 I ks Z(wlp,(X® fi)lvi(d) ® v'(d) ® @)
k=0d=01:=1 i=1
= TS S (X © )

k=0d=0i=1

+ por(X ® hy)|vi(d) ® v*(d) ® &).

By (6.2-3) and (6.2-4) we have

(X ®a) = 3 fras(O)par(X(m - K))

m=0

po(X @ hy) = iﬂfk,n(t)»oa' (X(n - k)).

Since we have

(X(m — k)vi(d)]v7(d — m + k) + (vi(d)| X (k — m)v*(d — m + k)) = 0,
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we have

S p (X (m — k) fui(d) ® vi(d) ® )

=1
Mé—m+k

+ Z por(X(—(m — k))|v;(d—m + k) ® Y(d-m+k)Q®)
=0.

This proves Claim 3.

Claim 4. The formal power series (¥| converges and defines an element
of VI(FW)

Proof.  Let us fix an element w € H(C©) ®pw) €9, w2 /8@ (24))
with Res®w = 1. By (5.1-4) we have

(B|T(w)|@)du® € HO(CW, w5y (xSD)).

~ o)
Let £ = £(z)5; be the meromorphic vector field given in Lemma 6.1.2.

Then, for (u,7) € EW) x D, r #£ 0,
02){(¥|T(z)|®)dz

is a meromorphic form on Cy, , = Cu -\{(2,¥,7) € So||z| < eor |y < e}
for a sufficiently small positive number € < 1.

Figure 5.

The boundary of C,",., consists of two disjoint simple closed curves 7y,
7—. We choose the orientation of 44 in such a way that Ct"’,. lies in a right
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side of 4. Then by Proposition 2.4.2 (5 1-5) and (5.1-6) we have

()BT (2)|®)dz +

o \/-— w)(¥|T(w)|@)dw

= E Resq, (£( )(E:|T(u)|¢)du)

21r\/_

N
5; ¥p;( (Res(&(&)T(&5)d)N®)

- ¢ E Res(¢;(¢5) Su,i(€7))(¥]2)

~ £,=0
N
X_: ¥lo;(T[€;])|®) — a(O)(¥|P).

d 1
On the other hand, on 44 we have 8(2)5 = Ezdi Hence, by (5.1.4) we

have

2 ], 4T @)z

== \/—_1 ’H( 2(W[T(2)|®) — cvzSu(2)(T|®)) dz

1 -
= s L AUT() @)z,

since S, (z)dz? is holomorphic at z = 0. Hence, by (6.2-1) and (6.2-2) we

have

1 .
Sr /=T s £2)(¥|T(z)|®)dz

|
8

ratd 3 [ @ T(2)hi(d) © v(d) © B)d
=0T+

f
Ml
=}

FAutd Z U gl Lo(vi(d)) ® v'(d) ® &)

> (Ap + d)r i ylui(d) @ v'(d) © D).

&
]
=
3
a.

]
NI= N= N

)8

9
il
=]
-
il
=

Similarly we have

-1
= | )T ) @)
loomd

=5 2 L (B + )T Walui(d) @ v'(d) © @).
d 0i=0
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Since we have A, = A+, we obtain

Bt

N
X_:l U)p;(T[¢;])|2) — a(&)(T|T)

= Z i(Au + d)r 8t (W ylvi(d) @ v'(d) @ B).
d=01=0

On the other hand, we have
~ d
(U|r——|2)

= i nf:(ﬁu + A2t (W ylui(d) ® v'(d) ® B).
d=01=0

Hence, (¥| is a formal solution of the differential equation

(‘fl(e— Tll) + a(f)) = 0.

Since the differential equation has regular singularity, the formal solution
(| converges. Hence, by Claim 3 we have the desired result. This proves
Claim 4.

Now we are ready to prove Theorem 6.2.1. Let {{¥4],...,{¥,|} bé

a flat basis of @pEPtVﬂll X B0

Let {(¥4],... ,(\i’nl} be elements of V;{.(ﬁ(l)) constructed above from
{{¥4],...,(¥n|}. Theses elements are Og)-linearly independent.

Choose a point z € E) and s € B(l)\E‘(l). Then, the above argument
and Corollary 5.3.5 show that

This is also a basis as an Og;)-module.

dime VX(S(I)) ® (Ogw) ,/ms)
= dimg VL(3Y) ® (Ogw ./ m,)

>y ra.nkVt( ) .
5, ot NED

By Lemma 4.1.3 and Corollary 2.2.6 we have

dimg Vx(g( )) ® (Opw x/Mz) = Z dimcV st /\(35(1))
HEP;

Hence we have

dime V3(3) ® (O ./ ) > dime V3(3Y) ® (O 5/ ma).
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A

Figure 6.

On the other hand, since V;(§1) is coherent and locally free on B\ E(®),
we have the inequality

dime V3(3") ® (Ogwy ,/m,) < dime V3 (V) ® (O o/ M)
Hence we have the equality

dime V§(3™") ® (Opw ,/ms) = dime V(FV) @ (Opay o/ me).
Hence V;(Z(1) is locally free. Q.E.D.

Corollary 6.2.2. V}(S(l)) is locally free. Moreover, for each point s €
B() we have

v;‘(s(oo)) ®03(1) (03(1),_,/“1,) = v:’{'(xgoo)).
Remark 6.2.3. Similar to Remark 4.1.7 we can define v%(x(l)) by the

left hand side of the above isomorphism for (1) = %Y. Then we have
the canonical isomorphism

Vi(E®M) > vi(E=),

Corollary 6.2.4. The rank of V}(S’(l)) can be calculated combinatori-
cally from the fusion rules.

In this case, the fusion rules, which counts the numbers of independent
solutions of type (g, N) = (0,3), are given in Example 2.2.8. We use the
notation there. The number of the independent solutions are given by
Nyyx =dimW,, . By using N, 1, the explicit formula for the rank is
given in the case of maximally degenerate curves (the corresponding dual
diagram is the ¢*-diagram) with g loops and N external lines, which has
3g — 3+ N internal lines and 2¢g ~ 2 + N vertices, that is

rankV}(ﬁ(l)) = > II Nag -

Asinternal (a,8,7):vertices

(See [Ve].)
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For each ¢3-diagram the above proof (see also the factorization prop-
erty, Theorem 6.2.5 below) gives a canonical basis of V}(%"(l)), with which
the monodromy around the vanishing cycles are diagonalized. The re-
lation between the bases corresponding to two different diagrams is de-
scribed by a connection matrix. The matrix provides us the monodromy
representation of the braid group, the mapping class group or some gen-
eralization of them ([TK1], [TK2], [F], [Val]).

The sheaf version of Proposition 2.2.5 is the following factorization
property.

Theorem 6.2.5. There exists an Oz, ,-module isomorphism.

EQ

@ V1,15 = 0437 80y, O50) 80,0, Oper
HEe

Proof. We use the notation in the proof of Proposition 2.2.6 freely.
Put

Vi3 50 = (i:(3Y) 0,0 Opw) ®0,4, Og)

V;{‘(su))ﬁm = (V;.( )®05(1) Opw) ®0,4) O5a)-

" Then we have a canonical identification
v,%(s(l))ﬁm = Homo,,, (VJ\'(S(I))E(:V Oz )-
For an element (¥| € V1 ({E(lm) and an element |®) € V;\-(3(1))E(,,
define 1,((¥]) € Homo (1)( Ve(3 g Opw) by
((2))(12)) = (2[00 @ B).

This is well-defined and induces an O,,-module homomorphism

(6.2-5) L ei v;,m,:\-(ﬁ%()l)) — .HMOE“)(VX(S(I))EU),OE_(:)).
ner,

For each point s € E(l), put
CJ = 05(1),3/“13.
By tensoring C, to (6.2-4), we have a C-linear mapping

s : @ Mo ’/\(3(1(1)) ®C - Homc(v (3{ )E(1) ® C,,C).
peP;
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By Remark 4.1.7 and Corollary 6.2.2, the mapping ¢, is nothing but the
mapping in Proposition 2.2.6. Hence, ¢, is isomorphic. Therefore, ¢ is an
o E(l,-module isomorphism. Q.E.D.
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