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Introd uction

Conformal field theory has not only useful application to string the­
ory and two-dimensional critical phenomena but also has beautiful and
rich mathematical structure, and it has interested many mathematicians.
Confonnal field theory is characterized by infinite-dimensional symmetry
such as Virasoro algebra. Especially, its correlation functions are char­
acterized by differential equations arising fronl representation of infinite­
dimensional Lie algebras. ( [BPZ], [KZ], [EO], [MMS].) Physically, corre­
lation functions should have the properties such as locality, holomorphic
factorization and tnonodromy invariance (duality). To build conforlllal
field theory having such properties, usual approach is to construct holo­
lllorphic (chiral) confonnal blocks which are the half of the theory and to
study its monodromy. ([TKl], [TKl], [FS], [Va], [Ve], [MSl], [MS2].)

In the present paper, mathematically rigorous formulation of holo­
nlorphic (chiral) conformal field theory with gauge symmetry (affine Lie
algebra g) (Wess-Zullüno-Witten lllodel) over curves of arbitrary genus is
given by means of operator formalism. A curve in our theory nlay have
ordinary singularities corresponding to a point of the boundary of the
tl10duli space of curves. The fundamental object in our theory is the space
of vacua. This is a linear functional on the direct product of representa­
tion spaces of g giving vaCUUlll expectation value (correlation function).
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Our formulation of eonformal field theory is a natural generalization of
the one developed in [TKl).

Let 9 be a simple Lie algebra over the eomplex numhers C and g the
eorresponding affine Lie algebra. We fix a positive integer i and eonsider
integrable highest weight representation of g with level i. Such represen­
tations are parameterized by a finite set of highest weights Pt. Let X(oo) ==

(C ' Q Q Q' (00) (00) (00») h N' d bl, 1, 2, ... , N, t1 ,t2 , .•• , tN e an -poInte sta e eurve
with formal neighbourhoods. (For details see Definition 2.1.1 below.) To
each pointQj we associate a representation of g eorresponding to )..j E Pt.
Then to X(oo) and X == (Al, ... ,AN) we associate the space of vacua
V}(.x(00») and its clual space Vx( X( 00) ). The spaee of vacua V}( X(00») is

defined hy the gauge eondition. (See Definition 2.2.2 below). It will be
shown that V~U«oo») does only depend on the first order infinitesitnal

strueture X<1) of X(oo). (See Remark 4.1.7 below.)

Let 1mb' (resp. ID1b~1) be the moduli space of N -pointed stahle
eurves with formal neighbourhoods (resp. first order infinitesimal strue-
tures) and 11"(00) : c(oo) -Jo ~, (resp. 11"(1) : C(I) -Jo ~~1) he the
universal family of N -pointed stable eurves on it. Then, the eolleetion of
the spaces of vacua Vl(.x(oo»)'s (resp. the dual spaces of vacua VX(X(oo»))

fonns a sheaf V}(oo) (resp. Vfoo») on IDtb' and it is the pull back of a
t(l) ( (1») ~1)sheaf Vx resp. Vx on ~U'g,N'

Precisely speaking, there exist no universal families of N -pointed sta­

ble eurves over the moduli spaces ?fffb' and IDlb~1. Therefore, we have
to consider loeal universal families. Namely, we define the sheaves of
vaeua V±(~(oo») and V±(~I») (resp. Vx(~(oo») and VX(~(I»)) attached to

local universal falnilies ~(oo) == (7r(00) : c(oo) --. 8(00); sioo ), s~oo), ... ,

S(oo) . t-(oo) t-(oo) , t-(oo») and '?:'l1) - (_(1) . C(I) --. 8(1) . s(l) s(l)
N , 1 '2 , . .. , N "" - 11 • , 1 , 2 ,...,

s~); ti1
), t~I), ... ,t~»)) respeetively. The sheaves V}(~(oo») and Vx(~(oo»)

(resp. V±(~(I») and VX(~(l))) are 0B(oo)-modules (resp. 0B(l)-modules).

If a local universal family ~'(1) is a subfamily of ~(1) the restriction of the
sheaves Vl(~(I») and VX(~(I») to the subfamily are the sheaves V±(~'(I»)

and VX(~'(I»), respeetively.

In the following we shall analyze the strueture of the sheaves Vl( ~(1»)

and VX(~(I»). Though our arguments below often use specific coordinates,
they have intrinsic lneaning and we could argue as if there were universal
family over the lllOduli spa.ce of N-pointed stable eurves with infinitesimal
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structures. Fancy mathematical tool to treat the above situation is the
theory of stacks ([DM]). But in the present paper we choose primitive
approach described above. Using the idea of Beilinson-Manin-Shechtman
[BMS], we construct an 0S(l)-module of Lie algebra V1(1) (-log D(l); ev)
(the sheaf of twisted first order differential operators) acting on Vl(~(l»)

and VX(~(l»), which is the geometrie counter part of the Virasoro algebra
with central charge ev defined from the representations as the Sugawara
form. (For details see §5.)

Main results of the present paper are the following.
1) Vl(~(l») and VX(~(l») are coherent OS(1)-modules. (Theorem

Theorem 4.2.4 and Corollary 4.2.5.) Hence, the ·space of vacua V~(.x(oo»)

and VX(X(oo») are of finite-dimensional. Moreover, V}(~(l») and VX(~(l»)

are locally free sheaf of finite rank, that is, a vector bundle over 8(1).

(Theorem 6.2.1and Corollary 6.2.2.)
2) The sheaf V1(1)( -log D(l)j ev) of twisted first order differential

operators acts on V}(~(l») and VX(~(l»). (Theorem 5.3.3.) This defines

projective flat connections on V~(~(l») and VX(~(l») with regular singu­

larities at the locus D(l) C B(l) corresponding to singular curves. The
connections are nothing hut the Word-Takahashi identity. Moreover, the
solution sheaf ofV1(1)( -log D(l); cv) gives what physicist call current con­
formal blocks.

3) V}(~(l») has a factorization property. (Theorem 6.2.5.) Hence

the dimension of the space of vacua Vx( x<oo») does only depend on the

genus of the curve C and X= (Al, ... ,AN) and can be calculated by a
maximally degenerate curve by using the fusion rule. Moreover, the proof
in §6 shows that we can construct a canonical basis of flat sections of
Vl(~l») from the data on the boundary.

Dur result in this paper may be regarded as an infinite-dimensional
version of the Beilinson-Bernstein theory [BB], [BK] for representations
of finite dimensional simple Lie groups. Here three notions, Virasoro
algebra, moduli space, and the braid group and the mapping dass group
correspond to siInple Lie group G , the Flag manifold G/ P and the Weyl
group of the original theory, respectively.

Let UB explain briefly the content of the present paper. In §1 we shall
give basic results on integrable highest weight representations of an affine
Lie algebra g. The energy-momentuln tensor will be defined as the Segal­
Sugawara form. Also the automorphism group V = AutC((€)) ofthe field
of formal Laufent senes C((e)) will be introduced and its properties will
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be studied.
In §2 we shall first define the notion of an N-pointed stable curve with

n-th infinitesimal neighbourhoods ;«n) or with formal neighbourhoods
X(oo) and define the space of vacua Vl( x<oo») and its dual space of vacua

Vx( X(oo») attached to ;«00). The important properties of the space of
vacua such as a propagation of vacua will be proved. Also we shall define
correlation functions of current will be defined and studied their proper­
ties. The propagation of vacua and the properties of correlation functions
will play an essential role to construct our conformal filed theory.

To study the properties of the space of vacua we need to vary the
moduli of N-pointed curves with infinitesimal structures. In §3 we shall
study local universal family of such curves. The content of this section is
well-known to the specialists. Since the results in this section are scattered
into many references, we shall describe some details of deformation theory
of N -pointed curves with infinitesimal structures. We shall use freely the
standard technique of the cohomology theory of sheaves which can be
found, for example, in [Ha] or [BS].

In §4 we shall define the sheaf of vacua associated with a local universal
family of N-pointed stable curves with formal neighbourhoods (11"(00) :

C(oo) 8(00) (00) (00) (00) -(00) -(00) -(00») W hall h
--+ ; sI' S 2 , . . . ,SN ; t 1 , t2 , . .. ,tN . e s s ow

that the sheaf is coherent OB(l)-module. Here, Gabber's theorem [Ga]
plays an essential role.

In §5 we shall define the sheaf of twisted first order differential opera­
tors V1(l) (-log D(l); ev) acting on VX(~(l») from left and on Vl(~(l») from

right. The sheaf defines an integral connection on VX(~(l») and Vl(~(l»)

with regular singularities on the boundary corresponding singular curves.
Finally in §6 we shall show that the sheaves VX(~{1») and Vl(~(l») are

locally free and have the factorization property. Hence the dimension of
the space of vacua can be calculated by a maximally degenerate curve by
using the fusion rule. Moreover, the proof shows that we can construct a
canonical basis of flat seetions of Vl(~(l») from the data on the boundary.

The main results of the present paper was announced in [TY].

Notations

g : simple Lie algebra over the complex numbers C.
.6. : set of all non-zero roots of g.
6.+ ( 6._ ) : set of all positive (resp. negative) roots of g.
B : the maximal root of g.
J..Lf := -w(J..L) where w is the longest element of Weyl group of g.
( , ): Cartan-Killing fann of g normalized as (B, B) = 2.
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VA ( V} )irreducible left (resp. right) g-rnodule with highest (resp. lowest)
weight A.
P+ : set of all dominant integral weights.
g : affine Lie algebra attached to g. (Definition 1.1.1)
l : level of a representation of g.
Pt := { ). E P+ I0 ~ (B,).) ::; l }

().,).)+2(A,p) 1 ~ .
ß A = 2( * l) where p = - L" Q and g* IS the dual Coxeter

9 + 2 aE~+
number of g.

l· dirn 9
Cv := 2(g* + l)

rlA ( rll ) : integrable highest weight left (resp. right) g-module with
highest. (resp. lowest) weight A.
F.rlA ( Ferll ) : filtration of 11.A (resp. rll). (See 1.3).

11.>. := 1iAl ®c ... ®c 1i>'N where X= (AI, ... ,).N) E (Pt)N.

rlt := rlt @c'" @c 11.tA Al AN

C( (~)) : field of all formal Laurent senes. That is, the quotient filed of
the formal power senes ring C[[€]].
X(n):= X ® en, where X E g.
X(z) := L:nEz X(n)z-n-I
T(z) : energy-momentum tensor. (Definition 1.2.1)
X[j] := Resz=o(X(z)j(z)dz) for j(€) E C((€)).

d d
T[I] := Resz=o(T(z)l(z)dz) for l = l(z) dz E C((z)) dz

V := AutC((e))
VP := { h E V Ih(€) = €+ ap€P + ... }
(d) := C[[~]]~~

(d)P := C[[~]]rl~
G[h] := exp( -T[I]) for h E VI where h = exp(I).

x(n) = (C; Qb Q2l'" ,QN ; tin), t~n), .. . ,tY;») : N-pointed stable curve
wit h n-th infinitesimal neighborhoods. (Definition 2.1.3)

X(oo) = (C i QI, Q2, . .. l QN; tioo), t~oo), ... ,t~») : N-pointed stable
curve with formal neighbourhoods.
gN := EB~l 9 ® C((ej)) ffi Ce (Definition 2.2.1)

g(X(oo») := g ® HO(C, Oc(* Er=I Qj))
V}( x(00») ( V>.(X(00») ) : space of vacua (resp. dual space of vacua)

associated with X(oo). (Definition 2.2.2)
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TzM ( T; M ) : tangent (resp. cotangent) space at a point x of a complex
manifold M.
0h : sheaf of Kähler differentials of a curve C.
wx : dualizing sheaf of a complex space X.
0it/N : sheaf of relative I-form for a surjective holomorphic mapping
7r : M -+ N of complex manifolds.

eM/N := H OffiOM (0it/N' 0 M) : sheaf of relative holomorphic vector
fields.
wM/N : relative dualizing sheaf.
8M( -log D) : sheaf of vector fields on a complex manifold M tangent to
an effective divisor D of M.
'1:(n) - ('7r(n) . c(n) -+ B(n). s(n) s(n) s(n) . -t(n) t-(n) t-(n») . 10-
U - 11. , 1 , 2 ,..., NIl , 2 ,..., N .

cal universal family of N -pointed stahle curves with n-th infinitesimal
neighbourhoods. (Definition 3.1.1 and Theorem 3.1.5)
'1:(00) - ('7r(n) . c(n) --t B(n). s(n) s(n) s(n) . t-(n) t-(n) t-(n») . loeal
\) - 11. I 1 , 2 ,..., N , 1 , 2 ,..., N .

universal family of N-pointed stahle curves with formal neighhourhoods.
~(n) : criticallocus of ~(oo). ((3.1-8) and Lemma 3.1.6)
D(n) : discriminant locus of ~(n). ((3.1-9) and Lemma 3.1.6)
-(00)
1ts. := 08(00) ®c 1ts.
-Hoo) -(00)
1is. := H omoB(oo) (1ts. ,0B(oo»
Vs.(~(oo») : dual sheaf of vacua attached to a family ~oo). (Definition
4.1.2)
Vl(~(oo») : sheaf of vacua attached to a family ~(oo). (Definition 4.1.2)

Vs.(~(l») : dual sheaf of vacua attached to a family ~l). (Lemma 4.1.6)

Vl(~(l») : dual sheaf of vacua attached to a family ~(1). (Lemma 4.1.6)

V1(1) (-log D(l); Cv) : sheaf of twisted differential operators.
{Wj z} : Schwarzian derivative.

§1. Integrable Highest Weight Representation of Affine Lie Al­
gebra

1.1 Affine Lie algebra.

In this suhsection we recall basic facts on integrable highest weight
representations of affine Lie algebras. For the details of integrable highest
weight representations of affine Lie algebras we refer the reader to Kac's
book [Ka].

Let g be a simple Lie algebra over the complex numbers C and ~ its
Cartan subalgebra. By 6. we denote the root system of (g, ~). We have
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the root space decomposition

Fix a lexieographic ordering of lJit onee for all. This gives the decompo­
sition ß = ß+ U ß_ of the root system into the positive roots and the
negative roots. Let B be the maximal root. We normalize the Cartan­
Killing form

( , ):gxg---+C

with the property

(1.1-1) (B, B) = 2.

Note that the Cartan-Killing form has the following property.

(1.1-2) ([X, Y], Z) + (Y, [X, Z]) = o.

Let P+ be the set of dominant integral weights of the Lie algebra g.
There is a one-to-one eorrespondenee between the set of finite dimensional
irreducible representations of 9 and the set P+ of the dominant integral
weights of g.

By e[[e]] and C((e)) we lllean the ring of formal power senes in e and
the field of formal Laurent power senes in €, respectively. Namely

00

C[[~]] = { L av~v Iav E C},
v=o

00

C((e)) = { L bv~v Ibv E C, mEZ}.
v=m

Definition 1.1.1. The affine Lie algebra g over C((~)) associated with
9 is defined by

(1.1-3) g = 9 ® C((e)) ffi Ce

where e is an element of the center of g and the Lie algebra structure ia
given by

(1.1-4)

[X ® f(~), Y ® g(e)] =

[X, Y] ® f(~)g(~) + c· (X, Y) Res(g(~)df(~)),
e=o

for

x, Y E 9, /(e), g(e) E C((~)).
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Note that usual1y the affine Lie algebra. is defined over C[~, ~-l] but
for our theory we need to define it over C{{~)). Put

(1.1-5)

We regard 9+and 9_ as Lie subalgebras of g. We have a decomposition

(1.1-6)

(1.2-1 )

Fix a positive integer l (called the level) and put

Proposition 1.1.2. For each A E Pi there exists the unique left g-module
1t>. (ca1led the integrable highest weight ö-module) satisfying the following
properties.

(1) V>. = { Iv) E 1t)., I ö+lv) = O} is the irreducible left g-module
with highest weight A.

(2) The central element c acts on 1t>. as l· id.
(3) H)., is generated by V>. over g_ with only one relation

(1.1-7) (Xe ~ ~-l)i-(e,)")+lIA) = 0

where Xo E g is the element corresponding to the maximal
raot () and IA) E V>. is the highest weight vectar.

Similarly we have the integrable highest weight right g-module 1t~
which will be discussed in 1.3 below.

1.2 Segal-Sugawara form.

In the following we use the following notation freely.

X{n)=X~~n, XEg

X{z) = L X{n)z-n-l
nEZ

where z is a variable. Then the normal odering g g is defined by

1
X{n)Y{m), n < m,

gX{n)Y{m)g = !(X{n)Y{m) + Y{m)X{n)) n = m,

Y(m)X(n) n > m.

Definition 1.2.1. The energy-nlomentum tensor T{z) is defined by

1 dimg
T{z) = ~ 0 Ja(z)Ja{z) 0

2(g* + l) ~ 0 0
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(1.2-2)

(1.2-3)

where {J 1, J 2 , •• • } is an orthonormal basis of g with respect to the
Cartan-Killing form ( , ) and g* is the dual Coxeter number of g.

Put

1 dimg

Ln = 2( * l) LEg Ja(m)Ja(n - m) g.
9 + mEZ a=l

Then we have the expansion

T(z) = L Ln z-n- 2•

nEZ

The operator Ln is called the Virasoro operator which acts on H)".

Lemma 1.2.2. The set {Ln} forms a Virasoro algebra and we have

[Ln, Lm] = (n - m)Ln+m + ~(n3 - n)On+m,O

[Ln, X(m)] = -mX(n + m), for X E g

where
ldimg

Cv = 9* + l

is the central charge of the Virasoro algebra.

d d
For X E B, f = f(z) E C((z)) and 1= i(z)- E C((z))- we use the

dz dz
following notation.

X[f] = Res(X(z)f(z)dz)
%=0

T[I] = Res(T(z)i(z)dz).
%=0

Lemma 1.2.3. X[f] and T[I] act on 1i)" and we have

X[f] = X ~ f(~),

[T[L], Xl!]] = -X[I(f)],

[T[hJ, T[klJ = -T[h, hJ + ~ r,;g(1{'Jl2~)'

1.3 Filtrations and 1il.

Let us introduce filtrations {F.} on C((x)), 9 and H)". For any integer
p put

(1.3-1 )

(1.3-2)

FpC((~)) = €-PC[[~]],

F _ { g ~ FpC((~)) p < 0
pg - g @ FpC( (~)) + Ce p"?:. O.
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To define a filtration {F.} on 1i).) we first define the subspace 1i).(d) of
1i). for a non-negative integer d by

(1.3-3)

where

1i).(d) ={Iv} E 1i).1 Lolv} = (d + ß).)lv) }

fl - (A, '\) + 2('\, p) p = -21 ""' a.
). - 2(g· +e)' L-,

aE.6.+

For a negative integer -d we define

1i).(-d) = {O}.

Now we define the filtration {Fp1i).} by

p

Fp1i). = L 1i).(d).
d=O

Note that all the filtrat ions defined above are the decreasing ones.
Put

(1.3-5) 1l1(d) = Homc(1l).(d), C).

(1.3-6)

(1.3-7)

Then the dual space 1il of 1i). is defined to be

00

1tl = HOlnc(1iX) C) = II 7-l1(d).
d=O

Ey definition 1il is a right il-module. A increasing filtration {FP1tl} is
defined by

F P1il = II ?-Li (d).
d~p

There is a canonical complete bilinear pairing

(1.3-8) ( I ): 1tl x ?-L). ~ C,

which satisfies the following equality for each a E g.

(ulav) = (uajv), for all (ul E 1il and Iv) E 1l). .

Note that the filtrations {Fp } and {FP} define the topology on 1i). and

1il, respectively. With respect to this topology 1il is complete and is the
integrable highest weight right {i-module with the lowest weight '\. Put

vl = { (vI E 1iil (v[il- = 0 }.
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It is easy to show that vi = 1tl (0) and vI is the irreducible right g­
module with lowest weight A. The integrable highest weight right g­
module with lowest weight A is generated by V} over 9+ with only one
relation

Lemma 1.3.2.

X(m)1l).(d) C 1f.).(d - m)

Lm 1f.).(d) C 1f.).(d - m)

1f.l(d)X(m) C 1tl(d+m)

1f.l(d)Lm C 1f.l(d + m).

1.4 V = AutC((e)).

Let V be the automorphisms group AutC((~)) ofthe field C((~)). The
group is infinite-dimensional and is regarded as the automorphism group
AutC[[~]] of the ring C[[e]].

Lemma 1.4.1. There is an isonlorphism

(1.4-1 )

00

V f"V {L:an~n+l I ao ~ 0 }
n=O

h ~ h(e)

where for h1, h2 E V the composition h1 oh2 corresponds to apower series
h2( h1 (~)).

In the following we often identify the group V with the set of power
series given in the right hand side of (1.4.1). For each positive integer p
put

(1.4-2) VP = {h(e) = e + apeP+l + ... }.

Then this defines a decreasing filtration

v = V O :> V I :> V 2 :> . .. .

Put

(1.4-3)

(1.4-4)

g = C[[~]]~~

dP = C[[~]]~P+l ~

11



(1.4-5)

for each positive integer p. We have a decreasing filtration of ideals

For any element 1E !!:. and f(e) E ene]] define exp(I)(f(~)) by

exp(I)UW) = f ~,(IkUW)).
k=O .

This is weIl defined and exp(I) is an element of V.

Lemma 1.4.2. The exponential mapping

exp: !!:. ---+ V
1 t---t exp(I)

is surjective. Moreover, for each positive integer p we have

exp(gP) = VP

and the exponential nlapping is injective on !p.

For each positive integer p and an element l E !F define exp(T[l)) by

(1.4-6)
00 1

exp(T[I]) = L k,T[l]k.
k=O .

Lemma 1.4.3. exp(T[l]) is well-defined and is a continuous linear opera­
tor on 1i).. a.nd 1il. Moreover, it induces the identity operator on Gr;1i>.
and Grp1il.
Definition 1.4.4. For an automorphislll h E VP,. P ~ 1, G[h] is defined
by

(1.4-7)

where

G[h] = exp( -T[I]),

h = exp(I).

Note that by Lenuna 1.4.2 G[h] is weIl-defined.

Theorem 1.4.5. For h E VI and f E C((e)) we have tile following.

1) G[h](X ~ f)G[h- I ] = X ~ h(f).
2) G[h2]G[h I ] = G[h2 0 hI ] for h}, h2 E V.

3) G[h]T[l]G[h-1] = T[ad(h)(l)] + Cu Res({h(e); e}i(e)de)
- - 12 {=o
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where {h(e)i 0 is the Schwarzian derivative and I = f(e)~ E C( (e))~ .

Corollary 1.4.6. For f E C((€)) and Xo E 90' a E ß the action of
~[f] = ~® f on 'HA and 1il are locally nilpotent.

§2 Pointed Stable Curves and the Associated Vacua

2.1 Pointed stable curves.

Definition 2.1.1. Data X = (Gi Q},Q2)'" ,QN) consisting of a curve
G and points Ql,' .. ,QN on G are called an N -pointed stable curve, if
the following conditions are satisfied.

(1) The curve G is a reduced connected complete algebraic curve
defined over the complex numbers C. The singularities of the curve C are
at worst ordinary double points. That is, C is a semi-stable curve.

(2) Qb Q2,' .. ,QN are non-singular points of the curve C.
(3) If an irreducible component Ci is a projective line (i.e. Riemann

sphere) pI (resp. a rational curve with one double point, resp. an elliptic
curve), the sum of the number of intersection points of Ci and other
components and the nurnber of Q;'s on Ci is at least three (resp. one).

(4) dime HI(C, Oe) = 9.

Note that the above condition (2) is equivalent to saying that Aut( X)
is a finite group so that X has no infinitesiInal automorphisms. In the
following we often add the following condition (Q) for an N-pointed stable
curve X.

(Q) Each cornponent Ci contains at least one Qj.

The meaning of the condition (Q) will be clarified in the following Leulma
2.1.4 and Lernula 2.1.5. By virtue of Proposition 2.2.3 below the assump­
tion is not restrictive. (See Remark 2.2.5.)

Definition 2.1.2. Let C be a curve and Q a non-singular point on C. An
n-th infinitesima111eighbourhood t{n) of C at the point Q is aC-algebra
isomorphism

(2.1-1) t(n) : Oe,Q/m'Q+I ~ C[( e]]/(en +I )

where mQ is the lllaximal ideal of Oe,Q consisting of genns of holomorphic
functions vanishing at Q.

Taking the linlit n ~ 00 in the isomorphism (2.1-1), we have an
isomorphism

(2.1-2) t{oo) : Ve,Q ~ C[[ e]].

The isomorphism t(oo) is called a formal neighbourhood of C at Q.
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Definition 2.1.3. Data x(n) = (G; Ql, Q2, ... ,QN; t~n), t~n), ... ,tt»)
are called an N -pointed stable curve of genus 9 with n-th infinitesimal
neighbourhoods , if

(1) (C i Qll Q2,'" ,QN) is an N-pointed stable curve of genus g.

(2) t~n) is an n-th infinitesimal neighbourhood of C at Qj.

An N-pointed stable curve ,X(oo) = (C; Ql,Q2,'" ,QN; t~oo),t~oo),

... ,t~») with formal neighbourhoods is defined similarly.

Lemma 2.1.4. Assume that an N-pointed stahle curve X(oo) = (C; Q1,

Q Q (00) (00) (00») • h ~ al . hb h d2,· .. , N j t 1 ,t2 '''') tN Wlt Iorm nelg Dur 00 s

satisfies the condition (Q). By tj we denote the Laurent expansions at

Qj with respect to a formal paranleter €j = t(oo)-I(€). Then, the follow­
ing homomorphisms are injective.

(2.1-3)
N N

t = E9tj : HO(C,0(* L Qj))~ Ei' C((~j))
j=1 j=1

(2.1-4)
N N

t = E9tj : HO(C,wc(* l: Qj))~ EB C((ej))d<i
j=1 j=1

C-+

where wc is tlle dualizing sheaf 01 the curve G.
N N

By this Lenlma HO(G, 0(* l:Qj)) (resp. HO(C,wc(* l:Qj))) can be
j=1 j=1

regarded as a subspace of mf=lC((€j)) (resp. ffi~1C((€j))d€j). There is
the residue pairing
(2.1-5)

EB~l C((ej)) X EBf=l C((ej ))~j

((f(~l),", f(eN), g(el)dell'" 9(eN )d€N) ~

N

L Res(f(~j)g(€j)d{j)·
j=1 {j=o

The following Lemma is well-known and plays an important role in our
theory.

Lemma 2.1.5. Ullder the residue pairing H O(C, O(*~f=1 Qj)) and HO( C, wc(*~f=1 Qj))
are the annihilators to each other.

2.2 The space of vacua associated with X(oo).

First we generalize the notion of an affine Lie algebra to the oue over
the direct surn of the fields of Laurent series E9f=l C( (€j)) and the one

h d ~oo) (C Q Q Q (00) (00) (00»)over t e ata x \ = ; 1, 2, •.. IN; t 1 I t 2 ) ••• ,tN •
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Definition 2.2.1. Let g be a simple Lie algebra over the complex num­
bers C. The associated affine Lie algebra (IN over ffi~1C( (~j)) is defined
by

(2.2-1)
N

(IN = E9 g ® C((€;)) ffi Ce
j=1

with the following commutation relations.

(2.2-2)

e E Center

where ffif=la; means (al,a2, ... ,aN)' The Lie subalgebra g(x<oo)) of
-. . t d 'th -r(oo) (C Q Q Q t(oo) t(oo) t(oo)) .gN assocla e Wl ,Ä. = ; 1, 2, . .., N; 1 '2 ) . . . 'N IS

defined by
N

g(X(oo)) = 9 ~ HO(C, Oc(* L Q;)).
;=1

Here we regard HO(C,Oc(*Ef=1 Qj)) as a subspace of ffif=IC((~)) by
the mapping t given in (2.1-3).

Note that the Lie algebra g( X(oo)) has no centers. Ey Lemma 1.2.3 we
use the notation X(/j] instead of X t8l Ij(€j). Also we sometimes use the
notation X(/] instead of X ~ I for a meromorphic function I on the curve
C, if there is no danger of confusion.

Let UB fix a positive integer i. For X= (Al, ... ,AN) E' (Ft)N, a left
{iN-module 1lX and a right gN-module 1l} are defined by

1l>. = 1l>'1 ® ® 1l>'N'

1l~ = 1lt~ ~1ilN'

where the left BN-action on 1l). is given by

(ffi~1 Xj [/j]) lVI t8l ... VN)
N

= L lVI t8l ... Vj-l t8l (Xj (/j])Vj t8l V;+1 ... t8l VN)
;=1
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The right gN~action on 1t~ is defined similarly. In what follows we use
the following notation.

pj{X[fj])lvl ® ... VN®}

= lVI ® ... ® Vj-l ® (X[/j])Vj) ® Vj+l ® ... ® VN}
pj{X[f]) = pj{X[tj{/)])

for a meromorphic function / on the curve C.
The complete pairing ( I ) defined in (1.3-8) defines a complete

pairing

(2.2-3)

which is gN-invariant:

{Upj{X[/jJlV} = (ulpj{X[/j]v)

Definition 2.2.2. Put

Vx{ x<oo)) = 1ts./g{X(oo))1fX

V!{X(oo)) = {(w[ E 1ft I (wla = 0 for any aE g{x<oo))}.
~ A

We call Vl{x<oo)) the space 0/ vacua associated with X(oo) and VX(X(oo))

the dual space of vacua associated with x<oo).

Note that we have an isomorphisnl

Vf(X(oo)) ~ Homc(VX(X(oo)), C).

The above pairing (2.2-3 ) ( I ) induces a complete pairing

( I ): Vl( x(oo)) x VX( X(oo)) ~ c.

F ~(00 ) - (C' Q Q Q' (00 ) ( 00 ) ( 00) ) I P bor """ - 1 1, 2,···) N, t l ) t 2 )"" tN et e a non-
singular point of the curve C and t a formal parameter of C at P. Put

i(oo) = (C; Qt, ... ,QN, QN+1; tioo), ... ,t~OO))t~)I)

where QN+l = P and t~:'l = t.
Now let us describe the properties which we call propagation 0/ vacua.

Since there is a canonical indusion

16



we have a canonical surjection

7* . '1Jt .o.'1Jt ~ '1Jt
[> • 11.X'.cJ/I.O II.X·

Proposition 2.2.3. The canonical surjection 7:' induces a canonical iso­
morphism

~,

Figure l.

Proof For an element (~l E v},o(i(oo)) put ('ltl = -r( (~I) E 1i~.

Choose f E HO(C, Oc(*E7=1 Q;)), X E g and lu) E 1tS: Then by our
definition we have

N N
l: ('ltlp;(X[fDlu) = l: (~lp;(X[fDlu~ 0) .
;=1 ;=1

On the other hand, since f is regular at the point QN+1 = P, we have

Hence we have

N N+1

L (~lp;(X[f])lu @ 0) = L (~lp;(X[f])lu ~ 0) = o.
;=1 ;=1

Thus we have ('ltl E V}UI(oo)) and we have a linear mapping

t.,* : V! (i(oo))~ v!(x(oo)).
A,O A

First we shall show that the linear mapping t.,* is injective.
Assume that ('ltl = t.,*( (~I) = O. By induction on p we show that

(2.2-4) (~Iu c&! v) = 0, for all U E 7-lX and v E Fp7-lo.

17



By our assumption we have

('l1lu) = (~Iu ~ 0) = o.

Hence (2.2-4) is true for p = O. Next assume that (2.2-4) holds for p.
Choose an element X(m)lv) E Fp+1'Ho l where Iv) E Fp'Ho. Choose a
meromorphic function f E HO(G, Oc(* E~i1Qj)) and a positive integer
M such that

(2.2-5)

and that

Then we have

(~Iu ~ X(m)lv) = (~Iu ~ (X[f])v)
N

= - L (~lp;(X[f])u ~ v)
;=1

=0

since by the induction hypothesis (~lp;(X[f])u~ v) = O. Thus (2.2-4)

holds for p + 1. Thus (~Iu ~ v) = 0 for any lu t&t v) E 'H). t&t 'Ho. Hence,

(\iil = O.
Next we shall show that ,,* is surjective. For that purpose, to a given

('111 E Vl(X(oo)) we attach an element (~l E Homc('HÄ ~ 'Ho, C) =

1i~~'H~. The linear functional (\iil is defined inductively as a linear map­

ping of 'H >. ~ Pp'Ho to C as follows. First define

(~lu ~ 0) = (Wlu) for any u E 1iÄ'

Then we have

N N

L (~lp;(X[g])lu ~ 0)) = L (Wlp;(X(g])lu) = 0
;=1 ;=1

for any element 9 E HO( C, Oc(*Er=1 Q;)).
Now assume that (~I is defined as a linear mapping of 1iX t&t Fp1io to

C with .

N

L(~lp;(X[g])lu @ v) = 0
j=1

18



for any lu~v) E 1t>.~Fp1to and 9 E HO(C,Oc(*Ef=lQj)). Then, on

1t>. ® F1>+ I1tO the linear mapping (~I is defined by
(2.2-8)

N

(~Iu ~ X(m)v) = - L(~I(p;(X[f])u @ v) for any u E 1ls.. ,v E Fp1io
;=1

where a meromorphic function f is chosen in the same way as in (2.2­
5) and (2.2-6). It is easy to show that this is well-defined and has the
property

N+l

L (~lp;(X[f]) = 0
;=1

for each element f E HO(C, Oc(*Ef=i1 Qj)). A straightforward calcula­
tion shows the equality

(~lu®X(ml)Y(mz)v)- (~Iu ® Y(mz)X(ml)v)

= (~Iu ® ([X, Y](ml + mz) + g. (X, Y)mI6ml+m2l0)V).

This equality shows that the (~I is defined at least as a linear mapping
form 1t;. ® Mo to C, where Mo is the Venna 11lodule associated to the
trivial representation of the affine Lie algebra g.

To show that (~I is a linear fonn on 1is.. ® 'Ho, it is enough to show
the equality

(2.2-9)

. To prove (2.2-9) we first show

(~Iu ® Xo( -1)nIO) = 0

N+l
for sufficiently large n depending on 1u). Let f E HO (C, 0 c (* l:: Q;))

j=1

be a merolll0rphic function on C which satisfies the conditions (2.2-5)
and (2.2-6) for m = -1. By Corollary 1.4.6 there is a positive integer n
depending on lu) such that for any j, j = 1, ... ,N, we have

(2.2-10) Pj(XO[f])klu) = 0, if k ~ n/N.

Applying the formula (2.2-8), by (2.2-10) we obtain

(~lu®Xo(-l)nIO) = (~Iu ® (X8[f])nI0)
n' _ N.

= (_l)n L ,r . 1('111 II Pj(X8[!Dnj u ® 0)
nl+...+nN=n nl·nZ···· nN· j=1

=0.
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Figure 2.

Put
E = X_6(1), F = X6( -1), H = [E, F].

Then {E, F, H} forms a 5 [(2, C)-triplet. Let Uu be a vector subspace of
the Verma ll10dule Mo such that (~I is zero on Clu) ® Mo and Nu the
s[(2, C)-module generated by 10). Then the above equality (~lu®FnID) =
omeans that the 5[(2, C)-module Ru = Nu +Uu/Uu is of finite dimension.
Since we have

HIO) = liD),
by representation theory of 5[(2, C) we conclude that pi+lI0) = 0 in Ru.
This means that

(,~Iu ® X6( _1)i+110) = O.

Thus we obtain (~I E V~ (i(oo)) such that ~((~D = ('111. The details of
",,0

the above argument can be found in [TKl, 2.3)). Q.E.D.

Corollary 2.2.4. There is a canonical jsomorpmsm

Remark 2.2.5. Proposition 2.2.3 and Corollary 2.2.4 say that in the
study of the space of vacua and its dual space attached to an N-pointed
stable curve with fonna! neighbourhoods we can add as many points with
formal neighbourhoods aB possible we need. Therefore, as we mentioned
above, we can always assurne that the condition (Q) is satisfied. Below
this fact will be often used and play an essential role to prove itnportant
theorems.

For an element J.L E Pi put

J.Lt = -W(J-L)

where w is the longest elenlent of the Weyl group of the simple Lie algebra
g (in other word, w(ß+) = ß_). Note that J.Lt is also characterized by
the fact that -J.Lt is the lowest weight of the g-module VJ-L.
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For an N-pointed stable curve ,Xtoo) = (C; Qt, Q2"" ,QN i tioo ),
t~oo), .. . ,t~») with formal neighbourhoods, assume that the curve C has
a double point P. Let 11 : C --+- C be the normalization at the point P.
(See, for example, [Se, Chap. IV, §1).) Put 1I-1(P) = {P', P"}. Further­

more we introduce formal neighbourhoods t'(oo) and t"(oo) at P' and P",
respectively.

In the proof of the following Proposition 2.2.6 we shall use the results
of Theorem 2.4.1. We shall not use Proposition 2.2.6 in the proof of the
theorem.

Proposition 2.2.6. Under the above notation, for an N-pointed sta-

bl -r(oo) (C Q Q Q (00) (00) (00») 'th r ale curve A = ; 1, 2,···, N; t 1 , t2 , ••• ,tN WJ lorm
neighbourhoods, put i(oo) = (C;P',P",Qt, ... ,QN;t,(oo),t,,(oo),tioo ),

... ,t~»). rhen there is a canonical isomorphism

Figure 3.

Proof. The diagonal action of g on VjJ ® VjJt makes VjJ l8l VjJt
ag-module and it contains a trivial g-module with multiplicity one.
Let IOjJ,jJt) be a basis of the trivial g-submodule of VjJ l8l VjJt such that
T(IOjJ,jJt)) = IOjJt ,jJ)' where T is a canonical isomorphism

T : VjJ ® VjJ t ----+ VjJ t ® VjJ

defined by T(a ® b) = b® a. Hence 1i t"\ contains a subspacejJ,jJ ,1\

1tjJljJt ,X :> !OjJ,jJt) ® 1ts. ~ 1is...

For any element (~I E Vt
t ... (i<oo»), define (wl E 1i~ byjJ,jJ ,A
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Then, for any meromorphic function f E HO( C, Oc(*~f=1 Qj)) we have

N N
E ('l1lpj(X[fDItI» =: L (~I(O/l,jjt) ® pj(X[f])tI»
j=1 j=1

N+2

=: E (~lpj(X[fDIO/l'/lt ® tI» =: °
;=1

since if we regard f as a meromorphic function on C, we have f(P') =
f(Pll) and Pp' (X[fDIO/l,/lt ) + PP,,(X[fDIOIl,llt) = 0. Hence we have

N N
E('l1lpj(X[fD = ° for any f E HO(C, Oc(* E Q;)).
j=1 j=1

Thus we have a canonical C-linear mapping

We shall show that the mapping [,Il is injective. For that purpose, first we

show that for ('l11 E L/l( (q;]), (~I E Vt t X(i(oo)) we have/l,Jj ,

(2.2-11) (wlX(P)]tI»dP = (Q;lX(P)IOIl,llt ® tI>}dP .

Note that by Claim 3 of the proof of Theorem 2.4.1, the expansion of the
left hand side of (2.2-11) at Q; with respect to the formal parameter ej
has the form

L ('l1IPi(X(n))1<I>}~jn-1~j .
nEZ

Similarly the right hand side of (2.2-11) has the expansion

L: (Q;lp;(X(n))!OIl'llt ® tI>}~in-1~j
nEZ

= L (~I(O/l,l't) ® p;(X(n))tI>}{in-1~j
nEZ

:::: L ('l1lpj(X(n))ItI»ejn-1~j.
nEZ

Hence the equality (2.2-11) holds. Similar argument shows the equality

(wIX1(Pt) .. .XM(PM) ItI>} dP1 •.. dFM =

(~IX1(Pl) .. ' XM(PM )IOIl'llt ® tI>}dP1 ••• dPM·
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Now assume that ('1'1 = O. By Theorem 2.4.1, 3) we have

Applying again Theorem 2.4.1, 3), we obtain

(~lpP,(X2(n2)X1(n1))0l'lj!t~ ~) = 0

(~lpP,(X1(n1))pplI(X2(n2))Oj!'J.&t ~ ~) = 0

(~lpP,,(X1(n1)X2(n2))0J.&'J.&t ~ ~) = O.

Repeating the same process we can show that

(q; I~) = 0 for any ~ E 1i t Xj!,J.l ,

since 1iJ.&~1iJ.&t is an irreducible gx g-module. Hence LJ.& is injective. Thus
we have aC-linear homomorphism

Next we shall show that L is injective. For that purpose, to the points P'
and p" we associate right g-modules and integrable right g-modules.

Fix an elenlent ('l'j E Vf(X(oo)). Let h be a meromorphic function on

C such that

N

h EHo(C, 08(* 2: Qj))
j=1

(2.2-12) h(P') =1

h(P") = O.

If h' satisfies also the properties (2.2-12), then h - h' can be regarded as a
meromorphic function on C and h - h' E HO(e, 00(* Ef=1 Qj)). Hence,
for each lu) E 1i>.

N

2: (Wlpj(X[h])lu)
j=1

is independent of the choke of a lneromorphic function h satisfying (2.2­
12). For each element X E g define ('lJlpp/(X) E Homc(VX' C) by

N

(wlpp/(X)lu) =- L (wlpj(X[h])lu),
j=1
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where h satisfies (2.2-12). This is well-defined.
Next for X, Y E 9 define ('I'lpp'(X)pP'(Y) E Homc(VX' C) by

N

('I1lppl (X)pP'(Y)lu) = L ('I'IPh (X [h1])Pi2 (Y[h2Dlu)
h=l,j:z=l

ju) E Vx
where h1 and h2 satisfy (2.2-12). The definition is independent of the
choke of h1 by the same reason as above. That the definition is in­
dependent of the choice of h2 is proved a.s folIows. Since h2dhl is a
meromorphic one form on C having poles only at Ql, . .. ,QN, we have
Er=1 ResQj(h2dh1 ) = O. Therefore, we have the equality

N

L: ('I1IPi} (X{h1])Pi2(Y{h2Dlu)

N

= L ('11 IPh(Y[h2])Ph (X[h 1])lu) + L ('I1IPi([X, Y] [h1h2Dlu).
iti:-h ;=1

The right hand side of the equality shows the independence of the choke
of h2, since h1h2 also satisfies the properties (2.2-12). Moreover the above
equality shows the equality

In this way we can define a right g-module U( ('1'1) C Hon1c(VX, C) at
the point P'. By the same way we can construct a right g-module at the
point PlI.

More generally, we can define an integrable right g-module U( (\111) c
Homc(1iX' Cl. For example~(\II]pp,(X(n)) is defined as folIows. Let 9 be
a meromorphic function on C such that

(2.2-13)

N

gE HO(C,Oc(* L Q;))
;=1

9 =€,n mod (€') at P'

g(P") = 0

where e' = t'-1 (e) is a formal parameter at the point P'. Then, define
(\IIlpp,(X(n)) by

N
('I1lpp,(X(n))lu) = - L ('I1lp;(X[g])lu).

;=1
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The definition is independent of the choice of a meromorphic function
9 satisfying (2.2-13). Similarly we can define (wlpp,(X(n))ppl(Y(m)) E

Homc(1iÄ' C) and we have the equality

(2.2-14)
(wl(pp,(X(n))pp,(Y(m)) - (wlppl(Y(m))pp,(X(n)))

== (wIPP'([X, Y](m + n)) + i· (X, Y)nOn+m,o(wl.

In this way we can construct a right g-module U( (w[) C Homc(1ir, C).
Since the action of Pi(Xo[9]), Xa E go is locally nilpotent by Corollary
1.4.6, the action of Ppl(Xo(m)) on U( (w[) is locally nilpotent. Hence
U( (wl) is an integrable right g-lnodule of level i.

Thus to the point pi we associate a right g-module

U(V}( X(oo»)) == U U( (wD
('I'IEv~(.r(QO) )

and an integrable right g - module

U(Vl( X(oo»)) == U U( (wl)
('I'!EV1(X(QO»

of levell. Since V}( ;t(00») is finite-dimensional, by Theorem 4.2.4, U(V1(x<00) ))
is a finite-dimensional right g-module. By (2.2-14) we have an irreducible
decomposition

(2.2-15)

U(Vl(x<oo»)) == E9 VJffin,.
J-lEPl

U(Vl(:r<oo»)) == E9 1it$n~.
J-lEPl

Now we are ready to prove the injectivity of L. For an element (~I E

V t
t ,(i<oo»)), put (wl == LJ-l( (~I) and choose a meromorphic function hJ-l,J-l,<'\

on C satisfying (2.2-12). Then we have

(wIPP'(X1), .. PP,(Xk)lu)
N

== (_1)k L (WIPil (Xl [h]) ... Pi" (Xk [h])lu)
;1=1,... ,j,,=1

k+1 -== (-1)' (Wlpp'(X1(O))··· PP,(Xk(O))I0J-l,jlt ® u).
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Since pp' (Xl (0)) ... Pp' (Xk(O)) 10/',J't )'S generate an irreducible left g-module
isomorphie to VJ, we conclude

U( ('11 I) C vJffin~.

Hence, for (~J'I E Vt t \(X(oo») and (~vl E V t \(X(oo»), we have
1',1' ,.-\ V,v ,.-\

This means that l. is injective, since l.J' is injective.
Finally let us prove that l. is surjective. By (2.2-15) for an element

('ltl E Vl(.:E(oo») we have a decomposition

We construct (lIi1'1 E Homc(1i t X, C) as follows. First note that VI' ®J',JJ ,
VJ't is generated by elements

pp,(Xt} .. 'pp' (Xn)PP"(Yi)· .. PP" (Ym)!0J',J't )
X}, ... ,Xn,YI, ... ,Ym E g.

Moreover, (lIi1'1 defines a right g-module U( (lIi1'1) C Homc(1iX' C). For
each element Iv) E 1iX define

(lIiJ'I0J"J't ~ v) = (wlv).

Define

(lIiJ'lpP'(Xl )", Pp, (Xn)pp//(Yl ) ... PPII(Ym)O/j,J't ~ v)

= (-1)m(wJ'lpp,(X1(0))··· pp' (Xn(O))pp, (Ym(O)) ... PP'(Yl(O))V).

This is well-defined, since the diagonal action of 9 on CI0J',J't) is trivial.

This defines (~J'I E Homc(VJ' ~ VJ't ~ 1iX' C). Now assume that we

have already defined (lIi",1 E Homc(Fp1i", ~ Fq1iJ't ~ 1iX' C) for non­
negative integers p and q. Choose an element pp,(X(m))lu ~ ul ® v) E

Fp-t11i", fi'J Fqfi'J,!!J't with IU~U/) E Fp1iJ'~Fq1iJ't. Choose a meromorphie
function f on C such that

N

f E HO(C, 08(* L Qj +*P' + *P"))
j=l

f =€,m mod (€,M) at pI

f =°mod (€"M) at P".
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Here we choose the positive integer M in such a way that pp,(X(n))lu) = 0
and pp,,(X(n))lu) = 0 for all n ~ M. Then we define

N

(~lllpp,(X(m))lu @ u' ® v) = - L:(~~lpj(X[f])lu ® u' ® v}.
j=I

By the similar argument to the proof of Proposition 2.2.4 we can show
that the definition is independent of the choice of a meromorphic function
f satisfying the above conditions and we have

8imilarly we can define

In this way we can show the existence of

Moreover l we can show that

By our construction we have 1.1l ( ("~Ill) = (will.
Corollary 2.2.7. There is a canonical isomorphism

Q.E.D.

Example 2.2.8. Let us consider the space of vacua VI( x(oo)) with C =

pI. We use the results in 2.4, especially Theorem 2.4.1.
Let z be a global inhomogeneous coordinate of pI. For N points

al, ... ,an E C, put

Uj = z - aj, j = 1,. .. ,N

and
x<oo) = (pI; a}, ... ,aN; ul, . .. ,UN)'

Fix XE (pl)N. Let üs consider a homomorphism

27



defined by
i( ('l1I)(lepo)) = ('l1lepo), lepo) E Vx·

Let us show that the homomorphism i defines an injective homomorphism

(2.2-16)

(2.2-17)

For that purpose, for an element X E 9 first consider a meromorphic one
form F = ('l1IX(z)lepo)dz in Theorem 2.4.1. By Theorem 2.4.1, 5) we
have

N 1
(wIX(z)lepo)dz = L ('l1IPj(X)epo)dz

j=1 z - aj

since the left hand side minus the right hand side is a holomorphic one
form on pI, hence zero. By Theorem 2.4.1 3) we have

(\lIlpj(X(n))cI>o) = ~~~(uj(\lIIX(z)lepo)dz}.

Since ('l1IX(z}fepo)dz is aglobai one form on pI, we have

N N
L (wfpj(X}epo) = L ~~s.( (wlX(z}lepo)dz) = O.
j=1 j=1 J

Hence, i( (\lI I) E HOffig(VX' C). By the similar arguments, by Theorenl
2.4.1, 4} and 5} we have

(i[tIX(z)Y(w)lpo)dzdw ~~ ~~~; (i[tlpo)dzdw

1+ --('l1I[X, Y](w}lepo)dzdw
z-w
N 1

+ "L (wIY(w}lepo)dzdw
j=1 z - aj

N 1
+ L ('l1fX(z)lepo)dzdw.

j=1 w - aj

The right hand side is uniquely determined by i( ('li 1). In this way we can
show that i( ('lJ I) deternlines uniquely the correlation functions of currents

hence, determines uniquely the bilinear pairing

Vl( x<oo)) X 1tX ~ C

(('111, I<I»)
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(2.3-2)

(2.3-3)

Hence the mapping i is injective.
Finally consider the case N = 3. In this case the image i(Vl(X(oo»)) c

Homc(VA, C) is characterized by the fusion rule ([GW], [TK1), [TK2]).
... 3

For ..\ = (J-l, v,.-\) E P, , put

(2.2-18) WJl,v,A = {4J E Homg(VJll&! Vv ® VA, C) I condition (*) }

where the condition (*) is given as follows. Let te = CXe EB CX_e EB
C[Xe,X-e]be the principal 3-dimensional subalgebra of g, and let

l/2

VA = EBWAJ
j=o

be the decomposition to the spin-j homogeneous components of te-nlodules.
Then the condition (*) is

(*) 4JIWJi ,h0W",i0W>.,j = 0 if h + i + j > l.

2.3 Action of V.

For an N-pointed stable curve X(oo) = (C; Q1, Q2,'" ,QN j tloo ),
t~oo), ... ,t~oo») of genus 9 with formal neighbourhoods and an N-tuple

h = (h1, . .. ,hN) E VffiN, let us define ho X(oo) by

(2.3-1) h0 X(00) = (C; Q1, ... , QN ; h1 0 400), .. . , hNot~) ).

This defines a left VffiN action on the set of N-pointed stable curves of
genus 9 with fannal neighbourhoods.

By Lemnla 1.4.2, for an element h E VI, there exists the unique
derivation I E d/ with h = exp(I).

Definition 2.3.1. The (VI )ffiN -actions on 1iX and 1i1 are defined by

N

(G[h]l<I» = II pj(exp(-T[Ij]))Iq,),
j=l

N

{wIG[h] = II (wIPj(exp( -T[Ij])) ,
j=l

where

Lemma 2.3.2. Far an element h E (VI )EBN, we have

Vf(h 0 ;«00») = Vf(:({oo»)G(h)-l .
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Remark 2.3.3. The above Lemma says that the space of vacua attached
~(oo) _ (C' Q Q Q' (00) (00) (00») d 'all dto .A. - I 1 , 2, • . ., N I t l , t 2 , . .. ,tN oes essentl y e-

pend on the first infinitesimal neighbourhoods. This fact will be clarified
in §4 below.

2.4 Correlation functions

Let C be a semi-stable curve and We its dualizing sheaf. Put CM =
M

c x . ~. x cf. Then CM has singularities of codimension 1, but still we can
define the dualizing sheafWeM, since CM is locally a complete intersection.
(See, for example, [BS] or [KIl.) Moreover, we can show that

W - wC8lMe AI - e

where 1rj : CM -+ C is the j-th projection and we define

C8lM * 101 * 101 101 *We = 1rIwe 'CI 1r2We 'CI ••• '0' 1rMWC .

(See, for exampIe, [KI].) Since CM has singularities for a singular semi­
stahle curve, the (i,j)-th diagonal ßij = {(Pt, ... ,PN)IPi = Pj} of CM

is only a Weil divisor and not a Cartier divisor. But it is well-known that
2ßij is a Cartier divisor.

Theorem 2.4.1. Fix ('1'1 E Vl(X(oo»). For each non-negative integer M
tbe data

define an element

of
M N

HO(CM,w~M( L *ßij+LL*1r;I(Qj)) ,
l~i<j~M i=I j=l

where ßij = {{Pb'" ,PN)IPi = Pj} is the diagonal. The meromorphic
form ha.s tbe following properties.

0) For M = 0, F =< WlcI> > is the canonical pairing induced by the
pairing (2.2-3).

1) F is linear with respect to 1cI» and multi-linear with respect to
Xi '5.

2) For any permu tation (J E (5M, we have
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For exampIe, for a transposition (i, i + 1) we have

F = ('l1IX1(P1)· .. Xi-1(Pi-1)Xi+1(Pi+1)Xi(Pi)

Xi+2(Pi+2) ...XM(PM)lep)dP1dP2... dPM.

3) For k = 1, ... , N and 6~ = tk(oo)-l(e), if ek is a holomorphie
eoordinate, the we have the equality

1 ~€k(IIIIX(€k)Xl(Pl)X2(P2) ... XM(PM )1<1»lCI: 27r -1
= (wIX1(P1)X2(P2)' .. XM(PM )]Pk(X(n))ep)

where Ck is a eontour rounding only Qk and eontaining no other Qj 's nor
Pi'S.

4) For a Ioeal holomorphie eoordinate z around a nonsingular point
we have tIle following equality.

('I1IX(P)Y(P')X1(P1)X2(P2 ) ... XM(PM )Iep)
i· (X, Y)

= (z(P) _ z(P'))2 ('I1!X1(P1)X2(P2)··· XM(PM)lep)

+ z(P) ~ z(P') (1II1[X, YJ(P')Xl(PIlX 2(P2) ... XM(PM )1<1»

+ regular at P = P' .

5) For a Ioeal holomorphie eoordinate z Mound Qi and for 1cI» E

Vx = VAl ® ... ® VAN , we have an equality

(wjX(P)X1(P1)X2(P2)· .. XM(PM)1<I-)
1

z(P) - z(Qi) (W!X1(P1)X2(P2), .. XM(PM )IPi(X)<P)

+ regular at P = Qi.

These functions F are called correlation functions of currents.

Proof. Choose M + 1 non-singular points PI, P2) ... , PM) P of the

C d h · r l' hb h d (00 ) ( 00 ) ( 00 ) Pcurve an t elf lorma nelg OUf 00 s tN+1, tN+2 , . .. ) tN+M+1. ut

::;'(00) _ (C' Q Q Q Q . t(oo) t(oo) )
..:t. - ) 1,···, N, N+t,···) N+M+I, 1 ) ... , N+M+1
:v.loo) _ (C' Q Q Q Q' t(OO) t(OO))
.::t.\ - ) 1,···, N, N+1)···) N+M'1 "")N+M
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where QN+i = Pi, i = 1, ... ,M and QN+M+1 = P. By Proposition 2.2.3
there are canonical isomorphisffis

k

where Ök =~. For ('ltl E V!(X<oo») put

(~I = tM( ('ltl) , (~I = LM+1( (~I)·

CLAIM 1. For any fu) E 1iXtlJ1iÖM and X E g, (~lutlJX( -1)]0)d11 dennes
a cotangent vector of the curve C at the point P.

Proof. Choose a meromorphic function f E HO(C,Oc(*(P + QI))
on C such that

f = 1]-1 + regular at P

f =0 1110d (€.ii) at Qj, j -:I 1

where 11 = t~2~1(~), ~; = tJOO)-l(~) and nj is sufficiently large so that
p;(X[f])Ju) = 0 and f is holomorphic at Qj, j # 1. Then we have

(~Iü ~ X( -1)10) = (~Iü ~ (X[/])IO)

= -(~lp1(X[f])u tlJ 0) .

Hence, if we change a lornlal neighbourhood t~ll by 0:;11' we have

- -jOO)-l(C) 2 -I- 011 = t M +1 ':. = al11 + a211 + ... , a1.,

(~Iu tlJ X( -1)10}1i = al1(~lu ~ X( -1)10}7]'

This implies that (~lutlJX(-1)10) depends only on the first order infinites­
imal neighbourhood and (~Iu ~ X(-1)10}7]d11 E TpC is independent of
the choice of a formal coordinate.

CLAIM 2. Put

Wj = L (\illpj(X(n))lu}€.in-1d~j, j = 1,2, ... ,N + M
nEZ

where ej = t}oo)-l (e). There is a meromorphic l-form

N+M
W E HO(C,wc(* L Q;))

;=1
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on C such that

where the mapping t is defined in (2.1-4).

Proof For an element f E HO( *Ef=iM Qj)) let fj(ej) = E a!!lej
be the fornlal Laurent expansion of f at the point Qj by the fonnal

parameter ~j = t;OO)-I(€). Hence t(f) = (fl(et}, ... ,fN+M(€N+M)).
Then we have

N+M N+M
L ~.:~(fj(€j)wj) = L L (~lpj(X(n))lu)a~)
j=1 {J- j=1 nEZ

= (q;IX ® t(f)lu) = 0

since (lJIIX ® t(f) = 0 by our assumption. Therefore, by Lemma 2.1.5
there exists an element W E HO(C, we(*Ef=iM Qj)) with t(w) = (Wl, .. . ,

WN+M)' This proves Clainl 2.

CLAIM 3. As a cotangent vector at P with formal parameter 7], (W'lü ®
X( -1)10)d1] and w coincide.

In the following we express w by

w = (~IX(P)Ii1)dP .

Proof Since (~Ii1®X( -l)JO)d1] is a cotangent vector at P, we may
assurne that 1] is a local holomorphic coordinate of C at P. Choose a
meromorphic function f E HO(C, Oe(*(P + Qi)) on C such that

f = 1]-1 + regular at P

f =0 mod (€ji) at Qj, j =I i, 1 ~ j ~ N + M

where nj is sufficiently large so that pj(X(fDlu) = 0 and fw is holomor­
phic at Qj, j =I i, 1 ~ j ~ N + M. Then we have

N+M
(~Iü ® X( -1)10) =- L (q;lpk(X[fDlu)

k=1

=:: -(q;lpi(X[fDlu).
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On the other hand, at the point P we have

1
Resp( -w) = Resp(fw)

Tl
N+M

= - L ResQJ:(fw)
k=l

= -ResQj(fw)

= - Res (Ii(~d L: (~IPi(X(n))IÜ)€in-ld<i)
ei=O nEZ

= -(\iiIPi(X[f])lu)
= (~Iü ® X( -1)10)1]

This proves Claim 3.
Now we are ready to prove Theorem 2.4.1. Put

The above argument shows that

is regarded as an element of TP1 C ® ... ® TpM C, if Pk ~ Qj and Pj ~ Pk,
j ~ k, and depends meromorphically on Pk. Hence, by the Hartogs theo­
rem, it defines an element of HO( CM , W~(Ei<j *ßij+Ef'!:l Ef=l *11";1 (Qj)).
We denote this meromorphic section by

The assertions 0) and 1) are clear by our definition. For the assertion 2)
note that the merolllorphic form defined above from the data

:r(00) - (C. Q Q pp. t(oo) t(oo)).x.. - , }, ... , N, }, ... , M, 1 , ... , N+M

and the data

:roo _ (C' Q Q pp. (00) (00)
Au - I }, ••• I N, u(I),'·· I u(M),t1 , ... ,tN '

(00) (00))
t N + u(I)'··· ItN+u(M)

are the same. This implies the assertion 2).
The assertion 3) follows fronl Claim 2.
Let us prove the assertion 4). Let the point P' be in a small neigh­

bourhood U of the point P with local coordinate z with center P. Let us
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choose a meromorphic function f E HO(C, Oc(*P + E~diM *Qk)) such
that

f = z-1 + regular at P.

Moreover, changing the local coordinate at P if necessary, we mayassurne
that f = z-l. Then w = z - z(P') is a local coordinate of C at P'. As a

M

cotangent vector at each point of (P, P') x C x . ~. x C,

is equal to

(~·IX(-l)Op ® Y( -1)Op' ® ~}dzdw

where

and
I~) = Iq,} ® X1 ( -1)0} l8> ••• ® XM( -1)0) E 1iX ® llÖM '

Then we have
(2.!-1)
(~·]X( -l)Op ® Y( -l)Opl ®~) = - (~I(X[f])Y( -1)Opl ®~)

N+M
- L (~IY( -1)Op' ® Pk(X[fDI~)·

k=l

The second term of the right hand side of (2.4-1) is written as

N+M
- L (~IY(P')lpk(X[j])~}dP'

k=l

hence, it is holornorphic at the point P'. On the other hand, putting
a = z(P') we have

(X[jDY( -1)]Op,) = (X[-1-D(Y[w-1DIOpl)
w+a

= eX~YI [w-ll - [. (~'Y)) IOp.}.

Hence the first ternl of the right hand side of (2.4-1) has the form

_l._(X~2'Y_) (wIX1(P1) . .. XM(PM )Iq,}
a

- [X, Y] (WI[X, Y](P')X1(Pl) ... XM(PM)Iq,).
a
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Since -a = z(P) - z(P'), we have the desired result.
The similar argument proves the assertion 5).

Furthermore we can show the following Proposition.

Proposition 2.4.2.

1) For k = 1, ... ,N, we have

J js~r+l(I)iIT(~k)Xl(PdX2(P2)" .XM(PM)I<l')
fCIe 27r -1

= (WIX1(Pt}X 2(P2) ... XM(PM )IPk(Ln)cI»,

where

Q.E.D.

2) For a llolomorphic coordillate transformation w = w(z) we have

(wIT(w)X1(P1)X2(P2) . .. XM(PM )JcI»dw2

=('l'IT(z)X1(P1)X2(P2) . .. XM(PM )1cI»dz2

- ~; {w(z)j z}('ltjXl(Pl)X2(P2) . .. XM(PM )1cI»dz2

where {w( z); z} is the Schwarzian derivative.

§3 Universal Family of Pointed Stable Curves

3.1 Deformations of pointed stable curves.

Let C be a cOlnpact Riemann surface of genus g. Infinitesimal deforma­
tions of the Riemann surfaces are parameterized hy the cohomology group
B I

( C, Sc), where 6c is the sheaf of germs of holomorphic vector fields on
C. (See, for example [Ko].) More generally infinitesitnal deformations of
th d ~n) - (C' Q Q Q' (n) (n) (n») f N . de ata x \ - I 1, 2,···, N I t1 ,t2 , ... , tN 0 an -pOInte
Riemann surface of genus g with n-th infinitesimal neighhourhoods are
parameterized by the cohomology group Bl(C,ec(-(n+1)E~1Qj). If
C is a singular stahle curve, then the cohomology group is replaced to the
cohomology group Exthc(nh,oc). (See, for example, [Ar], [DM, §1],
[SGA7, Expose VI, 6], [Bin].) Here, nh is the sheaf of Kähler differen­
tials of the curve C. (See, for exanlple, [Ha, Chap. 11, 8] or [Se]. In our
situation, we may regard the exact sequence (3.1-3) as adefinition of the
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sheaf oh.) Put Ge = Homoc (Oh, Oe). There is an exact sequence \

(3.1-1)
N

o-+ H 1(C,8e (-(n + 1) L Q;))
;=1

N

-+ Exthc(Oh, Oc(-(n + 1) E Qj))
;=1

-+ HO(C,Jmbc(Oh,Oc)) -+ O.

If the stable curve C has q double points PI, P2 , • .. ,Pq, then we have

1 1 { C, if Q =Pj, i = 1, 2, . . . ,q
Extoc(Oc,Oc)Q = .

0, otherwlse.

Hence we have
HO(C'~c(oh,oc)) ~ cq.

Each element of H 1(C, 8c( -(n+1) Ef=l Q;)) corresponds to an infinites­

bnal deformation of the data x(n) = (C; Ql, Q2,' .. , QN j t~n), t~n), . .. ,

t~)) preserving the singularities.
• • ( -(n) -(n) -(n))DefinItion 3.1.1. Data 1r : Y -+ B;S},82,'" ,sN;tl ,t2 , ... ,tN

are called a (hololnorphic) family of N-pointed stable curves of genus
9 with n-th infinitesimal neighhourhoods, if the following conditions are
satisfied.

(1) Y and B are connected complex manifolds, 1r : Y -+ B is a
proper flat holomorphic map and SI, S2, . .• ,SN are holomorphic sections
of 1r.

(2) For each point bEB the data (Yb := 1r-
l (b); sl(b), s2(b), ... ,

sN(b)) is an N-pointed stahle curve of genus g.

(3) t)n) is an OB-algebra isomorphism

t)n) :Oy / I~+l ~ OB{[€)]/(~n+l),

where I"i is the defining ideal of s;(B) in Y.

Similarly we define a family (1r : Y -+ Bi SI, 52, ... ,SN; t~OO), t~OO), ... ,
t~oo)) of N-pointed stahle curve of genus 9 with formal neighbourhoods.

• • ( -(n) -(n) -(n))PropositIon 3.1.2. Let 1r : Y -+ B; SI, 82, .•. ,SN; t 1 ,t2 , ••• , tN
be a lamily ol N -pointed stable curves ol genus 9 with n-th formal neigh­
bourhoods. For each point bEB, there exists aC-linear mapping

N

(3.1-2) Pb : Tb B -+ Exthy • (O}" ,0Yb( -(n + 1) L 5j(b))) ,
;=1
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where Yb == 1r- l (b).

The linear mapping Pb is called the Kodaira-Spencer mapping of the
. ( -(n) -(n) -(n)) .famtly 'Ir: Y -+ Bi SI, S2," . ,SN; t l ,t2 , ... , tN at the pOInt b.
Since the proposition plays an important role in our formulation of

conformal field theory, we give rather detailed discussions about a proof.
For the fundamental properties of the funetor Ext we refer the reader to
[Ha, Chap. 111, 6]. Put C == Yb, Qj == sj{b). Let Ie be the sheaf of the
defining ideal of C in Y. There is an exact sequenee

(3.1-3) o-+ Ie/I~ -+ n} ~ Oe -+ oh -+ O.

This gives a locally free resolution of the sheaf Oh. The sheaf Ie / 1'8 is the
eonormal sheaf of the eurve C in Y and we have a canonical isolnorphism

(T;B) ~c Oe ~ Ie/I~.

Hence there are canonical isomorphisms

(3.1-4)

(3.1-5)

Put

Hornoc{Ie/I'8,Oe} ~ TbB ~c Oe,

Homoc(O} ~oy Oe, Oe} ~ Gy l8loy Oe·

In other words, we have an exact sequence

Then applying Hornoc( ,Oe} to the exact sequence (3.1-3) and using
the canonical isomorphisms (3.1-4) and (3.1-5), we obtain a complex of
sheaves

(3.1-6)

The eohornology groups of the COlnplex (3.1-6) are E xtöc (Oh, 0 e ). That
is, we have

ExtO == Ker{1f. : 1° -+ I 1
} == Ge,

Ext l == Coker{1r. : 10 -+ I 1}.

Note that the map 'Ir... in (3.1-6) is surjective outside the double points
P1,P2, ••• ,Pq ofthe curve C. The cohomology groups Extöc(Oe, Oe} is
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calculated as folIows. Choose an open covering U = {U,\} '\EA of the curve
C. Let Ck(U, Im) be k-th cochains with values in the sheaf Im. Put

j(ß = ffi Ck(U, Im) .
k+m=n

We define the differentials on of {Kn}as folIows. For auy element {ePa} E

CO(U,10) = KO we define

0°{ePa} =({-rr... (<Po)}, {4>p - ePo}) E CO(U, 11
) ffi C1(U, 1°) = K 1

•

For each element ({!Pa}, {Baß}) E CO(U, [1) ffi C1(U, 1°) = K 1 we define

ol({/Pa}, {Baß}) = {(/Pß -/Pa) -1r... (Baß )} E C1(U,I1
) = K 2

•

Other ok's are defined to be the zero map. Then {Ke
, oe} is a complex

and if the covering is good, namely each open set U,\ is different from C,
then we have

Extöc(o'h, Oe) = Keron /Imon
-

l
.

Assurne that the covering U is good. Assume further that each of the
points Qj's and P/s is contained in only one open set u.,. For each tangent

vector B E TbB of B at b, there is a vector field Öon a neighbourhood of
b. Then there is a lifting Öo on Ua \ E of the vector field Ö, where Ua is
an open set in Y with Ua =Üo n C and :E is the locus of double points of
fi bres of 7l'. Put

/Pa = B E HO(Un , Tb t;) Oe)
- - °Baß = (Bß - Ba)IUanlAp E H (Ua nUß, Sy @Ol' Oe).

Then 'l1(B) = ({/Pa}, {Baß}) is an element of K 1 and by definition we have
ol(w(B)) = 0, hence defines an element ['I1(B)] of Exthc(o'e, Oe). Thus
we have aC-linear lllapping

This is the Kodaira -Spencer mapping of 1r : Y -+ B at b.
So far we do not consider the points Qj and n-th infinitesinlal neigh­

bourhoods. To define the Kodaira-Spencer mapping of the family (1r :
-(n) -(n) -(n)

Y -+ B; ~1, S2,..: . . ,SN; t l ,t2 , .•. , tN ) we need to be careful to choose
a lifting Ba of B, namely the lifting should respects the n-th formal neigh­
bourhoods. For simplicity assurne that the point Qj is contained in an
open set Uj. Choose local coordinates (UI, U2, ••• ,um) of B with cen­
ter b. Then we can choose local coordinates of Y with center Q j as
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(Ul,U2, ... ,Um, z). We may assume that Uj is eontained in the coordinate
neighbourhood of Qj with the above coordinates. By these coordinates

- 8-
the vector field B is expressed in a form 2: ak(t)-a . Then, as Bj we

'Uk

choose the same form 2: ak (t) a8
. Other lifting is given by a form

Uk

a 8
2:ak(u)-8 +A(u,z)-a·

Uk Z

To preserve the n-th formal neighbourhoods A(u, z) has the zero of or­
der n + 1 at Qj. Precisely speaking, if we choose the lifting Öj above
then we have an element W(B) as above. This lifting does depend on the
choice of the Ioeal coordinates. If we choose other Iocal coordinates, w(B)
changes by adding oO( {<Po}). <Po corresponds to an infinitesimal change
of loeal coordinates of Uo. Hence <Po needs to preserve the n-th formal
neighbourhoods. Let ~+1 be a Oc-submodule of 1° defined by the exact
sequence

N

o~ Sc(- (n + 1) 2: Qj) ~ I~+1 ~ [1.
j=1

Then the element defines a cohomology cl~s [\l1(0)) ofthe complex {K~+I'

oe} where we define

where [~+1 is defined above and [~+1 = [1. The cohomology group of the
complex {K~+I'Oe} is ExtOc(Oh, OC( -(n + 1) E Qj)). Henee [\l1(B)) is
an element of Exthc (Oh, 0 c (- (n + 1) E Qj ) ). This defines the Kodaira-

• . ( -(n) -(n)Spencer mapplng of the fanuIy 7r: Y ~ B; SI, S2, .. . ,SN; t1 ,t2 , ... ,

t~»). We thus prove the Proposition 3.1.2.

A sheaf version of Proposition 3.1.2 is the following.

(
-(n) -(n) -(n») .Corollary 3.1.3. JE 7r : Y ~ B; SI, S2, . .. ,SN; t 1 ,t2 , .•. , tN 18 a

family oE N -pointed smooth curve oEgenus 9 with n-th infinitesimal neigh­
bourhoods, the Kodaira-Spencer mapping P6 induces an 0B(R)-module
homomorphism

N

P : eBen) ~ RI 7ri
n )(8c(n)/B(n)( -(n + 1) 2: Sj(ß(n»))).

j=1
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Definition 3.1.4. A family ( 1!'"(n) : c(n) -+ B<n) ; s~n), s~n), ... ,s<;) ; t~n),

t~n), .•. ,t<;») of N-pointed stahle eurves of genus 9 is ealled a local uni­
versal family, if the Kodaira-Speneer mapping

N

p~ : T~ -+ Exthc.(nhc.,Oc.(-(n + 1) L S)n)(s)))
j=1

is isomorphie at each point s E B(n).

The following theorem plays a erucial role in our eonformal field theory.

Theorem 3.1.5. For each N-pointed stahle curve x(n) = (C; QI, Q2,

... , QN; t~n), t~n), . .. , t<;;») of genus 9 with n-th infinitesimal neighbour­
hoods, there always exists a loca} universal family (1l"(n) : c(n) -+ B(n)

(n) (n) (n) "(n) -(n) -(n»). h' B(n) eh h
; sI ,82 , ... 'SN; t 1 ,t2 J'" ,tN Wlt pOlnt x E su tat

Cz = 1l"(n)-l(x) ~ C and that with respect to this isomorphism we have

Proof The theorem is a eonsequence of adeformation theory ([Ar],
[Sc], [SGA 7], [Bin]). Since we need an explicit description of a loeal uni­
versal family ~(l) below, we give a method to eonstruct a loeal universal
family.

By our assumption, the curve C has only ordinary double points.
Henee, by adeformation theory, there exists a versal family 1r : C -+ B
with specified point x E B such that Cz = 1r-

l (x) ~ C. Here, "versal"
means that the Kodaira-Speneer mapping

is isomorphie. (Since the automorphism group of C may be infinite, the
family 1r : C -+ B nlay not be universal at the point x but semi-universal.)
Put

B(O) = CN \ (~. ßij U{ singular points of CN })
t<]

where

ßij ={(XI, .. • ,XN) E CN I Xi = xi }

is the (i, j)-th diagonal. There is a natural holomorphie mapping p
B(O) -+ B. Put also
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and let 7r(0) : C(O) -+ 8(0) be the projection to the second factor. By our
definition, (Ql, . .. ,QN) E p-l(x). Put Xo = (Ql, ... ,QN) E 8(0). Then

we have 7r(O)-I(xO) = Cz x Xo ~ C. Moreover, we can define holomorphic
sections

by

S)0)((P1, . .. PN )) = (Pj, PI, ... ,PN ) E C XB B<0).

Then we have S)O\XO) = (Qj, Xo). It is easy to show that ~O) = (7r(O) :

C(O) -+ s(0); siO), ... ,s~)) is universal at each point of 8(0).

Next we construct the fanlily ~(1). For that purpose, put

T (O)C(O) = U T (0)( )Cy ,
ß· ß· y

} yEB(O) J

Thus Tß(o)C(O) consists of tangent vectors of C(O) at s;O) (8(0)) tangent to
}

the fibres of 7r(0). T (O)C(O) is a holomorphic line bundle over 8(0). Put
ß·

}

further

T~o)C(O) = T (O)C(O) - zero section
Sj ßj

8(1) = T~o)C(O) xB(O) ••• xB(O) T~o)
ß 1 ß N

C(I) = C(O) x B(O) 8(1) .

Let 7r(I) : C(I) -+ B(I) be the projection to the second factor and PI

8(1) -+ B(O) the natural holomorphic mapping. The holomorphic sections
S)O) lifts to holomorphic sections s?) :8(1) -+ C(I) by

Moreover, for each elenlent y = (VI, . .. ,VN) E 8(1), by using the canon­
ical isomorphism 0C(l) / I

ß
}I) ~ 0B(I), we can define 0B(l)-module homo­

morphism

where we regard Vj as a derivation.
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Note that the first order infinitesimal neighbourhood ty) of the eurve

C defines a derivation Vj E TQj C by

t)l) (f) = f( Q) + vj(f)e

where f is a holomorphie funetion at the point Q. Henee the data X(I)

define a point Xl E B(l) with pl(Xt} = Xo. Moreover, 1r(l)-l(xt} is iso­
morphie to the eurve C and with respect to this isomorphism we have

It is easy to show that our faluily ~(l) = (1r(l) : C(l) --t 8(1); si
l
), s~I),

(1) -t(l) -(1) -(1») . . al h· f 8(1). .. ,sN; 1 1 t 2 ,..., t N 18 ulllvers at eac pOInt 0 .

Similarly, using the n·th jet bundle, we ean eonstruet loeal universal
family of N -pointed stable eurves with n-th infinitesimal neighbourhoods.
Q.E.D.

Let ( ..".(n) . c(n) --t 8(n). s(n) s(n) s(n) . -t(n) t-(n) t-(n») be a
11. , 1 , 2 ,..., N 1 1 , 2 ,..., N

loeal universal family of N-pointed stable eurve of genus 9 with n-th
infinitesimal neighbourhoods. Put

(3.1·8)

E(n) = { P E c(n) Id1r~n) : Tpc(n) -+ T'/l"(II)(p)8(n) is not 8urjeetive}

(3.1-9)
D(n) = 1r(n)p:;(n»).

The set E(n) is ealled the criticallocus of the family and D(n) is ealled the
discriminant locus of the family. The following lemma is a eonsequenee
of the deformation theory of singular eurves with ordinary double points.
(See for example [Ar], [DM, §l] or [SGA 7, Expose VI, 6].)

Lemma 3.1.6. For a local universal family (1r(n) : c(n) -+ B(n); si
n

),

(n) (n) • -(n) -(n) -(n») fN . d bl f . h
8 2 , ... , 8N I t 1 ,t2 , ••• , t N 0 ·polnte sta e curve 0 genus 9 Wlt
n-th infinitesimal neighbourhoods, assume 3g - 3 + N ~ 1.

1) We have

dim8(n) = 39 - 3 + (n+ 1)N

dimC(n) = 3g - 2 + (n + 1)N.

2) The criticallocus E(n) is a smooth subvariety of codimension 2 in
c(n) .
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3) The discriminant locus n(n) is a divisor with normal crossings in
B(n)

3.2. Kodaira-Spencer mapping.

Let us eonsider a Ioeal universal family ~n) = (1r(n) : c(n) -+ B(n) i
(n) (n) (n) . -(n) -(n) -(n») f N . d bl f

sI 'S2 , ••• 1 SN' t1 , t2 , ••• , tN 0 -poInte sta e eurves 0 genus
9 with n-th infinitesimal neighbourhoods. In the following we need to
eonsider Iocally a family ~(n). For that purpose we introduee the following
Ioeal coordinates of c(n).-

For a point P E E(n) of the critical Ioeus of 71'"(n), we ean ehoose
Ioeal coordinates (Ul, U2, . .. ,UM-I, z, w) of c(n) with center P and Iocal
coordinates (Tl, T2, . .. J TM) of ]3<n) with center 71'"(n)(p) such that the
holomorphie mapping 71'"(n) is given by

In other word, we have

(n)* _ { Uk 1
71'" Tk -

ZW,

k-l,2, ... ,M-l

k=M.

For a point P E c(n) \ E(n) we ean ehoose Ioeal coordinates (Ul, U2,

..• ,UM, z) of c(n) with center P and Ioeal coordinates (Tb T2, . .. , TM) of
B(n) with center 71'"(n)(p) such that the holomorphic mapping is given by

An 0c<n)-module f'l2(n)/B(ft) is defined by the following exaet sequenee

The sheaf f'l2<n)/B(Q) is ealled the sheaf of germs of relative I-fonns of the

fanlily 1r(n) : c(n) -+ B(n). Let us describe the sheaf f'l2<Q) /B(")' by using the

above Ioeal coordinates. In a neighbourhood of a point P E c(n) \E(n), the
sheaf f'l2<n) /B(f1) is loeally isomorphie to 0C(n) dz. In a small neighbourhood

of P E E(n), we have an 0C(ft)-module isomorphism

(3.2-1)

Moreover, we have the following lemma.
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Lemma 3.2.1. The following sequence

(3.2-2)

is exact and gives a locally [ree resolution oE the sheaf n~(Q)/8(").

Let wC(Q) /B("') be the relative dualizing sheaf of 7I"(n) : c(n) ~ B(n).

Since c(n) and B(n) are non-singular and 7I"(n) is Hat, we have an 0c(n)­
module isomorphism

where wy is the dualizing sheaf (canonical sheaf) of a complex manifold
Y. (See, for exanlpIe, [Kl] .) The relative dualizing sheaf wc( Q) / B(") is
described locally as folIows.

In a small neighbourhood of a point P E c(n) \ E(n), we have

In a small neighbourhood of a point P E E(n), we have

In particular, we have

with relation
dz dw
-+-=0
z w

if zw # O.

Lemma 3.2.2. T1Jere exits an exact sequence

Proof. The mapping n~(Q) /8(") -+ wC(Q) /B(Q) is given locally in a

neighbourhood of a point P E c(n) \ E(n) by

dz t---+ dz
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and in a neighbourhood of a point P E E(n) by

dz~ z(dz 1\ dw) ~ (d'TM )-1

dw~ w(dz 1\ dw) ~ (d'TM )-1.

In particular, we have

dz
dz~ z- if z:/; 0

z
dw

dw~w- if w # o.
w

This proves Lemma 3.2.2.

Lemma 3.2.3. Put

Q.E.D.

(3.2-3)

Then 8 c<n)/B(n) is an jnvertjble 0C(TI)-module and there js an jsomorphjsm

(3.2-3a)

Hence, 8 c(n)/B(TI) js an jnvertible sheaf.

Proof By (3.2-2) it is easy to show that in a neighbourhood of a
point P E c(n) \ B(n) we have an isomorphism

8
BC(TI)/B(TI) ~ °C(n) 8z

and in a neighbourhood of a point P E E(n) we have an isomorphisnl

(3.2-4)

By this fact and (3.2-1), we have the desired result. Q.E.D.

From the exact sequence (3.2-2) we obtain the following Corollary.

Corollary 3.2.4. The followjng sequence

o-+ BC(TI) /B(n) -+ Sc(n) -+ 1r(n)-l sB(,,) ~ 0c(n)

-+ Exthc(n) (nb(n) /B(n), 0c<n») -+ 0

ofOc(n)-modules js exact.

Lemma 3.2.5. There exists an exact sequence

(3.2-5)
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where
8 B(,,) (-log D(n») = { v E eB(R) I v(1DC"» C 1DCR) }

and 1D(a) is the slJeaf of the defining ideal of D(n) in B(n).

Proof First note that the sheaf 8 BC")( -log D(n») is a sheaf of germs
of vector fields on B(n) tangent to D(n). Since ?ren) : c(n) --+ B(n) is a loeal

universal family, using the Kodaira-Speneer mapping and (3.1-1), for each
point S E B(n) we have an exact sequence

N

o--+ H 1
( C/J' 8e. (-(n + 1) LSj(s))) --+ T/JB(n)

j=1

--+ HO(C/J) Exthc. (nh., Oe.)) --+ O.

Each element of H 1(C/J) 8e.( -(n + 1) Ef=l Sj(s))) eorresponds to a tan·

gent vector of B(n) at S preserving the singularities of C/J' Hence the sheaf
version of the above exact sequenee is the exact sequenee (3.2-5). Q.E.D.

Theorem 3.2.6. Let (1r(n) : c(n) ~ B(n); s~n), s~n), ... ,s~) ; tin) l t~n»)

... ,tt») be a IDeal universal family of N -pointed stahle eurves of genus
g with n-tlJ infinitesimal neighbourhoods. Then there exists an 0B(n)­

module isomorphism

(3.2-6)

where we put sjn) = sj(B(n») and sen) = Ef=l sjn).

Praa! Applying HamOc(q) ( l 0C(q») to the exact sequence (3.2-2),
we obtain the following exact sequence

(3.2-7)

o~ 8 C(A)/B(n) ~ Sc(n) ~1r(n)-laBCn) ® 0c(n)

--+ Extbc(n) (n~(n) /BC"h 0C(R)) --+ O.

This exaet sequence spUts into the following short exact sequenees.

(3.2-8) 0 --+ Sc(n) /BC,,) --+8cc,,) ~ M --t O.

o--. M --. 1r(n)-l8B(q) ® 0C(")

(3.2-9) --+ Exthc(") (n~(") /BC"), 0C(n)) --+ O.

Let T be a sheaf of germs of holomorphic .vector fields on c(n) pre­
serving n-th infinitesimal neighbourhoods. The sheaf T is given by

(3.2-10) T = {v E aCC") Iv(1s) C 15+1
} l
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where we put S :::: Ef=l Si' The sheaf T is an OC(A)-submodule of Sc(n)

and eoincides with SC(") outside Uf=l Si' For a point P E Sj we let

(Ul,U2, ... ,UM,Z) be local coordinates of c(n) with center P such that
(Ul, U2, • .• ,UM) are the coordinates of B(n) with center ll"(n)(p) and that
Si is defined by the equation z :::: 0 in a neighbourhood of P. Then, in a
neighbourhood of P the sheaf T is generated by

n+l 8 8 8
z 8z' 8Ul' ... , 8uM

as an 0C(A)-module. Hence T is locally free on c(n).

Let us consider the exact sequenees (3.2-8) and (3.2-9). Since the
support of Exthc(q)(n~(A)/Be.. ),OceA») is in :r;(n), the sheaf M is equal to

1r(n)-1 8B(q) ® OC(q) on o(n) \ :r;(n). By using the above local coordinates

of c(n) with center P E Si, the restriction of K to T in a neighbourhood
of P is given by

a(u,z)z(n+l)a
8 + LBj{U,Z)a

8
t---t LBj{u,z)aa .

Z Uj Uj

Hence K : T ~ M is surjective and its kernel is 8 C(A)/B(q) (-(n + l)s(n»)
in a neighbourhood of P. On the other hand, on B(n) \ Uf=l Sj the sheaf
T is equal to 8 CCn). Thus we have an exact sequence

(3.2-8a)

From the exact sequenee (3.2-8a) we obtain a long exact sequence

(3.2-11)

o~ 1rin )(8C(II)/B(n)( -(n + l)s(n»)) -.!. 1rin)T

~ 1rin )M ~ R11rin)(8CCIl)/Bcn) ( -(n + l)s(n»))

~ R11rin)T ~ R 11rin)M ~ O.

Put Bo :::: B(n) \ D(n), Co :::: 1r(n)-l(Bo), 1ro :::: 1r(n)ICo. Then on B o,
'1ro.M :::: 8 B (n) and the hOlnomorphism pis the Kodaira-Speneer mapping
by Corollary 3.1.3. Since our family is a local universal one, p is isomorphie
on Bo. Therefore, the sheaf homomorphism T in (3.2-11) is isomorphie

on Bo. But on Bo we have 1rin\ Sce .. )/BC,,) (-(n + 1)s(n»)) :::: O. Therefore,

1rin )T :::: 0 on Bo. As T is locally free, 1rln )T is torsion free, hence 1rin )r ::::
, 0 on B(n). This also implies

(3.2-12)
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on B(n).

Next we show that p in (3.2-11) is isomorphie. For that purpose it

is enough to show that R11rin )T is locally free. Beeause, if Rl 7fin )T is
locally free, as p is isomorphie on 130, eoker p is a torsion subsheaf of

R11rin )T, henee zero. By the cohomology theory of coherent sheaves,

is independent of s E B(nl, where C. = 1rn- 1(s). (See, for example, [BS].)
Moreover, if dime H 1(C. J T ~ Oe.) is independent of s, say k, since we

have H 2(C., T ® Oe.) = 0, R11rin )T is a loeally free OB(ft)-module of ~ank
k on B(n). Therefore, it is enough to show that HO( C. J T ~ Oe.) = 0 for
all 5 E B<n).

Sinee C. is a loeally eomplete interseetion in c(n) J we have an exact
sequenee

where N is the normal bundle of C. in c(n) whieh is a trivial bundle of
rank 3g- 3+ (n+ 1)N. (See, for example, [Ar].) From this exact sequenee
we obtain two short exact sequenees

o---+ 6e. ---+ 6 c(n) ~ Oe. ~ M. ---+ 0,

o---+ MIJ ---+ Oe.(N) ---+ Exthc.(ne.J Oe.) -+ O.

Similarly as above we have an exaet sequenee

N

o---+ 6e.( -(n + 1) L Qi) ---+ T ® Oe. ---+ M. ---+ 0,
;=1

where Q; = 5;(5). This gives a long exact sequenee

(3.2-13)

o= HO(C., 6e.( -(n + 1) L Qj))

---+ HO(C., T ~ Oe.) ---+ HO(C., M.)

J!. H 1(C., Se.( -(n + 1) 2: Qj)) ---+ H 1(C., T ® Oe.).

The eohomology group HO(C., M.) parameterizes infinitesimal displace­
ments of C. in c(n). (For the details see Tsuboi [Ts], where the theory is
formulated without n-th infinitesimal neighbourhoods, but the extension
of the theory to our situation is inlmediate.) Since 1r(n) : c(n) ---+ B(n)
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is a Ioeal universal family, infinitesimal displacements of Cß in c(n) and
infinitesimal deformations of Cß coincide. Hence the homomorphism p in
(3.2-13) is isomorphie. Hence we have HO(Cß , T ® Oe.) = O.

Finally we show that lri
n)M is isomorphie to 8 8 (11)( -log D(n»). From

(3.2-9) we obtain an exact sequence

o~ lri
n

)M ~ 8 8 <,,) ~ 1l'"in)C~Zkhc(lI) (112<01)/8<"), 0C<II»)).

The homomorphism t is the same to the one appearing in the exact se­

quence (3.2-5). Henee t is surjeetive. Therefore, by Lemma 3.2.5 lrl
n

)M
is isomorphie to 8 B<.. )(-log D(n»). Q.E.D.

Remark 3.2.7. The homomorphism p in the above Theorem 3.2.6 is also
ealled Kodaim-Spencer mapping. The above proof shows that there exists
an exact sequenee

o~ 8 c<Q)/B(n)(-(n + 1) E Sj) ~T ~ 1l'"(n)-lS8(1I) ~ 0C(II)

~ Exthc•(11h., Oe,) ~ 0

where T is a subsheaf of SC(II) defined in (3.2-10). Choose a small Stein
open set U c B(n) and a veetor field v E HO(U, 8 B(,,)( -log D(n»)). Choose
also a Stein open eovering {Uj }jEJ of 1l'"(n)-l(U). Then v also defines an el­

ement lr(n)*V E HO(Uj, 7r(n)-lSB(") ~ 0C(II»), whose image to Exthc. (11e.,
Oe.) is zero, since the tangent vector v is a direction of an infinitesimal
deformation preserving singularities. Therefore, if Uj is small enough, we
ean find an element Vj E HO(Uj, T) which is mapped to lr(n)*V. Then, we
have

Vij = Vj - Vi E HO(Ui n Uj, SC(") /B(") (-(n + 1)S))

and {Vij} defines an element

[{Vi;}] E H 1(1r(n)-1(U), 8 c(n)/B(II)(-(n + 1)S)).

The mapping
v t---+ [{Vij }]

is nothing but the Kodaira-Speneer mapping p in Theorem 3.2.6.

3.3. Tower of local universal families.
Let ~(O) = (11'(0) : C(o) ~ B(O) ; siO), s~O), ... ,s~») be a loeal universal

family of N-pointed stahle curve of gen"us g. The proof of Theorem 3.1.5
says that the fanlily ~(O) can be construeted from a loeal versal family
1r : C ~ B of the semi-stable curve C. The following theorem is an easy
consequenee of the proof of Theorem 3.1 5 and plays an essential role in
our theory.
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Theorem 3.3.1. Let (1r(O) : c(O) ~ 8(0); s~O), s~O), •.. ,s~)) be a loeal
universal family of N -pointed stable curves of genus g. Then for each
non-negative integer n we have a loeal universal family ~n) = (1r(n) : c(n)

B(n). (n) (n) (n) . -(n) -(n) -(n)) f N . ed bl
-+ I S1 ,82 , ... 'SN' t 1 ,t2 , ... ,tN 0 -polnt sta e eurve
ofgenus 9 with n-th infinitesimal neighbourhoods such that the following
diagram is commutative.

c

(3.3-1) !

-+

! !

+-- ••• +--

! !

+-- .••

+-- ••• +-- +-- •..

which is compatible with sections and infinitesimal neighbourhoods. Here,
7r : C -+ B is a versal family of semi-stable curves associated witb the
family 1r(0) : C(O) -+ B(O). (See the proof of Theorem 3.1.5.)

By the theorem, as a linlit, we have a family (7r(oo) : C(oo) ~ B(oo)

; sioo
) , s~oo), ... ,s~); lioo) , l~oo), . .. ,t~)) where C(oo) and B(oo) are re­

garded as infinite dimensional complex manifolds and each fibre of 11"(00)

consists of an N-pointed stable curve X(oo) = (C; Q1, Q2, .. . ,QN ; tioo
) ,

t~oo), .•. ,t~)) of genus 9 with formal neighbourhoods. Moreover, there
exist canonical holomorphic nlappings cp(n) : C(oo) -+ c(n) and 1j;(n) :
B(oo) -+ B(n). The group V ffiN , V = AutC((~)) acts on B(oo) from left.
(See (2.3-1).)

Remark 3.3.2. More generally, in Theorem 3.3.1 by the proof of Theo­
rem 3.1.5 we can always assurne that for n > p the holomorphic mapping
B(n) -+ B(p) is a principal fibre bundle with structure group (9n,p)ffiN,

where the group 9n,p is the subgroup of ring automorphisIllS Autc(C[ ~ ]/(~n))

which induce the identity automorphism of the ring C[ €]/(€P). Moreover,
the diagram

! !

B(n) --+ B(p)

is cartesian. That is) c(n) = CCP) X B(A) B(p). In the following we always
assurne that the families ~n),s have this property.

Corollary 3.3.3. A (VP)ffi N -invariant holomorphie funetion on B(oo) is
the pull-back of a holomorphic function on s(p).
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In the following we generalize Corollary 3.3.3 to the case of sheaves on
8(00) .

Lemma 3.3.4. FOT any non-negative integer n the Eollowing sequence

(3.3-2)
o-+8c(n+l)/B(,,+I) ( -(n + l)s(n+l»)

-+ 8 c(n)/B(II)( -(n + l)s(n») ® 0C(II+1)

-+ 8 c(n+1)/B(II+1) ~ (EB~1(I;t~I)/I;0~l)))-+ 0
- J J

oE 0c(n+l)-modules is exact, where we put sjp) = s~p)(B(p»), s(p) =

Er=l sjp) and I s~p) is the sheaf oE defining ideal oE sjp) in C(p).
J

Similarly the following sequence of 0B("+I)-modules is exact.

o-+ 8 8 (11+1) /B(n) -+8B(II+1) (-log D(n+l»)

(3.3-3) -+ SB(n) (-log D(n») ® 0B(n+l) -+ O.

Let us define a sheaf 8 B(QO) (-log D(oo») on 8(00) by

(3.3-4) 8 B(QO) (-log D(oo») = ~ 8 8(n)( -log D(n») ®OB(n) 08(00).

By Theorem 3.2.6 we have the following Proposition.

Proposition 3.3.5. There is a canonical 0B(QO)-module isomorphism

p : 8 B (QO) ~ 1~(Rl1rin)eC(II)/B(II)( -(n + l)s(n+l») ® 0B«>:)>)'

"

For a loeal universal family ~(n) = ( 7l'"(n) : c(n) -+ B(n) ; sin) l s~n), ... )
(n) ..(n) ..(n) -(n) ) I I b h haff h cl fi' 'cl al fsN; t1 ,t2 , ••• l tN we et S~n) e t e s e 0 tee nlng 1 e 0

J

sjn) = s)n)(B(n») in c(n). In the following we use the following notation.

0S ") = lim 0C(")/I~~t,
j ~ s·m J

0S;")(P) =~ 0c(n) (psjn»)/I~~l for each positive integer p,
m J

K $1.n) = ~ b $1.n) (p).
J J

P

Also we fix an element €j E I s~,,) such that
J
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Then there is an 0B(n)-module isomorphism

(3.3-5)

(3.3-6)

0St.'~) ~ 0B(n) [[ej]]
J

K'§f..n) ~ 0B(") ((ej))·
J

Note that the first isomorphism is canonical up to the order n in ~j. Taking
the limit for a 10cal universal family (71"(00) . C(oo) --+- 8(00). 5(100) 52(00), • I)'

(00) -(00) -(00) -(00») . cl h"1 . cl
••. ) sN; t l ) t2 ) .•. ,tN we Intro uce t e Slffil ar notatton an we
have canonical OB(oo)-module isomorphisms

(3.3-7)

(3.3-8)

0'§t.CO) ~ 0B(co>[[€j]]
J

K '§f..oo) ~ °B(oo) ((ej))
J

-(00) 1 --where ~j = tj - (~). The filtration {F.} on 0'§t.oo) and K '§t.oo) are clefined
J J

by

(3.3-9)

Define

(3.3-10)

(3.3-11)

(3.3-12)

e'§t.ß)/B(ß) = Dero8(~) (0'§t.n>, 0St.n»)
J J J

eS;n) /B( ft) (p) =Im.os( ~) ( (;§t.n) )(;§t.n) (p) )
J J J

8S}ß) /B(n) (*) =~ eS}~) /B(~){P)
p

=JkI.0s(ft) (K§t.n») K St.ß»)
J J

d
~ 0 B(n) ( (~j )) d{j .

Also we introduce the filtration on eS}n) /B(n) (*) by

(3.3-13)

(3.3-14)

Proposition 3.3.6. Assume that the eandition (Q) in 2.1 is satisfied for

eaeh fibre of a Ioeal universal [anlily ~(n) = (1r(n) : c(n) --+- B(n); 5~n»)
(n) (n) . -(n) -(n) -(n»)

52 "") SN 1 t 1 ) t 2 )"" t N .

1) There exists an 0B(~)-modulesurjeetive homomorphism

N
B(n) : EB 8St.,,) /B(~) (*) -+ 8 B(n) ( -log D(n») --+- O.

j=1 J
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(3.3-15)

2) Ker Ben) is equal to the following sheaf

N

7rin)(Sc(n) /B(a) (*8(n»)) ffi EB( e~II) /B(a) (-(n + 1))) .
j=l J

Proof. By the following exact sequence

o~ eC(n)/B(n)( -(n + l)s(n») --t eC(a)/B(n)((m - n - I)S(n»)
d

~ m N ffim 0 en - m+k --t 0Wj=l Wk=l B(")~j dej .

we have a long exact sequence

o~ 7rin)((8c(n)/B(II)(m - n - l)s(n»))

-> EBf=,! (EBk=!OB(O)~rm+k ~j) -> R!7rin)(6c(0) /B(o) (-(n + l)s(n»))

~ R17rln )ec(n)/B(a)((m - n - l))s(n)).

If m is sufficiently large, the last term of the above exact sequence vanishes
and we have an 0B(n)-module isomorphism

Hence, taking m ~ +00, we obtain the following exact sequence

o--t 1rln\eC(n)/B(a)(*s(n»)) -t E9f=leS}n~/B(..)(*)/8S}a)/B(n)(-(n + 1))

-t R17rin)(8C(II)/B(II)( -(n + 1)8(n»)) -t O.

By Theorem 3.2.6 we have the desired result. Q.E.D.

Remark 3.3.7. The geometrie meaning of the above homomorphisnl Ben)
is as follows. By (3.3-12) there is an 0B(II)-module isomorphisnl

d
8 ~11) / B(n) ( *) ~ <9B(n) ( ( ~j )) ..le. .

J ~)

d
This isomorphism is canonieal up to the order n in ~j. For (/1 ~1 l ••• ,

IN d;)' Ii d~j E OB(o)((~j)) ~j let us consider the first order infinitesi­

mal coordinate change

(3.3-16)
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This defines a first order infinitesimal deformations of each fihre of our
family 1r(n) : c(n) -t B(n). Moreover, since we do not change the co-
ordinates around singular points of the fihre, the first order infinitesi­
mal deformation preserves the singularities. Hence, it defines a vector .
field on B(n) preserving the discriminant locus. This is nothing hut our

(n) d d )
() ((/1 ete1 , ... ,IN df.N ).

Now let us consider the tower (3.3-1) of local universal families. The
proof of Proposition 3.3.6 shows that there exists the following commuta­
tive diagram.

ffi~l85]n+l) /B(n+l) (*) -t EBf=l 85]n) /B(n) (*) @08(n) 0B(n+l) -t 0

!() 10

8 B(A+l)( -log D(n+I») -t 8 B(A) (-log D(n») @OB(n) 0B(n+1) -t 0

1 1

0 0

Taking the linlit n -t 00, we obtain the following Theorem.

Theorem 3.3.8. Assume that the condition (Q) ol §2 is satisfied.
1) There exists a surjective 0B(oo)-module homomorphism

2) Th e restrietion oE () to EElf=,1 C ((~i )) ~i

N d
() :~ C((~i)) ~i -> 0B(~)(-log D(oo))

is a Lie algebra homomorphism.
3) The lurther restrietion olO

coincides with the differential ol the action ol (VI )ffiN on B(OO).

55



4) We have

N

Ker 0 = 1rioo
) (8c(0=» /B(o=» (* L 8)00))).

i=1

OB(~)((€j))~j has a structure of OB(~)-Lie algebra given by a Lie

bracket [ ) ]0 defined by
(3.3-17)

d d d d d d
(f(€i) df.j ,9(€i) d€i]O = 9(€j) df,j (f(€j)) df.j - f(€i) d<j (9(€i)) df.j

where f(€j) and 9(ej) are local sections of 0B(o=»((ej))· But the 0B(o=»­
module homomorphisnl 0(00) is not a Lie algebra homomorphism. This
is because f (€j) is a Laurent series whose coefficients are hololnorphic
functions of the parameter space 8(00). To obtain a Lie algebra homo­
morphism we need to introduce the following Lie algebra structure on

d
oB( n) ( ( €j )) d{j .

Definition 3.3.9. On 0B(~) ~j we introduce a bracket [ , 1by

Proposition 3.3.10. The bracket (3.3-20) induces a Lie algebra struc­

ture on OB(o=»((€i))dd , hence also the one on ffi]~10B(0=»((€j))~. With
~ ~

respect to this Lie algebra structure, the homomorphism 0 in Theorenl
3.4.4, 1) is a homomorpllism of Lie algebras.

Proof As was explained in Remark 3.3.7, (11 ~1"" , IN d:N) and

(91 ~1 , ... , 9N :N) define the first order infinitesimal deformations of

each fibre of the family ~(n) defined by

A: €j ~ €j + f.lfj(s'€i)
B: €j ~ €j + f.29i (s, €j)
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respectively, where s denotes the parameters of the base space ß(n). If we
first deforrn fibres of 3'(n) infinitesimally by Athen deforrn them by B,
we obtain
(3.3-18)

€j -+ €j+€lfj (s, €j) + €29j( s, ~j)

+ €1€2 (o(n)(9j ~j)(fj(s,ej)) + 9j ~/fj(s,ej))) .

Because, hy applying the infinitesimal deformation B each fibre of 1I"(n)

: c(n) -+ ß(n) deforms infinitesimally, hence it changes the parameter s,

and we need to add the effect of this fact, which is nothing hut the third
term of the right hand side of 3.3-14. Reversing the order of infinitesinlal
deformations, we have

(3.3-19)
€j -+ ~j+€lfj(s,€j)+ E29j(S,€j)

+ €1€2 (o(n)(fj ~j)(9j(s,ej)) + fj ~j (9j(S,ej )) .

By subtracting 3.3-18 by 3.3-19, the coefficient [o(n)(A), o(n)(B)]of €lE2 is
equal to o(n-1)([A, B]). Taking the limit n ~ 00 we obtain the desired
result. Q.E.D.

§4 Sheaf of Vacua Attached to Local Universal Family

4.1 Sheaf of Vacua.

Let "t'(oo) - (,.".(00) . c(oo) ~ ß(OO). 8(00) 8(00) 8(00) . t-(OO) t-(OO)
t> -". , 1 '2 , ... , N , 1 '2 ,

... ,t~)) be a local universal fanlily of N-pointed stable curves of genus
9 with formalneighbourhoods. We assume that each fihre of the family
~(oo) satisfies the condition (Q) in 2.1. Main purpose ofthe present section

is to define the sheaf of vacua V}(~(oo)) of attached to the family.

Definition 4.1.1. The sheaf gN of affine Lie algebra attached to the
family ~oo) is a sheaf of 0B(oo)-module

N

{iN = g ~c (EB °S(oo) ((€j))) ffi 0B(oo) . C

j=l
with the following commutation relation.

[ffi~lXj ~ fj, ffi~lYj ~ gj] =ffif':=l([Xj, Yj] ~ (/jgj))
N

ffi c· L (Xj, Yj) Res ((gjdfj)
j=l ei=o

C ECellter
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where

X;, Yj E g, /;, g; E "B( 00) ( ( ~; )) •

In the above formula EBf=la; means (al, ... ,an). We shall often use
this notation below. We also put

(4.1-1)

(4.1-2)

where

{iN+ = g ®c (EBf=1 0B(OO) [[~; ]]~;)

{iN- = g ~c (EBf=IOB(oo)[~jl]~jl)

ffi L ga ®c C . 1Ll
aELl-

1ß = (1, 1, . . . ,1) E mf=I"B( 00) ( ( ej )).
Then by the commutation relation defined in Definition 4.1.1, {iN+ and
ÖN- are subalgebra of {iN' Further put

(4.1-3)

where we define

N
S(oo) = L 8;00)(8(00))

;=1

1rloo)(OC(OO) (*S(oo))) = lim 7rloo)("C(OO) (kS(oo))) .
~

k

There is a sheaf version of homomorphism defined in (2.1-3), by using

the formal neighbourhoods t)oo).

and we may regard {i(~(oo)) as a Lie subalgebra of {iN.
Fix a non-negative integer i. For any X= (Al, ... ,AN) E (Ft)N, we

define

(4.1-4)

(4.1-5)

The pairing (2.2-3) induces an 0B(oo)-bilinear pairing

(4.1-6)
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which is complete with respect to the filtration introduced below. The

sheaf of affine Lie algebra ÖN acts on ?-l~oo) and ?-l1(oo) by

(4.1-7)
N

(EBf=l(Xj ® L anej))(F @ 1'1')) = L L (anF) ® pj(Xj(n))IW)
nEZ j=lnEZ

(4.1-8)
N

((~I @ F)(EBf=l(Xj @ L Gonej)) = E E((epjpj(Xj(n)) @ anF
nEZ j=lnEZ

where F E 08(00), Iw) E 1i>., (~I E 1i~ and pj(Xj(n)) means the action

of Xj ®C; on the j-th component of 1i>. and 1i~. Then, the above pairing

( 1 ) is ÖN-invariant. That is, we have

(walep) = ('lila<!» for auy a E 9N.

Definition 4.1.2. Put

V>.(~(oo») = 1t~00) /g(~(oo»)1i~oo)

Vl(~(oo)) = Homoo(OO) (V>.(~(oo»),0 8 (00»).

These are sheaves of 0B(oo)-modules on 8(00). The sheaf V1(~(00)) is

called the shea/ 0/ vacua attached to the family ~oo). Note that we have

The pairing (4.1-6) induces a non-degenerate 08(00)-bilinear pairing

Lemma 4.1.3. Let x:(oo) correspond to a point s E B(oo). By the canon­
ical isomorphism 08(00) ~/m8 ~ C, where m~ is the maximal ideal of the,
stalk 08(00) ~, we have the following canonical isomorphisms.

1
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Moreover, the action ofgN on 1i~oo) defined in (4.1-7) and the action ofgN
on 1is.. are compatible with respect to the above canonical isomorphisms.

Proof. The first, second and the fifth isomorphisms are clear from
the definition. Note that we have

7riOO
) (OC(oo) (*S(oo»)) = tim 1riOO

) (OC{oo) (kS(oo»))
---t

k

and 1rlOO
) (OC(co) (kS(oo»)) comes from 1rln)(Oc(Q)(ks(n»)). If k is sufficiently

large, we always have the base change

N

1rin)(OC(tt) (ks(n»)) l8)08(Q) (OB(Q),.. /m.. ) ~ HO(C.. ,Oc.(k L S)n)(s)))
;=1

since we have
N

H1(C.. ,Oc.(k E s;n)(s))) = 0
;=1

where C.. = 1r(n)-l(s). (See for example, [Ha, Chap. 111, Corollary 12.9]
or [BS, Chap. 111 Corollary 3.5].) This implies the third isomorphism.

Finally let üS consider the following commutative diagram of exact
sequences

o

1

(g(~oo»)1t~oo») l8) C s .t (g(~oo») l8) C .. )(1tkoo) l8) C.. )

o o
where we put C.. = 0B(co) .. Im... The above argument shows that the,
mapping ß is surjective and the ßlapping , is isomorphie. Hence, the
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eommutativity of the diagram implies that the mapping i induees iso­
morphism between the Im(a) and Im(€). Therefore, the mapping 0 is
isomorphie. Q.E.D.

Define the action of ('DI) ffJN on 08(00) ((€j)) by
(4.1-10)

- - 1 ffJNh( E an{j) = E Lh(an)hj(€j) for h = (hl, ... ,hN) E (V )
nEZ nEZ

where Lh is defined for any F E 08(00) by

Lh(F)( s) = F ((h-los)) , S E B(00) .

Note that the action of (VI)EBN on 8(00) is defined in (2.3-1). (See also

3.1.)
1 EBN --(00)

Define the action 11' of (V) on 1i
Ä

by

(4.1-11) 1r(h)(F ® Iw)) = Lh(F) ® (p(G[h]))lw)

- 1 EBN • 1 EBNfor h E (V) . (See (2.3-1).) Also we define the actIon 1r of (V) on

ÖN by

- N N1r(h)(ffij:::;IXj (8) fj EB a· c) = ffij:::;I(Xj ® hj(fj)) ffi Lh(a) . c

- EBNfor h = (h1,oo. ,hN ) E (VI) ,Xj E Q, fj E 08(00)((€j)) and a E 08(00).
Tbe following Lemma is an easy consequence of tbe definition of tbe

actions of ('DI )ff)N and Theoreln 1.4.5, 1).

Lemma 4.1.4. g(~(oo»)1i~oo) is stahle under the action of (VI )ff)N on
-(00)1iÄ .

Let us consider the tower of local universal family (3.3-1) of N-pointed
stable curves of genus 9 with infinitesimal neigbbourhoods. As was ex­
plained in 3.3, <p(l) : C(oo) --. C(l) and 1/1(1) : 8(00) --. 8(1) are principal

fibre bundles with structure group (VI )ff)N. Put

1t~I) = {f E 1t~00) 11r(h)f = f for all hE (VI)ff)N}

g(I)(~oo») = {f E g(~(oo») 11r(h)f = f for all h E (VI )ff)N }

By Lemma 4.1.4, (VI )ff)N acts on VX(~(oo»). Put

V}I) = {g E VX(~(oo») 11r(h)g = 9 for all h E (VI )fJ)N }.
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Then 1lk1
), g(l) (~(oo)) and viI) are ?jJ(I)-1 0B(1)-modules and we can show

that there are canonical isomorphisms:

--(1) --(00)
1l,\ l8l.1.(1)-1 0 0B(oo) ~ 1t'\

A '#' B(l) A

g(I)(J<oo)) ~.J.(l)-l,.r, 0B(oo) ~ g(~(oo))
'#' "'"".8(1)

V- (1) 0 I"V V (~(oo))X l8l,p(1)-10B<1) B(oo) - X 1)

Lemma 4.1.5. On 8(1) there exist sheaves 1-{.k1), g(~(I)) and VX(~(I)) of

OB(l)-modules such that

1l~I) = ?jJ(I)-I1lt1) ,
.\ ,\

g(l)(~(oo)) = ?jJ(l)-lg(~(I)))

ViI) = ?jJ(l)-IVX(~(I)).

Moreover we llave a non-canonical isomorphism

g(~(I)) ~ g l8lc 1rl1 )OCC1 ) (*S(I)) ,

where 8(1) = E7=1 8(1)(8(1)).

Similarly we can define the sheaves 1l1(1) and V}( J<1)) on 8(1).

Lemma 4.1.6.

V,\(~(I)) = 1l~I) /g(~(I))1l~I).
A ,\ ,\

Vl(~(I)) = H ~OB(l) (VX(j<I)), 0B(l»)

= { (\lIj E 1i1(1) I (\lila = 0 for a1l a E Ö(~(I)) }

Remark 4.1.7. We define

where the point s E 8(1) corresponds to X(1). Then hy Lenlma 4.1.3 and
Lemma 4.1.5 we have a canonical isomorphism

where xoo) is an N-pointed stahle curve with formal neighhourhoods
whose restrietion to the first order infinitesinlal structure is X(I).

4.2. Coherency.
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(4.2-1)

In this subsection we shall prove the coherency of the sheaf VX(~(l)).

First we introduce filtrations {F.} whieh play an important role in the
proof of coherency. The filtration {F.} on ffi~l0B(oo) (({j)) is defined by

Fp(ffif=10B(00)((~j))) = E (ffif=tFpjOB(oo) (({j))), p E Z
Pt+..·PN=P

where
FpOB(oo) (({)) = 0 8 (00) [[{lle-p

·

The filtration {F.} on gN is defined by

_ { g ®c Fp(ffif=10 8(00) ((ej))) ffi 0B(oo) • C P ~ 0
FpgN = N

g @c Fp(ffij=10B(00) (({j))) P< O.

The filtration {F.} on 1t~00) is defined similarly as in (1.3-4) by using the
eigenvalues of the operator La. Namely, we define

Hence we have

Let us assunle that our local universal family ~(1) has holomorphic
sections all), k = 1,2, ... ,n such that al1)(8(1)),s are disjoint from each

other and also disjoint froln S?) = 8)1)(8(l))'s. Moreover, we assunle that

each irreducible component of each fibre 1r(l)-1 (8) contains sufficiently

many all\ s) 'so These assumptions are always satisfied, if we choose 8(0)

sufficiently small. These sections induce the sections at:o) of the family
~(oo). Put

n

Ao = 1rioo)08(00) (*S(oo) - E aioo
)(8(00))) .

k=l

Further put

g(Ao) = g ®c Ao
1t'~00) = g(Ao) . 1i~00)

VX(Ao = 1t~oo) /1t'koo
).
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Since Ao is a submodule of 1rioo)(OC(oo) (*8(00»)), g(Ao) is a Lie sub­
algebra of g(J<oo»). Hence there is a canonical 0B(oo)-module surjective
homomorphism

(4.2-2)

Since the sections 0100) corne from the sections 01°), we have the following
Lemma.

Lemma 4.2.1. 1i'~oo) is stable under the action of (VI )f!JN on 1i~OO).

Thus we can define

Then we have

Lemma 4.2.2. There exists a sheafV~I)(Ao) ofOB(I)-module over B(I)
such that

V~I)(Ao) = 'ljJ(I)-IV~I\Ao)
A A

Moreover, there is a surjective 0B(I)-module homomorphism

(4.2-3)

Proposition 4.2.3. The sheafV~I\Ao) is a coherent 0B(1)-nlOdule.

As a eorollary, by Lemma 4.2.2 we obtain the following theorem.

Theorem 4.2~4. The slJeaf VX(;j(I») is a coherent 0B(I) -module.

Hy Lemma 4.1.6 we abtain the following Corollary.

Corollary 4.2.5. The sheafVl(;j{1») is a coherent OB(l)-module.

The rest of this subseetion is devoted to proving Proposition 4.2.3.
First we note that by Proposition 2.2.3 and Lemma 4.1.3 there is a eanon­
ical 0B(oo)-module isomorphisnl

o

Vx,o(;j~oo») ~ VX(;j(oo») @Os(oo) 0B~OO)

wh~re ~~oo) is a loeal universal family obtained from ;j(oo) by adding oue
more seetion with formal neighbourhood. The base space of the farn­

Hy ~oo) is denoted by B~oo). There is a natural surjective holonlorphic
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mapping 4> : B~oo) -*' B(oo). The argument in 4.1 shows that there is a
canonical isomorphism

Since the natural mapping B~I) -*' 8(1) is an analytic fibre bundle, hence

smooth, if Vx O(~I)) is a coherent B~I)-module, then VX(~(I)) is a coherent,
0B(1)-module. Therefore, to prove Proposition 4.2.3 we may assulne that
the number N is large enough so that there exists an integer ko such that

(4.2-4)
n

R17r!I)OC(1)(kS(I) - L 0-11
)(B(I))) = 0

k=1

for all integers k ~ ko. Put

n

AbI) = 1rP)OC(1)( *S(I) - L o-il)(~I))).
k=1

Then, there is a natural imbedding

The filtration {F.} on EBf=1 0B(oo) (( ~j)) induces the filtrations {F.} on

AbI) and EBf=10B(1)((~j)).

CLAIM 1. (V1 )$N acts on 7rioo)(Oc(oo)(*S(oo) - Ek=l 0-100
) (B(OO)))) and

its invariant part is equal to 1jJ(I)-1AbI).
CLAIM 2. There is an injective 0B(1)-module homomorphism

F 11(1) F( N [c-1]c-1)Gr. ~ <-t R = Gr. €Bj=I 0B(1) ~j ~j

where the homomorphism is induced by taking the principal part of a
Laurent expansion at Qj by the formal parameter ej. Moreover, the image
is an ideal of the ring R and the cokernel of thi8 imbedding i8 locally free
OB(1)-module of finite rank.

Proof. By a short exact sequence
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we have a long exact sequence

n n

-+ 1rP)(OB(l)(k L o{l) - L 0"11)(8(1))))

k=l k=l
n

t N k ° t-i R1 (1)0 ( "" (1)(8(1)))-+ ffij=l ffii=l B(l)\,; -+ 1r. B(l) - L,.; O"k
k=l
n

-+ R11ri
1
)"B(1)(kS(1) - L (11)(8(1)))

k=l

By our assumption the last term vanishes for all k 2:: ko for a sufliciently
large positive integer ko. Moreover, by our assumption for each point
s E B(l) we have

n

dime H 1(Clf,Oc.( - L: 0"11)(8)))
k=l

n

= diIneHO(Cs,wc.(L: 0"11\s))
k=l

=g-l+n

where elf = 1r(l)-l(s). Hence RI 1rP)OB(l) ( - Ek=l O"k1)(B(1))) is locally
free of rank 9 - 1 + n. Hence Coker T is same for all k 2:: ko. Let

ffif=l!j(ej) ERbe the inlage of Gr;Al) and ffif=19j(~j) E R where !j(e;)
and gj(~j) are homogeneous polynolnial in eil. If N is sufliciently large,

for example N > 2g - 2 + k, by adding an element of hj(ej) E Fp-1A~1)
to !j(ej)9j(ej), ffif=1(!j(ej)9j(ej) + hj(ej)) is in the image of the above
homomorphism T. This shows that the image is an ideal of R. Since a
constant function in Al) is only zero, the injectivity is easy to prove.
Q.E.D.

We introduce the filtration {F.} on 11.'~OO) by the induced one from
-(00)
11.;. .

CLAIM 3. We have a canonical 0B(1)-module isomorphism

G F'1J(l) ,....., " G F'1Jr. 'LX - B(l) ~e r. 'LX'

Proof Since (VI )ffJN acts on Gr;11.~00) as identity by Lemma 1.4.3,
there is a canonical mapping
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It is easy to show that the mapping is injective. Also by a direct calcula­
tion show that the mapping is surjective. Q.E.D.

Put

CLAIM 4. We have

Define

ö(41») = g @c 4 1
)

g~~ = g @c (ffif=1 0B(I) [~jl]~jl) ffi E g-a @C C1.1. .
aE.1.a

The filtrations {F.} on ö(41») and g~~ is defined similar to (4.2-1)

except that ö(41») has no center. Now Claim 2 implies the following
Claim 5.

CLAIM 5. There is a natural injective 0B(I)-module homomorphism

and the image is an ideal oE the sheaf oE Lie algebras g~~. Moreover, the

cokernel Gr;g~~/Gr;tH41»)is a locally free 0B(I)-module.

Note that we have a canonical isomorphisnl

Gr;g~~/Gr;ö(41»)~ Gr;(g~~/Ö(41»)).

CLAIM 6. Gr;(g~~/g(41»)) acts on Gr;V}l)(Ao)

Put

~1) = Gr;V2)(Ao)

~ = Gr;(g~~/g(41»)).

Note that Mkl
) and gare 0Bo)-modules. Moreover, g is a locally free

0B(1)-module of finite rank and it is a sheaf of Lie algebras. Let V X be

the image of V).l @ ... @ V).N to ~1). Then we have
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where U(D) is the sheaf of the enveloping algebra of D.
Now we introduce filtrations {G.} on U(D) and MV). First we define

inductively the filtration of U(~) by

Gp(U(g)) = 0 for p ~ -1

Go(U(g)) = 0B(I) • 1,6.

Gl(U(g)) = 0B(I) ·1,6. +0B(I)11"

Gp(U(g)) = Gp-l(U(g)) +"ö' Gp-l(U(D)) p;::: 2.

The filtration on Mkl
) is defined by

Gp~l) = Gp (U(1J)) . VX.

Then, since g is locally free, by the Birkoff-Witt theorem we have the
following claim.

CLAIM 7. Grf(U(g)) is the polynomial algebra 8*(g) over 0B(I) and we
have

Gr~~l) = 8*(g) . VÄ'

In particular Grf Mkl
) is a finite 8*(g)-module.

Put
R S *(-) M = GrGMLl).= 9 , • >.

Then R is a sheaf of polynomial algebra of finite many variables over 0B(I)

and M is a finite R-module. For each point s E B(l) by R" and M" we
denote the stalks of Rand M over the point s, respectively. Then R" is a
polynomial algebra of finite many variables over 0B(1) " and M" is a finite,
RB-module. Put

Ann(M,,) ={a E R" I av =0 for all v E M" }.

Ann(M,,) is an ideal of Hz.
Now we are ready to apply Gabber's theorem [Ga] to x;f>.}) , U(g)"

,"
and the filtration {G.}. First of all R" = U(D)" is a Noetherian ring and

M>.Ll) is a finitely generated U(g)s-module. Gabber's theorem says that
,"

the radical JAnn(M,,) of Ann(M,,) is closed under the Poisson bracket
{ , } induced by the filtration {G.}. In our situation -g can be regarded
as a subset of R", since we have
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Hence for elements X, Y E "'ö we have

{X,Y} = [X,Yl

where the right hand side is the bracket of the Lie algebra g. We de­

note the images of Xo. l8J €jl, X-o. l8J 1~, a E ß+ in 9 by X a l8J ~jl and
X-a ® 1~. Then, by the integrability· of the representations, same posi­

tive power of X a ® €jl and X-a ® 1~ annihilate generators of M tt over

R tt . Hence, Xo. ® ~j\ X-a 18l1,ß E JAnn(Mtt ) for a E ß+. Then, by
Gabber's theorem we have

Similar argument for X a ® €jP, P 2: 2 shows that

JAnn(M.) :J {j.

Thus JAnn(Mtt ) is a maximal ideal of R lJ , hence Rs/Ann(Mtt ) is a fi­
nite 0B(1),tt-module. Since Mtt is a finite (R tt /Ann(MlJ ))-nl0dule, Ms =

Grf M,\~l) is also a finite 0B(I) tt-module. This implies the following clainl.
,lJ ,

CLAIM 8. M~l) = Gr;Vl1)(Ao) is a finite 0B(I),tt-module.

Now Claim 8 implies that Vl
1
)(Ao)tt is a finite 0B(l),tt-module, hence

V~l)(Au) is a coherent 0B(I)-module. This proves Proposition 4.2.3.

§5 Integral Connection with Regular Singularity

In this section we shall define a sheaf of twisted first order differ­
ential operators V1(1)( -log D(l)j Cv) acting on the sheaf of vacua and
the dual sheaf of vacua. In the following we formulate left action of
V1(1)(-logD(1);Cv) on VX(~(l»). The right action ofV~(l)(-logD(l);Cv)

on Vf(~(l») is obtained easily by using the canonical pairing ( I ) in­
troduced in §4. That is, we have

(wID<I-) = (wDlep)

In this section we use the same notations as those in §4.

5.1. Sheaf VirS(oo)(Cv)

Let ~oo) = (",.(00) . c(oo) --. nloo). 8(00) 8(00) 8(00) . t-(OO) t-(OO)
u~ 11. 0', 1 '2 , ... , N , 1 '2 ,

... ,t~») be a loeal universal family of N-pointed stahle curves of genus
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9 with formal neighbourhoods. In §4 we defined the sheaf V,\(~(oo») and

Vl(~(oo») associated with the family ~(oo). Let VirS(oo)(ev) be a sheaf of

an 0B(oo)-module on 8(00) defined by

_ N d
ViTS(oo)(ev) = (Ea0 8(00) ((ei)) AC.) 61 08(00).

;=1 U<aJ

Let

(5.1-1)

be a natural projection. Ey Theorem 3.3.10 there is a surjective 08(00)­

module homomorphism

Put B= Bop.

Definition 5.1.1. On VirSCoo)(ev) we define a Lie algebra structure as
follows.

1) 08(00) is the center.
. d

2) Let [ , ] denote the Lle bracket on 61f=108(00) ((ei)) dei de-

fined in Definition 3.3.9. For 11 = (ILI~, ... ,If), l2 = (l~,l~, ... ,{f) E
d

EBf=1°B(OO) ((ei)) dei' define the bracket [ , ]Vir by

N (' )
~ ~ ~ ~ Cv " tflli (ei) i

[(lI, 0), (f2 , O)]Vir = [lI, l2] + 12 Li ~~s de3 l2(ei )dei
j=1 eJ-o i

. . d
where Li = ii (ei) de; .

3) For VI, V2 E VirS(oo)(cv ) and fE 0 8 (00) the bracket [ , ]Vir has
the properties

[fVI, V2]Vir = f[VI, V2]Vir - B(V2)(f)VI
[VI, f V2]Vir = f[V1 , V2]Vir + B(V1)(f)V2.

It is easy to see that the above definition indeed defines a Lie algebra
structure on VirS(oo) (ev). In the following we often use the notation [ , ]
instead of [ , ]Vir'
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Lemma 5.1.2. The following exact sequence ofOB«(X)-modules

is an extension of the sheaves of Lie algebras with respect to the Lie
algebra structure defined above.

The sheaf VirS«(X)(ev) of Lie algebras acts on 1i~oo) = 0B«(X) ®c 1is.
in the following way.

For F E °B((X) , Iq>} E 1iX and V = (l,r) E 't/i;.S«(X)(ev) with 1 =

(I\e, ... ,IN) E (I)f=PB(~)((~j)) d~/ T E 0B(~)' we define

(5.1-2)
D(V)(F ® I<I>})

N
= B(l)(F) ® Iq>} - F ® (I: pj(T[li])Iq>}) + rF ® I<I>}·

i=1

Proposition 5.1.3. For V E VirS«(X)(ev) the above action D(V) is well­
defined and has the following properties.

0) We have

D(jV) = f D(V) for any f E 0B((X) .

[D(V1), D(V2)] = D([V1, V2]Vir)'

D(V)(flq>}) = 8(V)(j)I<I>} + f D(V)Iq>}·

By the natural inclusion

(dl )$N can be regarded as a Lie snbalgebra snbsheaf of VirS( (X) ( Cu ). By
the direct calculations we can prove the following two propositions.
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Proposition 5.1.4.
1) The restriction DI(dl )fI)N is equal to the differen tiaJ oE the action

oE (VI )fI)N on 1i~OO).
>.

2) For an element
_ N

X = (Xl, ... ,XN) E EBg (8)c 0B(e») ((e;))
;=1

and an element V E VirS(oo)(ev), we have

[D(V), X] = Ö(V)(X)

as operators on 1tkoo).

Proposition 5.1.5. VirS(oo)(ev) preserves Ö(j<oo»)1-{koo) .

Corollary 5.1.6. VirS(<<»(ev) acts on VÄ(~(oo»).

Proposition 5.1.7. Let BS(oo) = 7rloo)(8C(e»)/B(00)(*S(00»)) be the kernel
of the homomorphism B given in Theorem 3.3.8. There exists a unique
0B(oo)-module homomorphism

a : BS(oo) -+ 0 8 (00)

such that for any l E BS(oo) we have

D((l, O)) = a(l) . id

as a linear operator acting on VX(~(oo»). Moreover, for any h E (VI )fJJN,
we have

a(7r( h)(l)) = L ii (a(l)) E 0B(oo),

Proof. Let X(oo) be an N-pointed stahle curve with formal neigh-
bourhoods corresponding to a point s E 8(00). By Lemma 4.1.3, by taking
the tensor product (8)0B(oo) ~/m~ there are canonical reduction homomor-

1

phisms

--(00)
l.~ : 1iX -t 1ts.

l.ß : VX(;j(oo») -t VX(,x<oo»).

The actions of T(ej) = LnEZ Ln ejn-2 on tbe j-th components of 1i~00)

and V>:(~(oo») are defined by the same way as those on 1iX and VX(X(oo»),
respectively. Then, for any I~) E VX(~(oo») we have

Pj(T(~;)L8(1~)) = L~(pj(T(~j))I~))·
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In what follows, for ('ltl E Vl(.X(oo)) and Iq,) E V.>:(~(oo)) we use the

following notation freely.

('ltlq,) = (WIL.,(q,)).

Then for ('ltl E Vl(x<oo)), lq,o) E VX(~(oo)) and 1 = (h,··· ,LN), by

(5.1-2) we have

(5.1-3)
N

('l1ID«l, O))Iq,o) = - E ('l1lpj(T[lj])lq,o)
j=l

N

= l:: Res (lj(€i )(wlpj(T(ej ))Iq,o)~i)
i=l {j=o

d
where Lj = li (€j) d~i' On the other hand, by Proposition 2.4.2 we have

(wlPi (T(ej))1 q,o)~;

= (wl(T(€j ))Iq,o)d€;

{

1 dim g

= Ihn (f *) L (wIJa(z)Ja(ei )Iq,o)dw~j
w-{j 2 + 9 a=l

- 2(w : e; )2 (lltI<T>o)dwde; } .

Let us ehoose a meromorphic fornl w E HO (Ce~ tfld~L.,~ (2ß)) such that
~oJ

dwdz
w(w, z)dwdz = ( )2 + regular at the diagonal ß

w-z

where 1r : C -4 B is the loeal universal family of N-pointed eurves
eorresponding to our fanüly ~(oo). Existence of such a form will be
proved in Lemma 5.1.10, below. Let us define a meromorphic fornl
(wIT(z)lq,o)dz2 E HO(C,w~2(*'Ef=1 Qj)) by

(5.1-4)

(WIT(z)lq,o)dz 2

{

I dirn g

= li~ 2(l +9*) E(wIJa(w)Ja(ej)jq,o)dwetei

- ~w(w, z)(lItl<T>o)dwde; }.
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Also define Sw(z)dz2 by

2 1. dwdz
Sw(z)dz = --2 hm {w(w, z)dwdz - ( )2} .

W-J: w - z

Then we have

where SwJ(€;)d<j is the expansion of Sw(z)dz2 at the point Q; with re­
spect to the formal parameter €j .. By (5.1-2) and (5.1-5) we have

N

(\l1]D((f,O))I<po) = L Res (fj(ej)(\I1[T(ej)l<po)C"L;j)
j=1 ej=o

N

+ Cu L Res (ij(ej)SwJ(€j)~j).
j=1 {j=O

Since ij(z)(\l1IT(z)l<po)dz is a global meromorphic one form on the curve
C, the first ternl of the right hand side vanished. Therefore, if we put

(5.1-6)

then a(l) = aw(s, 1) satisfies the properties of Proposition 5.1.7. Q.E.D.

Corollary 5.1.8. There exists a canonical 0B(oo)-module homomorphism

such that Jor V E Bg(oo) ffi 0B(oo) and 1cI» E VX(J(oo)) we have

D(V)[<I» = a(V)[<I».

Proof. For V = (1, r) E BS(oo) EB 0B(oo) put

a(V) = a(l) + r.

Then a has the desired properties. Q.E.D.

Remark 5.1.9. We can define a non-canonical 0B(oo)-module homomor­
phism

a : V irS(oo) (Cu) -+ 0B(oo)
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whose restriction to BS(o:J) EB 0B(o:J) is the canonical homomorphism a in
Corollary 5.1.8. Choose a meromorphic form

such that
dwdz .

w = ( )2 + regular at the dIagonal ß.
w-z

Also define Swdz2 by the same way as above and let SwJ (ej )d{J be its
expansion by the formal parameter {j at Qj. Then, for an element V =

... -;- .... Nd.
(i, T) E VlTS(o:J) (Cv) wlth l = (Ib'" ,iN) E EBj=I 0B(o:J) (({i)) d{j' a(V) IS

defined by

(5.1-7)

d
where lj = lj(ej) df.j' Thus the homomorphism a does depend on the

choice of w.

In the proof of the above Proposition 5.1.7 we used the following
Lemma.

Lemma 5.1.10. Let (?r(0) : C(O) --+- B(O); SI, •.. ,SN) be a local universal
family of N -pointed stable curves. Jf we choose 8(0) sufficieptly sma1l,
-then there exists a meromorphic form

such that

dwdz
w(w, z)dwdz = ( )2 + regular at the diagonal ß.

w-z

Proof The proof of Theorenl 3.1.5 says that our family ~(O) is
constructed from a versal family 7r : C -. B of semi-stable curves and there
are holomorphic mappings </J : C(O) --+- C and 1/J : B(O) --+- B. Moreover, it is
known that the family 1r : C --+- ß is obtained from a pull-back of a versal
family 7T : C--+- 8 of stable curves ([DM] ). Hence we have hololnorphic
mappings ~ : C(O) -t C and ;p : 8(0) --+- B. If the family -fi' : C --+- B
is a family of snlooth curves, the above Lemma is a consequence of the
existence of Szegö kerne!. If the fanlily -fi' : C-t Bcontains singular stable
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curves, then applying the arguments of Fay [FA, Corollary 3.2, Corollary
3.8], we can find a meromorphic form WE HO(C xBC,w~/2g(2ß)) with

w( w, z )dwdz = ( dWd\2 + regular at the diagonal f),..
w-z

Now the pull-back W of wto C(O) xB(O) C(O) is a desired form.

Remark 5.1.11. There exists a sheaf homomorphism

defined by
r(w,z,u)dwdz 1----+ a(u)

where

Q.E.D.

dwdz
r(w, z, u)dwdz = a(u) ( )2 + regular at the diagonal t::..

w-z

and (u) is a system of local coordinates of the base space 8(0). This is
independent of the choice of local coordinates (w, z) and is well-defined.
Moreover, if wl and w2 are elenIents of HO(C(O) XB(O) C(O),w~~)/B(O)(2.6.))

with Res2(wt} = Res6(W2), then w1 - w2 E HO(C(O) XB(O) C(O)'W~)/B(O»)'

This fact will be used below.

5.2. Descent to 8(1).

To define the sheaf of twisted differential operators, first we need to
define the action 1r of 'DfBN on V irS(oo) (Cv).

For h = (h1 , .. . ,hN) E 'DfBN and V = (l, r) E VirS(oo) (Cv), define

(5.2-1) 1r(h)(l, r) = (1r(h)(l), rl)

- d
where for l = (LI, ... ,iN), Lj = 1j d.{j' 1j = E aj(s){j, we define

(5.2-2)
- - d

1r(h)(l) = L Lh(aj(s))Ad(hj )(~j d~j)'

Cv N ( dh. -1 )
r

l = Lh(r) + 122: ~.:s Lh(lj){hj(~j);~j}( rI/) ~j .
;=1 {J-O '-"J
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Proposition 5.2.1. For each h E 'DeN, 7r(h) is an automorphism of the
sheaf V irS(oo) (ev) preserving the Lie algebra structure. Moreover, as an

0B(oo)-module homomorphism, 7r(h) is compatible with the action of L;;.

Remark 5.2.2. Ir' we regard geN as a constant subsheaf of Lie sub·
algebras of VirS( 00) ( ev ) l t hen the differential of the action of 'DeN on

VirS(oo)(ev) coincides with the adjoint action of t»N on VirS(oo) (ev). That
is, we have

d1r( h)(V) = [1, V)

where h= exp(t).
0.+ eN --

Proposition 5.2.3. For h E (VI) and V E VirS(oo) (ev), we have

1r(h)D(V)7r(h-I
) = D(1r(h)(V))

as an operator on 1t~OO) and VX(~(oo»).

Corollary 5.2.4. For V E BS(oo) EB 0B(oo) and s E 8(00), we have

a(h(s), V) = a(s,7r(h)V)

where a(s, V) is given in Corollary 5.1.8. Here, we also write explicitIy
the dependence of s in tIle homomorphism a.

Now we are ready to define the sheaf V irS(1) ( ev) on 8(1). Put

-- (1) - ... ... ffJN
Vir (ev) = {V E Virg(oo)(ev) I 7r(h)(V) = V for all hE (1)1) }.

Proposition 5.2.5. There exists a sheaf VirS(I) (ev) of an 0B(I)-module
over 8(1) such that VirS(l)(cu ) is a sheaf of Lie algebras and we have

-. (1) (1)-1 .
V t r (ev) ~ 7/1 V t r S( 1) ( cu)

where 7/1(1) : 8(00) -+ 8(1) is the canonical holomorphic map. Moreover,
there is an exact sequence

0-+ 0B(I) -+ VirS(l)(ev) -+ EBf=I8Sjl)/B(I)(*) -+ 0

where by (3.3-12) we identify 08(ll((ej))~j with eS}')/8(1)(*)'

Since the action of V;S(oo) (ev) on VX(~(oo») and the actions of (1)1)eN

on VirS(oo)(ev) and VX(~(oo») are compatible, for each V E VirS(oo) (ev),
we can define the action D(V) on VX(~(1»).
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Put

There exists a sheaf BS(I) on 8(1) such that we have

- (1)-1·
BS(I) ~ 1/J BS(I) .

Moreover, since on 1jJ(1)-1eS} I) /8(1) ( *) the action of (V I) EBN comes from

d
the adjoint action on 08(1)((€j))-, we have an exact sequence

d{j

(5.2-3)

which is an extension of Lie algebras.

Proposition 5.2.6. BS(I) EB (EBf=1 (88)1) /8(1) (-2))) can be regarded as

an ideal of Lie subalgebras ofViTS(1)(ev) and it acts trivially on VX(~(I»).

5.3. Sheaf of twisted differential operators.

Let us define a locally free sheaf VC(I) (ev) of rank two on C(I) \ ~(1).

It is locally a direct sum

8 c(t) /8(1) ( -28(1») EB WC(I) /8(1).

Let (Ul,'" ,uM, z) and (UI, ... ,UM) be local coordinates of C(I) \ E(I)

and those of 8(1), respectively such that 1r(I) : C(I) -+ 8(1) is given by

t he projection to t he first M -factors. Then an element V E VC(I) ( Cu) is
expressed by

d
V = (l(u,z)dz,1r(u,z)dz).

If (ui, ... ,u'u, Zl) are other IDeal coordinates, by definition, V is expressed
in the form

v = (t(u', z') d~" 7r(u', z')dz')

where

dZ'
t(ul, Zl) = l(u(ul,z'), z(ul, Zl))( dz)

dZ' -1
1r1(ul, Zl) = 1r(U(ul, z'), z'(ul, Zl)) (~ )

Cu J. /-1
+ 12 {Zl; z}l(u(ul,z'), z(u/,z'))(-1f) ~
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This defines VC(1)(Cv ) as a sheaf of OC(I)-module over C(I) \ E(I) and the
relations (5.3-1) show that the projection to the first factor induees the
following exact sequenee.

(5.3-2)

Moreover, sinee WC(I)/B(I) and 8 C(1)/B(1)(-28(1») are invertible on C(l),

and E(I) is of eodimension two in C(1), the sheaf VC(I) (ev) can be extended
to a locally free sheaf of rank two on C(I) by using the above exact sequenee
(5.3-2). Thus we may regard the exact sequenee (5.3-2) as the one of
0C(I)-modules over C(I). Then, by (5.3-2) we obtain an exact sequenee

R1 (l) 1 (1) ()o-Jo 1r. WC(I)/B(I) -Jo R 7r. VC(I) Cu

-Jo R 11ri1)sC(1)/B(1) ( -28(1») -Jo O.

Note that there are canonieal 0B(1)-nlOduIe isomorphisms

1 (1) "R 11". WC(I) /B(I) ~ VB(1)

and

Put
V~(I)(-log D(I); ev) = R I 7rP)VC(1) (ev).

Then the above exact sequenee is rewritten in the form

(5.3-3) 0 -Jo 08(1) -Jo V1(1)(-IogD(l)jCv ) -Jo GB(I)(-logD(I») -Jo O.

If we fix W E HO(C(O) XB(O) C(O), W~) /B(O) (2ß)) with Res~(w) = 1, the

Ioeal splitting of the exact sequenee (5.3-3) is given as follows.
(5.3-4)

8 C(1)/B(1) ( -28(1») EB WC(I)/B(I) ,...., VC(l)(ev)

d
(i dz ' f (z)dz )

d
((i dz' (f(z) + ev . i(z)8(z))dz)

where 8(z)dz2 is a projeetive eonneetion defined by

2 . dwdz
8 (z )dz = 11m {W ( w, z)dwdz - 2 }.

w-z (w - z)

Note that the projeetive eonnection does depend on the choke of the
eoordinate z and we have

1
S(w)dw2 = 8(z)dz2 + 12 {w; Z }dz2

•
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This fact and (5.3-2) imply that the splitting (5.3-4) does depend on the
choice of a meromorphic form w. By taking the first direct images of
sheaves in (5.3-4), this splitting induces an 0B(l)-module isomorphism

(5.3-5)

Proposition 5.3.1. There exists a canonical surjective OB(l)-module ho­
momorphism

Ö(l) : V irS(l) (Cu) -t V~(l) ( -log D(l); Cv)

such that the following diagram is commutative.

0<1)
VirS(1)(ev) -t D~(l)(-logD(l);Cu) -t 0

p !

N 8(1)

EBj~l6S}1) /8(1) (*) -+

Moreover, we have

!

-+ O.

Proof Ey the exact sequence (5.2-3) and by Proposition 3.3.6, we
have the following diagram of exact sequences.

0

!

2t

!

0 -+ 0 8 (1) -+ VirS(l) (Cu) ~ '! -+ 0

11
! 0(1)

0 -+ °B(l) -+ V1(1)( -log D(l); Cu) -+ (! -+ 0

!

0
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where

N

2{ = ES(l) EB E!1(8SV)/B(1) (-2))
;=1 J

N

t.r = E!1(e~l) /B(l) (*))
;=1 J

lt = 8 B(1) (-log D(l»).

By Remark 5.1.9, if we fix w E HO(C(O) @B(O) C(0),W~)/B(O)(2ß)) with

Res~(w)=1, there is an OB(l)-module homomorphism

By using the splitting (5.3-4), define Ö(
1

) = (B (1) , llw). Then, it is easy to

show that 0(1) is well-defined and that we have

Q.E.D.
Next we introduee a Lie algebra strueture on V ~(1) ( - log D(1); Cv).

Lemma 5.3.2. The above jsomorphjsm (5.3-4) defines a Lie algebra
structure ofV~(l)(-log D(l); ev) and the exact sequence (5.3~4) is an ex­
tension of the sheaves of Lie algebras.

By Proposition 5.2.6 and Proposition 5.3.1 we obtain the following
Theorem.

Theorem 5.3.3. On VX(~(l») the sheafV~(l)(-log D(l); ev) oE Lie alge­
bras acts as twisted first order differential operators.

Corollary 5.3.4. IE 8(0) is small enough such that we have a splitting
(5.3-5), then the sheaves VX(~{1») and Vf(~(l») are locally Eree on 8(1) \

D(l).

Pmof. Since we have the splitting (5.3-5), 8 8 (1) (-log D(1») de-
fines an integral connection with regular singularities on 8(1). Hence, on
8(1) \ n(1) we have an integral connection. Therefore, the Corollary is a
consequence of the theory of connections on coherent sheaves. Q.E.D.

By Remark 4.1.7 we have the following Corollary.
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Corollary 5.3.5. Under the same assumption as in Corollary 5.3.4, for
each point s E 8(1) \ D(I) we have tbe canonica1 isomorphism

V}(~(I») @OS(l) (08(1),lf/mlf) ~ V}( X(I»).

§6 Locally Freeness and Factorization

6.1. Family of singular stahle curves.

Let ~1) - (_(1) . C(I) ~ 8(1). 8(1) 8(1) 8(1), t-(I) t-(I) t-(I»)
1J" - 11. I 1 , 2 ,..., N ' 1 , 2 ,..., N

be a loeal universal family of N -pointed stable eurves with first order in-
finitesimal neighbourhoods. Here we study the behavior of the TJ~(1) ( -log D (1) j cu )­

module VX(~(I») near the discriminant loeus D(l).

Sinee the problem is loeal on 8(1), we take sufficiently small family
~(O) = (1r(0) : C(O) ~ 8(0) j 8~0), 8~O) , .•. ,s~») with loeal coordinates

(Tl, ... ,T3g-3+N) on 8(0) such that the diseriminant locus is of the form
D = D 1 UD2 U ... UDk, Di = {(T) I T3g-2+N-i = O}, i = I, ... ,k
and the family ~l) is obtained from the family ~(O). (See the proof of
Theorem 3.1.5.) Choosing 8(0) slnaller, if necessary, we nIay Msnme that

8(1) = (C"')N X 8(0).

Let (1]1, ... ,TIN) be global coordinates of (C*)N. Moreover, we may M­
snrne that there exists a meromorphic fornl

W E HO(C(O) @B(O) C(0),W~~)/B(O)(2ß))

with Res~(w) _ 1. Fixing it, we have a trivialization

V1(1) (-log D(1)j ev) ~ 08(1) (-log D(l») EB 0S(l).

Let D}l) C 8(1) be the pull back of Di C 8(0), and put

E = n Di, E(l) = n DP)·

l~i$k l~i~k

Denote by 'irE : CE ~ E the restriction of C(O) to E. Let iE : CE -t E
be obtained by the simultaneous normalization of 1rE : CE -+ E and
a~, a~ : E -+ CE (p = 1, ... , k) the cross-sections corresponding to the
normalized double points.

"7rE 1rE! 8,a !
s a' aI', ,
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We also denote by 7rE(I) : CE(I) --+ E(l) (resp. ?fE(I) : CE(I) --+ E(l») the
pull back Of7rE: CE --+ E (resp. ?fE: CE --+ E) to E(l). For simplicity, we

use the notation Sj instead of s~O) and s~l). Also by u' and u" we denote

the seetions of ?fE (1) : CE (1) --+ E(l) induced from the sections cl and u"
of 7rE : CE --+ E.

Proposition 6.1.1. The family (?rE: CE --+ E; u~J cI~, (p = 1, ... ,k),

siO), ... J s~») is a local universal family of (N + 2k)-pointed (not neces­
sarily connected) stable curves.

For the preparation of the next subsection we study the relation be­
tween the family 7rE(I) : CE(I) --+ E(1) and ~(l).

For simplicity of notation let us assume that k = 1. Hence, E = D 1

and E(l) = D~l). Put M = 39 - 4 + 2N, 'T = 'T3g-g+N and

{

1]i i = 1, . .. ,N
Ui= .

Ti-N 'Z = N + 1, ... ,M.

Hence (UI, u2,'" ,uM, T) are coordinates of 8(1) and E(l) is defined by
the equation 'T = O.

Lemma 6.1.2. If we choose B(O) sufliciently small, then there exist loeal
coordinates (Ul,'" ,UM, z) (resp. (UI, ... ,uM, w)) of a neighbourhood
X ( resp. Y) of u'(E(l») )resp. u"(E(l»)) in CE(I) and a relative vector

neIde E HO(CE(I) , Be /E(l)(* ~~l Sj(E(I»))) which satisfy the following
e(l)

conditions.
1) The sections u' and u" are given by the mappings

u' : (U1, ,UM) 1--+ (UI, ,UM, 0) = (u}, , uM, z)

a" : (u}, ,UM) 1--+ (UI, ,uM, 0) = (UI, ,uM, w).

- 1 8 - 1 8
2) llx=2z8z' lIY=2w8w'
Proof. Let v : CE(1) --+ CE (1) be the simultaneous nornlalization. Let

(Ul, ... ,UM,X) (resp. (u}, ... ,uM,y)) be loeal coordinates of X (resp.
Y) satisfying the condition 1). Sinee v is isomorphie (the identity map­
ping) on CE (1) \ (u'(E(l») U a"(E{1»)) = CE (l) \ a(E(I»), by the proof of
Lemma 3.2.3, especially by (3.2-4) we have the following exact sequence.

o--+ 0 CE (1,/E(1) --+ V*(BCe(I)/E(l) ( -a'(E(l») - a"(E(l»))) ~ 0E(1) --+ 0

where 0E(l)-module homomorphism a is given by

( ( )!- b( )i.) 1--+ 8a(u, 0) 8b(u, 0)
a u, x 8x' u, y 8y 8x + 8y .
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Note that the stalk of 1I.(ei /E(l)( -al(E(l») - u"'(E(l»))) at a point
E(l)

lT(U) , (u) E E(l) consists of a pair of local holomorphic vector fields

(a(u, x) :x' b(u, y) :y) with a(t,O) = 0, b(y,O) = 0 arid the definition

of aisindependent of the choice of Iocal coordinates. The exact sequence
induces an exact sequence

°--+ HO(CE(1),8cE(1>!E(l) (kS(l»))

--+Ho(CE(l) v.(8- (kS(l) - u'(E(l») -lT"(E(l»))))
, C

E
(l>!E(1)

~ HO(E(1), 0E(1») --+ H 1(CE(1), 8 CE(1)!E(1) (kS(l»))

for every integer k, where

N
S(l) = L Sj(E(l»).

j=l

If k is sufliciently large, we have

Hence, by the above exact sequence there exists a relative vector field

such that

a(i) =1.

By the local coordinates given above, l has the form

- 8
P. = a(u, x) 8x on X

- 8
l = b(u,y) 8y on y

with
8a(u, O) 8b(u, 0) -1
8x+8y=·

Adding an element conling fronl HO(CE,6cE(1>!E(1)(*S(1»)) if necessary,

and choosing B(0), X and Y smaller, we may assurne that 8a~~ x) (resp.
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8b(u, y)
8y ) has no zero on X (resp. Y). Now define z - z(u, x) and

w = w(u,y) by

8z 1
a(u, x) 8x = 2z, z(u,O) = 0

8w 1
b(u, y) 8y =2w , w(u,O) = O.

Then, by choosing X and Y smaller, (Ul,'" ,uM, z) and (UI, ... ,uM, w)
satisfy the above conditions 1) and 2). Q.E.D.

We let *E(l) : CE(l) -+ E(l) be a local universal family obtained by
adding the first order infinitesinlal neighbourhoods at (1' and (1". Lemma
6.1.2 says that at (1' and al' we can choose special coordinates z and w.
These coordinates induce the first order infinitesimal neighbourhoods of
(1' and (1", hence, we have a holomorphic section

(6.1-1)

Let ej be a fonnal coordinate at Sj(E(I») such that

d -
Let li(~) d~j be the formal Laurent expansion of i with respect to the

formal coordinate €j. Thus we have ij(~i) E 0E(l)((€j)). Put

(6.1-2)

Next we construct the fanlily ~(I) from the family (?fE (l) : CE (l) -+

E (I) (1) (1) ~I) ~I») U' h . f L 6 1 2; sI , ... , sN; t1 , ... , tN' sing t e notatIon 0 emina . . , we
may assume that

X = { P E CE(l) I Iz( P)I < 1 }

Y = { P E CE(t) I Iw(P) I< 1 }.

For a positive number E < 1 put

XE = { P E CE(I) Ilz(P)1 < E }

YE = { P E CE (1) Ilw(P)1 < E }.
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Figure 4.

Fix positive numbers EI < E2 < 1 and let {Ua }3<a<A be a finite open
covering of CE(l) \ (X~2 U Y~2) such that - -

for any 0: = 3, ... ,A.
Now put

D = { r E C I Irl < 1 }

80 = { (x, Y, r) E C 3 I xY = T, lxI< 1, lyl < 1, Irl < 1 }

8 = 80 x E

Z = { (P, r) E CE(l) X DIP E CE(l) \ (X u Y)

or P E X and Iz{P)1 > Irl}
W = {{P,r) E CE (l) X DIP E CE (l) \ (XUY)

or P E Y and Iw{P)1 > Ir!}.

On Zu 8 u W we introduce an equivalence relation I'V as folIows.
1) A point (P, r) E Z n (X x D) and a point (x, y, r', u) E 8 are

equivalent if and only if

(x, y, T', u) = (z(P), z(~)' T, 1f~)(P)).

2) A point (P, r) E W n (Y x D) and a point (x, y, r, u) E 8 are
equivalent if and only if

(X,y,T',U) = (w[p)'W(P),T,1f~)(P)).

3) A point (P, r) E Z and a point (Q, 7') E W if and only if

(P, r) = (Q, r').
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Now put C(l) = Z U S U W/ "-I. Then it is easy to show that C(l) is
a complex manifold and there is a natural holomorphic mapping 11"(1) :

C(I) ~ E(l) x D. Moreover, since we can assurne that Sj(E(l»)'s are

contained in CE (l) \ (X U Y), we can define holomorphie seetions s1's by

Sj: E(I) x D ~ C(l)

(t, r) ~ (Sj(t), r) E Z.

By the same way we can define the first order infinitesimal neighbour­
hoods I j . It is easy to show that (1r(I) : C(l) ~ E(l) x D; SI, •.• ,sNi

tI, ... ,IN) is isonlorphie to our original family ~(l).

By the same tnethod we can construct a family (11" : C ~ E x
D; SI, ..• ,SN) isomorphie to ~(O). Hence, in the (ollowing we identify
~(O) and ~l) with the families constructed above.

For each point (u, r) E E(l) x D put

C(u,r) = 1I"-1((u, r))

Ua(u, r) = Ua n C(u,r), 3 < 0 < A

Ut(u, r) = sn zn C(u,r)

U2(U, r) = sn w n C(u,r).

Then, for ea.ch r =F 0, U(u, r) = {Ua(u, r)}l:5a:5A is an open covering of
the curve C(u,r).

Lemma 6.1.3. For each point (u, r) E E(l) x D with r =F 0, the image

p(7" :7") oE a vector field 7" :7" by the KOdaira-Spencer mapping

p : T(u,r)(E(I) x D) ~ H1(C(u,r), eC(tl,T»)

is given bya Cech cohomology dass {Baß(u,r)} E ill(U(u,r),ec(~'T»)

with respect to the covering U(u, r) given above, where

a
B12 (U, r) = z 8z

B21 (u,r) = -Bt2 (u,r)

Baß (u, r) = 0 iE (a, ß) # (1, 2) or (2, 1)

Proof. By the above equivalence relation, on Ul(u,r) n U2(u,r) we
have

r
z= -.

w
If Ua ( u, r) n Uß(u, r) 'I 0 and (0, ß) 'I (1,2) nor (2,1), then the relation
between local coordinates of Ua(u,r) and Uß(U,T) does not depend on T.
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Hence, by the definition of Kodaira-Spencer mapping (see, for example,
Kodaira [Ko, §4.2]) we have

ara 8
p(rarh2 = w8r = Z 8z

8 a a
p(r8r)21 =w8w = -z8z

a
p(r ar)aß = 0 if (a, ß) ~ (1,2) nor (2,1)

Q.E.D.
... d

Let us consider the N-tuple of formal vector fields L= (li (ei) ~1" •• ,

eN(eN)~) defined in (6.1-2). Since we have ij(€j) rl~ E 0E(t)((ej)),
~N ~j

we may regard l as an N-tuple of formal vector fields on ~(1), that is,
d

li(ej) dei E 0E(l)xD((ei))'

Corollary 6.1.4. On B(I) = E(I) x D we have

0(1)(l) = r~
87

where tlle mapping 0(1) is defined in Proposition 3.3.6.

Proof Since both sides of the above equality in the corollary define
holomorphic vector fields on 8(1), it is enough to prove the equality for
7 ~ O.

Let us consider an exact sequence

o~ 8 C(l)/B(1)(-8(1») -+8C(1)/B(1)((m - 1)8(1»)

Nm" c-m+k d 0
-+ €Bi=1 €Bk=1 B(l) lai dei -+

for a sufficiently large positive integer m. I defines an elelnent r of
the third ternl of the exact sequence. On the other hand, for each
(U,7) E E(1) x D, 7 f. 0, the meromorphic vector field lon CE(l) defines
meromorphic vector fields lu,r on CU,T \ {U2(U, 7) \ (Ul(U, r) n U2(u, r))}

- 1 a
and l~ T = -w-a on U2( u, r) such that both vector fields have the same

, 2 w
image rin the above exact sequence. Hence, the image of rby the map­
ping

Nm" t-m+k d R1 (1)(8 ( 8(1»))€Bi=l €Bk=1 B(l)f.ai d1.i -+ 7r. C(l)/B(l)-
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is given at a point '(u, r) by an element

where on Ul(U, r) n U2(U, r) we have

B12 (U, r) = lu,rlu1 (u,r) - l'u,rIU,(u,r)

1 8 1 8=-z- - -w-
2 8z 2 8w

8
=z-

8z
B21 (U, r) = -B12 (U, r)

and on Uo(u, r) n Uß(u, r) with (n,ß) #- (1,2), (2,1) we have

Boß(u, r) = O.

Thus rdefines the eohomology dass given in Lemma 6.1.3. Henee we have
the equality for r -:j; O. Q.E.D.

6.2. Locally freeness and factorization.

The nlain purpose of the present subseetion is to prove the loeally
freeness and factorization properties of the sheaf of vacua VfC~(l)) for a

Ioeal universal family ~(1) = (1r(1) : C(l) ~ B(l) ; sP), s~l), ... ,s~) ; til
),

t~l), ... ,t~)). We use freely the notation and eonvention in the previous
subseetion.

Theorem 6.2.1. The sheafVX(~(l)) is locally free.

Proof By Corollary 5.3.4 the theorem is true for a Ioeal universal
fanlily of smooth eurves. Therefore, we assume that the loeal universal
family ~1) eontains singular eurves. For simplicity we only eonsider the
ease k = 1, that is, each singular eurve has only one double point. General
ease is redueed to this ease by the induetion on the number k of the double
points of a singular eurve.

First fix an element J1. E Pt.

Claim 1. There exists a bilinear pairing

unique up to the constant multiple such that we have

(X(n)ulv) + (uIX( -n)v) = 0
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for any X E g, n E Z, lu) E 1lJl , Iv) E 1ll-'t and ( I ) js zero on
?tJl(d) ri!J ?tl-'t(d'), jf d =I d!.

Proof. Since VJl ri!J VI-'t, considered as ag-module by the diagonal
action, contains only one-dimensional trivial g-module CI0I-',Jlt), we have
a bilinear form ( I ) E Homg(Vp ri!J VI-'t, C) unique up to the constant
multiple. Assume that we have a bilinear form ( I ) E Hom(Fp1l1-' ®

Fp1ll-'t, C) with desired properties. For an element X(-m)lu) E FP+I1l1-'
with lu) E Fp1iJl' m > 0 and an element Iv) E Fp+11tl-'t define

(X( -m)ulv) = -(uIX(m)v).

Note that since X(m)lv) E Fp+m-l1i~t, the right hand side is defined
already. It is easy to show that in this way we can define the bilinear
form ( I ) satisfying the conditions of Claim 1. This proves Clainl 1.

Now let us choose a basis {VI (d), . .. ,vmd ( d)} of 1ijl (d) and the dual
basis {v I ( d), . . . ,vmd ( d)} of 1tI-' t (d) with respect to the above bilinear
form ( I ).

Using the holomorphic section j : E(l) -t E(l) defined in (6.1-1),we
put

Vt(l) _ ·.Vt (~(1))
p.,jlt ,X,E(I) - J I-'I~t ,X E(I)

tel) -t(l)
?tX,E(l) = 1lX ®OB(I) 0E(I).

Then, Vt(l~ \" E(I) is locally free and by Theorem 5.3.3 the sheaf of halo-
p.,~ ,11.,

morphic vector fields eE(I) operates on it from right as the integral COll-

nection. Moreover, the Hat seetions span the sheaf vt(l~.. (1)' Let (\111 bejl,Jl ,).,E

a Hat section of Vt(l~ \" (I)' Let us define an element (q; I E 1il(l\l) (( 'T]]
J!,~ ,II.,E ).,E

associated with (\11 I. For that purpose first define (\11dl E 1tl(l\l) by
A,E

(6.2-1)
ml

(\11dlu) = L (\I1IVi( d) ® vi(d) ri!J u),
i=l

(6.2-2)
00

(q;I<I» = 'TtJ.,. E(\I1dl<I»'Td
•

d=O

Now we shall show that (q,1 satisfies the formal gauge condition. To
give the precise lneaning of this statement, first we prove the following
Claim.
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Claim 2. There js an 0E(l)-module jnjectjon

where

f --+

i E<l).0Ctl) (*((J' + q!' + 8(1»)) [[ T]]
E(l)

EJ;;o fTc Tk

fk E 7fE(I) .(81) (*8(1) +k(a' +a")).
E(l)

Proof. Choose a point P E CE(l) which is a double point of a fibre of
7rE(l). Then we can choose local coordinates (Ul"" IUM-bZ,W) ofC(I)
with center P and those (UI, ..• ,UM-I, T) of 8(1) with center 7r(1)(p)
such that 1r(1) is given by

(Ul"" ,UM-ll Z ,W) --+ (Ul"" ,UM-b ZW ),

(See the beginning of 3.2.) Since f is holomorphic at P, we have an
expansion

f = f(uI, ... ,UM-I, z, w) = 2: fm,n(u)zmwn.
m~O,n~O

Define gp'(u, T, Z) by

00

gp,(u, T, z) = f(u, z, '!..) = 2:9k(U, Z)T
k

Z k=O

where

(6.2-3)
00

9k(U, Z) = 2: fm,k(U)zm-k.
m=O

Define also hP'I ( U, T, w) by

00

hp,(u, T, w) = f(u,~, w) = 2: hk(U, W)'Tk

W k=O

where

(6.2-4)
00

hk(u,w) = Efk,n(U)Wn- k.
n=O

For a point Q E CE(l) which is not a double point of a fibre, we can
choose local coordinates (UI, ... ,UM-I, 'T, z) of C(l) with center Q such
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that 71'"(1) is given by the projection to the first M factors. Then we have
an expanSIon

00

f(u1, ... ,UM-I, r, z) = L fQ,k(U, z)rk
.

k=O

It is easy to see that {gk(u,z),hJ.:(u,w),fQ,k(U,Z)} defines a local holo­
morphic seetion of the sheaf 1TE(1).08 1 ) (*8(1) +k(q' +0"')). This proves

E{l)

Claim 2.

Claim 3. We have

That is (~I satisfies the formal gauge condition.

Proof. By definition, for any I~) E 1i~1~(1) we have,

N 00

L (q;1 L: Pi(X @ fk)rkl<I»
;=1 k=O

00 00 m" N
= r!::J.~ E E ETk+d E('ltlp;(X ® fk)lvi(d) ® vi(d) ®~)

k=Od=O i=1 ;=1
00 00 md

= _T!::J.~ L L Lrk+d(\I1lpu/(X ~ 9k)
k=Od=Oi=1

By (6.2-3) and (6.2-4) we have

00

Pu/(X ~ 9k) = L Jm,k(t)pu/(X(m - k))
m=O

00

Pu"(X ® hk) = L fJ,:,n(t)Pu 1 (X(n - k)).
n=O

Since we have

(X(m - k)vi(d)lvi(d - m + k)) + (vi(d)IX(k - m)vi(d - m + k)) = 0,
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we have

m"
LPu/(X(m - k))!Vi(d) ® vi(d) ® fll)
i=1

mol-m+'"

+ L Pul/(X( -(rn - k))lvj(d - m + k) ® vi(d - m + k) ® fll)
j=1

= O.

This proves Claim 3.

Claim 4. The formal power series (~I converges and defines an element
of Vl(~(l»)

Proof. Let us fix an element w E HO(C(O) ®B(O) C(0),w~~)/B(o)(2ß))

with Res2 w =1. Ey (5.1-4) we have

Let l = l(z) :z be the meromorphic vector field given in Lemma 6.1.2.

Then, for (u, r) E E(l) x D, r =f;. 0,

is a meromorphic form on C~,T = CU,T \ { (x, y, r) E So Ilxl ::; f or Iyl::; €}
for a sufficiently snlall positive number f < 1.

" ,

Figure 5.

The boundary of C~ T consists of two disjoint simple closed curves 1'+,
I

1'-. We choose the orientation of 1'± in such a way that C~ T lies in a right,
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side of "Y±. Then by Proposition 2.4.2,(5.1-5) and (5.1-6) we have

~1 e(z)(~IT(z)IcI»dz + ~ll(w)(~IT(w)I<P)dw
21r -1 1'+ 27r -1 1'-

N

=L ResQj(l(u)(~IT(u)Iq,)du)
j=1

N

= L(~lpj(Res(lj(ej)T(ej)dej))I<p)
j=1 ej=o

N

- Cv L Res(lj(ej)Sw,j(ej))(~I<p)
j=1 ej=o

N

= L (~lpj(T[ej])I<p) - a(~)(~I\I1)·
j=1

d 1 d
On the other hand, on "Y+ we have e(z)- = -Z-. Hence, by (5.1.4) we

dz 2 dz
have

~ll(z)(~IT(z)I<P)dz
211'" -1 1'+

= ~1 (z(~IT(z)I<p) - CvZSw(z)(~I<p)) dz
411'" -1 1'+

1 1 -= A z('11jT(z)I41)dz,
411'" -1 1'+

since Sw(z)dz2 is holomorphic at z = O. Hence, by (6.2-1) and (6.2-2) we
have

~1 l(z)(~IT(z)I41)dz
211'" -1 1'+

1
00m

"= - LTDo,.+d'L,l z(\I1dIT(z)lvi(d)~vi(d)®<1»dz
2 d=O i=O 1'+

1 00 md

= 2L TDo,.+d E ('11dlLo{Vi( d)) ~ v i
{d) ~ <p)

d=O i=O
1 00 md .

= 2E E(ßIl + d)rDop+d('11dl vi(d) ~ v'(d) @ 4».
d=Oi=O

Similarly we have

.~1 l(w)(~IT(w)I<I»dw
21r -1 1'-

1 00 md

= 2L L(ßJLt + d)r6Ilt+d('11dlvi(d) ® vi(d) ® <1».
d=Oi=O
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Since we have ßp. = ßp.t, we obtain

N

E (,~lpi(T[ij])I~) - a(!)(~I'It)
j=1

00 md

= E E(ßp. + d)r6 ,.+d('I1dlvi(d) ~ vi(d) ~ ~).
d=Oi=O

On the other hand, we have

- d
(wirdrl<P)

00 ffid

= E E(ßp. + d)r~l'+d('ltdlvi(d) ~ v'(d) ® <Jl).
d=Oi=O

Hence, (~I is a formal solution of the differential equation

- d ~ -
('ltl~ - T[IJ + a(I)) = O.

Since the differential equation has regular singularity, the formal solution
(W'I converges. Hence, by Claim 3 we have the desired result. This proves
Claim 4.

Now we are ready to prove Theorem 6.2.1. Let { ('lt11, ... ,('ltnl} be

a Hat basis of ffip.EPt Vt(1~ ÄE(l)' This is also a basis as an 0E<1rnlodule.p.,p. , ,
Let {(~11, ... , (~nl} be elements of V~(~(1») cOßstructed above froßl

{ ('1111, ... ,('Itnl }. Theses elenlents are 0B(l)-linearly independent.
Choose a point x E E(1) and S E B(1)\E(1). Then, the above argument

and Corollary 5.3.5 show that

By Lemma 4.1.3 and Corollary 2.2.6 we have

Hence we have
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Figure 6.

On the other hand, since VX(~l») is coherent and locally free on B(l)\E(l),
we have the inequality

dime VX(~(l») ® (OB(l),,./m,.) :::; dime VX(~l»)® (OB(1),x/~)'

Hence we have the equality

dime VX(~(l») ® (OB(l),,./mS ) = ditne V,\(~(l») ® (OB(l),x/mx)'

Hence VX(~(l») is locally free. Q.E.D.

Corollary 6.2.2. Vl(~(1») is loca11y fTee. Moreover, for each point S E

8(1) we have

Vl( ~(oo») (gl0B(l) (OB(l),,./m,.) ~ VI( X~oo»).

Remark 6.2.3. Sirnilar to Renlark 4.1. 7 we can define VI( X(l») by the

Ieft hand side of the above isomorphism for X(l) = X~l). Then we have
the canonical isolllorphisrn

Vl(X(l») ~ Vl(x<oo»).

Corollary 6.2.4. The rank of VI(~(l») cau be calculated combinatori­
cally from the fusion Tules.

In this case, the fusion mIes, which counts the numbers of independent
solutions of type (g, N) = (0,3), are given in Exarnple 2.2.8. We use the
notation there. The nunlber of the independent solutions are given by

NJj,v,>-, = dirn W1l,V,..\' By using N1l,V,>-., the explicit formula for the rank is
given in the case of rnaximally degenerate curves (the corresponding dual
diagram is the 4>3-diagram) with 9 loops and N externallines, which has
3g - 3 + N internallines and 2g - 2 + N vertices, that is

rankVl(~(l») = . L II No ,!3,'Y'
j1:intcmal (oJ],'Y):vertices

(See [Vel.)
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For each 4J3-diagram the above proof (see also the factorization prop­

erty, Theorem 6.2.5 below) gives a canonical basis of Vl(~(l»), with which
the monodromy around the vanishing cycles are diagonalized. The re­
lation between the bases corresponding to two different diagrams is de­
scribed by a connection matrix. The matrix provides us the monodromy
representation of the braid group, the mapping dass group or some gen­
eralization of them ([TKl], [TK2], [F], [Val]).

The sheaf version of Proposition 2.2.5 is the following factorization
property.

Theorem 6.2.5. There exists an 0E(l)-module isomorphism.

Proof We use the notation in the proof of Proposition 2.2.6 freely.
Put

VX(~(l»)E(1) = (VX(~(l») ®08(1) 0E(1») ®OE(I) 0B(l)

Vl(~(l»)E(l) = (Vl(~(l») ®OB(I) 0E(l») ®OE(I) 0B(l)'

Then we have a canonical identification

Vl(~(l»)E(l) = H om0"E(I) (VX(~(l»)B(1P 0B(l»)'

For an element ((PI E V t
t X(~~ll») and an element l~) E VX(~(l»)E(I)jj,jj , E

define t jj ( (~I) E H om0"E(I) (VX(~(l»)B(l)! 0 B(l)) by

t jj ( (~I)(Iq,)) = (~IOjjljjt ® cI-).

This is well-defined and induces an °E(l) -module homomorphism

(6.2-5)

For each point s E E(l), put

C" = OE-Cl) Im"o,s

By tensoring C s to (6.2-4), we have aC-linear mapping

t,,: EB Vt
t X(~~ll») ® C" -+ Homc(V.:\(~l»)B(I)® C", C).

I'E Pt jJ.,jj,

97



By Remark 4.1.7 and Corollary 6.2.2, the mapping La is nothing hut the
Inapping in Proposition 2.2.6. Hence, La is isomorphie. Therefore, L is an
0E(1)-module isomorphism. Q.E.D.
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