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Robert Finn

By capillary surgace we mean a two dimensional surface in
R » whose mean curvature is a given function 'T(x) P < € R’ '
and which meets prescribed bounding walls (container) in a
prescribed angle Yy . For background details and derivation of
the equations, see, e.g. [1]. The function (r(x) may contain
an additive constant that is not given in advance, but is to.be
determined by a volume constraint. Physically such surfaces are
determined as equilibrium configurations for liquid-gas or
liquid-liquid interfaces in solid containers, by the principle

of virtual work. We restrict attention in this paper to physical

surfaces in the earth'é gravitational field, for which
(1) ’r(x) = KZ + A , k>0,

and to surfaces in the absence of gravity, obtained by setting

kK =0 in (1).

To our knowledge, the uniqueness of such surfaces has been

proved in only two cases



i) the surfaces S determined by a vertical cvlindrical tube
Z of general section Q , with gravity either absent or directed
downward into the fluid; surfaces satisfying the conditions do
not always exist (cf [1] Chapter 6), but when they do exist
they are determined either uniquely or up to vertical translation,
depending on eventual volume constraint, see [1] Theorem 5.1, see _

also Vogel [2]

ii) a liquid drop of prescribed volume on a plane I of
homogeneous material, either in the absence of gravity or with
gravity directed orthogonal to 1T from the side on which the
drop rests; see Wente [3] for symmetry and {1] Theorem 3.2 for
the uniqueness of the symmetric surface. In this case a double
infinity of equilibrium surfaces can be constructed by translation
along the plane, however the surfaces are all congruent to each

other, and can be considered as equivalent.

The two situations are illustrated in Figure 1. The corres-
ponding uniqueness proofs are very different; they rely heavily
on the particular geometries and do not extend to general inter--
mediate configurations as illustrated in Figure 1. In fact, the
example of Figure 2 shows that in the intermediate case uniqueness
cannot always be expected. Here the container consists of a piece
of right circular cone adjoined to a vertical cylinder, and is

oriented to the gravity field (if there is one) as indicated.
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Figure 2. Nonuniqueness



If the container is filled with slightly less fluid than the
volume of the cone, and if the contact angle y = 7/4 , then

one possibility is the horizontal surface S indicated. How-

1

ever it is clear that a second surface 52 bounding the same

volume V can then be found, with contact circle on the cylinder.

For the case vy = % and g = 0 , Gulliver and Hildebrandt
[4] gave a striking explicit example of a container that bounds
a continuum F of (non-congruent) equilibrium surfaces, all with
the same volume, and they raise the question whether containers
with this property can also be found when g # 0 . In § 1 we
answer the question affirmatively ,for any vy . In § 2 we return

to the case g = 0 but allow general vy , and show again that

containers with the desired property can be obtained.

Since according to the principle of virtual work the surfaces
in F are characterized by vanishing of the first variation of
mechanical energy, it follows_that all surfaces in F have the
same energy. It is always possible to design the container so that
F contains a horizontal disk . In § 3 we examine the second
variation of energy in this configuration and obtain conditions
under which it can be made negative. As a consequenceé we are able
to show that F can be embedded into a larger continuum by
adjoining asymmetric surfaces, and in which all surfaces not in
F have lower energy; thus it cannot be expected that the surfaces
in F will be observed physically apart from exceptional circum-

stances. We pursue this line of reasoning further in § 4, where



we give an example of a symmetric container that differs only
locally and as little as desired from a (closed) vertical
circular cylinder, and which for a prescribed volume admits no
symmetric surface of minimizing energy. If the

cylinder deformation is removed, then the minimizer for the

given volume becomes unique and symmetric.

In this connection it is worth pcocinting out that even for
a container as simple geometrically as a closed circular cylinder,
the minimizing configuration can be disconnected and in a non-
trivial way nonunique. We show this by example in § 5. It seems
unlikely that will happen in the case of asymmetric minimizer

considered above, but we have not excluded the possibility.

Finally, in § 6 we extend the known uniqueness theorems by
showing that for a symmetric container whose wallsare concave to
the domain (as in Figure 7 ), the symmetric solutionsare in fact

uniquely determined by the contact angle and volume.

1. Equation for the container; case g # 0 . A capillary

surface u(x,y) subject to a volume constraint in a gravity field
g directed vertically downward into the (heavier) fluid is deter-
mined by the equation

(2) div Vu

Ku+ A,

==



with W = /T:T;;Tf and k > 0 a physical constant proportional
to g . Here X 1is to be determined by the geometry and the

constraint. The surface is to meet the container in a prescribed
constant angle v ; we may assume O £ y € 7 . In a rotationally

symmetric configuration, (2) takes the form
. d _
(3) I (r sin y) = xru+ Ar

in terms of inclination angle ¢ = tan'1u'(r) of the solution
curve with the r-axis. In what follows, it is basic to observe
that although (3) is of second order and the two integration con-
stants together with A lead nominally to a three parameter
family of solutions, in fact the totality of solutions o4 (3)
_that are defined in a deleted neighborhood 04 r = 0~ are

contained in a one parameten family of cunrves.

. To see that, we observe first that a vertical translation
reduces any such solution to a corresponding (congruent)} solution

of

(4) !

(r sin @) = krv , @ = tan v'(r)

Q-lﬁa
H

Formal integration of (4) shows that any solution in the class

considered tends to a limit v0 = v(0) as r — 0 , then that

lim v'(x) = 0 , and finally that vy uniquely determines the
r-+0 '

traverse. The family has the general appearance indicated in



Figure 3 . For details see [1], Chapter 2; there the following

properties are established:

a) on any solution curve the values v,v' and the
curvature (sin w)r increase or decrease with r ,

according as v, > 0 or Vo < 0 ., Each curve becomes

0
. 2
vertical at a value R < ETVET .
b) for fixed r = ry v' increases with height =z ,

from -« to « in a finite interval whose length

decreases from =« to 0 as r0 varies from 0 to

Lo

From.b) we see that for any fixed ry - the values sin w(ro)

can be chosen as parameter to describe the family.

We proceed to the construction. We seek a curve r = f(z) ,
defining a container € , which cuts a family of solutions of (3)
in constant angle Yy and for which the corresponding rotation

surfaces enclose with € a constant volume. We set

(5) £ = —3% - giny ; n=—X—" = cos (p+y)
1+ur? SPTIL

(see Figure 4 ). A given curve £(z) thus determines £ = £(n)

at each point on its traverse. By property b) above, the values
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Figure 4. Intersection angles



r,£ on the curve determine a unique solution v(p;&(r)) ,

such that sin b(r) = ()

Set 6 = z-v{r;t£(r)) . Then the condition for coincidence
of the solution u of (3) with the curve r = f(z) at the point

(r,z) yields

(6) | (r sin @) = krv(r;&(r)) = kr(u-¢)
= Kru+ Ar

with

(7) A =-K(z-v(r;€(r))i .

By the "basic observation" above, the sought solution u(p;&(r)}
of (3) must be congruent to vi(p;&£(r)) under vertical translation;

thus
(8) (p sin w}p = Kpu + Ap
with A determined by (7).
Integrating (8) from 0 to r , we obtain for the (cylin-

drical) volume vt bounded between the rotation surface deter-

mined by u(p;g£(r)) and the base plane z = 0



+ _ 27 _mA 2
(9) vV = — Er T
For the corresponding volume determined by z(r) , we have
(10) V™ o= 21 [Fpzdp .

The condition for constant enclosed volume then becomes

3/2
(11) (2 - krv,)pr e - ED) <r {3 g-2rv(r;E)
KrvE o r r'cosy +siny K TVir;
2 3/2
2 £ (1+x'7) - .
- T /= }_K Ticosy+siny £ - 07
1-§

here £ is defermined in terms of r' from (5) by

(12) £ = —— (cosyY=- r'siny)

and wv(r;f) is the unique value at r of the solution of (4)
for which sin® (r) = £ . We derived (11) under the implicit
assumption that the container projects simply onto the base
plane, however one verifies readily that (11) holds in all

cases.

We take as initial data for (11) values &r,r' . such that
 as determined by (5) will lie in the range -7 < ¥ < 5 . Then

the values of v(r;£(r)) will be smoothly determined -in a



neighborhood of (r,r') . The local existence of a solution of

(11) thus reduces to showing that the factor (2 - Krvg) does

not vanish at (r,r') . We have from (4)
o T
(13) £ =< J ovip;E(r))dp
0

from which

r
< K ;
1= 2 foovg(o,E(r))do
(14)
- 1erv, (:6) - = [ pPv__(psE(x))a
) rvE r; 3T OD Vot picir P

and we conclude from the above property b) that 2 - Krvg(r;E)< o .

This completes the (local) existence proof.

2. Eguation for the container; case g = 0 . The case

Kk = 0 must be studied separately, as the volume is no longer

determined by integration of the ku term in (3). However, the

solutionsthrough r = 0 are now known to be circular arcs, so

that the volume can be determined geometrically. This property
i

was exploited in [4] to obtain an example for the case y = 3 -

We extend that reasoning here to general vy .
The condition for constant volume becomes now

Z
- f rzdz = C .

3 .
(15) %_ siny (2+cos v )

(1+0031b)2
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We have
(16) cosy=cos (Y+y-y) = ncosy+ /1_n2 siny

with n defined in (5). From (16) we find

(17) p'(z) =- 3
T+r!
and setting w = ¢1+r'2 we obtain
. 2 . . .2
(18) rr" + we(2wsiny+r'sinycosy+ 1 +sin"y) = 0

In the particular case vy = 7/2 , Gulliver and Hildebrandt

(4] integrated (18) explicitly, obtaining

rs rgiirg-r
(19) z =t /ri_ri - T ln —m8m8 ™ —
0 r§¥¢rg-r2
Also if ¥ =0 , (18) integrates explicitly to yield as containexr

a continuation of the solution surface. In the general case, the
integration reduces to an iteration of two first order equations,
either by rewriting the equation for 2z in terms of r (since

z does not appear explicitly) ér by choosing w as independent

variable. The latter choice leads to a somewhat simpler equation

(20) _dr dw .
r

we* (2w sin Y+1+sin2*r+/w2_1 cCos Yy siny)
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By this procedure we obtain the two explicit solutions mentioned;

however the general case seems much more difficult.

We may observe that in the range 0 < ¢ +y < m (to which
the derivation of (18) was limited) there holds
rr' = (rr')'-—r'2 <--1--r'2 by (18); we conclude easily that the
so0fution curve includes a Loop Ain which «r' vardies monotonely

from —oo to o« , Equation (18) was integrated numerically on a

hand calculator for two values of <y . The resultant loops are

compared with the explicit solution (19) in Figure 5. These
loops are physically realistic only for that part of the
traverse for which free surface will not cross the rigid

boundary.

3. The second variation. The following discussion encom-

passes all cases considered. Capillary surfaces are characterized
(c£ [1], Chapter 1) as stationary (equilibrium) points for the
(mechanical) energy functional. Corresponding to contact angle

Y » the energy E consists of three terms:

1) Fhree sunrgace energy E1 ¢ proportional to the amount of

surface. For a graph u(x,y}) over a star domain Q , we find

27 r(9)
(21) E. =0 ] 1+ |\7u|2 pdpds ;
0

1 0

here o is surface tension, r(8) describes 90 .

2) Wetting enengy E2 . For an axisymmetric container
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r(z) which intersects the surface ul(r,8) in its boundary,

we have
2 Z(8) ——

(22) E2 =-gcosy [ f /1 +r'® rdzde
0

with z <chosen so that «r(z(8)) = r(8)

3) Gravitational enehrgy E3 . For density difference o

(heavier fluid below) we obtain

1 21 T(8) 2
(23) Ey = 5 pg9 Io Io u“pdpds

According to the principle of virtual work, the total

energy E = E1+ Ezf E3 is stationary among all vertical pertur-
“bations (virtual displacements) er(p;8) that leave volume
unchanged, i.e. for which

21 r(8)
(24) J t(p;8)pdpdv = 0

0 0
In what follows, we restrict attention to the particulaf solution

u{p;:;0) = ¢ of (2) which defines a horizontal disk r < r in

0
the symmetric container 1r(z) . We can arrange by vertical
translation to have C = 0 ; the boundary condition then yields

r'(0) = coty (see Figure 4 ,with ¢ = 0). For the perturbation

ez (r;8) we obtain the boundary intersection curve r = r(6;e) ,
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z = z(98;e) from the relation

(25) z-€eg(r(z);0) =0

°

which can be solved for 2z = z(8;e) when € is small enough

that 1-ef_r' # 0 . We then obtain r(6;e) = r(z(0;¢e))

Differentiating (25) in ¢ , we find
(26) Z-€f r'z = ¢
and since r = r'z we have

- . Cr'
(27) S T-ec '
r

»

Using these relations, we are led to the evaluations

: 2m . _

E,(0) =0 / Trras
0

. 2T . _

Eﬂ0)=-01 rrdd
0

(28 a,b,c,d) '
E4(0) = 0

2t r

vio) = J [ 9 cpapas
0 0
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.. 2r r, 2 2T .o e

E1(0) =0 J J 71vz1%pdpd6+o J (r®+rr)ds
0 0 0

.. 2T .o L 5 - 2m 5

(29 a,b,c) E,(0) =-0 J (r°+rr)de+osin“yr" [ c*de

0 0

.. 2T r

E4(0) =xo J 9240
0 0

with «k = pog/c

Thus for the second variation of total mechanical energy

E we find

1" 2m ro 2 2T ro 2
(30) - E (0) =) [ YIvgl©pdpas +xk [ [ "z pdpds
(o)
0 0 0 0
27
+T" rosinzyf czde
0

We introduce the particular variation ¢ = rcos 6+ h(e)
From (25) and the boundary condition we have

I, tany + eh

(31) T(8) = +0(e?) ;

tan y-e ¢cos &

a formal calculation using (28 d) then yields h(e) =.O(s) .

From (30) we then find

1 .

m
I'OU

(32)

Y _ 1 2 - .2
E (0) = 1"'? |<r0+r" rpsin”y .

If k = 0 we return to (18). Since w =csc y in the case
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considered we obtain

(33) o4 "
rysin®y

thus

(34) E(0) =-3-nrf;c <0

and we see that the indtial surface can be embedded into a ¢ne

parameten family with decreasing energy.

If « >0 we find from (11), since v = 0 and initially

£=0

_ KL
(35) (2-xkr.v.) xr" =
0°¢ 2
i sin” ¥
In order to estimate " we must obtain an estimate for

its coefficient. From (14) we have
(36) 2-«krv (r;E(r)) = = frozv {p;E(r))d
g ¥ r 0 pE p' p

We have already shown that VpC > 0 . We proceed to show that

it increases in p , on any solution curve. For fixed r = R ,

we set T = £(R) . Adopting T as parameter to define the family

of solutions,we have from (4)
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R
E(r;T) = T f pvipitidp
0

Thus

’ r
= K .
(37) E_(rsm) = 2 IODVT(p.r)do

Differentiating in r ,

r
[ v _(pst)dp + kv_(r;1)

E_ _(r;t) =-
rT 0

HNJK

and since vT increases in o ,

(38) £ . (TiT) >=5 v (r;1) + kv _(r;7)

1
3 KVT(r,T) > 0

By definition

vr(r;T)

E(r;t) = >
¢1+vr(r;r)

from which

E_ = 1 v
T (1+v§)3/2 rT

v
3vr rr

1 d
g = -— (v__) - v > 0
rt (1+vz)§7§ dr rT (1+v3)572 rT
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by (38). Thus

3v.v_ .V
d r rr rT1
{39) Ir v > > 0

rT
(1+vr)

This result holds for any R > 0 . Setting R =1r , =

becomes £(r) and we obtain from (36)

2
(40) 2-krv, (r;E(r)) >~k == v

£ 3 {r;€(x))

pg

Since vp = tany = —& , there follows

1-¢
2
Kro
2=-xkr v . (r.;Elr.)) >~
0°£° 707" "0 3 cos v

and specializing to the particular solution v = 0 we have for

the coefficient in (35)

Krg
{41) 2—&<r0v€ >_T

We place (35) and (41) into (32) to obtain
i 1 2
(42) E(0) < 'y Kro-z

which is negative whenever «k < B/rg . This condition on «
ensured the posibility of adjodinding to the continuum F o

symmetric solutionsa family G o0f asymmetric sunfaces of Lowen

enengy.
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We note that in the earth's gravitational field,
k ~ 400/13 ; thus the criterion is satisfied whenever

r., < 0,5 cm . The condition is however clearly not realistic,

0
but reflects rather a loss of information in the derivation of
(41). In fact, if we parametrize the family F containing the
horizontal disk by (say) the intersection height 2z with the
container, the condition é = 0 in the family implies also

f 2 0 . Thus, for the particular variation, we have .f(O) = 0
We denote the variation by ¢ and refer to (30). We introduce
a smooth A(r) with [Al s 1 such that X = 0 in r < r,/3,

A= 1 in 2r0/3 <r s$r. . We find

0

2T 2T r
[ z%ae = as J 9aaz?) ar
0 0 0 r
2T ro 2
= as [ Y (A.c®+2xcz)ar
0 0 r r
21 r 21 T
s ——— 1 [ %1vzi®edpaeci(zn|+nS S %c%pdpas
jx" Ir0 sin“y 0 0 0 0

for a suitable constant C 1independent of the particular
variation . It follows that {in a sequence 0§ configurations wizth

K > o , there must hold
(|E"|+1}2> K/Crosinzy

Thus we see that the restriction «x < B/rg results apparently

from inexactness in the estimates and does not seem to reflect
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reality.

Finally we remark that although we have calculated the
variations formally only for the circular disk, the same consi-
derationsd apply to all sunfaces of F sufficiently close to
the dish. Restrictding ﬁttention to these surfaces, we see that

{at Least Lf «k < 8/r§) none of them can be Locally minimizding.

4. Asymmetry. We construct here an example o4 a symmeiric
containenr € that diffens only ﬂocalﬂg and as Little as desinred
from a circulan cylinden, and which admits a family F with the
properties 1) F can be smoothly extended by asymmetric sunr-
faces of Lower energy as in the preceding section; ii) eveary
othen symmethric equilibrium surface in € yields Largen energy.
In the interest of simplicity we restrict ourselves to the case
g=0, Yy =1n/2 ; the energy E then becomes, up to a multi-

plicative constant, the area of the free surface.

The container € 1is now determined explicitly by (19).
We may take ry, = 1 . For &8 >0 to be chosen, we consider that
portion of the generating curve for which r > 1 -6 , and we

complete € with cylindrical wallsas indicated in Figure 6a.

The container can be half filled on one end with liquid,
leading to the family F of possible surface interfaces

including the horizontal disk, as indicated in the figure. All
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of these configurations have egual energy EO , which by the
result of the last section is not minimizing, even locally, if
§ 1is small enough. We intend to show that in fact no symmetric

configuration can minimize.

It is known (see remarks to follow) that every minimizing
configuration is real analytic and has constant mean curvature
H . The determination of the totality of symmet;ic surfaces in
€ of constant H 1is thus reduced to quadratures, which lead to
two families of surfaces, known as undufoids and as nododis (or
one of their limiting configurations), These surfaces are
_determined by elliptic integrals; for backgrcund information,
see, e.g. {51, § IV .

What are the possibilities?

a} The surface level moves up siightly as in Figure 6b,
and the new volume created under the surface is filled
out by an unduloid or nodoid, as in the figure. Since
all bounding components of the free surface must have
the same mean curvature H , the only possibility is
a nodoid. Since H 1is the curvature of the upper
spherical cap, we have H <.sin¢% » and thus in view
of the boundary condition the inner coordinate o on
the nodoid can be estimated by a < Csinu% , Wwhich
+~ 0 with ¢ . The'new surface created has area

exceeding 27(1 - 6-&)2 , which together with the upper



b)

c)

d)
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boundary would nearly triple the original area.

A limiting case of this configuration occurs when
the surface level moves further up, becoming a hori-
zontal disk in the cylindrical part of €  (Figure
6c). The nodoid becomes a catencid, which would have
to lie in the deformed part of € , but the same

reasoning applies.

The surface level could recede and the volume replaced
by an unduloid or catencoid above, as in Figure 6d.

Again the same discussion applies.

It could happen that no upper surface appears, and half
the volume could be filled out with congruent nodoids
(except for one or two exceptional ones at the ends,

as in Figure 6e. In this case H (and the inner point
a ) need not be arbitrarily small, however there still
holds a < ay < 1 for all possible configurations, as
otherwise half the total volume could not be swept out.
Thus we see that if the height h is large encugh, the

total free surface will again exceed the surface in

F .

The prescribed volume could be contained in a cylinder
or unduloid as in Figure 6f. Again if h 1is large the
surface must exceed that in F . Such a configuration is
in any event not stable for large h , see Athanassenas

[(11], Vogel [12].
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e) The original column could split into two (or more)
disjoint columns (Figure 6g). The total free surface
would then be (essentially) at least twice that of
F . We note however in this case that by changing the
nelative distribution of fLudld, we obtain a family of
non-congruent Locally minimizng configurations zthat
cannot be deformed into a mindmizing one without
raising the enengy. In this connection cf the following

section.

We may imagine an experiment in which € 1is initially empty
and liquid is gradually added from the bottom. Energy will remain
constant until the bottom of the perturbation is reached; the
energy will then increase until the contact angle n/2 1is
achieved with the perturbed section. At this point there is a
continuous motion of the column {without increasing energy) into
an asymmetric configuration with smaller energy. Although as we
have seen locally stéble symmetric configurations exist, it seems

unlikely that they will appear, as they all have higher energy.

By a theorem of Almgren [6], see also Giusti [7], Gonzalez,

Massari, Tamanini [8], Griter [9] a minimizing configuration

exists and is regular at interior points. By the above
considerations it is asymmetric. It seems certain that the
fluid will adopt a connected configuration without holes, but

we have not proved that.
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It is worth remarking that other examples of symmetric
containers admitting no symmetric minimizers can be given. One
possibility is a torus, in which a small drop of fluid is placed.
The interest in the example we have constructed lies in the fact
that it appears as an arbitrarily small deviation from a situation

in which nothing exciting can occur.

5. Connectedness and disconnectedness. In the example just

constructed there was heuristic reason to expect the minimizing
set to be connected. We can put this reasoning into some per-
spective by pointing out that minimizers need not always be
connected, even for containers as simple as the circular cylinder.
We consider é cylinder Z of unit radius and long enough that
when one fourth filled with fluid at one end, the symmetric
(spherical cap) solution will cover the base, for any y 1in

0 $y $ /2 . We consider the two possibilities a) 2 1is half
filled with f£luid from one end, and b) the same volume of fluid
is split into two parts, each of which covers one end. A routine
calculation then yields that the energy difference Eb-Ea <0
whenever

. L2
2 1+ sin y+sin” y
(43) cosy > 3 T siny :

The transition point occurs at vy =~ 35.8° .,
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If y = m/2 the single component is preferred, supporting

the conclusions of § 4.

In the above example the spherical cap is uniquely deter-
mined as the only stationary surface covering (not necessarily
simply) the base, see Vogel [ 2 ]. Asymmetric solutions (minimizing

or not) cannot appear.

6. Unigqueness. We return now to the original question raised

in the Introduction, as to what support surfaces € (intermediate
between plane and cylinder) will lead to unique determination of
a capillary surface, for prescribed volume and contact angle. In
‘'view of the examples in [ 4] and in § 1 of this paper, it must be
expected that the formulation of precise general conditions will
not be easy. We assert, however, that {or a symmetfric € .concaue
to the domain of the fLudid (Figure 7) and nondecreasing in height
with r , the symmetric sclulion 4is undiquely deteamined. Here the
concavity need not be strict. In the assertion we assume either

g = 0 or gravity directed downward toward € . If g = 0 the
solution surfaces are spherical caps and the proof reduces to an
exercise that we leave to the reader. In what follows we assume

that the surfaces are determined by (3) with « > 0 .

We reduce the proof of the assertion to the result of § 4.1

in [10], which can be paraphrased as follows: The volfume V(ro)



Figure 7. Container that yields uniqueness
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04 the (undique) sessile drop, symmetric with respect to the axdis
r =0, resting on a horlzontal plane T and meeiing T 4in the
angle vy at r = T4 with 0 < vy s 7 , Lnchreases strnictly 4in

1‘.‘0.

We first extend the theorem as follows:

Lemma: Let y(r) be nondecreasing in r,0 < ¢ £ n . Then zthe

theorem holds with y sreplaced by w(r) .

To prove the lemma, we choose a fixed r = r , and let
V(r) be the volume of the drops with fixed angle vy = w(f) .
Then V(r) = V(X) and %E V(r) > 0 by the theorem. We consider
first the case y(r) < 7/2 and introduce a value r = r+¢e ,
e small positive. The drop profiles through r corresponding
to y(r) and to vy = U(r) are determined according to the
"basic observation" of § 1. We need only move upward in Figure 3
on a vertical line through r , observing that ¢ increases
monotonely from 0 to /2 . Thus there are unique points
vir) and v(r) at which y and y(r) are achieved, with
v 2 v . Now note that w(r)2$(r) on the entire solution tra-
jectories  -through (r,v) Qnd (r,v) . Therefore if we lower
the upper trajectory by translation a distance & until the
end points éoincide, we obtain v-68 § v on the interval

0 $ p s r , and we conclude that for the associated sessile

drops there holds V 2 V . Letting r\ r , we conclude
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ar 2 T and thus ar > 0 . Since r 1is arbitrary, this holds

for all r at which ¢(r) < /2 .

It remains to discuss the case Y(r) 2 m/2. Here we use
the general properties, proved in [10§ 4.1] that the curves in
Figure 3 can be continued till ¢ = = , and that for any fixed

g in 0 < ¢ § m there holds

@
a}

Vv

(44) avo

l

<0

VB
<
o

for the function r(w;vo) . V(w;vo) arising from the solution.

From the relation

r(w;vo) =r
we conclude
#1, #le%] o
Vo 0 °r 0 ‘v
when ¢ > w/2 and thus %%— ]_ < 0 . Thus in order to increase
0 °r

v from { = y(r) to the given ¢(r) it is necessary to de-
Crease vV, (see Figure 8). The corresponding volume V(w;vo)
exceeds V(Y;vo) which by (44) exceeds the original V . This

completes the proof of the lemma.



Figure 8. Uniqueness proof; case w(z-:) 2 /2



