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Abstract. It is a survey of linear twists of Siegel modular forms with Dirichlet

characters and new applications to L-functions of modular forms. Twist groups con-
sistent with twist operators are considered. Spinor L-functions of modular forms for

twist groups are interpreted as zeta-functions of twisted forms by using commutation
relations between twist operators and Hecke operators. Applications of the twist

technique to investigation of analytic properties of L-functions of modular forms in-

clude functional equation in the case of cusp forms of genus 1 and a detailed sketch
of proof of analytic continuation for L-functions of cusp forms of genus 2 .

Introduction

Linear twist operators on Siegel modular forms were introduced in paper [5]. If
a Siegel modular form F given on the upper half-plane of genus n ≥ 1,

Hn =
{
Z = X + iY ∈ Cnn

∣∣∣ tZ = Z, Y > 0 (i =
√
−1)

}
,

by a Fourier series

F (Z) =
∑

N∈Nn,N≥0

f(N) e2πiTr(NZ) (1)

with constant Fourier coefficients f(A) numerated by positive semi-definite matrices
A of the set

Nn =

{
N = (nαβ) ∈ 1

2
Znn

∣∣∣ tN = N, n11, n22, . . . , nnn ∈ Z

}

of all symmetric half-integer matrices of order n with integral entries on principal
diagonal, then the twist of F with a Dirichlet character χ and a p (arameter)−matrix

L of the form

L = tL ∈ Znn (2)
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is defined by the series

(F |T (χ, L))(Z) =
∑

N∈Nn, N≥0

χ(Tr(LN))f(N) e2πiTr(NZ) (Z ∈ Hn). (3)

The operator
|T (χ, L) : F 7→ F |T (χ, L) (4)

is called the twist operator with character χ and p-matrix L. It was shown in [5]
that under some assumptions twist operators transform modular forms into modular
forms (for another group) and commute in certain sense with Hecke operators. It
was also proved that the spinor zeta-function of a twisted modular form can be
interpreted as the L-function of the initial modular form with the character of the
twist. In the present paper we generalize, refine, extend, and apply these results.

Investigation of twists of Siegel modular forms with Dirichlet characters was
inspired by a question once proposed to author by Professor Alexei Panchishkin of
University J. Fourier, Grenoble, France. I am very grateful to Alexei Panchishkin
for his inspiring curiosity.

Acknowledgement. This preprint was prepeared during the author stay at Max-
Planck-Institut für Mathematic (Bonn, Germany) in Spring of 2010. I am very
grateful to my colleagues and administration of the Institute for kind invitation and
excelent creative conditions. This is a preliminary version of a paper supported in
part by the Russian Fund of Fundamental Researches (RFFI), Grant 08-01-00233,
which is due to appear later in ”Russian Math. Surveys”.

Contents. In section 1 we, on one hand, briefly recall some basic constructions of
the paper [5] and, on the other hand, generalize and simplify some results of that
paper. In particular, we consider natural congruence subgroups (twist groups) for
which spaces of modular forms are invariant with respect to the twist operators and
related operators and consider their commutation relations. In section 2, after short
reminder of definitions of Hecke–Shimura rings and Hecke operators, we establish
relations between the rings and the operators for the twist groups and related groups
and consider commutation relations between regular Hecke operators and twist
operators for twist groups. In section 3 it is proved, in particular, that spinor zeta-
function of an twisted eigenfunction for all regular Hecke operators with respect
to a twist group is equal to L-function of the initial form with the character of
twist (Theorem 3.2). In section 4 we use the reduction theorem 3.2 to prove an
implication of Atkin-Lehner theory [7] of ”new” forms for the twist groups of genus
n = 1. In section 5 we apply the twist technique to preliminary investigation of
analytic continuation of L-functions of cusp forms of genus 2 for twist groups.

Notation. The letters P, N, Z, Q, R and C are reserved for the set of positive
rational prime numbers, the set of positive rational integers, the ring of rational
integers, the field of rational numbers, the field of real numbers, and the field of
complex numbers, respectively.

Xmn is the set of all m×n-matrices with entries in a set X. If M is a matrix, tM
always denotes the transpose of M , Tr(M) for a square M is the sum of diagonal
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elements of M . If Y is a real symmetric matrix, then Y > 0 (respectively, Y ≥ 0)
means that Y is positive definite (respectively, positive semi-definite). 1 and 0 is
the unit matrix and the zero matrix of dimension clear from content, otherwise we
write 1r and 0nr for the unit matrix of order r and the zero matrix of dimension
n×r, respectively. The letter i usually denotes

√
−1 ∈ H1. The bar over a complex

number or character means the complex conjugation. We often use the notation

A[B] = tBAB

for two matrices of suitable dimension.

§1. Twist operators

Petersson operators. Let us consider the connected component of the unit in
the general real symplectic group of genus n, i.e., the group

Gn =
{
M ∈ R2n

2n | tMJnM = µ(M)Jn, µ(M) > 0
} (

Jn =
(

0n 1n

−1n 0n

))
.

The positive scalar factor µ(M) is called the multiplier of M . The group Gn acts
as a group of analytic automorphisms on the upper half-plane Hn by the rule

Gn ∋M =

(
A B
C D

)
: Z 7→M〈Z〉 = (AZ +B)(CZ +D)−1 (Z ∈ Hn) (0.1)

and operates on functions F : Hn 7→ C by (normalized) Petersson operators of an

integral weight k,

Gn ∋M =

(
A B
C D

)
: F 7→ F |kM

= µ(M)nk−〈n〉 det(CZ +D)−kF (M〈Z〉), (1.1)

where 〈n〉 = n(n+ 1)/2. The normalizing factor µ(M)nk−〈n〉, for n = 1 going back
to Hecke, is not significant by itself, but it simplifies a number of formulas related
to Hecke operators. The Petersson operators transform isomorphically the space
functions on Hn into itself, map holomorphic functions to holomorphic functions,
and satisfy the rule

F |kMM ′ = F |kM |kM ′ for all M, M ′ ∈ Gn (1.2)

(see, e.g., [4; Lemmas 1.4.1, 1.4.2]).

Modular forms. We recall that a (holomorphic) modular form of genus n ≥ 1
and integral weight k for a subgroup Λ of finite index in the modular group of genus
n,

Γn = Spn(Z) =
{
M ∈ Gn ∩ Z2n

2n | µ(M) = 1
}
, (1.3)

is defined as a holomorphic on Hn function F satisfying

F |kM = F for each M ∈ Λ, (1.4)



4 ANATOLI ANDRIANOV

and, if n = 1, regular at all cusps of Λ. All such functions form a finite-dimensional
over C linear space Mk(Λ). The forms equal to zero at all cusps are called cusp

forms and form the subspace of cusp forms Nk(Λ).

We shall be mainly interested in spaces of all modular forms Mk(Γ̂n(m)) and

cusp forms Nk(Γ̂n(m)) of fixed genus n, integral weight k, and level m for the twist

congruence subgroups of the form

Γ̂n(m) =

{(
A B
C D

)
∈ Γn | C ≡ 0 (mod m2), A ≡ D ≡ 1 (mod m)

}
(1.5)

and some subspaces of these spaces. The group Γ̂n(m) is conjugated to the principal
congruence subgroup of level m,

Γn(m) = {M ∈ Γn | M ≡ 12n (mod m)} :

Γ̂n(m) = V (m)Γn(m)V (m)−1, where V (m) = V n(m) =

(
1 0

0 m1

)
.

Each modular form of integral weight for the group Γ̂(m) = Γ̂n(m) has a Fourier
expansion of the form (1) absolutely and uniformly convergent on subsets of the
shape

Hnε = {Z = X + iY ∈ Hn | Y ≥ ε1n} with ε > 0 (1.6)

The groups of the form (1.5) will be called twist groups (of genus n and level m).

Twist operators and Petersson operators. Returning to twist operator, the
following proposition allows one to reduce twist operators (4) to linear combinations
of Petersson operators (1.1).

Proposition 1.1. Let F be a function on Hn with Fourier expansion (1) absolutely
and uniformly convergent on compacts, χ a Dirichlet character modulo m ∈ N, and
L a matrix satisfying (2), then the twist (3) of the function F with character χ and

p-matrix L can be written with the help of Petersson operators (1.1) of an arbitrary

integral weight k in the form

F |T (χ, L) =
1

m

∑

r,l mod m

χ(r)e−
2πirl

m F |kU(m−1lL), (1.7)

where, for a real symmetric matrix B of order n, we use the notation

U(B) =

(
1 B
0 1

)
∈ Gn. (1.8)

If, in addition, the character χ is primitive modulo m, then the formula (1.7)
can be written in the form

F |T (χ, L) =
g(χ)

m

∑

l mod m

χ(−l)F |kU(m−1lL), (1.9)
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where, for a Dirichlet character χ modulo m ∈ N,

g(χ) = g(χ, 1) (1.10)

is a particular value of the Gaussian sum

g(χ, l) =
∑

r mod m

χ(r) e
2πi lr

m (l ∈ Z). (1.11)

Proof. As it easily follows from definitions and Fourier expansion (1), we get

(F |kU(m−1lL))(Z) = F (Z +m−1lL) =
∑

N∈Nn, N≥0

f(N)e
2πi l

m
Tr(LN)e2πiTr(NZ).

Hence we have
1

m

∑

r,l mod m

χ(r)e−
2πirl

m F |kU(m−1lL)

=
1

m

∑

r, l mod m

χ(r)e−
2π irl

m

∑

N∈Nn, N≥0

f(N)e
2πil

m
Tr(LN)e2πiTr(NZ)

=
∑

r mod m

χ(r)
∑

N∈Nn, N≥0

1

m

∑

l mod m

e
2πil

m
(−r+Tr(LN))f(N)e2πiTr(NZ)

=
∑

N∈Nn, N≥0

χ(Tr(LN))f(N)e2πiTr(NZ) = (F |T (χ, L))(Z),

which proves the formula (1.7).
We recall that a Dirichlet character χ is called primitive character modulo m if

it is a character modulo m and not a character modulo any proper divisor of m.
If the character χ is primitive modulo m, then the Gaussian sums (1.10)–(1.11)
satisfy the relations

|g(χ)| =
√
m and g(χ, l) = χ(l)g(χ), (1.12)

where χ is the complex conjugate character (see, e.g. [11, Proposition 21]).
If χ is primitive, then by (1.7) and (1.12) we obtain

F |T (χ, L) =
1

m

∑

l mod m

(
∑

r mod m

χ(r)e−
2πirl

m

)
F |kU(m−1lL)

=
1

m

∑

l mod m

χ(−l)g(χ)F |kU(m−1lL). �

By direct multiplication of block-matrices, we obtain that, for every matrix M =(
A B

C D

)
of order 2n with blocks of order n, matrices of the form (1.8) satisfy the

relations

U(B′)

(
A B
C D

)
U(B′′)−1 =

(
A+B′C B′D −AB′′ +B −B′CB′′

C −CB′′ +D

)
. (1.13)
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Lemma 1.2. Let U(m−1L) be a matrix of the form (1.8) with L satisfying (2) and

m ∈ N, then

(1) the twist group Γ̂(m) = Γ̂n(m) satisfies the relation

U(m−1L)Γ̂(m)U(m−1L)−1 = Γ̂(m); (1.14)

(2) the operator |kU(m−1L) map the spaces Mk(Γ̂(m)) and Nk(Γ̂(m)) onto them-

selves.

Proof. By formula (1.13), for M =
(
A B

C D

)
∈ Γ̂(m), we obtain the matrix

U(m−1L)

(
A B
C D

)
U(m−1L)−1

=

(
A+m−1LC m−1(LD −AL) +B −m−2LCL

C −m−1CL +D

)
,

which obviously again belongs to Γ̂(m). It proves that the left side of (1.14) is
contained in the right side. The inverse inclusion follows similarly, since clearly
U(B)−1 = U(−B).

To prove the part (2) it actually suffices to check, for example, that the function

F ′ = F |kU(m−1L) for F ∈ Mk(Γ̂(m)) satisfies F ′|kM = F ′ for all M ∈ Γ̂(m). By
(1.2) we have

F ′|kM = F |kU(m−1L)M = F |kU(m−1L)MU(m−1L)−1|kU(m−1L) = F ′,

since, by (1.14), U(m−1L)MU(m−1L)−1 ∈ Γ̂(m). �

The following theorem is a direct consequence of Proposition 1.1 and Lemma
1.2.

Theorem 1.3. The twist operator |T (χ, L) with every Dirichlet character χ mod-

ulo m and every p-matrix L satisfying (2) maps the spaces Mk(Γ̂(m)) and Nk(Γ̂(m))

of modular forms and cusp forms of weight k for the twist group Γ̂(m) into them-

selves.

This theorem makes it natural to restrict consideration of twist operators to

spaces of modular forms for the groups of the form Γ̂(m) and justifies the term
”twist groups”.

Twist operators and congruence operators. Let us consider now the action
of Petersson operators corresponding to elements of the group

Γ0(m2) = Γn0 (m2) =

{
M =

(
A B
C D

)
∈ Γn | C ≡ 0 (mod m2)

}
(1.15)

on spaces of modular forms for the groups Γ̂(m) and their relation to twist operators.
It follows from [4; Lemma 3.3.2(1)] that the natural mapping of the group Γ0(m2)
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to the group GLn(Z/mZ) of nonsingular matrices of order n over the residue ring
Z/mZ given by

Γ0(m2) ∋M =

(
A B
C D

)
7→ D mod m ∈ GLn(Z/mZ) (1.16)

is an epimorphic homomorphism with the kernel Γ̂(m), which is therefore a normal
subgroup of Γ0(m2). For a matrix D of the group GLn(Z/mZ) we shall denote by

̺(D) ∈ Γ0(m2) (1.17)

an inverse image of D under this mapping. Since Γ̂(m) is a normal subgroup of
Γ0(m2), we conclude that cosets

Γ̂(m)̺(D) = ̺(D)Γ̂(m) = Γ̂(m)̺(D)Γ̂(m) (1.18)

are independent of the choice of D ∈ GLn(Z/mZ). Hence each operator

|k̺(D) : F 7→ F |k̺(D)

= F |k
(
A B
C D

) ((
A B
C D

)
∈ Γ0(m2), F ∈ Mk(Γ̂(m))

)
(1.19)

depends only on matrix D modulo m and maps the space Mk(Γ̂(m)) onto itself.
Besides, the operators satisfy

|k̺(D)|k̺(D′) = |k̺(DD′) (D, D′ ∈ GLn(Z/mZ)). (1.20)

The following proposition generalizes Propositions 1.5 and 1.6 of the paper [5].

Proposition 1.4. Let F ∈ Mk(Γ̂(m)), then in the notation and under the assump-

tions of Theorem 1.3 and notation (1.19), for each D ∈ GLn(Z/mZ) the identity

is valid

(F |T (χ, L))|k̺(D) = (F |k̺(D))|T (χ, L[D]), (1.21)

where L[D] = tLDL; if, moreover, the matrix D satisfies the congruence

L[D] ≡ ν(D)L (mod m) (1.22)

with a scalar ν(D) invertible modulo m, then the formula (1.21) turns into

(F |T (χ, L))|k̺(D) = χ(ν(D))(F |k̺(D))|T (χ, L); (1.23)

in particular, for all d ∈ N prime to m the relation

(F |T (χ, L))|kτ(d) = χ(d2)(F |kτ(d))|T (χ, L) (1.24)

is valid, where

τ(d) = τn(d) = ̺(d · 1n) (1.25)
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Proof. Let M =
(
A B

C D

)
∈ Γ0(m2), then by (1.7) and (1.2) we can write

(F |T (χ, L))|k̺(D)

= (F |T (χ, L))|kM =
1

m

∑

r,l mod m

χ(r)e−
2πirl

m F |kU(m−1lL)|kM

=
1

m

∑

r,l mod m

χ(r)e−
2πirl

m F |kU(m−1lL)MU(m−1lL[D])−1U(m−1lL[D])

=
1

m

∑

r,l mod m

χ(r)e−
2πirl

m F |kM ′
l |kU(m−1lL[D]),

where M ′
l = U(m−1lL)MU(m−1l tDLD)−1. By formula (1.13) with B′ = m−1lL

and B′′ = m−1lL[D], we obtain

M ′
l =

(
A+m−1lLC m−1l(LD − AL[D] +B −m−2l2LC  L[D]

C −m−1lCL[D] +D

)

=

(
A+m−1lLC −m−1l(−A tD + 1n)LD +B −m−2l2LC tDLD

C −m−1lC tDLD +D

)
.

This matrix is clearly integral. Besides, it belongs to the group Gn and satisfies
µ(M ′

l ) = µ(M) = 1. Since C ≡ 0 (mod m2), it follows that M ′
l ∈ Γ0(m2). Since

the D−block of this matrix is −m−1lC tDLD + D ≡ D (mod m), it follows from
the above that F |kM ′

l = F |k̺(D). Again, by formula (1.7), we obtain

(F |T (χ, L))|k̺(D) =
1

m

∑

r,l mod m

χ(r)e−
2πirl

m (F |k̺(D))|kU(m−1lL[D])

= (F |k̺(D))|T (χ, L[D]).

The formula (1.23) follows from (1.21) and the definition of twist operators. �

Speaking on the operators corresponding to elements (1.25), it will be conve-

nient to split the space Mk(Γ̂(m)) into invariant subspaces of operators |kτ(d) =
|kτn(d) = |k̺(d1) with all d prime to m. The mapping d 7→ |kτ(d) defines
a representation of the multiplicative Abelian group GL1(Z/mZ) on the space

Mk(Γ̂(m)). Thus, this space is a direct sum of one-dimensional invariant subspaces.
If F |kτ(d) = ψ(d)F with all d prime to m, then ψ is a character of GL1(Z/mZ),
which can be considered as a Dirichlet character modulo m. Then the direct sum
decomposition holds:

Mk(Γ̂(m)) =
⊕

ψ∈Char(GL1(Z/mZ))

Mk(Γ̂(m), ψ), (1.26)

where

Mk(Γ̂(m), ψ) =
{
F ∈ Mk(Γ̂(m))

∣∣∣ F |kτ(d) = ψ(d)F, gcd(d, m) = 1
}
. (1.27)

In this notation, formulas (1.24) can be written in the form

(F |T (χ, L))|kτ(d) = χ(d2)ψ(d)F |T (χ, L) (F ∈ Mk(Γ̂(m), ψ)) (1.28)

valid for all d ∈ N prime to m.
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Twist operators and star operator. Along with operators (1.19) the Petersson
operators corresponding to matrices of order 2n of the form

Ω = Ωn(m) =

(
0 m−11

−m1 0

)
(1.29)

will be also useful. It is easy to see that Ω ∈ Gn with µ(Ω) = 1,

Ω−1 = −Ω, and Ω2 = −12n. (1.30)

It follows from obvious relations

Ω

(
A B
C D

)
Ω−1 = Ω−1

(
A B
C D

)
Ω =

(
D −C/m2

−m2B A

)
, (1.31)

valued for every 2n-matrix
(
A B

C D

)
with n-blocks A, B, C, D, and from definitions

of the group Γ̂(m) that

ΩΓ̂(m)Ω−1 = Ω−1Γ̂(m)Ω = Γ̂(m). (1.32)

Coming back to modular forms we obtain the following assertions.

Proposition 1.5. (1) In the above notation, the linear operator

|kΩ : F 7→ F ∗ = F |kΩ (1.33)

maps the spaces Mk(Γ̂(m))) and Nk(Γ̂(m)), respectively, onto themselves and sat-

isfies the relation

(F ∗)∗ = (−1)kF ; (1.34)

(2) the operators (1.33) and (1.19) on the spaces Mk(Γ̂(m)) and Nk(Γ̂(m)) satisfy
the relation

|kΩ|k̺(D) = |k̺( tD−1)|kΩ, (1.35)

where D−1 is the inverse of D modulo m;

(3) in the notation of Theorem 1.3 and Proposition 1.4, the formula holds

(
F |T (χ, L)

)∗|k̺(D) =
(
(F |k̺( tD−1))|T (χ, L[ tD−1])

)∗
(1.36)

if, moreover, the matrix tD satisfies the congruence (1.22), then this formula turns

into

(F |T (χ, L))∗|k̺(D) = χ(ν( tD))
(
(F |k̺( tD−1))|T (χ, L)

)∗
, (1.37)

in particular,

(F |T (χ, L))∗|kτ(d) = χ(d2)ψ(d)
(
F |T (χ, L)

)∗
(F ∈ Mk(Γ̂(m), ψ)) (1.38)
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for all d ∈ N prime to m, where τ(d) are matrices (1.25) and χ, ψ are conjugate

characters.

Proof. From (1.33), (1.2), and (1.32), for M ∈ Γ̂(m) and F ∈ Mk(Γ̂(m)) or

Nk(Γ̂(m)) we get

F ∗|kM = F |kΩM = F |kΩMΩ−1Ω = F |kΩMΩ−1|kΩ = F |kΩ = F ∗.

The relation (1.34) follows from (1.30). The rest of the part (1) is clear.

If ̺(D) =
(
A B

C D

)
, then it follows from (1.31) and definitions that

Ω̺(D) = Ω̺(D)Ω−1Ω = ̺(A)Ω = ̺( tD−1)Ω,

since tAD ≡ 1n (mod m). The rest of part (2) follows from (1.2).
The identities (1.36)–(1.38) follow from (1.35), (1.21), (1.24) and definitions. �

The operator (1.33) will be called the star operator.

§2. Twist operators and Hecke operators

Here we shall consider relations of Hecke operators with the twist operators
|T (χ, L), where χ is a Dirichlet character modulo m and L is a parameter matrix
(2). But first we shall briefly recall definitions of Hecke–Shimura rings and Hecke
operators. For details see [4, Chapters 3 and 4].

Hecke–Shimura rings and Hecke operators. Let ∆ be a multiplicative semi-
group and Λ a subgroup of ∆ such that every double coset ΛMΛ of ∆ modulo Λ is a
finite union of left cosets ΛM ′. Let us consider the vector space over a field, say, the
field C of complex numbers, consisting of all formal finite linear combinations with
coefficients in C of symbols (ΛM) with M ∈ ∆ being in one-to-one correspondence
with left cosets ΛM of the set ∆ modulo Λ. The group Λ naturally acts on this
space by right multiplication defined on the symbols (ΛM) by (ΛM)λ = (ΛMλ)
with M ∈ ∆ and λ ∈ Λ. We denote by

H(Λ, ∆) = HC(Λ, ∆)

the subspace of all Λ–invariant elements. The multiplication of elements of H(Λ, ∆)
given by the formula

(
∑

α

aα(ΛMα))(
∑

β

bβ(ΛM ′
β)) =

∑

α,β

aαbβ(ΛMαM
′
β)

does not depend on the choice of representatives Mα and Nβ in the corresponding
left cosets, and turns the linear space H(Λ, ∆) into an associative algebra over C
with the unity element (Λ1Λ), called the Hecke–Shimura ring of ∆ relative to Λ
(over C). Elements

T (M) = T (M)Λ = (ΛMΛ) =
∑

M ′∈Λ\ΛMΛ

(ΛM ′) (M ∈ ∆) (2.1)
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being in one-to-one correspondence with double cosets of ∆ modulo Λ belong to
H(Λ, ∆) and form a free basis of the ring over C. For brevity, the symbols (ΛM)
and T (M) will be referred as left and double classes (of ∆ modulo Λ), respectively.

Let us suppose now that the semigroup

∆ = ∆n = Z2n
2n

⋂
Gn (2.2)

consists of all integral matrices contained in the group Gn, and the group Λ is
a subgroup of finite index in the modular group Γn. Then the conditions of the
definition are fulfilled, and we can define the Hecke–Shimura ring

H(Λ) = H(Λ, ∆n). (2.3)

Next, we shall define a linear representation of this ring on the space Mk(Λ) of
modular forms of weight k for the group Λ by Hecke operators:

H(Λ) ∋ T =
∑

α

aα(ΛMα) : F 7→ F |T = F |kT =
∑

α

aαF |kMα, (2.4)

where |kMα are the Petersson operators (1.1). The Hecke operators are independent
of the choice of representatives in corresponding left cosets and map the spaces
Mk(Λ) and Nk(Λ) into themselves.

Regular Hecke–Shimura rings and Hecke operators for Γ̂n(m). We shall
mainly be interested not in the entire Hecke–Shimura ring (2.3), but rather in
certain subrings, called m-regular subrings of a fixed genus m ∈ N, which are

defined for the groups Λ of the shape Γ = Γn and Γ̂(m) = Γ̃n(m) with a fixed
n ∈ N as Hecke–Shimura rings

H(m)(Λ) = H(Λ, ∆(m)(Λ)), (2.5)

of the group Λ and m-regular semigroups ∆(m)(Λ) given, respectively, by the con-
ditions

∆(m) = ∆(m)(Γ) = {M ∈ ∆n | gcd(m,µ(M)) = 1} ,

and

∆(m)(Γ̂(m)) =

{
M =

(
A B
C D

)
∈ ∆(m) | A ≡ 1 (mod m), C ≡ 0 (mod m2)

}
.

The corresponding Hecke operators are called m−regular Hecke operators. It turns

out that the rings (2.5) for the groups Γ = Γn and Γ̂(m) = Γ̃n(m) are naturally
isomorphic. More exactly, by an easy modification of the proof of Theorem 3.3.3 of
the book [4], we obtain the following proposition.
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Proposition 2.1. (1) The linear map of the m-regular subrings (2.5), defined on

double classes (2.1) by conditions

H(m)(Γ̂(m)) ∋ TΓ̂(m)(M) 7→ TΓ(M) ∈ H(m)(Γ) (M ∈ ∆(m)(Γ̂(m))), (2.6)

is a ring isomorphism of the corresponding Hecke–Shimura rings. Moreover, the

decompositions of related double classes into disjoint left classes are naturally cor-

respond to each other:

TΓ̂(m)(M) =
∑

α

(Γ̂(m)Mα) =⇒ TΓ(M) =
∑

α

(ΓMα) (M ∈ ∆(m)(Γ̂(m))),

(2) The regular Hecke operators are compatible with the mapping defined by (2.6)
and natural embedding of the corresponding spaces of modular forms of weight k: if

F ∈ Mk(Γ) ⊂ Mk(Γ̂(m)) and TΓ̂(m) 7→ TΓ, then F |TΓ̂(m) = F |TΓ.

The following proposition describes structure of the m−regular rings.

Proposition 2.2. Each of the regular rings (2.5) for the groups Λ of the form

Γ = Γn or Γ̂(m) = Γ̃n(m) is a commutative integral domain generated over C by

algebraically independent elements





TΛ(p) = TΛ
(
diag(1, . . . , 1︸ ︷︷ ︸

n

, p, . . . , p︸ ︷︷ ︸
n

)
)
,

T jΛ(p2) = TΛ
(
̺j(p)diag(1, . . . , 1︸ ︷︷ ︸

n−j

, p, . . . , p︸ ︷︷ ︸
j

, p2, . . . , p2︸ ︷︷ ︸
n−j

, p, . . . , p︸ ︷︷ ︸
j

)
)

(1 ≤ j ≤ n),

where p runs over all prime numbers not dividing m, and where

̺j(p) = ̺nj (p) = ̺
(
diag(1, . . . , 1︸ ︷︷ ︸

n−j

, p, . . . , p︸ ︷︷ ︸
j

)
(1 ≤ j ≤ n)

are matrices of the form (1.17).

The elements TΛ(p), T 1
Λ(p2), . . . , TnΛ (p2) with prime p ∤ m generate the p−local

subring

H(m)(Λ)p = C
[
TΛ(p), T 1

Λ(p2), . . . , TnΛ (p2)
]
⊂ H(m)(Λ), (2.7)

consisting of all finite linear combinations of elements TΛ(M) with µ(M) | p∞.

Proof. The assertion for the case Λ = Γn was proved in [4, Theorem 3.3.23(1)].
The other case follows from this case by Proposition 2.1. �

Regular Hecke operators and twist operators. We turn now to relation of
regular Hecke operators and twist operators.
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Theorem 2.3. For the group Λ = Γ̂(m), let M ∈ ∆(m)(Λ), and let F ∈ Mk(Λ) be

a modular form of weight k for Λ. Let χ be a primitive Dirichlet character modulo

m and L be a matrix of the form (2). Then the following commutation relation

holds for the action of Hecke operator TΛ(M) and the twist operator T (χ, L) on

the form F :

(F |T (χ, L))|TΛ(M) = χ(µ(M))(F |TΛ(M))|T (χ, L). (2.8)

Proof. By the formulas (1.9), (2.1), (2.4), and (1.2), we obtain

(T (χ, L)F )|TΛ(M) =
g(χ)

m

∑

l mod m

∑

M ′∈Λ\ΛMΛ

χ(−l)F |kU(m−1lL)M ′ (2.9)

=
g(χ)

m

m−1∑

l=0

∑

M ′∈Λ\ΛMΛ

χ(µ(M))χ(−lµ(M))

× (F |kU(m−1lL)M ′U(−m−1lµ(M)L))|kU(m−1lµ(M)L)

= χ(µ(M))
g(χ)

m

m−1∑

l=0

χ(−l′)

×


 ∑

M ′∈Λ\ΛMΛ

F |kU(m−1lL)M ′U(−m−1l′L))


 |kU(m−1l′L),

where l′ = lµ(M). For every matrix

M ′ =

(
A′ B′

C′ D′

)
∈ ΛMΛ ⊂ ∆(m)(Λ)

and l = 0, 1, . . . , m− 1, by formula (1.13) we can write

M ′
l = U(m−1lL)M ′U(−m−1l′L) (2.10)

=

(
A′ +m−1lLC′ −m−1(lLD′ − l′A′L) +B′ −m−2ll′LC′L

C′ −m−1l′C′L+D′

)
=

(
A′
l B′

l

C′
l D′

l

)
,

Each such matrix belongs to ∆(m)(Λ), because the matrices A′
l, C

′
l , and D′

l are
clearly integral matrices satisfying congruences A′

l ≡ A′ ≡ 1 (mod m), C ′
l = C′ ≡ 0

(mod m2), D′
l ≡ D′ (mod m), and the matrix B′

l is integral, since lLD′ − l′A′L ≡
lµ(M)L− l′L = l′(L− L) ≡ 0 (mod m). By Lemma 1.2(1), we have the equalities

U(m−1lL)ΛU(−m−1lL) = Λ and U(m−1l′L)ΛU(−m−1l′L) = Λ.
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Thus, for each l, the matrix M ′
l ranges the set

U(m−1lL)
(
Λ\ΛMΛ

)
U(−m−1l′L) = Λ\Λ(U(m−1lL)MU(−m−1l′L))Λ

It follows that for each l we can write
∑

M ′∈Λ\ΛMΛ

F |kU(m−1lL)M ′U(−m−1l′L) = F |TΛ(U(m−1lL)MU(−m−1l′L)),

and in order to complete the proof it suffices to show that, for every l we have

Λ(U(m−1lL)MU(−m−1l′L))Λ = ΛMΛ (2.11)

with l′ = lµ(M), because in this case each inner sum in the big parenthesis on the
right of (2.9) is equal to F |TΛ(M). The matrix Ml = U(m−1lL)MU(−m−1l′L) and
the matrix M , as we have seen above, both belong to the set ∆(m)(Λ) ⊂ ∆(m)(Γ).
Besides, µ(Ml) = µ(M). It follows from Proposition 2.1 that the mapping (2.6)
is one-to-one correspondence between sets of double cosets ΛMΛ ⊂ ∆(m)(Λ) and
ΓMΓ ⊂ ∆(m). Therefore, in order to prove (2.11) it suffices to check that

Γ(U(m−1lL)MU(−m−1l′L))Γ = ΓMΓ (2.12)

By [4, Lemma 3.3.6], in order to prove the equality (2.12) it is sufficient to prove
that Ml and M have equal matrices of symplectic divisors, sd(Ml) = sd(M). Let
us set

mU(m−1lL) =

(
m · 1 lL
0 m · 1

)
= N, mU(−m−1l′L) =

(
m · 1 −l′L
0 m · 1

)
= N ′.

Then we can write

U(m−1lL) =
1

m
γ sd(N)γ1, U(−m−1l′L) =

1

m
γ2sd(N ′)γ3,

where γ, γ1, γ2, γ3 ∈ Γ. Hence, Ml = 1
m2 γ sd(N)γ1Mγ2sd(N ′)γ3. It follows that

m2sd(N)−1γ−1Mlγ
−1
3 = γ1Mγ2sd(N ′). (2.13)

Since µ(N) = µ(N ′) = m2, it follows from definition of symplectic divisors that
sd(m2sd(N)−1) = sd(N), sd(γ−1Mlγ

−1
3 ) = sd(Ml), sd(γ1Mγ2) = sd(M), and

sd(sd(N ′)) = sd(N ′). Since the number µ(Ml) = µ(M) is coprime with µ(N) =
µ(N ′) = m2, the relation (2.13), by known properties of matrices of symplectic
divisors, implies the relation

sd(m2sd(N)−1)sd(γ−1Mlγ
−1
3 ) = sd(γ1Mγ2)sd(sd(N ′)),

that is the relation
sd(N)sd(Ml) = sd(M)sd(N ′).

This equality of diagonal matrices obviously implies equalities sd(N) = sd(N ′) and
sd(Ml) = sd(M), which proves the equality (2.12) and the theorem. �
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Corollary 2.4. Under the assumptions of Theorem 2.3, if a modular form F ∈
Mk(Γ̂(m)), is an eigenfunction for the Hecke operator |TΓ̂(m)(M), where M ∈
∆(m)(Γ̂(m)), with the eigenvalue λ(M), then the function F |T (χ, L) ∈ Mk(Γ̂(m))
is an eigenfunction for the operator |TΓ̂(m)(M) with the eigenvalue χ(µ(M))λ(M).

Hecke operators and the star operator. Let us turn now to relations of regular
Hecke operators and the star operator (1.33) defined with the help of matrix Ω =

Ωn(m) of the form (1.29) on the space Mk(Γ̂(m)). For regular Hecke operators on

the spaces of the form Mk(Γ̂(m), ψ) defined by (1.27) we now prove the following
proposition.

Proposition 2.5. The following assertions are valid for the group Λ = Γ̂(m):
(1) Let F ∈ Mk(Λ, ψ) and M ∈ ∆(m)(Λ). Then the relation holds

(F |TΛ(M))∗ = ψ(µ(M))F ∗|TΛ(τ(µ(M))M∗), (2.14)

where τ(µ) = τn(µ) is a matrix of the form (1.25), G∗ = G|kΩ, and

M∗ = Ω−1MΩ (Ω = Ωn(m)). (2.15)

(2) The matrix τ(µ(M))M∗ together with M belongs to semigroup ∆(m)(Λ), and
the mapping

M 7→ M̌ = τ(µ(M))M∗ (2.16)

defines a bijection of the set ∆(m)(Λ), which is identical on the sets of double cosets

modulo Λ contained in ∆(m)(Λ), so that

TΛ(M̌) = TΛ(M) for all M ∈ ∆(m)(Λ). (2.17)

In particular, the relation (2.14) can be rewritten in the form

(F |TΛ(M))∗ = ψ(µ(M))F ∗|TΛ(M)
(
F ∈ Mk(Λ, ψ), M ∈ ∆(m)(Λ)

)
. (2.18)

Proof. Using (1.33), (2.1), (2.4), (1.35), and (1.2), we have

(F |TΛ(M))∗ = F |TΛ(M)|Ω =
∑

M ′∈Λ\ΛMΛ

F |kM ′Ω

=
∑

M ′∈Λ\ΛMΛ

F |kΩτ(µ(M))−1Ω−1Ωτ(µ(M))Ω−1M ′Ω

=
∑

M ′∈Λ\ΛMΛ

F |kτ(µ(M))Ωτ(µ(M))(M ′)∗

= ψ(µ(M))
∑

M ′∈Λ\ΛMΛ

F ∗|kτ(µ(M))(M ′)∗
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= ψ(µ(M))
∑

M ′′∈Λ\Λτ(µ(M))M∗Λ

F ∗|kM ′′ = ψ(µ(M))F ∗|TΛ(τ(M)M∗),

since Ω−1ΛΩ = Λ, which proves the part (1).
Inclusion M̌ ∈ ∆(m)(Λ) follows from definitions. It follows from (1.30) and (1.35)

that (M∗)∗ = M and

ˇ̌M = M for all M ∈ ∆(m)(Λ).

Thus, the mapping (2.16) is a bijection. According to Proposition 2.1 in order to
prove the equality (2.17) it suffices to verify the inclusion M̌ ∈ ΓMΓ, or that the
matrices M̌ and M have equal matrices of symplectic divisors, sd(M̌) = sd(M) (see
[4, Lemma 3.3.6]). It follows from the definition that M̌mΩ−1 = τ(µ(M))mΩ−1M .
Since the multiplier µ(M) = µ(M̌) is coprime with the multiplier µ(mΩ−1) = m2,
by known properties of symplectic divisors, we obtain

sd(M̌)sd(mΩ−1) = sd(M̌mΩ−1) = sd(τ(µ(M))mΩ−1M) = sd(mΩ−1)sd(M),

hence sd(M̌) = sd(M). �

Note that the relation (1.35) imply the inclusion

F ∗ ∈ Mk(Γ̂(m), ψ) if F ∈ Mk(Γ̂(m), ψ),

where ψ is the character conjugate to ψ.

Corollary 2.6. A modular form F ∈ Mk(Γ̂(m), ψ) is an eigenfunction for the

Hecke operator |TΛ(M), where Λ = Γ̂(m) and M ∈ ∆(m)(Λ), with the eigenvalue

λF (M) if and only if the function F ∗ ∈ M(Γ̂(m), ψ) is an eigenfunction for the

operator |TΛ(M) with eigenvalue

λF ∗(M) = ψ(µ(M))λF (M). (2.19)

Eigenfunctions of regular Hecke operators. As to existence of eigenfunctions
for regular Hecke operators, the following proposition shows, in particular, that
quite often spaces of modular forms are spanned by the common eigenfunctions.

Proposition 2.7. (1) The operators corresponding to matrices τ(d) of the form

(1.25) with d prime to m on spaces Mk(Γ̂(m)) commute with all regular Hecke

operators. In particular, each of the subspaces Mk(Γ̂(m), ψ) of the form (1.27)
with ψ ∈ Char(GL1(Z/mZ)) is invariant under each regular Hecke operator.

(2) Each of the subspaces cusp forms Nk(Γ̂(m), ψ) has a basis consisting of

common eigenfunctions for all regular Hecke operators; in particular, the whole

space Nk(Γ̂(m)) has such a basis.

Proof. The assertions are proved in [4, Lemma 4.1.5 and Theorem 4.1.8]. �



L-FUNCTIONS AND TWIST OPERATORS 17

§3. Regular zeta functions of twisted forms and L-functions

Zeta functions and L-functions of modular forms. Let us consider sums of
all different double cosets of fixed multipliers prime to m, which are contained in
m-regular Hecke–Shimura rings H(m)(Λ) of the form (2.5) for the groups Λ equal

to Γ = Γn and Γ̂(m) = Γ̂n(m), i.e., the elements of the form

TΛ(a) =
∑

M∈Λ\∆(m)(Λ)/Λ, µ(M)=a

TΛ(M), where a is prime to m. (3.1)

Theorem 3.1. The elements (3.1) for the groups Λ of the form Γ and Γ̂(m) satisfy
the following rules:

TΛ(a)TΛ(a′) = TΛ(aa′) if a and a′ are coprime; (3.2)

for each prime number p not dividing the number m, the formal power series over

the ring H(m)(Λ) with coefficients TΛ(1), TΛ(p), TΛ(p2), . . . is formally equal to a

rational fraction with coefficients in H(m)(Λ), whose denominator and numerator

are polynomials of degree 2n and at most 2n − 2, respectively,

∞∑

δ=0

TΛ(pδ)tδ = Qp,Λ(t)−1Rp,Λ(t), (3.3)

where

Qp,Λ(t) =

2n∑

i=0

(−1)iqiΛ(p)ti, Rp,Λ(t) =

2n−2∑

i=0

(−1)iriΛ(p)ti, (3.4)

and coefficients qiΛ(p) and riΛ(p) belong to H(m)(Λ). In addition, the coefficients of

the denominator Qp,Λ(t) satisfy relations

q0
Λ(p) = [1]Λ, q1

Λ(p) = TΛ(p), q2n

Λ (p) =
(
pn(n+1)/2[p]Λ

)2n−1

, (3.5)

and the symmetry relations

q2n−i
Λ (p) =

(
pn(n+1)/2[p]Λ

)2n−1−i

qiΛ(p) (0 ≤ i ≤ 2n), (3.6)

where

[a]Λ = TΛ (aτ(a)) (3.7)

and τ(a) = τn(a) has the form (1.25).

Proof. According to the isomorphism of the rings H(m)(Γ) and H(m)(Γ) of Propo-
sition 2.1, it suffices to prove the theorem only for the group Λ = Γ = Γn. But for
the group Γn all of the assertions are well-known: the analog of relations (3.2) was
proved in [12], the analog of summation formula (3.3) was established in [1], and
relations analogous to (3.5)–(3.6) were checked in [4, §3.3.3]. �
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It follows from (3.2) and (3.3) that the formal Dirichlet series with the coefficients
η(a)TΛ(a) for a prime to m, where η(a) is a completely multiplicative complex-
valued function in a, can be expanded into formal Euler product:

DΛ(s, η) =
∑

a∈N, gcd(a,m)=1

η(a)TΛ(a)

as
(3.8)

=
∏

p∈P, p∤m

∞∑

δ=0

η(p)δTΛ(pδ)p−δs =
∏

p∈P, p∤m

Qp,Λ(η(p)p−s)−1Rp,Λ(η(p)p−s)

=


 ∏

p∈P, p∤m

Qp,Λ(η(p)p−s)




−1
 ∏

p∈P, p∤m

Rp,Λ(η(p)p−s)




where the symbol as is considered just as a formal quasicharacter of the multiplica-
tive semigroup N of positive integers. (We remind that, by Proposition 2.2, the
rings H(m)(Λ) are commutative.)

Let us turn now to regular Hecke operators on the spaces Mk(Λ) of modular
forms of weight k for these groups Λ. Suppose that we are given an eigenfunction
F ∈ Mk(Λ) for all Hecke operators |T with T ∈ H(m)(Λ),

F |T = λF (T )F (∀ T ∈ H(m)(Λ)). (3.9)

We set λF (TΛ(a)) = λF (a) so that

F |TΛ(a) = λF (a)F (gcd(a,m) = 1). (3.10)

On replacing of all coefficients T ∈ H(m)(Λ) in the formal identity (3.8) with the
eigenvalues λF (T ) of the corresponding Hecke operators acting on the eigenfunction
F , we obtain a formal Euler product expansion over C of the form

DF (s, η) =
∑

a∈N, gcd(a,m)=1

η(a)λF (a)

as
(3.11)

=


 ∏

p∈P, p∤m

Qp, F (η(p)p−s)




−1
 ∏

p∈P, p∤m

Rp,F (η(p)p−s)


 ,

where

Qp, F (t) =
2n∑

i=0

(−1)iλF
(
qiΛ(p)

)
ti, Rp, F (t) =

2n−2∑

i=0

(−1)iλF
(
riΛ(p)

)
ti. (3.12)

Assuming now that the function η(a) grows not faster than a constant power of a,
and using known estimates of eigenvalues of Hecke operators, it is not hard to see
that the infinite series and products occurring in the formal identity (3.11) converge
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absolutely and uniformly in a right half-plane Re s > c of the variable s, depending
on F and η, and so define there holomorphic functions in s. (For the case of the
group Λ = Γn see [3, §1.3]). We shall call the function

LF (s, η) =


 ∏

p∈P, p∤m

Qp, F (η(p)p−s)




−1

(3.13)

the (m−regular) L-function of the eigenfunction F with ”character” η and call the
function

ZF (s) = LF (s, 1) =


 ∏

p∈P, p∤m

Qp, F (p−s)




−1

(3.14)

the (m−regular) zeta-function of the eigenfunction F .

Zeta functions of twisted forms and L-functions.

Theorem 3.2. For the group Λ = Γ̂(m) = Γ̂n(m), let F ∈ Mk(Λ) be an eigen-

function for all regular Hecke operator |TΛ(M) with M ∈ ∆(m)(Λ). Then, for every

primitive Dirichlet character χ modulo m and each p-matrix L, the twisted form

F |T (χ, L) ∈ Mk(Λ) is an eigenfunction for all regular Hecke operator, and zeta-

function of the twisted form in every domain of absolute convergence is equal to the

L-function of the form F with character χ:

ZF |T (χ,L)(s) = LF (s, χ), (3.15)

if the twisted form is not identically zero. Moreover, if a form F ∈ Mk(Γ̂(m), ψ),

where ψ is a Dirichlet character modulo m, then the form
(
F |T (χ, L)

)∗
, where

the star is the mapping (1.33), contained in the space Mk(Γ̂(m), χ2ψ), is also an

eigenfunction for all regular Hecke operators for the group Γ̂(m), and zeta-function

of this form in every domain of absolute convergence is equal to the L-function of

the form F with conjugated product of charactes χψ:

Z(F |T (χ,L))∗(s) = LF (s, χψ). (3.16)

Proof. By Corollary 2.4, the relation F |TΛ(a) = λF (a)F implies the relation

(F |T (χ, L))TΛ(a) = χ(a)λF (a)F

for each a prime to m. Hence, by (3.11) and (3.14), we obtain for each prime p not
dividing m the relation

Qp, F |T (χ,L)(t) = Qp, F (χ(p)t) (3.17)
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and the relation

ZF |T (χ,L)(s) =


 ∏

p∈P, p∤m

Qp, F |T (χ,L)(p
−s)




−1

=


 ∏

p∈P, p∤m

Qp, F (χ(p)p−s)




−1

= LF (s, χ).

In order to prove (3.16), we note that by Corollary 2.6 and relation (1.38), we
get, for each a prime to m, the relation

λ(F |T (χ,L))∗(a) = χ2(a)ψ(a)λF |T (χ,L)(a).

Hence and by (3.17), for each prime p not dividing m, follows the relation

Qp, (F |T (χ,L))∗(t) = Qp, F |T (χ,L)(χ
2(p)ψ(p)t)

= Qp, F (χ(p)χ2(p)ψ(p))t) = Qp, F (χ(p)ψ(p)t)

and the relation (3.16). �

Note that, as follows from the definition of the subspaces Mk(Γ̂(m), ψ), every

modular form F ∈ Mk(Γ̂(m), ψ) is an eigenfunction of each Hecke operator |k[a]Λ
corresponding to element (3.7) for Λ = Γ̂(m) with the eigenvalue ψ(a)ank−n(n+1):

F |k[a]Λ = ψ(a)ank−n(n+1)F (F ∈ Mk(Γ̂(m), ψ), gcd(a, m) = 1). (3.18)

According to (1.28) the twist with character χ of every modular form of the spaces

or Mk(Γ̂(m), ψ) belongs to the space Mk(Γ̂(m), χ2ψ). Hence, for twists of forms

from Mk(Γ̂(m), ψ) we obtain relations

(F |T (χ, L))|k[a]Λ = χ(a2)ψ(a)ank−n(n+1)(F |T (χ, L)) (gcd(a, m) = 1). (3.19)

These relations and relations (3.5), (3.6) allows us to compute the constant and
leading coefficients of the denominators of p-factors of zeta-functions of the twisted

form G = F |T (χ, L) of an eigenfunction F ∈ Mk(Γ̂(m), ψ) in the form

λG
(
q0
Λ(p)

)
= 1, λG

(
q2n

Λ (p)
)

=
(
pnk−〈n〉χ(p2)ψ(p)

)2n−1

, (3.20)

and write the general symmetry relations for the coefficients of the denominators
in the form

λG

(
q2n−i
Λ (p)

)
=
(
pnk−〈n〉χ(p2)ψ(p)

)2n−1−i

λG
(
qiΛ(p)

)
(0 ≤ i ≤ 2n). (3.21)

In particular, if n = 1, then defined in (3.12) polynomials Qp, F (t) and Qp,G(t) have
the form

Qp, F (t) = 1 − λF (TΛ(p))t+ ψ(p)pk−1t2 (3.22)

and

Qp,G(t) = 1 − λG(TΛ(p))t+ χ(p2)ψ(p)pk−1t2 = Qp, F (χ(p)t). (3.23)
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§4. L-functions of cusp forms of genus 1

In this section we apply the reduction theorem 3.2 to the simplest case of modular
forms in one variable and prove an implication of Atkin-Lehner theory [7] for ”new”
forms. Here we assume that the genus n is equal to 1.

By Proposition 2.7, when we speak of eigenfunctions of regular Hecke operators,
we may restrict ourselves to consideration of modular forms contained in spaces

of the form (1.27). Let F ∈ Mk(Γ̂(m), ψ), where ψ is a multiplicative character
modulo m, be a modular form of an integral weight k for the congruence sub-

group Γ̂(m) = Γ̃1(m) of the form (1.5) of the modular group Γ = Γ1 with Fourier
expansion

F (z) = f(0) +
∞∑

a=1

f(a)e2πiaz (z = x+ iy ∈ H = H1). (4.1)

We shall assume that F is an eigenfunction for all regular Hecke operators |T = |TΛ
with T ∈ H(m)(Λ), where Λ = Γ̂(m):

F |T = λF (T )F (∀ T = TΛ ∈ H(m)(Λ)). (4.2)

Further, we denote by
G = F |T (χ, 1) = F |T (χ)

the image of F under the twist operator (4) with a fixed primitive Dirichlet character
χ modulo m and p−matrix L = l = 1. By the definition the function G has Fourier
expansion

G(z) =

∞∑

a=1

g(a)e2πiaz, where g(a) = χ(a)f(a), (4.3)

and, according to (1.28) belongs to the space ∈ Mk(Γ̂(m), χ2ψ),

G ∈ Mk(Γ̂(m), χ2ψ). (4.4)

Then, according to Corollary 2.4, the form G is an eigenfunction for all regular

Hecke operators |TΛ with Λ = Γ̂(m) and TΛ ∈ H(m)(Λ). Besides, the eigenvalues of

Hecke operators corresponding to elements of the form (3.1) for Λ = Γ̂(m) acting
on G and F , respectively, satisfy the relation

λG(a) = χ(a)λF (a) (a ∈ N, gcd(a,m) = 1). (4.5)

Thus, we have two sequences of complex numbers associated with each of the
eigenfunctions: in the first place, it is the sequence of Fourier coefficients, and
in the second place, the sequence of eigenvalues of Hecke operators. The natu-
ral question is whether these sequences are related to each other. The question
is interesting in two respects: first of all, because of multiplicative properties of
Hecke operators and their eigenvalues, such relations could reveal multiplicative
properties of Fourier coefficients, which often presents an arithmetical interest, be-
sides, analytical properties of the modular forms considered as generating series
for their Fourier coefficients may possibly be transferred to analytical properties of
generating functions for the eigenvalues and corresponding Euler products.
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Fourier coefficients of an eigenfunction and eigenvalues. The relation be-
tween Fourier coefficients of an eigenfunction and the corresponding eigenvalues for
modular forms in one variable were discovered by Hecke and look very simple.

Lemma 4.1. Suppose that a modular form F ∈ Mk(Γ̂(m), ψ) with Fourier expan-

sion (4.1) is an eigenfunction of the Hecke operator T (d) = TΓ̂(m)(d) of the form

(3.1) for the group Γ̂(m) with d prime to m and let λF (d) be the corresponding

eigenvalue. Then the relations hold

λF (d)f(0) = f(0)
∑

α| d

ψ(α)αk−1 (4.6)

and

λF (d)f(a) =
∑

α| a, d

ψ(α)αk−1f

(
ad

α2

)
(a ≥ 1), (4.7)

where α ranges over all positive divisors of d and common positive divisors of a
and d, respectively. In particular,

λF (d)f(1) = f(d). (4.8)

Proof. It is well known that elements TΓ(d) for the group Γ = Γ1 have decomposi-
tions into left cosets of the form

TΓ(d) =
∑

α,β,δ∈N,
αδ=d, 0≤β≤δ

(
Γ

(
α β
0 δ

))
.

Then it follows from Proposition 2.1 that the elements TΓ̂(m)(d) have decomposi-

tions of the form

TΓ̂(m)(d) =
∑

α,β,δ∈N,
αδ=d, 0≤β<δ

(
Γ̂(m)τ(α)

(
α β
0 δ

))
.
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By the definition of Hecke operators, we obtain

F |kTΓ̂(m)(d) =
∑

α,β,δ∈N,
αδ=d, 0≤β<δ

F |k
(
τ(α)

(
α β
0 δ

))

=
∑

α,β,δ∈N,
αδ=d, 0≤β<δ

ψ(α)dk−1δ−kF

(
αz + β

δ

)

=
∑

α,β,δ∈N,
αδ=d, 0≤β<δ

ψ(α)dk−1δ−k

(
f(0) +

∞∑

a=1

f(a)e2πia(αz+β)δ
−1

)

= f(0)
∑

α|d

ψ(α)αk−1 +
∑

α|d

ψ(α)αk−1
∞∑

a′=1

f

(
a′d

α

)
e2πia

′αz

= f(0)
∑

α|d

ψ(α)αk−1 +
∞∑

a=1


∑

α|a, d

ψ(α)αk−1f

(
ad

α2

)
 e2πiaz.

On the other hand we have

F |kTΓ̂(m)(d) = λF (d)F = λF (d)f(0) +

∞∑

a=1

λF (d)f(a)e2πiaz.

By comparing corresponding Fourier coefficients of the last two expansions we ob-
tain the relations (4.6) and (4.7). The relation (4.8) follows from (4.7) for a = 1.
�

Multiplying both sides of (4.7) with a prime to m by f(1) and using (4.8), we
obtain multiplicative relations for the eigenvalues in the form

f(1)λF (d)λF (a) = f(1)
∑

α|a, d

ψ(α)αk−1λF

(
ad

α2

)
. (4.9)

It is an easy consequence of these relations (see, e.g., [4, §4.3.1]) that the following
formal Euler product factorizations holds for Dirichlet series with coefficients of the
form η(a)λF (a), where η : N 7→ C is a completely multiplicative function, say, a
Dirichlet character,

∑

a∈N, gcd(a,m)=1

η(a)λF (a)

as
=

∏

p∈P, p∤m

(
1 − η(p)λF (p)p−s + η(p2)ψ(p)pk−1−2s

)−1
.

(4.10)
On the other hand, by (4.8), for the same η as above, we get a formal identity

of Dirichlet series

∑

a∈N, gcd(a,m)=1

η(a)f(a)

as
= f(1)

∑

a∈N, gcd(a,m)=1

η(a)λF (a)

as
. (4.11)
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The formal relations (4.10)–(4.11) and known estimates of Fourier coefficients
and eigenvalues imply identities between generating Dirichlet series for Fourier co-
efficients of eigenfunctions and corresponding zeta functions and L−functions in
half-planes of absolute and uniform convergence.

Theorem 4.2. Let a modular form F ∈ Mk(Γ̂(m), ψ) with Fourier expansion (4.1)
be an eigenfunction for all regular Hecke operators of the form T (d) = TΓ̂(m)(d) for

d prime to m with the eigenvalues λF (d), and let χ be a primitive Dirichlet character

modulo m ≥ 1. Then in the half-plane Re s > k, if f(0) 6= 0, and in the half-plane

Re s > k/2 + 1, if F is a cusp form, the following identities are valid

∑

a∈N, gcd(a,m)=1

f(a)

as
= f(1)

∑

a∈N, gcd(a,m)=1

λF (a)

as
= f(1)ZF (s), (4.12)

and

∑

a∈N, gcd(a,m)=1

χ(a)f(a)

as
= f(1)

∑

a∈N, gcd(a,m)=1

χ(a)λF (a)

as
= f(1)LF (s, χ), (4.13)

where ZF (s) and LF (s, χ) are the zeta function (3.14) and the L−function (3.13)
with character χ of the eigenfunction F , respectively.

If f(0) 6= 0, then the zeta function and the L−function can be explicitly written

in the form

ZF (s) =
∑

a∈N, gcd(a,m)=1

1

as

∑

a∈N, gcd(a,m)=1

ψ(a)

as−k+1
(4.14)

and

LF (s, χ) = L(s, χ)L(s− k + 1, χψ), (4.15)

where

L(s, η) =

∞∑

a=1

η(a)

as
=
∏

p∈P

(
1 − η(p)

ps

)−1

(Re s > 1) (4.16)

is the Dirichlet L-functions with character η.

Analytical properties of L-functions. The identity (4.13) allows one to inves-
tigate analytical properties of L-functions LF (s, χ). According to Theorem 3.2, it
suffices to consider zeta-functions of the twisted forms G. Analytical properties of
Dirichlet L−functions are well known and we can limit ourselves to the considera-
tion of L−functions of cusp forms.

Theorem 4.3. Let a cusp form F ∈ Nk(Γ̂(m), ψ) be an eigenfunction of all regular

Hecke operators for the group Γ̂(m), let G = F |T (χ) ∈ Mk(Γ̂(m), χ2ψ) be the

twist (4.3) of F with a primitive Dirichlet character χ modulo m > 1, and let

G∗ ∈ Nk(Γ̂(m), χ2ψ) the image of G under the operator (1.33). Suppose that the

first Fourier coefficient f(1) of F is not zero. Then the following assertions hold:
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(1) The zeta function (3.14) of the eigenfunction G in the half-plane Re s >
k/2 + 1 satisfies the identity

ΨG(s) = ms−k/2(2π)−sΓ(s)ZG(s) (4.17)

=
1

g(1)

(
ms−k/2

∫ ∞

1/m

ys−1G(iy)dy + (−i)kmk/2−s

∫ ∞

1/m

yk−1−sG∗(iy)dy

)
,

where g(1) is the first coefficient of the Fourier expansion (4.3) of G, Γ(s) is the

gamma-function, and G 7→ G∗ is the mapping (1.33).
(2) The right hand part of the identity (4.17) is holomorphic for all s. Thus, the

function ΨG(s) has analytical continuation over whole s-plane as a holomorphic

function.

(3) The function ΨG(s) satisfies the functional equation

ΨG(k − s) = (−i)k g
∗(1)

g(1)
ΨG∗(s), (4.18)

where, for the eigenfunction G∗ = (F |T (χ))∗ ∈ Nk(Γ̂(m), χ2ψ) of all regular Hecke
operators, we set

ΨG∗(s) = ms−k/2(2π)−sΓ(s)ZG∗(s), (4.19)

ZG∗(s) is the zeta function of G∗, and g∗(1) is the first Fourier coefficient of G∗.

(4) The function

ΨF (s, χ) = ms−k/2(2π)−sΓ(s)LF (s, χ), (4.20)

where LF (s, χ) is the L−function (3.13) of F with character χ, has analytical con-
tinuation over whole s-plane as a holomorphic function and satisfies the functional

equation

ΨF (k − s, χ) = (−i)k g
∗(1)

f(1)
ΨF (s, χψ), (4.21)

where f(1) and g∗(1) are the first Fourier coefficients of F and (F |T (χ))∗, respec-
tively.

Proof. According to Theorem 3.2 and formula (4.3), we can write the identity (4.13)
in the shape

RG(s) =
∞∑

a=1

g(a)

as
=

∞∑

a=1

χ(a)f(a)

as
= f(1)LF (s, χ) = f(1)ZG(s). (4.22)

Using the Euler integral

∫ ∞

0

ys−1e−αydy = Γ(s)α−s (α > 0, Re s > 0), (4.23)
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where Γ(s) is the gamma-function, we obtain
∫ ∞

0

ys−1G(iy)dy =

∞∑

a=1

g(a)

∫ ∞

0

ys−1e−2πaydy

= (2π)−sΓ(s)
∞∑

a=1

g(a)

as
= (2π)−sΓ(s)RG(s) (Re s > k/2 + 1).

Hence, by (4.22), we have

ΨG(s) =
1

g(1)
ms−k/2(2π)−sΓ(s)RG(s) =

1

g(1)
ms−k/2

∫ ∞

0

ys−1G(iy)dy

=
1

g(1)

(
ms−k/2

∫ ∞

1/m

ys−1G(iy)dy +ms−k/2

∫ 1/m

0

ys−1G(iy)dy

)
.

On replacing of y by 1/m2y, we can write
∫ 1/m

0

ys−1G(iy)dy =

∫ 1/m

∞

(m2y)1−sG(i/m2y)
−dy
m2y2

= (−i)kmk−2s

∫ ∞

1/m

yk−1−s(−imy)−kG(i/m2y)dy

= (−i)kmk−2s

∫ ∞

1/m

yk−1−sG∗(iy)dy,

since, by definition, G∗(z) = G|k
(

0 1/m

−m 0

)
= (−mz)−kG(−1/m2z). Substituting

this expression on the right of (4.13), we came to the identity (4.17).
Since G is a cusp form, absolute values of both integrand on the right of (4.17)

decrease exponentially as y → +∞. Hence, the both integral converge absolutely
and uniformly for all s ∈ C and define everywhere holomorphic functions.

By formula (4.17) with G∗ in place of G and k − s in place of s we get

ΨG∗(k − s) =
1

g∗(1)

(
mk−s−k/2

∫ ∞

1/m

yk−s−1G∗(iy)dy

+ (−i)kmk/2−(k−s)

∫ ∞

1/m

yk−1−(k−s)G∗∗(iy)dy

)

= ik
g(1)

g∗(1)

1

g(1)

(
(−i)k

∫ ∞

1/m

yk−s−1G∗(iy)dy +ms−k/2

∫ ∞

1/m

ys−1G(iy)dy

)

= ik
g(1)

g∗(1)
ΨG(s),

since, in view of (1.34), (G∗)∗ = (−1)kG. The functional equation (4.18) follows.
Finally, returning to the L-functions, by Theorem 3.2 we have the equality

ΨF (s, χ) = ΨG(s), and the functional equation (4.21) follows from the functional
equation (4.18), since g(1) = χ(1)f(1) = f(1) by (4.3), and ZG∗(s) = L(s, χψ) by
(3.16). �
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§5. L-functions of cusp forms of genus 2

L-functions of cusp forms for Γ2. In this section we assume that the genus
n = 2, and set

Γ = Γ2, Υ = Γ2
0(m2) and Λ = Γ̂2(m) (5.0)

with fixed integral m > 1. These and other notation and assumptions of this
subsection will be preserved by the end of this section.

Let F ∈ Nk(Γ) be a cusp form of integral weight k with the Fourier expansion

F (Z) =
∑

N∈N2, N>0

f(N) e2πiTr(NZ). (5.1)

The Fourier coefficients f(N) satisfy the relations

f(N [V ]) = (detV )kf(N) (N ∈ N2, V ∈ GL2(Z)) (5.2)

and the estimate

|f(N)| ≤ c(detN)k/2 (N ∈ N2, N > 0) (5.3)

with a constant c = cF depending only on F . Suppose that F is an eigenfunction
for all m−regular Hecke operators for the group Γ. In particular, for each prime
p ∤ m we have 




F |kTΓ(pδ) = λ(pδ, F )F (δ = 0, 1, 2, . . . ),

F |kT 1
Γ(p2) = λ1(p2, F )F,

F |kT 2
Γ(p2) = F |k[p]Γ = p2k−6F,

(5.4)

where elements TΓ(a) have the form (3.1) and elements T jΓ(p2) were defined in
Proposition 2.2, and the last formula follows from (3.18). According to Theorem
3.1, the generating series for the eigenvalues λ(pδ, F ) with prime p not dividing m
is a rational fraction of the form

∞∑

δ=0

λ(pδ, F )tδ = Rp,F (t)Qp,F (t)−1

with the numerator Rp,F of degree 2 and the denominator Qp,F (t) of degree 4. By
[12, Theorem 2] and (5.4), the numerator and the denominator can be written in
the form

Rp,F (t) = 1 − p2k−4t2, (5.5)

Qp,F (t) = 1 − λ(p, F )t+
(
pλ1(p2, F ) + p2k−5(p2 + 1)

)
t2

− p2k−3λ(p, F )t3 + p4k−6t4.

Then the (m−regular spinor) zeta function of the eigenfunction F has the form

ZF (s) =
∏

p∈P, p∤m

Qp,F (p−s)−1
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and L-function of F with a Dirichlet character χ modulo m is defined by

LF (s, χ) =
∏

p∈P, p∤m

Qp,F (χ(p)p−s)−1. (5.6)

It follows from estimates (5.3) and direct formulas for the action of Hecke operators
on the Fourier coefficients that these Euler products and corresponding Dirichlet
series converge absolutely and uniformly in a right half-plane of the complex variable
s and therefore define there holomorphic functions in s.

On the other hand, let

G = F |T (χ, L) =
∑

N∈N2, N>0

g(N) e2πiTr(NZ) (5.7)

be a twist (3) of the form F with the character χ and a p−matrix L = tL ∈ Z2
2.

Fourier coefficients of forms G and F are related by

g(N) = χ(Tr(LN)) f(N) (N ∈ N2). (5.8)

By Theorem 1.3, the formG is a cusp form of weight k for the group Λ. By Corollary
2.4, if the character χ is primitive modulo m, the function G is an eigenfunction for
all m−regular Hecke operators for the group Λ. Assuming in addition that the form
G is not identically zero, by Theorem 3.2, we conclude that L-function (5.6) of the
form F is equal to the zeta function of G in every domain of absolute convergence
of the functions,

LF (s, χ) = ZG(s). (5.9)

Thus, as in the case of modular forms of genus n = 1, we have two sequences
of complex numbers associated with the eigenfunctions: the sequence of Fourier
coefficients and the sequence of eigenvalues of Hecke operators. The question on
whether these sequences are related to each other is again of interest by similar
reasons.

Unfortunately, relations between individual Fourier coefficients and eigenvalues
look good only for modular form of genus n = 1 (see, e.g., Lemma 4.1). For genera
n ≥ 2, one have to consider relations between appropriate generating functions such
as zeta-functions for eigenvalues and appropriate Dirichlet series formed by Fourier
coefficients. It turns out that, at least for n = 2, as appropriate generating functions
constructed by Fourier coefficients, one can take so-called ”radial” Dirichlet series.
For a half-integer positive definite matrix N ∈ N2 and the cusp form G with Fourier
expansion (5.7), the radial Dirichlet series of G relative to the ray {rN | r ∈ N} or
just N−ray series of G is defined by

RG(s, N) =
∞∑

r=1

g(rN)

rs
. (5.10)

It follows from estimations (5.3) that each radial series converges absolutely and
uniformly in the right half-plane

Re s > k + 1 + ε with ε > 0 (5.11)

and so defines there a holomorphic function in s. The idea to apply radial Dirichlet
series to investigation of zeta functions of modular forms goes back to Hecke [8] in
the case of one variable.
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1−ray series of twisted forms and L-functions. As it was shown in [3, Chapter
2], each nonzero N−ray series of an eigenfunction for the group Γ has close relation
with corresponding zeta function and can be used for its analytic investigation. The
problem is that we do not know which one of N−ray series is nonzero and so are
forced to consider all N−ray series, as this was done in [3] for n = 1. Consideration
of different N−ray series although similar in general ideas can significantly differ
in details depending on arithmetic of the binary quadratic form with matrix N and
corresponding imaginary quadratic field.

Here, in order to illustrate the general ideas, we consider only the simplest case
of radial series relative to the ray of the unit matrix N = 12 = 1, i.e., the 1−ray
series

RG(s) = RG(s, 1) =

∞∑

r=1

g(r1)

rs
. (5.12)

Euler factorization of this series is closely related to arithmetic of the quadratic form
x21 + x22 with matrix is 12, or, in other language, arithmetic of the ring of gaussian
integers O(G) = Q[

√
−1], i.e., the ring of integers of the imaginary quadratic field

G = Q(
√
−1). (5.13)

Each nonzero ideal of O(G) is principal and uniquely up to an order decomposes
into a product of prime ideals. L−function of the ring O(G) with a character x of
the multiplicative semigroup of nonzero integral ideals has the form

LO(G)(s, x) =
∑

a

x(a)

N(a)s
=
∏

p

(
1 − x(p)

N(p)s

)−1

(Re s > 1), (5.14)

where a and p range over all nonzero integral ideals and prime ideals of the ring,
respectively. For the arithmetic of quadratic fields and rings see, e.g., [4, Appendix
3].

The following theorem links the Dirichlet series (5.12) assigned to the twisted
cusp form (5.7) with the L−function (5.6) of the initial form F .

Theorem 5.1. Let F ∈ Nk(Γ) be an eigenfunction for all m−regular Hecke ope-

rators for the group Γ, and χ – a primitive Dirichlet character modulo m. Then

in every half-plane of absolute convergence L−function (5.6) of F with character χ
satisfies the identity

g (1)LF (s, χ) = LO(G)(s− k + 2, x)RG(s), (5.15)

where RG(s) is 1−ray series (5.12) of the twist G ∈ Nk(Λ) of F with the character

χ and a p−matrix L = tL ∈ Z2
2, g(1) is the first coefficient of RG(s), and where

LO(G)(s, x) is the L-series (5.14) of the ring of gaussian integers O(G) with the

norm extension

x(a) = χ(N(a)) = χ(aa) (5.16)

of the character χ on ideals of the ring.
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Proof. For the functions F and G = F |T (χ, L), a prime number p not dividing m,
and δ = 0, 1, 2, . . . , we denote by f(pδ; A) and g(pδ; A) the Fourier coefficients of
the functions F |TΓ(pδ) and G|TΛ(pδ), respectively, so that

F |TΓ(pδ) =
∑

N∈N2,N>0

f(pδ; N)e2πiTr(NZ)

G|TΛ(pδ) =
∑

N∈N2,N>0

g(pδ; N)e2πiTr(NZ).
(5.17)

By Theorems 2.3 and 2.1, we have

G|TΛ(pδ) =
(
F |T (χ, L)

)
|TΛ(pδ) = χ(pδ)

(
F |TΓ(pδ)

)
|T (χ, L)

=
∑

N∈N2,N>0

χ(pδ)χ(Tr(LN))f(pδ; N)e2πiTr(NZ).

Hence,

g(pδ; N) = χ(pδ)χ(Tr(LN))f(pδ; N). (5.18)

According to [2, Theorem 1], for the matrix M = 1 and the discriminant d = −4 of
the field G = Q(

√
−1), using the laws of decomposition of prime numbers in prime

ideals of the ring of integers of G, we obtain that for every positive integer r and
prime number p not dividing rm the following formulas hold:

f(pδ; r1) =





f(pδr1) + 2
∑δ
β=1(pk−2)βf(pδ−βr1), if p ≡ 1 (mod 4),

f(pδr1) + pk−2f(pδ−1r1), if p = 2,

f(pδr1), if p ≡ 3 (mod 4).

Multiplying both sides of these relations for by χ(Tr(L(pδr1)) = χ(pδ)χ(Tr(L(r1)))
by formulas (5.18) we obtain the corresponding formulas for the function g:

g(pδ; r1) =





g(pδr1) + 2
∑δ
β=1(χ(p)pk−2)βg(pδ−βr1), if p ≡ 1 (mod 4),

g(pδr1) + χ(p)pk−2g(pδ−1r1), if p = 2,

g(pδr1), if p ≡ 3 (mod 4).

We remind that the decomposition of a prime number p in products of prime ideals
of the ring O = O(G) = Q[

√
−1] has the form p = pp̄ with p 6= p̄ in the first of listed

cases, p = p2 in the second case, and p = p in the third case. Since the function G
is an eigenfunction for Hecke operator TΛ(pδ) with the eigenvalue λG(pδ), it follows
that

λG(pδ)g(r1) = g(pδ; r1).

Multiplying both sides of the relation for the case p ≡ 1 (mod 4) by tδ and summing
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up on δ = 0, 1, . . . , we obtain the formal identity in the variable t

g(r1)
∞∑

δ=0

λG(pδ)tδ =
∞∑

δ=0

g(pδ; r1)tδ (5.19)

=

∞∑

δ=0

g(pδr1)tδ + 2

∞∑

δ=1

δ∑

β=1

(χ(p)pk−2t)βg(pδ−βr1)tδ−β

=

∞∑

δ=0

g(pδr1)tδ + 2

∞∑

δ=0

∑

α,β≥0, α+β=δ

(χ(p)pk−2t)βg(pαr1)tα − 2

∞∑

δ=0

g(pδr1)tδ

= −
∞∑

δ=0

g(pδr1)tδ + 2
∞∑

β=0

(χ(p)pk−2t)β
∞∑

α=0

g(pαr1)tα

=
(
−1 + 2

∞∑

β=0

(χ(p)pk−2t)β
) ∞∑

δ=0

g(pδr1)tδ

=
1 + χ(p)pk−2t

1 − χ(p)pk−2t

∞∑

δ=0

g(pδr1)tδ =
1 − (χ(p)pk−2t)2

(1 − χ(p)pk−2t)2

∞∑

δ=0

g(pδr1)tδ.

By formulas (5.5) and (5.6), we have the identity

∞∑

δ=0

λG(pδ)tδ =

∞∑

δ=0

λF (pδ)(χ(p)t)δ = Qp,F (χ(p)t)−1
(
1 − χ(p2)p2k−4t2

)
. (5.20)

In view of this identity, we can rewrite the identity (5.19) in the form

g(r1)Qp,F (χ(p)t)−1 = g(r1)(1 − (χ(p)pk−2t)2)−1
∞∑

δ=0

λG(pδ)tδ

= (1 − χ(N(p))N(p)k−2t)−1(1 − χ(N(p̄))N(p)k−2t)−1
∞∑

δ=0

g(pδr1) tδ,

where p = pp̄ and N(p) = N(p̄) = p. Setting t = p−s and multiplying the both
sides by r−s, we can rewrite this identity in the form

Qp,F (χ(p)p−s)
∞∑

δ=0

g(pδr1)(pδr)−s (5.21)

= g(r1)r−s(1 − χ(N(p))N(p)k−2−s)(1 − χ(N(p̄))N(p)k−2−s).

Similarly, in the case p = 2 we get the formal identity in the variable t

g(r1)
∞∑

δ=0

λG(pδ)tδ =
∞∑

δ=0

g(pδ; r1)tδ
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=
∞∑

δ=0

g(pδr1)tδ + pk−2
∞∑

δ=1

g(pδ−1r1)tδ

= (1 + χ(p)pk−2t)

∞∑

δ=0

g(pδr1)tδ =
1 − (χ(p)pk−2t)2

1 − χ(p)pk−2t

∞∑

δ=0

g(pδr1)tδ,

which, in view of (5.20), can be rewritten in the form

g(r1)Qp,F (χ(p)t)−1 = g(r1)(1 − (χ(p)pk−2)2t2)−1
∞∑

δ=0

λG(pδ)tδ

= (1 − χ(N(p))N(p)k−2t)−1
∞∑

δ=0

g(pδr1)tδ,

where p = p2 and N(p) = p. Hence,

Qp,F (χ(p)p−s)

∞∑

δ=0

g(r1)(pδr)−s (5.22)

= g(r1)r−s(1 − χ(N(p))N(p)k−2−s).

Finally, in the case p ≡ 3 (mod 4) we have

g(r1)
∞∑

δ=0

λG(pδ)tδ =
∞∑

δ=0

g(pδ; r1)tδ

=
∞∑

δ=0

g(pδr1)tδ =
1 − (χ(p)pk−2t)2

1 − (χ(p)pk−2t)2

∞∑

δ=0

g(pδr1)tδ,

hence

g(r1)Qp,F (χ(p)t)−1 = g(r1)(1 − (χ(p)pk−2)2t2)−1
∞∑

δ=0

λG(pδ)tδ

= (1 − χ(N(p))N(p)k−2t2)−1
∞∑

δ=0

g(pδr1)tδ,

where p = p and N(p) = p2. Thus,

Qp,G(χ(p)p−s)
∞∑

δ=0

g(pδr1)(pδr)−s (5.23)

= g(r1) r−s(1 − χ(N(p))N(p)k−2−s).
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Applying the corresponding of the identities (5.21)–(5.23) in succession to all prime
numbers p not dividing m, we obtain the formal identity

LF (s, χ)−1
∞∑

r=1

g(r1)

rs
= g(1)LO(s− k + 2, x)−1

(note that together with χ(r) coefficients g(r1) = χ(r)χ(TrL)f(r1) are eual to
zero, if r and m are not coprime). Hence, multiplying both sides by the product
LO(s−k+2, x)LF (s, χ) we obtain the identity (5.14) on formal level. Convergence
of both side in a right half-plane of the variable s follows from the estimates of
Fourier coefficients and similar known estimates for the eigenvalues. �

Integral representations of 1−ray series. The identity (5.15) may as well
reduce itself to the equality 0 = 0, if the series RG(s) is identically equals to zero.
This equality is equivalent to the condition g(1) = 0. Otherwise, the identity
reduces analytic properties of the L−function LF (s, χ) to analytic properties of
the ray series.

Let us set

X =

{(
x y
y −x

) ∣∣∣ x, y ∈ R

}
, (5.24)

and consider restriction of the function G on subset of H2 of the form

L =
{
X + it12

∣∣∣ X ∈ X, t > 0
}
⊂ H2. (5.25)

We shall refer to the real numbers x, y, and t > 0 as coordinates of the point(
x y

y −x

)
+ it1 ∈ L. In the terms of the coordinates the restriction of G on L is given

by the series

G

((
x y
y −x

)
+ it1

)
=

∑

N=

(
a b/2

b/2 c

)
∈N2, N>0

g(N)e2πi((a−c)x+by+i(a+c)t).

Hence we have

∫

|x|≤1/2, |y|≤1/2

G

((
x y
y −x

)
+ it1

)
dx dy =

∞∑

a=1

g

((
a 0
0 a

))
e−4πat,

and using the Euler formula (4.23), we came to the integral identity

∫ ∞

0

ts−1

(∫

|x|≤1/2, |y|≤1/2

G

((
x y
y −x

)
+ it1

)
dx dy

)
dt (5.26)

= Γ(s)

∞∑

a=1

(4πa)−sg(a1) = (4π)−sΓ(s)RG(s) (Re s > k + 1).
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Further transformation of this integral representation of the 1−ray series of the
twist G is based on the remarkable circumstance that the real symplectic group
Sp2(R) and its discrete subgroups (5.0) contain rather big subgroups operating as
groups of analytical automorphisms on the subset L ⊂ H2. Let us consider the
subset S of the group Sp2(R) consisting of contained in Sp2(R) matrices of the
form

M =




a a′ b b′

−a′ a b′ −b
c c′ d d′

c′ −c −d′ d


 . (5.27)

It is easy to see that S is a group, and for each M ∈ S the restriction of the
automorphism Z 7→M〈Z〉 of the upper half-plane onto L defines a (real) analytical
automorphism of the domain L. Subgroups Λ(S) = Λ ∩ S, where Λ is one of the
groups (5.0), are discrete subgroups of S, as well as their common subgroup

Λ∞(S) = Γ∞(S) = Υ∞(S) = Λ∞(S) =

{
±
(
1 B
0 1

) ∣∣∣ B =

(
b b′

b′ −b

)
, b, b′ ∈ Z

}
.

Transformations of L by a matrix M ∈ Λ∞(S) with parameters b, b′ ∈ Z clearly
maps a point of L with coordinates x, y, t to the point with the coordinates of the
form x + b, y + b′, t. It follows that the domain of integration in (5.26) can be
considered as a fundamental domain of the group Λ∞(S) on L,

{(
x y
y −x

)
+ it1 ∈ L

∣∣∣ |x| ≤ 1/2, |y| ≤ 1/2, t > 0

}
= Λ∞(S)\L. (5.28)

By Theorem 3.1, function G satisfies G|kM = G for all M ∈ Λ(S) ⊂ Λ. It follows
that G(M〈Z〉) = G(Z) for all M ∈ Λ∞(S) and Z ∈ L. Therefore, in view of
absolute convergence, the integral (5.26) is independent of choice of fundamental
domain of the group Λ∞(S) on L and can be written in the form

∫

Λ∞(S)\L

G

((
x y
y −x

)
+ it1

)
ts−1dxdydt. (5.29)

Further transformations of the integral is based on automorphic properties of the
integrand function G. The target of transformations is to replace the tube domain
of integration Λ∞(S)\L having infinite volume by a subset with finite invariant
volume. The larger transformation group of the integrand, the smaller integration
domain can be obtained. As we know, the function G with arbitrary parameter
matrix satisfies G|kM = G for all M ∈ Λ(S). By a special choice of the parameter
matrix L in the definition of G the transformation group can be increased. We

shall assume from now on that L = 12 = 1. Then, for M =
(
A B

C D

)
∈ Υ(S) with

D =
(

d d′

−d′ d

)
, we have

L[D] = tDD = (d2 + (d′)2)1 = detD · 1
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and so, by Proposition 1.4, the function

G1 = F |T (χ, 1) (5.30)

satisfies relations

G1|kM = G1|k̺(D) = χ(detD)(F |k̺(D))|T (χ, 1)

= χ(detD)G1

(
∀M =

(
A B
C D

)
∈ Υ(S)

)
. (5.31)

Now, let

Υ(S) =
⋃

M∈Υ∞(S)\Υ(S)

Υ∞(S)M

be a decomposition of Υ(S) into left cosets modulo the subgroup Υ∞(S). If
D(Υ(S)) is a fundamental domain for the group Υ(S) on L, then the union of
the sets M〈D(Υ(S))〉 with M ∈ Υ∞(S)\Υ(S) is a fundamental domain for the
group Υ∞(S). On the other hand, since the set (5.28) is also a fundamental do-
main for Υ∞(S) and the integrand in (5.29) is invariant under all transformations
of Υ∞(S), we can write down (at least formally) the relation

∫

Λ∞(S)\L

G1

((
x y
y −x

)
+ it1

)
ts−1dxdydt

=
∑

M∈Υ∞(S)\Υ(S)

∫

M〈D(Υ(S))〉

G1

((
x y
y −x

)
+ it1

)
ts−1dxdydt, (5.32)

which can be justified in every half-plane of absolute and uniform convergence, say
for Re s > k + 1.

In order to simplify forthcoming computations of the integrals we parametrize
the space L by associating with a matrix

Z =

(
x y
y −x

)
+

(
it 0
0 it

)
=

(
x+ it y
y −x+ it

)
∈ L

a point
u = u(Z) = (x+ iy, t) = (w, t) (5.33)

of the three-dimensional hyperbolic space, called Lobachevski space,

L = L3 = {u = (w, t) | w = x+ iy ∈ C, t > 0} .

The space L is an homogeneous space for the group Σ = SL2(C) operating as a
transitive transformation group by the rule

Σ ∋ σ =

(
α β
γ δ

)
:

u = (w, t) 7→ σ〈u〉 =

(
(αw + β)(γw + δ) + αγt2

∆(σ, u)
,

t

∆(σ, u)

)
, (5.34)
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where
∆(σ, u) = |γw + δ|2 + |γ|2t2. (5.35)

The composition of transformations corresponds to the product of matrices, and
the function ∆(σ, u) is an automorphy factor, i.e., it is not vanish on Σ × L and
satisfies relations

∆(στ, u) = ∆(σ, τ〈u〉)∆(τ, u) (σ, τ ∈ Σ, u ∈ L). (5.36)

Note, finally, that Σ−invariant element of volume on L is

du = t−3dxdydt (u = (x+ iy, t)), (5.37)

where dx, dy, dt are the euclidean element of volume on the real line. It turns out
that the pairs (S, L) and (Σ, L) are naturally isomorphic. If M ∈ S is a matrix of
the form (5.27) we set

σ(M) =

(
a+ ia′ b′ + ib
c′ − ic d− id′

)
∈ C2

2,

and define the mapping u : L 7→ L by (5.33). Then by [3, Theorem 3.4.2], the map
σ is an isomorphism of the real Lie groups, the map u is an analytic isomorphism,
the map u is compatible with the actions of S on L and Σ on L, that is for any
Z ∈ L and M ∈ S we have the relation u(M〈Z〉) = σ(M)〈u(Z)〉, and under the
given maps the automorphy factor of the pair (S, L) goes into the automorphy
factor of the pair (Σ, L), that is

det(CZ +D) = ∆(σ(M), u(Z)) (M =

(
A B
C D

)
and Z ∈ L). (5.38)

It follows from definition that images of discrete subgroups Γ(S), Υ(S), and
Υ∞(S) of S under the isomorphism σ are discrete subgroups of Σ of the form

σ (Γ(S)) = SL2(O(G)),

σ (Υ(S)) =

{
σ =

(
α β
γ δ

)
∈ SL2(O(G))

∣∣∣ γ ≡ 0 (mod m2)

}
,

σ (Υ∞(S)) =

{
σ = ±

(
1 β
0 1

) ∣∣∣ β ∈ O(G)

}
,

where O(G) = Z[
√
−1] is the ring of gaussian integers. We shall denote these

groups by

Π = σ (Γ(S)) , Π0(m2) = σ (Υ(S)) , and Π∞ = σ (Υ∞(S)) .

The identity (5.26) for G = G1 with the integral written in the form (5.32) takes
the shape

(4π)−sΓ(s)RG1
(s) (5.39)
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=
∑

M∈Υ∞(S)\Υ(S)

∫

M〈D(Υ(S))〉

G1

((
x y
y −x

)
+ it1

)
ts−1dxdydt (Re s > k+1).

Using the isomorphism of the pairs (S, L) and (Σ, L) given by the mappings σ and
u, we can rewrite the sum on the right of (5.39) as

=
∑

σ∈Π∞\Π0(m2)

∫

σ〈D(Π0(m2))〉

G̃1(u)ts+2du

=
∑

σ∈Π∞\Π0(m2)

∫

D(Π0(m2))

G̃1(σ〈u〉)t(σ〈u〉)s+2dσ〈u〉, (5.40)

where D(Π0(m2)) is a fundamental domain of the group Π0(m2) on L, du is the
invariant element of volume (5.37), and where for a function G on H2, we denote

by G̃(u) the function on L satisfying the condition

G̃(u(Z)) = G(Z) for all Z ∈ L. (5.41)

If σ = σ(M) with M =
(
A B

C D

)
∈ Ψ(S), then by (5.40) and (1.1) we have

G̃1(σ〈u〉) = G̃1(σ(M)〈u〉) = G̃1(u(M〈Z〉)) = G1(M〈Z〉) = det(CZ +D)kG1|kM,

which, by (5.31) and (5.38) is equal to

χ(detD) det(CZ +D)k G1(Z) = x(σ)∆(σ, u)kG̃1(u),

where, for σ =
(
α β

γ δ

)
∈ Π0(m2),

x(σ) = x

((
α β
γ δ

))
= x(δ) = χ(δδ), (5.42)

denotes the natural extension of the character x on Π0(m2). Besides, by (5.34) we
have t(σ〈u〉) = ∆(σ, u)−1t. Therefore, the sum (5.40) is equal in every half-plane
of absolute and uniform convergence to the sum

∑

σ∈Π∞\Π0(m2)

∫

D(Π0(m2))

x(σ)∆(σ, u)kG̃1(u)(∆(σ, u)−1t)s+2du

∫

D(Π0(m2))

ts−k+2
∑

σ∈Π∞\Π0(m2)

x(σ)

∆(σ, u)s−k+2
tkG̃1(u)du.

Thus, finally, we obtain the integral representation

(4π)−sΓ(s)RG1
(s)

=

∫

D(Π0(m2))

E(u, s− k + 2, x)tkG̃1(u)du (Re s > k + 1), (5.43)

where the series

E(u, s, x) = ys
∑

σ∈Π∞\Π0(m2)

x(σ)

∆(σ, u)s
(5.44)

is called Eisenstein series for the group Π0(m2) with character x.
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Eisenstein series for Π0(m2) and theta-series. Here we consider analytical
properties of Eisenstein series (5.44). Among well-known properties of the Eisen-
stein series (see, e.g., [10] or [9]) we mention here that it converges absolutely for
Re s > 2 and, by (5.36), satisfies the relations

E(τ〈u〉, s, x) =

(
t

∆(τ ; u)

)s ∑

σ∈Π∞\Π0(m2)

x(σ)

∆(σ, τ〈u〉)s (5.45)

= ts
∑

σ∈Π∞\Π0(m2)

x(σ)

∆(στ ; u)s
= ts

∑

σ∈Π∞\Π0(m2)

x(σττ−1)

∆(στ ; u)s

= x(τ−1)E(u, s, x) = x(τ)E(u, s, x)
(
τ ∈ Π0(m2)

)
.

Further, two matrices

σ =

(
α β
γ δ

)
, σ′ =

(
α′ β′

γ′ δ′

)
∈ Π0(m2)

belong to the same left coset modulo Π∞ if and only if

σ′σ−1 =

(
α′δ − β′γ −α′β + β′α
γ′δ − δ′γ −γ′β + δ′α

)
∈ Π0(m2),

which is equivalent with the conditions

γ′δ − δ′γ = 0 and − γ′β + δ′α = ±12.

Since δ, γ as well as δ′, γ′ are coprime, the first relation implies that δ divides δ′ and
vice versa, that is δ′ = ǫδ, where ǫ is a unit of the ring O = O(G). Hence, the first
relation is equivalent with relations γ′ = ǫγ, δ′ = ǫδ, and the second relation means
that ǫ(−γβ + δα) = ±12, that is ǫ = ±12. Hence, (γ′, δ′) = ±(γ, δ). Conversely,
if (γ′, δ′) = ±(γ, δ), then clearly σ′σ−1 ∈ Π∞. Then it follows from the condition
(5.42), relating characters of Π0(m2) to corresponding characters with the same
notation of the ring O, that the Eisenstein series (5.44) can be written in the form

E(u, s, x) =
ys

2

∑

γ, δ∈O, γO+δO=O,
γ≡0 (mod m2)

x(δ)

(|γw + δ|2 + |γ|2t2)s
. (5.46)

On the other hand, since each ideal of the ring O = O(G) is principal, and x(αO) =
x(α) = χ(αα) for all α ∈ O, it follows that the same characters can be considered
also as characters of the ideal semigroup of O, and so the L-series (5.14) of the ring
can be written in the form

LO(s, x) =
∑

(α)⊂O, (α)6=(0)

x((α))

N((α))s
=

1

4

∑

α∈O, α 6=0

x(α)

N(α)s
, (5.47)
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where (α) in the first sum ranges over all nonzero ideals (α) = αO of the ring O.
Then we obtain

LO(s, x)E(u, s, x) (5.48)

=
ts

8

∑

α∈O, α 6=0

∑

γ, δ∈O, γO+δO=O,
γ≡0 (mod m2)

x(α)x(δ)

N(α)s(|γw+ δ|2 + |γ|2t2)s

=
ts

8

∑

α, γ, δ∈O, α 6=0,
αγO+αδO=αO, γ≡0 (mod m2)

x(αδ)

(|αγw + αδ|2 + |αγ|2t2)s

=
ts

8

∑

γ, δ∈O, (γ,δ)6=(0,0)

γ≡0 (mod m2)

x(δ)

(|γw + δ|2 + |γ|2t2)s
.

In order to obtain analytic continuation of the Eisenstein series E(u, s, x) we use
an integral representation of the series by means of suitable theta-series. For u =
(w, t) ∈ L3 and v > 0, we introduce in former notation the theta-series

Θ(v, u, x) =
∑

γ, δ∈O,
γ≡0 (mod m2)

x(δ) exp
(
−πv
t

(|γw + δ|2 + |γ|2t2)
)
. (5.49)

Since, by our assumption, m > 1, it follows that χ(0) = 0, and so the constant
term of this theta-series is zero. Then it directly follows from (5.48) and the Euler
formula (4.23) that

π−sΓ(s)LO(s, x)E(u, s, x) =
1

8

∫ ∞

0

vs−1Θ(v, u, x)dv (Re s > 2). (5.50)

Let us now turn to investigation of this theta-series. Consider auxiliary theta-
series of the form

θ(v; u, (σ, σ′)) =
∑

γ, δ∈O

exp
(
−πv
t

(|(γ + σ)w + (δ + σ′)|2 + |γ + σ|2t2)
)
, (5.51)

where σ, σ′ ∈ C. It is easy to check that, for all u = (w, t) = (x + iy, t) ∈ L and
ρ = ρ1 + iρ2, ρ

′ = ρ3 + iρ4 ∈ C, the following identity holds

1

t

(
|ρw + ρ′|2 + |ρ|2t2

)
= tRQR, (5.52)

where

R =




ρ1
ρ2
ρ3
ρ4


 and Q =

1

t




x2 + y2 + t2 0 x y
0 x2 + y2 + t2 −y x
x −y 1 0
y x 0 1


 . (5.53)
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One directly checks that detQ = 1 and the matrix Q is positive definite. It follows
that the theta-series (5.51) can be written in the form

θ(v; u, (σ, σ′)) = θ(v; u, Q, S) =
∑

N∈Z4

exp (−πvQ[N + S]) , (5.54)

where we use the notation γ = n1 + in2, δ = n3 + in4, N = t(n1, n2, n3, n4),
σ = σ1 + iσ2, σ

′ = σ3 + iσ4, S = t(σ1, σ2, σ3, σ4), and Q[T ] = tTQT .
According to the classical inversion formula for the theta-series (5.54) (see, e.g.

[11, Chapter 6, Proposition 23], the following formula holds

v2θ(v; u, (σ, σ′)) = v2θ(v; u, Q, S) =
∑

N∈Z4

exp
(

2πi tNS − π

v
Q−1[N ]

)
. (5.55)

By direct computation we obtain the formulas

Q−1 =
1

y




1 0 −x −y
0 1 y −x
−x y x2 + y2 + t2 0
−y −x 0 x2 + y2 + t2


 = tJ2Q

′J2, (5.56)

where the matrix J2 =

(
02 12
−12 02

)
, and the matrix Q′ is obtained from Q by

change y 7→ −y. With replacement of y by −y in (5.52) we get the identity

1

t

(
|ρw + ρ′|2 + |ρ|2t2

)
= tRQ′R.

Substituting here R = J2N = t(n3, n4,−n1,−n2), we obtain the identity

tNQ−1N = tN tJ2Q
′J2N =

1

t

(
|(n3 + in4)w − (n1 + in2)|2 + |n3 + in4|2t2

)

=
1

t

(
|δw − γ|2 + |δ|2t2

)
.

Thus, since

2 tNS =
∑

1≤j≤4

njσj = γσ + γσ + δσ′ + δσ′ = 2Re (γσ + δσ′),

the inversion formula (5.55) can be rewritten in the form

v2θ(v; u, (σ, σ′)) = v2
∑

γ, δ∈O

exp
(
−πv
t

(|(γ + σ)w + (δ + σ′)|2 + |γ + σ|2t2)
)

=
∑

γ, δ∈O

exp
(

2πiRe (γσ + δσ′) − π

vt
(|δw − γ|2 + |δ|2t2)

)
.
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On replacing of γ by δ and vise versa, this formula takes the form

v2θ(v; u, (σ, σ′))

=
∑

γ, δ∈O

exp
(

2πiRe (γσ′ + δσ) − π

vt
(|γw − δ|2 + |γ|2t2)

)
(5.57)

Let us now return to the series (5.49) and express it in terms of the series (5.51).
We obtain

Θ(v, u, x) =
∑

γ, δ∈O,
γ≡0 (mod m2)

x(δ) exp
(
−πv
t

(|γw + δ|2 + |γ|2t2)
)
. (5.58)

=
∑

ρ∈O/m2O

χ((m2δ + ρ)(m2δ + ρ))
∑

γ,δ∈O

exp
(
−πv
t

(|m2γw +m2δ + ρ|2) + |m2γ|2t2
)

=
∑

ρ∈O/m2O

χ(ρρ)
∑

γ,δ∈O

exp

(
−πm

4v

t
(|γw + δ + ρ/m2|2) + |γ|2t2

)

=
∑

ρ∈O/m2O

x(ρ)θ
(
m4v, u,

(
0, ρ/m2

))
.

According to (5.57), for each of the theta-series in the right side of this relation, we
can apply the inversion formula

θ
(
m4v, u,

(
0, ρ/m2

))

=
1

v2m8

∑

γ, δ∈O

exp
(

2πiRe (γρ/m2) − π

m4vt
(|γw − δ|2 + |γ|2t2)

)
,

Therefore, we came to the formula

Θ(v, u, x) =
∑

γ, δ∈O

x(δ) exp

(
−πv
y
t(|m2γw + δ|2 +m4|γ|2yt2)

)
(5.59)

=
1

v2m8

∑

ρ∈O/m2O

[χ](ρ)
∑

γ, δ∈O

exp
(

2πiRe (γρ/m2) − π

m4vt
(|γw− δ|2 + |γ|2t2)

)

=
1

v2m8

∑

γ, δ∈O

G′(x, γ) exp
(
− π

m4vt
(|γw− δ|2 + |γ|2t2

)
,

where

G′(x, γ) =
∑

ρ∈O/m2O

x(ρ) exp

(
2πi

m2
Re (γρ)

)
=

∑

ρ∈O/m2O

x(ρ) exp

(
2πi

m2
Re (γρ)

)
.

is a Gaussian sum for the ring O modulo m2. Since χ is a character modulo m, it
easily follows that x considered as a character of the ring O is again a character
modulo m . It allows us to express the Gaussian sums G′(x, γ) through a Gaussian
sums modulo m.
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Lemma 5.2. The Gaussian sum G′(x, γ) can be written in the form

G′(x, γ) =

{
m2
∑
ρ∈O/mO x(ρ) exp

(
2πi
m Re ((γ/m)ρ)

)
if γ ≡ 0 (mod m),

0 otherwise .

Proof. It is clear that the sum ρ′ +mρ′′ ranges a full system of residues of the ring
O modulo m2, when ρ′ and ρ′′ run full systems of residues modulo m. Hence we
have

G′(x, γ) =
∑

ρ′, ρ′′∈O/mO

x(ρ′ +mρ′′) exp

(
2πi

m2
Re (γ(ρ′ +mρ′′))

)

=
∑

ρ′∈O/mO

x(ρ′) exp

(
2πi

m2
Re (γρ′)

) ∑

ρ′′∈O/mO

exp

(
2πi

m
Re (γρ′′)

)
.

Set γ = a1 + ia2, ρ′′ = b1 + ib2, then the inner sum on the right can be computed
in the form

∑

ρ′′∈O/mO

exp

(
2πi

m
Re (γρ′′)

)
=

∑

b1, b2∈Z/mZ

exp

(
2πi

m
(a1b1 − a2b2)

)

=

{
m2 if a1 ≡ a2 ≡ 0 (mod m) ⇔ γ ≡ 0 (mod m),

0 otherwise.
�

This lemma implies that the inversion formula (5.59) can be rewritten in the
form

Θ(v, u, x) =
∑

γ, δ∈O,
γ≡0 (mod m2)

x(δ) exp
(
−πv
t

(|γw + δ|2 + |γ|2t2)
)
. (5.60)

1

v2m6

∑

γ, δ∈O,
γ≡0 (mod m)

G(x, γ) exp
(
− π

m4vt
(|γw − δ|2 + |γ|2t2

)
,

where

G(x, γ) =
∑

ρ∈O/mO

x(ρ) exp

(
2πi

m2
Re (γρ)

)
.

Analytic continuation of 1−ray series. Here we shall outline the proof of the
following theorem.

Theorem 5.3. Let G1 = F |T (χ, 1) be the twist of a cusp form F ∈ Nk(Γ) with a

primitive Dirichlet character χ modulo m > 1 and the unit p−matrix, and let

RG1
(s) =

∞∑

r=1

χ(2r)f(r1)

rs
(Re s > k + 1), (5.61)
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where f(N) are Fourier coefficients of F , be the 1−ray series of G1. Then the

function

ΨF (s, χ) = Γ(s)Γ(s− k + 2)LO(s− k + 2, x)RG1
(s), (5.62)

where LO(s, x) is the L−function (5.14) of the ring O = O(G), can be continued

analytically to the whole s−plane as a meromorphic function having at most one

simple pole at the point s = k.

Proof. With the help of integral representations (5.43) and (5.50) we obtain the
identity

23−2sπk−2s−2ΨF (s, χ)

=

∫

D(Π0(m2))

(∫ ∞

0

vs−k+1Θ(v, u, x)dv

)
tkG̃1(u)du (5.63)

=

∫

D(Π0(m2))

(∫ 1/m2

0

vs−k+1Θ(v, u, x)dv +

∫ ∞

1/m2

vs−k+1Θ(v, u, x)dv

)
tkG̃1(u)du

= I1(s) + I2(s),

where

I1(s) =

∫

D(Π0(m2))

(∫ 1/m2

0

vs−k+1Θ(v, u, x)dv

)
tkG̃1(u)du,

I2(s) =

∫

D(Π0(m2))

(∫ ∞

1/m2

vs−k+1Θ(v, u, x)dv

)
tkG̃1(u)du,

valid if Re s is sufficiently large, say, Re s > k + 1. With the replacement of v by
1/m4v and using the inversion formula (5.60) with 1/m4v in place of v, we can
rewrite the first integral in the form

I1(s) = m4k−4s−8

∫

D(Π0(m2))

(∫ ∞

1/m2

vk−s−3Θ(1/m4v, u, x)dv

)
tkG̃1(u)du

= m4k−4s−6

∫

D(Π0(m2))

( ∑

γ, δ∈O,
γ≡0 (mod m)

G(x, γ)

∫ ∞

1/m2

vk−s−1

× exp
(
−πv
t

(|γw − δ|2 + |γ|2t2
)
dv

)
tkG̃1(u)du

= m4k−4s−6
∑

γ, δ∈O, (γ,δ)6=(0,0),
γ≡0 (mod m)

∫

D(Π0(m2))

(
G(x, γ)

∫ ∞

1/m2

vk−s−1

× exp
(
−πv
t

(|γw − δ|2 + |γ|2t2
)
dv

)
tkG̃1(u)du

+m4k−4s−6G(x, 0)

∫

D(Π0(m2))

(∫ ∞

1/m2

vk−s−1dv

)
tkG̃1(u)du

= I ′1(s) +
m2k−2s−6G(x, 0)

s− k

∫

D(Π0(m2))

tkG̃1(u)du, (5.64)
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where

I ′1(s) = m4k−4s−6
∑

γ, δ∈O, (γ,δ)6=(0,0),
γ≡0 (mod m)

∫

D(Π0(m2))

(
G(x, γ)

∫ ∞

1/m2

vk−s−1

× exp
(
−πv
t

(|γw − δ|2 + |γ|2t2
)
dv

)
tkG̃1(u)du.

It follows from relations (5.63) and (5.64) that

23−2sπk−2s−2ΨF (s, χ)

= I ′1(s) + I2(s) +
m2k−2s−6G(x, 0)

s− k

∫

D(Π0(m2))

tkG̃1(u)du (5.65)

if, say, Re s > k+1. In the same way as it was done in the paper [3, §3.8] for the case
m = 1 one can check that all integrals to the right of this relation are absolutely
and uniformly convergent for all s and are therefore holomorphic functions of s:
it follows from an estimate analogous to [3, Proposition 3.7.1(II)] that the inner
integrals in I ′1(s) and I2(s) are finite for all s, and if t → 0 (respectively, ∞) and
|w| is bounded, they tend to infinity not faster than t−c (respectively, tc), where c
is a positive constant; the fundamental domain D(Π0(m2)) is a union of a compact
set and finitely many neighborhoods of parabolic vertices, that is, points where
D(Π0(m2)) goes out to the boundary of L = L3 at inequivalent parabolic fixed

points of the group Π0(m2); since G̃1 together with F is a cusp form it follows from
the definition of cusp forms that, as u tends from within of D(Π0(m2)) to one of

its parabolic vertices, G̃1 tends to zero like exp(−c′/t) (respectively, exp(−c′t) if
this vertex lies in the plane t = 0 (respectively, at infinity); hence all of the integral
in (5.65) are bounded on the fundamental domain, and since it has finite invariant
volume the integral are finite for all s. �

On analytic continuation of L-functions of cusp forms for genus 2.

Theorem 5.4. Let F ∈ Nk(Γ) be an eigenfunction for all m−regular Hecke ope-

rators for the group Γ, and χ – a primitive Dirichlet character modulo m > 1. Let

us suppose that the 1−ray series (5.61) of the twist G1 = F |T (χ, 1) of F with

character χ and the unit p−matrix is not identical zero. Then the L−function

(5.6) of F with the character χ has analytic continuation on the whole s−plane as

a meromorphic function, and the function

Γ(s)Γ(s− k + 2)LF (s, χ) (5.66)

where Γ is the gamma-function, is a meromorphic function having at most one

simple pole at the point s = k.

Proof. By Theorem 5.1 for G = G1 we obtain the identity

g(1)Γ(s)Γ(s− k + 2)LF (s, χ)

= Γ(s)Γ(s− k + 2)LO(G)(s− k + 2, x)RG1
(s)g(1)
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valid in a right half-plane. By Theorem 5.3, the last function can be continued
analytically to the whole s−plane as a meromorphic function having at most one
simple pole at the point s = k. Hence, the same is true and for the function (5.66),
since the assumption RG1

(s) 6≡ 0 is equivalent to the condition g(1) 6= 0. �

Remarks. The restriction RG1
(s) 6≡ 0 is not critical one and was selected just to

simplify calculations. In order to avoid it one has no other choice, but to consider
in the same way an arbitrary N−ray series (5.10), as it was done in [3] for the
case m = 1. Another natural question, the question on functional equations of
L−functions when m > 1 seems to be more enigmatic. Something prevents to get
a functional equation of usual form even with all simplifying assumptions.
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