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KAWAGUCHI-SILVERMAN CONJECTURE FOR SURJECTIVE
ENDOMORPHISMS

SHENG MENG, DE-QI ZHANG

ABSTRACT. We prove the Kawaguchi-Silverman conjecture (KSC), about the equality of
arithmetic degree and dynamical degree, for every surjective endomorphism of any (pos-
sibly singular) projective surface. In high dimensions, we show that KSC holds for every
surjective endomorphism of any Q-factorial Kawamata log terminal projective variety
admitting an int-amplified endomorphism, provided that KSC holds for any surjective
endomorphism with the ramification divisor being totally invariant and irreducible. In
particular, we show that KSC holds for every surjective endomorphism of any rationally
connected smooth projective threefold admitting an int-amplified endomorphism. The
main ingredients are the equivariant minimal model program, the effectiveness of the

anti-canonical divisor and a characterization of toric pairs.
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We work over an algebraically closed field k of characteristic zero. The Kawaguchi -

Silverman Congjecture (KSC for short, see [16]) asserts that for a surjective endomorphism
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f: X — X of a projective variety X over Q, the arithmetic degree ay(z) of any point
with Zariski dense f-orbit is equal to the first dynamical degree d¢ of f (cf. Definitions
2.2 and 2.3).

Conjecture 1.1. (Kawaguchi-Silverman Conjecture = KSC) Let f : X — X be a sur-

jective endomorphism of a projective variety X over Q. Then the following hold.

(1) The limit defining arithmetic degree a¢(x) exists for any x € X(Q).
(2) If the (forward) orbit Os(x) = {f™(x)|n > 0} is Zariski dense in X, then the

arithmetic degree of x is equal to the dynamical degree of f, i.e., ay(z) = dy.

Remark 1.2. The original conjecture is formulated for dominant rational self-maps
of smooth projective varieties. In our setting, Conjecture 1.1 (1) has been proved by
Kawaguchi and Silverman themselves (cf. [15]); more precisely, as(z) is either 1 or the

absolute value of an eigenvalue of f*|yi(y) for any x € X(Q). In particular, ay(x) < d;.

Conjecture 1.1 (2) has been proved at least in the following cases.

(i) f is polarized ([15, Theorem 5)).
(ii) X is a smooth projective surface and f is an automorphism ([14, Theorem 2(c)]).
(iii) X is a smooth projective surface ([22, Theorem 1.3]).

(iv) X is a Mori dream space (eg. of Fano type; see [21, Theorem 4.1, Corollary 4.2]).

(vi) X is a Hyperkéhler variety ([20, Theorem 1.2]).

)
)
)
(v) X is an abelian variety ([15, Corollary 32|, [38, Theorem 2]).
)
(vii) X is a smooth projective 3-fold with x(X) = 0 and deg f > 1 ([20, Prop 1.6]).

First, as a warmup, we look at a surjective endomorphism f of a (possibly singular)
surface X. By taking the normalization which is f-equivariant, we may assume X is
normal. When f is an automorphism, one can further take an f-equivariant resolution
and reduce to the smooth case; see [I1, Theorem 2(c)]. When f is non-isomorphic,
Wabhl [10, Theorem 2.8] showed that X has at worst log canonical (lc) singularities. The
smooth case is done by Matsuzawa, Sano and Shibata [22, Theorem 1.3], by reducing the
problem to three precise cases: P!-bundles, hyperelliptic surfaces, and surfaces of Kodaira
dimension one.

However, for the singular case, it is in general not possible to find an f-equivariant
resolution. Nevertheless, we are able to run an f-equivariant minimal model program
(MMP) after iterating f; see Section 4. Our key observation is Theorem 5.2 (see also
Theorem 5.4) which shows that the only troubled case of Fano contraction, involved in the
KSC, is in fact of product type; see also Theorem 8.6 for a higher dimensional analogue.
Conjecture 1.1 is thus fully solved for surfaces in Theorem 1.3.

When deg(f) > 2, our proof does not depend on (and recover) [22, Theorem 1.3].
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Theorem 1.3. KSC holds for any surjective endomorphism of a projective surface.

We now look at a higher dimensional projective variety X. A surjective endomorphism
P : X — X is said to be g-polarized if P*H ~ gH for some ample (integral) Cartier
divisor H and ¢ > 1. A surjective endomorphism Z : X — X is said to be int-amplified if
I*L — L = H for some ample Cartier divisors L and H. Every polarized endomorphism
is int-amplified. See [21], [20], [28] and [29] for properties of such P or Z.

Let f: X — X be a (not necessarily int-amplified) surjective endomorphism. We wish
to run an MMP f-equivariantly (after replacing f by a positive power). On the one hand,
to run an MMP, we need to assume that X has only mild singularities, eg. Q-factorial
Kawamata log terminal (klt) singularities; see [19, Definition 2.34], [I]. On the other
hand, for the f-equivariance, we need to assume that X admits at least one int-amplified
endomorphism; see [28, Theorems 1.1 and 1.2].

Therefore, in higher dimensions, we focus on the following question:

Question 1.4. Let X be a normal projective variety which has only Q-factorial Kawa-
mata log terminal (klt) singularities and admits an int-amplified endomorphism. Does

KSC hold for every surjective endomorphism of X ?

In [21, §5], Matsuzawa provided a possible solution by adding three more assumptions:
the anti-litaka dimension k(X,—Kx) > 0, X being rationally connected, and the flip
termination conjecture. The flip termination conjecture is proved when dim(X) < 3
(cf. [30], [37]). However, it remains very difficult in higher dimensions. On the other hand,
it is proved in [5, Theorem 1.1] of authors’ joint paper that —Kx is numerically effective
when X admits a polarized endomorphism. This result was further generalized by the
first author to the int-amplified case [24, Theorem 1.5]. In general, a numerically effective
divisor may not be effective. Nevertheless, we are able to strengthen [24, Theorem 1.5]

and show below that —Kx is indeed effective, or equivalently (X, —Kx) > 0.

Theorem 1.5 (cf. Theorem 6.2). Let X be a Q-Goreinstein normal projective variety
admitting an int-amplified endomorphism. Then we have:
(1) —Kx ~g D (Q-linear equivalence) for some effective Q-Cartier divisor D.
(2) Suppose further the anti-Iitaka dimension k(X,—Kx) = 0. Then D is a reduced
Weil divisor such that g~ (D) = D and g|x\p : X\D — X\D is quasi-étale, i.c.,

étale in codimension 1, for any surjective endomorphism g of X.

In view of Theorem 1.5, we are led to the case k(X,—Kx) = 0, or (X, —Kx) > 0.
In [21, Proposition 3.6] (cf. Proposition 2.7), Matsuzawa showed that KSC holds for f

if f*D ~ 6;D with (X, D) > 0. In general, one cannot weaken the linear equivalence
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assumption here to numerical equivalence if H'(X,Ox) # 0. However, we are able to

prove the following, by using the anti-litaka fibration and the Chow reduction; see §7.

Proposition 1.6. Let f : X — X be a surjective endomorphism of a Q-Goreinstein
normal projective variety X with the anti-litaka dimension k(X,—Kx) > 0. Suppose
[*Kx = 6;Kx (numerical equivalence). Then KSC holds for f.

Let 7 : X — Y be a finite surjective endomorphism of normal projective varieties.
Denote by R, the ramification divisor of 7 so that Ky = n*Ky + R,. For a sur-
jective endomorphism f : X — X, it is said to have totally invariant ramification if
f~'(Supp Ry) = Supp R;.

By another key observation (cf. Proposition 9.2) and induction on the dimension, after
running an equivariant minimal model program, we may assume f*Kx = d;Kx, or else
KSC holds. Together with Proposition 1.6, we further show that for Question 1.4 we are
only left with the following case. Here, we remark in advance that Condition (A5) below
is implied by Conditions (A1) - (A4); see Theorem 8.6.

Case TIR, (Totally Invariant Ramification case). Let X be a normal projective
variety of dimension n > 1, which has only Q-factorial Kawamata log terminal (klt)
singularities and admits an int-amplified endomorphism. Let f : X — X be a surjective

endomorphism. Moreover, we impose the following conditions.

(A1) The anti-litaka dimension x(X, —Kx) = 0; —Kx is nef, whose class is extremal
in both the nef cone Nef(X) and the pseudo-effective divisors cone PE'(X).

(A2) f*D = 64D for some effective Q-Cartier irreducible divisor D ~qg —K.

(A3) The ramification divisor of f satisfies Supp Ry = D.

(A4) There is an f-equivariant Fano contraction m: X — Y with §; > 67, (> 1).

(A5) dim(X) > dim(Y) +2 > 3.

Precisely, we have the following result.

Theorem 1.7. Let X be a normal projective variety having only Q-factorial Kawamata
log terminal (kit) singularities and an int-amplified endomorphism. Then we have:
(1) If Kx is pseudo-effective, then KSC holds for any surjective endomorphism of X .
(2) Suppose that KSC holds for Case TIR (for those flx, : X; — X appearing in any
equivariant MMP starting from X ). Then KSC holds for any surjective endomor-
phism f of X.

Now Question 1.4 can be reduced to the following:

Question 1.8. Does there exist f : X — X satisfying Case TIR (plus, if necessary, that
X s rationally connected as defined below)? If such f exists, does it satisfy KSC?
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Remark 1.9. Condition (A5) of Case TIR implies that dim(X) > 3. Recently, Mat-
suzawa and Yoshikawa constructed in [23, §7] an interesting example: a klt rational
surface X satisfying all the conditions of Case TIRy except (A4) and (A5). Moreover,
X admits an (equivariant) quasi-étale cover which is a (smooth) ruled surface over an

elliptic curve, and the totally invariant divisor D there is an elliptic curve.

A projective variety X is said to be rationally connected, in the sense of Campana and
Kollar-Miyaoka-Mori ([1], [18]), if two general points of X (C) are connected by a rational
curve, after taking one (and hence every) embedding of the defining field of X into C;
see also [17, Definition 3.2, Exercise 3.2.5].

Let X be a rationally connected smooth projective variety admitting an int-amplified
endomorphism f with totally invariant ramification. In [27, Corollary 1.4], the authors
showed that X is then toric if f is polarized. For the int-amplified case, the difficulty lies
in showing the semistablity for the reflexive sheaf of germs of logarithmic 1-forms; see

Section 10 for the details. Nevertheless, we are able to prove the following:

Proposition 1.10. (c¢f. Proposition 10.7) Let f : X — X be an int-amplified endo-
morphism of a rationally connected smooth projective variety X with totally invariant

ramification, i.e., f~'(Supp R;) = Supp Ry. Suppose that X admits some MMP
X=X - ->X, Y =P

where X; --+ X;11 is birational and X, — Y s a Fano contraction. Then X; is a toric

variety for each i. In particular, KSC holds for any surjective endomorphism of X;.

By Proposition 1.10, one can rule out Case TIR3 during any MMP starting from a

rationally connected smooth projective threefold. Namely, we have:

Theorem 1.11. Let X be a rationally connected smooth projective threefold admitting

an int-amplified endomorphism. Then KSC holds for any surjective endomorphism of X.

Acknowledgement. Many thanks to Y. Matsuzawa for inspiring discussions, to Max
Planck Institute for Mathematics, Bonn for the first author’s Postdoc Fellowship, to
organisers of Simons Symposium on Algebraic, Complex and Arithmetic Dynamics, May
2019, for the opportunity of a talk, and NUS for an ARF (both to the second author).

2. PRELIMINARIES

Notation and Terminology. Let X and Y be projective varieties of dimension n. Let
f X — X be a surjective endomorphism and 7 : X — Y a finite surjective morphism.

We say m is quasi-étale if it is étale in codimension 1.
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Two R-Cartier divisors D; of X are numerically equivalent, denote as D; = Ds, if
(D1 — Ds) - C = 0 for any curve C on X. Two r-cycles C; of X are weakly numerically
equivalent, denoted as Cy =, Cy, if (C} — Cy) - Ly - -+ Ly, = 0 for all Cartier divisors L;.
The numerical equivalence implies weak numerical equivalence; see [26, Section 2].

We use the following notation throughout the paper unless otherwise stated.

Pic(X) the group of Cartier divisors of X modulo linear equivalence ~
Pick(X) Pic(X) ®z K with K= Q,R,C

Pic’(X) the group of Cartier divisors of X algebraically equivalent to 0
Picg(X)  Pic’(X) ®z K with K= Q,R,C

NS(X) Pic(X)/ Pic’(X), the Néron-Severi group

N'(X) NS(X) ®z R, the space of R-Cartier divisors modulo numerical
equivalence =

NSk (X) NS(X) ®z K with K = Q,R,C

N, (X) the space of r-cycles modulo weak numerical equivalence =,

N"(X) the dual space of N,.(X), used briefly only in Lemma 8.3

v the pullback action on V', which is any group or space above

felv the pushforward action on V', which is any group or space above

Nef (X) the cone of nef classes in N*(X)

NE(X) the cone of pseudo-effective classes in Ny(X)

PE'(X) the cone of pseudo-effective classes in N*(X)

R, the ramification divisor of m assuming that X and Y are normal

Supp D the support of D = > a,D; which is | J; D;, where a; > 0 and D;
are prime divisors

SEnd(X)  the monoid of all the surjective endomorphisms of X

k(X, D) litaka dimension of a Q-Cartier divisor D

p(X) Picard number of X which is dimg N*(X)

Definition 2.1. Let f : X — X be a surjective endomorphism of a variety X and Z C X
a subset. Z is said to be f-invariant (resp. f~'-invariant) if f(Z) = Z (resp. f~1(Z) =
Z). Z is said to be f-periodic (resp. [~'-periodic) if f*(Z) = Z (vesp. f~5(Z) = Z) for

some s > 0.

Definition 2.2. (Dynamical degree; o7, ¢f) Let f : X — X be a surjective endomorphism
of a projective variety X. The (first) dynamical degree 67 of f is defined as the spectral
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radius of f*|yi(x). Another equivalent definition is

5f — lim ((fm)*H Hdim(X)—l)l/m’

m—+o00
where H is any nef and big Cartier divisor of X. Denote by ¢¢ the minimum of eigenvalues
of f*\Nl(X). When X is smooth over the complex field, d; (resp. ¢f) is equal to the

maximum (resp. minimum) of eigenvalues of f*|giixr) (cf. [7], [8, §4]). Note that
dps = (7).

Definition 2.3. (Weil height function and arithmetic degree) Let X be a normal projec-
tive variety defined over Q. We refer to [16] or [21, Section 2.2] for the detailed definition

of the Weil height function hp : X(Q) — R associated with some R-Cartier divisor D on

X. Here, we simply list some fundamental facts which will be used later.

e hp is bounded below outside Supp F for any effective Cartier divisor F.

® hya.p, =y aihp, + O(1) where O(1) means some bounded function.

o Let m: X — Y be a surjective morphism of normal projective varieties and B
some R-Cartier divisor of Y. Then hp(n(z)) = hy-p(z) +O(1) for any z € X (Q).

The arithmetic degree ap(x) of f at x € X(Q) is defined as

ap(r) = lim max{l,hH(fm(x))}l/m,

m—+00
where H is an ample Cartier divisor. This limit exists and is independent of the choice
of H (cf. [15, Theorem 2|, [16, Proposition 12]). Moreover, ay(z) is either 1 or the
absolute value of an eigenvalue of f*[yi(x) (cf. [15, Remark 23]). Note that a;(z) < d;

and ays(z) = ay(x)®. This allows us to replace f by any positive power whenever needed.

In the rest of this section, we list several fundamental results about KSC which are

important and will be frequently used in the rest of the paper.

Lemma 2.4. Let m : X --» Y be a dominant rational map of projective varieties. Let
f: X —=>Xandg:Y —Y be surjective endomorphisms such that gon = wo f. Then
dg < 0f. Further, if ™ is generically finite, then o, = dy.

Proof. For the convenience of the reader, we give a quick proof of this well known result.
Let W be the graph of m and px : W — X and py : W — Y the two projections. Here
px is a birational morphism and py is a surjective morphism. Denote by h : W — W

the lifting of f. Let H be any ample Cartier divisor of X. By the projection formula,

5=l [(f")7H - HOCSU = Y (W) (5 H) - (pi H)Y OV =,

m——+00 m——+00
since pi H is nef and big. Note that pi : N'(Y) — N'(W) is injective. So d, < d;.
Suppose 7 is generically finite. Let A be an ample divisor of Y. Then p} A is nef and
big. A similar argument shows that d, = d;. O
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The proof of the following lemma is taken from [21, Lemma 5.6].

Lemma 2.5. Let 7 : X --+ Y be a dominant rational map of projective varieties. Let
f: X —=>Xandg:Y — Y be surjective endomorphisms such that gom = mo f. Then
the following hold.

(1) Suppose m is generically finite. Then KSC holds for f if and only if KSC holds

for g.
(2) Suppose oy =6, and KSC holds for g. Then KSC holds for f.

Proof. For (1), by taking the graph of , it suffices for us to consider the case when 7 is
a generically finite surjective morphism. By Lemma 2.4, 6y = d,. Let x be a closed point

of X. It is clear that Oy(z) = X if and only if Oy(m(x)) = Y. Take any = € X with
Zariski dense orbit. Let H be an ample Cartier divisor of Y. We have

hi (9" (7(2))) = hu(x(f™(2))) = hreur (f" (2)) + O(1).
So ay(m(x)) < ag(x). Since 7 is generically finite, we may write 7*H = A 4+ E for some
ample Cartier divisor H and effective Cartier divisor E after replacing H by a multiple.
There exists an infinite sequence ny < ny < --- such that {f™(x)|i=1,2,---} is Zariski

dense in X and f™(z) € Supp E. Since hg is bounded below outside Supp £, we have

hi (g™ (7 (2))) = ha(f"(2)) + he(f"(x)) + O(1) = ha(f"(x)) + O(1).
This implies that a,(7(z)) > ag(x). So (1) is proved.

For (2), we may assume that 7 is a surjective morphism by (1). By the first equality,
we have ¢, = o, (m(2)) < ay(x) <y and (2) is proved. O

Lemma 2.6. (¢f. [35, Lemma 3.2]) Let f : X — X and g :' Y — Y be two surjective
endomorphisms of projective varieties. Suppose KSC holds for both f and g. Then KSC
holds for f x g.

Proposition 2.7. (¢f. [21, Proposition 3.6]) Let f : X — X be a surjective endo-
morphism of a normal projective variety X. Suppose f*D ~q 07D for some effective
Q-Cartier divisor with Iitaka dimension (X, D) > 0. Then KSC holds for f.

Theorem 2.8. (¢f. [38, Theorem 2|) Let X be a Q-abelian variety, i.e., it has a quasi
étale cover by an abelian variety. Then KSC holds for any surjective endomorphism of
X.

Proof. Let g : X — X be a surjective endomorphism. There exists a finite surjective
morphism 7 : A — X with A being an abelian variety, such that ¢ lifts to a surjective
endomorphism f : A — A (cf. [31] or [5, Corollary 8.2]). Then the result follows from
[38, Theorem 2] and Lemma 2.5. O
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3. PULLBACK ACTION ON Pic(X)
In this section, we discuss the relation between f*[p;cox) and f*|x1(x)-

Proposition 3.1. Let f : A — A be an isogeny of an abelian variety A. Denote by
Ac = A®z C and fc : Ac — Ac the induced linear map. Let X be an eigenvalue of fc.
Then vy < |A\? < d; (cf. Definition 2.2).

Proof. After embedding the defining field of A and f in C, we may assume that A is
defined over C. Suppose fc(z) = Az for some A # 0 and 0 # = € Ac. Let Py € Z[t]
be the characteristic polynomial of f*|g1(4z). Then Ps(f) = 0 and hence Ps(fc) =
(Pr(f))c = 0. In particular, Ps(fc)(x) = 0. Then A is a root of Py and hence an
eigenvalue of f*|g1(az). Therefore, |A|? is an eigenvalue of f*|p1.1(4 ). The proposition

is proved. O

Lemma 3.2. Let f : A — A be a surjective endomorphism of an abelian variety A. Let
fY:AY — AY be the dual endomorphism. Then 65 = 0pv and 1y = tyv.

Proof. We may replace the base field by C. Note that the dual of a translation is still a
translation and the pullback action of a translation on N*(A) is always an identity. So we
may assume that f is an isogeny. Let my € Z[t] be the minimal polynomial of f*|z1(4z).
Then my(f) =0 and mg(f¥) = ms(f)” = 0. A dual argument shows that m; is also the
minimal polynomial of (fY)*|g1(av z). Therefore, f*|g11(ar) and (f¥)*|g11(av ) have the

same eigenvalues. The lemma is proved. U

Proposition 3.3. Let f : X — X be a surjective endomorphism of a normal projective
variety X whose Albanese morphism is surjective. Let A be an eigenvalue of f*|PiC(%(X).
Then vy < |A? < dy.

Proof. Let 7 : X — A be the Albanese morphism. Note that A is the dual of Pic’(X).
Denote by g := f|4. Then g¥ = J*pico(x) +a for some a € Pic’(X). Since 7 is surjective,
we have tf < 15 = tgv_q < 0gv_q = 04 < 07 by Lemma 3.2. Then the result follows from
Proposition 3.1. U

Proposition 3.4. Let f : X — X be an int-amplified endomorphism of a normal pro-

jective variety X. Then all the eigenvalues of f*|picy(x) are of modulus greater than 1.

Proof. Note that NS¢ (X) = Pice(X)/ Picg(X) and all the eigenvalues of f*|ns.(x) are of
modulus greater than 1 by [24, Theorem 1.1]. By Proposition 3.3, all the eigenvalues of

f *|Pic(% (x) are of modulus greater than 1. The result follows. U

Lemma 3.5. (c¢f. [I5, Lemma 19]) Let f : X — X be a morphism. Then there is a monic
integral polynomial Py(t) € Z[t] with the property that Py(f*) annihilates Pic(X).
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Definition 3.6. Let f : X — X be a surjective endomorphism of a projective variety X.
Let D € Picg(X). Denote by V(D) the subspace of Picg(X) spanned by {(f™)*D}n>o-
Denote by E;(D) the convex cone of effective R-Cartier divisors in V;(D). Note that

E;(D) does not contain any line. However, the closure of E¢(D) may contain lines.
We need the following to show the effectiveness of anti-canonical divisor in Section 6.

Proposition 3.7. Let f : X — X be a surjective endomorphism of a projective variety
X. Then the following hold.

(1) For any D € Picg(X), Vi(D) and E¢(D) are finite dimensional and f*|pic,(x)-
wnvariant.

(2) fof* = f*f. = (deg f)id on Picg(X).

Proof. By Lemma 3.5, V(D) is finite dimensional. Clearly, f*(V;(D)) C V¢(D). By the
projection formula, f,f* = (deg f)id on Pic(X). So f*|pics(x) is injective, hence f,f* =
f*f. on V¢(D). Note that f*D is effective if D is effective. So f*(E¢(D)) = E¢(D). O

4. EQUIVARIANT MINIMAL MODEL PROGRAM FOR SURFACES

In this section, we recall the (monoid) equivariant minimal model program for a (pos-

sibly singular) normal projective surface admitting a non-isomorphic endomorphism.

Lemma 4.1. Let X be a normal projective surface and C' an irreducible curve on X.
Then there exists an integer ng > 0 (depending only on X ) such that ngC =, D (weak

numerical equivalence) for some (integral) Cartier divisor D.

Proof. Let Dy,--- , D, be (integral) Cartier divisors which form a basis of N'(X). Denote
by A := (D; - Dj)1<; j<r the intersection matrix which is invertible by the Hodge index
theorem. Then there is some D = " a;D; such that D-D; = C- D; € Z for each i. Since
(ay,---,a,) € A=Y (Z") C Z"/ det(A), we are done by letting ny = det(A). O

Let X be a normal projective surface. By [12, Lemma 3.2], there is a natural embedding
N'(X) € N;(X). Let C be an irreducible curve on X. We say that C has negative self-
intersection if C? ;= D? < 0 for some D € N*(X) with D =,, C, which is independent
of the choice of D (cf. Lemma 4.1). Denote by Rc := R>¢[C] the ray generated by [C]
in NE(X). Denote by X¢ the union of curves whose classes are in Ro. Let f: X — X
be a surjective endomorphism. The projection formula implies that f(3¢) = X5 and
f7Y(3¢) = B¢ for any curve €7 with f(C') = C; see [28, Lemma 4.2].

Lemma 4.2. Let X be a normal projective surface with only log canonical (lc) singulari-

ties. Let m: X — 'Y be a divisorial contraction of some K x-negative extremal ray having
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the exceptional divisor E =) E; with E; irreducible. Then Y has only lc singularities.
Further, E? <0 and X, = E.

Proof. Y is lc by [11, Theorem 3.3]. In particular, Ky is Q-Cartier.

Write Kx ~q 7Ky + > a;E;. Since Kx - E; < 0, we have a; > 0 for each i by the
negativity lemma (cf. [19, Lemma 3.39]). Note that the rays Rp, = Rp, in Ni(X) and
Yg, = E. Then E) =, t(>_ a;E;) for some t > 0. Since (> a;E;) - By = Kx - B <0, we
have E? < 0. O

Let X be a normal projective surface. Denote by S(X) the set of all irreducible curves

C on X with negative self-intersection and ¥ being a finite union of irreducible curves.

Lemma 4.3. (¢f. [31]) Suppose X is a normal projective surface. Then we have:

(1) The action SEnd(X) on S(X), via (f,C) — f(C), is well defined.
(2) Suppose X has a non-isomorphic surjective endomorphism. Then S(X) is finite;
and f~(C) = C for any f € SEnd(X) and C € S(X) where ty = |S(X)|!.

Proof. For (1), let f € SEnd(X), C' € S(X). By Lemma 4.1, n,C =, D for some fixed
integer ny > 0 and (integral) Cartier divisor D. Write f,C' = df(C). Then f(C) =,
f«D/(dn). By the projection formula,

F(C)? = (f.D)*/(d*n?) = (deg f/d*)C* < 0.

On the other hand, ¥y = f(X¢). Therefore (1) is proved.
For (2), let g € SEnd(X) be a non-isomorphic one.

Claim 4.4. For any f € SEnd(X) and C € S(X), f~1f(C)=C.

Since f1f(X¢) = ¢, our f~! induces a bijection between the (finitely many) irre-

ducible components of Xty and X¢. Since C C f~1f(C), the claim is proved.
Claim 4.5. For some t > 0, ¢'(C) C Supp Ry, where R, is the ramification divisor of g.

Suppose the contrary. By Claim 4.4, we have ¢g*(¢*(C)) = ¢"~*(C) and hence (¢'),.C =
(deg g)'¢"(C) for any t > 0. Therefore,

g'(0)? = (deg g)*C* < 0.

By Lemma 4.1, n2g"(C')? € Z, for any t > 0. Note that C? < 0 and degg > 1. Then we
get a contradiction by letting ¢t > 1. The claim is proved.
Denote by

So(X) :={C € S(X)|C C Supp R, }
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which is a finite set. For any C € S(X), ¢'(C) = ¢(C) € Sp(X) for some i > j > 0 by
Claim 4.5. Let s¢ =1 — j which is determined by C'. Then

C=g7g'(C)=g7'g’(C) = g7(C).
Claim 4.6. Let s = [[ocg,(x) Sc- Then S(X) = U2 9°(So(X)), hence it is a finite set.

Let C € S(X). By Claim 4.5, Cy := ¢'(C) € Sp(X) for some ¢t > 0. There exist some
integers a > 0 and b > 0 such that as =t+band 0 < b < s. By Claim 4.4 and the choice
of 5, we have C' = g7t¢'(C) = g7'(Cy) = g7 1g**(Co) = ¢°(Cy). The claim is proved.

Finally, by (1) and Claim 4.6, for any f € SEnd(X) and C € S(X), we have f/(C) =
f1(C) for some i > j > 0 with i —j < |S(X)|. By Claim 4.4, C = f~f/(C) = f~0=9(C).
So (2) is proved. O

A submonoid G of a monoid I' is said to be of finite-indez in T' if there is a chain
G =Gy <G <+ <G, =T of submonoids and homomorphisms p; : G; — F; such
that Ker(p;) = G;_1 and all F; are finite groups.

Theorem 4.7. Let X be a normal projective surface admitting a non-isomorphic surjec-
tive endomorphism. Then any MMP starting from X is G-equivariant for some finite-
index submonoid G of SEnd(X).

Proof. By [10, Theorem 2.8], X has only lc singularities, so one can run MMP within
the lc category (cf. [L1, Theorem 1.1]). Any MMP of X has at most p(X) steps and
involves only divisorial and Fano contractions. Let 7 : X — Y be the first step. Suppose
7 is a Fano contraction. By the finiteness of Fano contractions (cf. [28, Lemma 4.4], [20,
Lemma 6.2]), there is a submonoid G < SEnd(X) such that 7 is G-equivariant.
Suppose 7 is divisorial. By Lemma 4.2, each irreducible component of the m-exceptional
divisor is in S(X). By Lemma 4.3, S(X) is finite and there is a submonoid G < SEnd(X)
of finite index such that G|s(x) = id. So 7 is G-equivariant. Since G and hence G|y admit

non-isomorphic endomorphisms, we may replace X by Y and repeat the argument. [

5. KSC FOR SURFACES: PROOF OF THEOREM 1.3

In this section, we will prove KSC for surfaces. Indeed, we provide a very detailed
characterization of a non-isomorphic surjective endomorphism f : X — X of a nor-
mal projective surface X. Note that such X has log canonical (lc) singularities by [10,
Theorem 2.8|. In particular, the canonical divisor Ky is Q-Cartier.

First, we recall a result of Nakayama which characterizes the case when the canonical

divisor is pseudo-effective.
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Theorem 5.1. (¢f. [32, Theorem 7.1.1]) Let f : X — X be a non-isomorphic surjective
endomorphism of a normal projective surface X with Kx being pseudo-effective. Then
Kx is nef, [ is quasi-étale, and there is a quasi-étale finite Galois cover v :V — X such
that vo fy = ffov for a non-isomorphic surjective endomorphism fy of V and a positive

integer £, and that V and v satisfy exactly one of the following conditions:

(1) V is an abelian surface.
(2) V= EXT for an elliptic curve E and a smooth projective curve T of genus > 2.

Moreover, fy and f have no Zariski-dense orbit.

Proof. This follows from [32, Theorem 7.1.1] by letting the totally invariant divisor S = 0
there. In fact, we only have Cases (3) and (2) there corresponding to our Cases (1) and
(2) here. For our Case (2), we only need to check the assertion about the non-existence
of dense orbits. For this, note that fi,(F x {t}) has genus < 1 (an elliptic curve, indeed)
and it cannot dominate 7" which is of genus > 2. Thus f : V — V descends to a surjective
endomorphism h : T'— T by the rigidity lemma [0, Lemma 1.15]. Since T" has genus > 2,
this h has finite order. So fy and hence f have no Zariski-dense orbit. O

We refer to [10, Theorem 1.1 (4) iii] for the cone theorem frequently used late on.

Theorem 5.2. Let X be a normal projective surface with only log canonical singularities
and 7 : X =Y a Fano contraction with dim(Y) =1. Let f: X - X and g: Y — Y be
surjective endomorphisms such that gom = mo f. Suppose 65 > d4. Then we have:
(1) f*D ~ ;D for some semi-ample and w-ample prime divisor D with Rp being an
extremal ray of NE(X).
(2) There is a §¢-polarized endomorphism h : P* — P such that ho ¢ = ¢ o f where
¢ : X — P! is the Iitaka fibration of D.

In particular, there is a finite surjective morphism 7 : X — P xY such that (g x h)oT =

Tof.

Proof. First, X has rational singularities, hence Q-factorial (cf. [32, Lemmas 2.4.9 and
2.4.10]). By the assumption, the Picard number p(X) = p(Y) + 1 = 2.

Note that d, is a positive integer. Since 7*(N'(Y)) is an f*-invariant hyperplane of
N'(X), another eigenvalue §; of f*|y (x) is also an integer. Let F' = P! be a general fibre
of 7. Then f*F = §,F. Let Rp be another extremal ray of Nef(X). Then D - F > 0,
and f*D = §;D. We have D? = 0, for otherwise, D?* > 0 and

(6705)D* = (deg f)D* = (f*D)* = (¢5)*D*
imply that d; = d,, contradicting the assumption. Thus,
Nef(X) = PE'(X) = NE(X).
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Claim 5.3. Some choice of D has k(X, D) > 0.

Once Claim 5.3 is proved, the new D has x(X, D) = 1 since D? = 0. Then we have
D ~q D, + D, ~¢ Dy + D, for effective Q-Cartier divisors D,, D;, D, such that Supp D,
and Supp D, are non-empty and have no common irreducible component. Since Rp is
extremal in NE(X), we have Rp = Rp, = Rp,. Then D, is nef and D, - D, = 0. So
Supp D, N Supp D, = (. In particular, D, is semi-ample. Replacing D by mD, for some
m > 0, we may assume D is base point free. Then the litaka fibration ¢ : X — B is a
morphism with B being a smooth projective curve. Note that D ~qg ¢*H for some ample
Q-Cartier divisor H of B. Let C' be any irreducible curve of X. Then ¢(C) is a point if
and only if D-C = H - ¢,C = 0. Note that f,C-D = C - f*D = 6;(C - D). So ¢(C)
is a point if and only if so is ¢(f(C)). Since the litaka fibration ¢ has connected fibres,
there is a surjective endomorphism h : B — B such that ho ¢ = ¢ o f by the rigidity
lemma (cf. [0, Lemma 1.15]). Note that F dominates B since F'- D > 0. Then B = P!
and h*|pic(p) = 07id. In particular, f*D ~q f*¢*H = ¢*h*H ~gq §¢D.

This proves the assertion (1) of the theorem. For the assertion (2), 7 is naturally
induced by the two fibrations 7 and ¢. It is finite because p(X) = p(P! x Y) = 2.

Therefore, to prove the theorem, we only need to show Claim 5.3 which will be proved
in several steps below.

Step 1. Suppose Kx - D < 0. By the cone theorem, Rp is generated by a rational
curve again denoted as D. Note that (aD — Kx)-D > 0 and (aD — Kx) - F > 0 for
a > 0. Then aD — K is ample by Kleiman’s ampleness criterion (cf. [19, Theorem 1.8])
and hence D is semi-ample by the base point free theorem (cf. [10, Theorem 2.1]). So
Claim 5.3 is proved in this case.

Step 2. From now on, we assume that Kx - D > 0. Note that
0<D-Ry=D-(Kx—f'Kx)=D -Kx—f'D-f"Kx/df=(1-64)D-Kx <0.

Then D - Ry = 0. Hence either Ry = 0 or Rp = Rkg,. If Ry =0, then Kx = f*Kx
implies that Kx is an eigenvector of N'(X). So Kx is numerically parallel to one of D
and F' and it must be the former since —Ky and D are relatively ample (but not F') over
Y. Hence 1 = 4y > 6, > 1, a contradiction. Therefore, Ry # 0 and Rp = Rg,. Write
Ry =" a;D; where a; > 0 are integers and D; are irreducible components. Since Ry ;18
extremal in NE(X), Rp, = Rp for every i.

Step 3. Suppose D; is not f~!-periodic. Then there exists infinitely many different
irreducible curves E; such that f,F; = e, F;_; for some integer e; > 0 and F; = D;. By
Proposition 3.7, E; ~q (e;/deg f)f*Ei_;. Then V¢(D;) (cf. Definition 3.6) is spanned
by {Ei}i>0. By Proposition 3.7, V;(D;) is finite dimensional. Then we have A :=
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> icr billi ~q Y5, bE; =: B where I N J = () and b;, b; are positive integers. Note that
Rp = R4 and k(X,A) > 0. So in this case, Claim 5.3 holds by taking A as new D.
Step 4. Now we may assume that f~!(D;) = D; for every i after replacing f by a
positive power. Then f*D; = ;D
Suppose Supp [y is not irreducible. Then we have Dy = tD, for some rational number

t > 0. Note that m(D; — tD,) € m*(Pic’(Y)) for some positive integer m and
[*(Dy —tDy) = §¢(Dy —tD5).

If D;—tDy ~q 0, then (X, D;) > 0, and we are done. Otherwise, D; —tD, € 7*(Pic’(Y))
is not a torsion. Hence ¢g* has an eigenvector in Picg(Y') corresponding to the eigenvalue
dy > 1; thus the condition of Proposition 3.3 cannot be satisfied, i.e., the Albanese
morphism of X is not surjective. So the genus of Y is at least 2, and then g has finite
order and all the eigenvalues of g*|Picg (v) are roots of unity, again a contradiction.

Step 5. Finally, we are left with the case that Supp Ry = D, is irreducible and
f~linvariant. Replace D by D;. Then Ky + D = f*(Kx + D). Note that

(Kx +D)-F = f*(Kx + D) - f*F/6, = 6;(Kx + D) - F.

So (Kx+D)-F=0and D-F=—-Kx-F=2.

Let X be the normalization of X Xy Y where Y is the normalization of D. Denote
by pp : X — X and Do X — Y the induced projections. Denote by ]7: X > X
the equivariant lifting of f and D := p; (D). Note that there is a diagonal embedding
D — D xy D and 7|p : D — Y is a double cover. Then D is not irreducible. Note that
the general fibre of py is a smooth rational curve. So X has only rational singularities
and is Q-factorial (cf. [32, Lemmas 2.4.9 and 2.4. 10}) Write D := 327 | D;. Replacing f
by a positive power, we may assume f ( i) = D for each i. Then f D = 5f

We assert that ps : X — D is a Fano contraction. First, deg( f) = deg(f) > 2 1mplies
that X is lc, thus we can run MMP of X (cf. [11, Theorem 1.1]). Now let C be any negative
curve of X. By Lemma 4.3, f (e ) C after replacing f by a positive power. Write
f*(C’) tC for some ¢ > 0. Then f (C ) (degf/t)C’ Now f*pl*C' pl*f C = tpl*C
Since p; is finite, pl(é) is not a point and hence either ¢ = ¢ or §,. However, 2 <0
implies that 2 = deg f deg f. Then 07 = 44, a contradiction. Thus the relative MMP
of X over D has only one step Fano contraction which is py (as asserted).

Note that D C Supp Rf. By the same argument of Step 4, since D is not irreducible,
we have k(X, D;) > 0 and hence (X, D) > 0.

So Claim 5.3 is proved in this case. This also proves the theorem. U

We now characterize the case when the canonical divisor is not pseudo-effective.
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Theorem 5.4. Let f : X — X be a non-isomorphic surjective endomorphism of a normal
projective surface X with Kx not being pseudo-effective. Then, replacing f by a positive
power, one of the following holds.
(1) f is polarized and f*|x1(xy = qid for some integer q > 1.
(2) p(X) = 2; there is an f-equivariant Fano contraction w: X — Y with 6 = gy, .
(3) p(X) = 2, there exist a finite surjective morphism 7 : X — P'xY and a surjective
endomorphism h : P* — P such that (g x h)oT =T o f.

Proof. Note that X is lc by [10, Theorem 2.8]. By [I1, Theorem 1.1] and Theorem 4.7,
replacing f by a positive power, we may run f-equivariant MMP
X=X1—-=2X,=-- =X, =Y

with m; : X; — X1 being divisorial contractions for + < r and 7, : X, — Y being a Fano
x; and g := f|y. If Y is a point, then p(X,) =1 and f, is
automatically polarized since deg f, = deg f > 1. Then f is polarized by [26, Corollary

contraction. Denote by f; := f

3.12] and further f*|y1(x) is a scalar action (cf. [20, Theorem 1.8]).

Suppose now that Y is a curve and f, is not polarized. We claim that » = 1. Replacing
X by X,_1, it suffices for us to consider the case when r = 2. Let E be the exceptional
divisor of m; : X — X5. Then f~'(E) = E and write f*E = tFE for some t > 0. Let
P := myom(E) be a point in Y. Then ¢*P = 6,P. Let F; := w3 P and F := 7{F.
Then F' = /F’; + aF where ¢ > 0 and E is the strict transform of F, in X. Since
F~1(Supp F) = Supp F, we have f~1(Supp F) = Supp F». Note that

8,Fy + 040F = 6,F = f*F = f*Fy + atE.

Therefore, t = d,. On the other hand, E* < 0 implies that ¢ = t* = deg f = deg fa,
hence the two eigenvalues of f3|y1(x,) are both d,. Since deg f > 1, f is then polarized,
a contradiction. So the claim is proved. In particular, p(X) = 2.

The theorem is finished then by applying Theorem 5.2. U

Remark 5.5. In [23, §7], Matsuzawa and Yoshikawa constructed a family of int-amplified
surjective endomorphisms f : X — X of a kit rational surface satisfying Theorem 5.4 (2)
but not the others. Their example has the properties: (X, —Kx) =0, and —Kx ~g D
with D = Supp Ry being an f~!-invariant elliptic curve.

Proof of Theorem 1.3. We may assume that X is normal after normalization by Lemma
2.5. If f is an automorphism, then we may further take an f-equivariant resolution and
KSC holds for f by [14, Theorem 2(c)| and Lemma 2.5.

Suppose f is non-isomorphic. Then X is lc by [40, Theorem 2.8]. If Kx is pseudo-

effective, then the theorem follows from Theorem 5.1, [38, Theorem 2| and Lemma 2.5.
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If Kx is not pseudo-effective, then the theorem follows from Proposition 2.7, Theorem
5.4 and Lemmas 2.5 and 2.6. U

6. EFFECTIVENESS OF —Kx: PROOF OF THEOREM 1.5

In this section, we show the effectiveness of the anti-canonical divisor of any variety

admitting an int-amplified endomorphism. Theorem 6.2 below includes Theorem 1.5.

Proposition 6.1. Let f : X — X be a surjective endomorphism of a normal projective
variety X. Let D be an effective Cartier divisor of X with k(X, D) =0 and f*D ~q¢ D+B
for some effective Q-Cartier divisor B. Then f~'(Supp D) = Supp D and Supp B C
Supp D.

Proof. Pushing forward the assumption, we get (deg f)D ~q f.D + f.B. Thus, since
k(X, f*D) = kr(X,D) =0 (cf. [39, Theorem 5.13] or Lemma 7.5), we have

71 (Supp D) = (Supp D) U (Supp B) 2 Supp B, Supp D = (Supp f.D) U (Supp f. B).

Hence Supp f***D C Supp f*D, and by DCC we eventually get the equality. Replacing
D by fI'D we may assume Supp f.D = Supp D.
Note that

Supp f*D = Supp f* fo D = Supp f.f*D = Supp D.

The first equality is from Supp D = Supp f. D, while the second follows from (deg f)D =
f«f*D ~q f* f.D (cf. Proposition 3.7) and x(X, D) =0. So f~!'(Supp D) = Supp D. O

Theorem 6.2. Let X be a Q-Gorenstein normal projective variety admitting an int-
amplified endomorphism f. Then we have:
(1) —Kx ~qg D for some effective Q-Cartier divisor D.
(2) Suppose further K(X,—Kx) = 0. Then D is an (integral) reduced effective Weil
divisor; Supp Ry = Supp D and it is f~'-invariant. Moreover g~*(D) = D, and
Supp Ry € Supp D, i.e., g|lx\p : X\D — X\D is quasi-étale, for any surjective
endomorphism g of X.

Proof. (1) We use the notation in Definition 3.6. By the ramification divisor formula,
J(—=Kx) = (=Kx) = Ry € E¢(Ry).

Therefore, —Kx € Ef(Rs) by Propositions 3.4, 3.7 and [24, Proposition 3.2]. This and
Kx being Q-Cartier, imply that —Kx ~g D for some effective Q-Cartier divisor D.

(2) Suppose x(X, —Kx) = 0. By Proposition 6.1, f~!(Supp D) = Supp D and Supp R; C
Supp D. Write D = > a;D; where D; is the irreducible components of D and a; > 0.
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Replacing f by a positive power, we may assume f~(D;) = D;. Since f is int-amplified,
we have f*D; = ¢;D; with ¢; > 1 (cf. [24, Theorem 1.1]). So

Z(qi — 1)Dz == Rf ~Q f*D — D= Zai(qi - 1)Dz

Since (X, Ry) = 0 and ¢; > 1, we have a; = 1 for each i. The last assertion of (2) follows
from Proposition 6.1 since ¢*(—Kx) — (—Kx) = R, > 0. O

7. ANTI-IITAKA FIBRATION: PROOF OF PROPOSITION 1.6

In this section, we focus on the case when f*Kx = §;Kx and x(X,—Kx) > 0. We
show that the Chow reduction of the litaka fibration 7 : X --+» Y of —Kx is f-equivariant.
By some further cone analysis, we show that f|y is d-polarized.

We first recall the definition and properties of the Chow reduction in [33, Proposition

4.14 and Definition 4.15], using the formulation in his RIMS preprint version.

Proposition 7.1 (Chow reduction). Let 7 : X --» Y be a dominant rational map from a
projective variety X to a normal projective variety Y. Then there exist a normal projective
variety T and a birational map =Y --+ T satisfying the following conditions:
(1) The graph vuor : Uyor = T of pom is equi-dimensional.
(2) Let i/ 'Y --»T" be a birational map to another normal projective variety T' such
that the graph Yyor : Iyor — 1" of 1’ o  is equi-dimensional. Then there exists
a birational morphism v : T" — T such that = v o p'.

We call the composition p o7 : X --» T above satisfying Proposition 7.1 (1) - (2) the
Chow reduction of w: X --» Y, which is unique up to isomorphism.

Theorem 7.2 below is a generalization of Nakayama [33, Theorem 4.19] with exactly the
same proof. Note that his special MRC fibration there (also a Chow reduction) is used
only to secure our following assumption that gom = 7w o f for some dominant self-map ¢
on the base of the Chow reduction 7, precisely, for him to show in [33, Proof of Theorem
4.19, page 592, lines 4-9, after the display| that his Y and Y; there are birational (to the
same W there) so that f: X — X descends to a rational self-map g: Y --» Y.

Then his argument there further shows that ¢ is a surjective endomorphism. His

polarized assumption is only used to show that ¢ is polarized.

Theorem 7.2. (cf. [33, Theorem 4.19]) Let m : X --» Y be a dominant map of normal
projective varieties with connected general fibres. Let f : X — X be a surjective endo-
morphism and g :'Y --+Y a dominant self-map such that gom = wo f. Suppose 7 is a

Chow reduction of itself. Then g is a surjective endomorphism.

We now recall some fundamental results about litaka fibrations.
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Lemma 7.3. Let X be a normal projective variety. Let Dy and Do be two effective
Cartier divisors with Dy — Dy effective and k(X, D1) = k(X, Dy). Then fort > 1, the

Litaka fibrations ¢ip, satisfy ¢ip, = 0 0 ¢1p, for some birational map o.

Proof. Let sg,- -+, 8ma) be a basis of H(X,tD;) and let to, -+ ,tye) be a basis of
H°(X,tDy) where t; = &s; (0 < i < m(1)) with div(§) = t(Dy — D;). Define p; :

X —-» P via py(z) = (so(x) 1 -+ 1 Spm1)(®)) and pa : X --» P via py(x) = (to(2) :
: tim(2)(7)), so that p; is the composition of the litaka fibration ¢;p, : X --» Y; and em-
bedding Y; C P™®). Define h : P™? ——s P via h(zg : - : Tm2) = (To 1+ 1 Tim(n))-

Then p; = h o ps. Since the litaka fibrations have connected general fibres, there ex-
ists some dominant rational map o : Y5 --+ Y; with connected general fibre such that
¢tp, = 0 © ¢p, by the universal property of Stein factorization of ¢;p,. Moreover, o is
birational since dim(Y;) = dim(Y3). O

Lemma 7.4. Let f : X — X be a surjective endomorphism of a mormal projective
variety. Let D be an effective Cartier divisor. Let ¢up : X --»Y and ¢ypop : X --» Y’
be the Iitaka fibrations with t > 1. Then g’ o ¢y p+p = ¢yp o f for some dominant rational
map g Y --» Y.

Proof. Let ¢f«;up| : X --+ Z be the dominant rational map defined by f*|tD| where |tD]
is the complete linear system of tD. Clearly, Z =Y and ¢pip| = ¢p o f. Since f*|tD|
is a sub linear system of |tf*D|, by the argument in the proof of Lemma 7.3, there is a

dominant rational map ¢’ : Y’ --+ Y such that ¢ p| = g’ © dup+p| = g’ © Gpep. U
We recall the following well-known useful result.

Lemma 7.5. (¢f. [39, Theorem 5.13]) Let f : X — Y be a surjective morphism of
projective varieties and let D be a Cartier divisor of Y. Then (Y, D) = (X, f*D).

Corollary 7.6. Let f : X — X be a surjective endomorphism of a mormal projective
variety. Let ¢_pi, © X --+ Y be the litaka fibration with m > 1. Then there is a
dominant self-map g 1Y --»Y such that go ¢_kxy, = G—mry © f-

Proof. Let ¢pp+(—ky) : X --» Y’ be the litaka fibration with m > 1. By Lemma 7.4,
G © Gmpr(—kx) = P—miy © f for some dominant rational map ¢’ : V' --» Y.

By the ramification divisor formula, we have f*(—Kx) = —Kx + Ry. By Lemma 7.5,
k(X f*(—Kx)) = k(X,—=Kx). Then ¢_,xy = 00 ¢pp(—ky) for some birational map
o0:Y' --»Y by Lemma 7.3. Let g := ¢ oo™!. Then go ¢_uxy = @iy © f- O
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Lemma 7.7. Consider the following commutative diagram of normal projective varieties

w2V x

oy ¥

Y s > 7
where ¢, p is the Iitaka fibration of some effective Cartier divisor D of X with m > 1,

ow 18 a birational morphism, oy is a birational map, and ¢w is a surjective morphism.
Let F' C PEY(W) be the minimal extremal face containing oy, D. Then ¢4, (PE'(Y)) C F.

Proof. Taking a sufficiently high resolution i : W’ — W, we have a birational morphism
owr : W' — X such that o}, |mD| = 9 + A where d is a free linear system and A is the
fixed component. Then ¢ = ¢,p © owr. Let M € d. Then M = ¢3;A for some ample
Cartier divisor A on Z.

Consider the following commutative diagram

%

W' — W
ya
J ow
Z p1 ? p2 Y

where Y is the graph of oy, p; and py are the two (birational) projections, and j is a
morphism induced by the two morphisms ¢y o7 and ¢,.
Let H be an effective Cartier divisor of Y. The class of E' := pjsA — p;H is the class

of an effective divisor for some s > 1. Note that
oysmD ~ sM+4sA = ¢3sA+sA = 7 pisA+sA = j ps H+j E'+sA = i* ¢, H+5* E'+sA.
Taking the pushforward of ¢, we have

oywsmD = ¢y, H + i.(j*E' + sA).

Since F is the minimal extremal face of PE'(W) containing o}, D, we have ¢, H € F.
Therefore, ¢}, (PE'(Y)) C F. O

Theorem 7.8. Let f : X — X be a surjective endomorphism of a Q-Goreinstein nor-
mal projective variety X such that f*Kx = qKx for some integer ¢ > 1. Suppose
k(X,—Kx) > 0. Then there is an f-equivariant dominant rational map w: X --»Y to

a normal projective variety Y such that dim(Y') > 0 and f|y is g-polarized.

Proof. Let ¢,p : X --» Z be the litaka fibration of D := —Kx with m > 1. By Corollary
7.6 and Theorem 7.2, there is a birational map oy : Y --+ Z such that 7 := a;l © OmpD

is (the Chow reduction of ¢,,p and) f-equivariant. Denote by g := f|y.
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Let W be the normalization of the graph of w. We have the following commutative
diagram

ow
— = X

low oo
y ..z
Let F be the minimal extremal face containing o, D in PE'(W). By Lemma 7.7, we
have ¢3, (PE'(Y)) C F.

Note that f lifts to a surjective endomorphism h : W — W. Since h*oy, D = qoyy, D,
we have h*(F') = F by the uniqueness of F' (cf. [25, Lemma 4.2]). Denote by (F') the
subspace in N'(WW) spanned by F. By [20, Propositions 2.9], h*|(r) is diagonalizable
with all the eigenvalues being of the same modulus ¢q. Therefore so is g*|N1(Y) since

NY(Y) = (PE*(Y)) C (F). By [26, Propositions 2.9 and 1.1], g is g-polarized. O
Now we can show Proposition 1.6 easily.

Proof of Proposition 1.6. We may assume oy > 1. Then the theorem follows directly from
Theorem 7.8, Lemma 2.5 and Proposition 2.7. U

8. CAseE TIR: CONDITIONS (Al) - (A4) IMPLY CONDITION (A5)

In this section, we show that in Case TIR, Conditions (A1)-(A4) imply Condition (Ab).
The main idea is to take the double cover as in Step 5 of the proof of Theorem 5.2.
We first recall the result below.

Lemma 8.1. (¢f. [32, Lemma 3.3.1], [31, Lemma 2.5]) Let f : X — X be a non-
isomorphic surjective endomorphism of a normal projective variety X. Let 0 : Vi, — X
be the Galois closure of f* : X — X for k > 1 and let 7, : Vi — X be the induced
finite Galois covering such that 0, = f*¥ o 1,. Then there are finite Galois morphisms

Gk, i 2 Vies1 — Vi such that Thogy, = Tii1, Tkohy = foTry1 and (deghy)/(deg gix) = deg f.

The following result about periodic subvarieties is another application of the technique
used in the proofs of [31, Theorem 3.3] and [2, Theorem 5.2].

Theorem 8.2. Let f: X — X be an int-amplified endomorphism of a normal projective
variety X. Suppose D := Supp Ry is f~'-invariant and X\D is kit. Let Z be an f~'-
periodic proper subset of X. Then Z C Supp Ry.

Proof. Tt suffices for us to consider the case when Z is irreducible and closed (cf. [5,
Lemma 7.2]). We apply Lemma 8.1 and use the notation there. Set d := deg f. Then
d = (deghy)/(deggy), and d > 1 (cf. [21, Lemma 3.7]). Denote by Uy := Vi\7, (D).
Then Uyy1 = g, ' (Uy) = hi; ' (Uy). By the ramification divisor formula, flx\p : X\D —
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X\D is quasi-étale. Hence 0|v,, 7|v,, gklv,., and hy are quasi-étale and Galois by

’Uk+1
the construction. So Uy, is kIt by [19, Proposition 5.20]. Therefore, gi|v,,, and hi|y,,, are
étale for k > 1 by [12, Theorem 1.1]. Let A be an ample Cartier divisor on X. Denote
by A := 1A and (f*A)g := 77 (f*A). Denote by Sy, := 7, '(Z). In the rest of the proof,
we always assume k£ > 1.

Suppose Z ¢« D. Then Sy, = g;l(Sk) = h,;l(Sk) and Ski1 = ¢Sk = hj Sk as cycles.

Let m = dim(Z) < dim X. By the projection formula, we have
Set1 - (FPARY ) = Seer - gi(f7A)e)™ = (deg gi) S - (ST A
and
Sk1 - (FF A = Sk - by (Ag)™ = (deg hy) S - A

Then Sy - (f*A)* = dSy - A}*. Note also that (7).S, = txZ for some integer t; > 0.
Thus, by the projection formula, we have ¢,Z - (f*A™) = dtxZ - A™. Therefore,

1<Z-A"= lim Z~L:O
i—400 dt
with the last equality by [24, Lemma 3.8], a contradiction. O

Lemma 8.3. Let m : X — Y be a surjective morphism of normal projective varieties.
Take a codimension-r cycle C € NG(Y) := N(Y) ®@g C. Suppose Y is Q-factorial and

C =, 0 (weak numerical equivalence). Then 7*C =, 0.

Proof. Let n = dim(X) > m = dim(Y') and d := n—m. If r =0, then C' = \Y for some
A e C. So C' =, 0 implies that A = 0 and hence the lemma is true.

Now assume 7 > 1. Suppose the contrary that 7*C' #,, 0. Then we can find (general)
very ample divisors H; of X such that Hy--- H,_,-7*C # 0. Since X is normal, we may
assume H; is a normal variety (cf. [30]). Inductively, by the Bertini’s theorem, we may
assume that each Z; := HiN---NHg (1 < s <n-—r)is an irreducible normal subvariety
(and a Cartier divisor) of Z;_; with dim(Zs) =n—s>r > 1, and 7|z, : Zs — 7(Zs) (s >
d) is generically finite. Then 7(Z;) =Y and m(Z;) = m(Zs—1 N Hy) = (Vyejes 7(H; N Zg)
for s > d. Note that H, := (7|z,)«(Hi|z,) (s > d) is a Q-Cartier divisor on Y since Y is
Q-factorial. In particular, m.(H;--- H,_,) = eH}, ,--- H]_, for some e > 0. Note that

n —r > d. By the projection formula:
0#£H, - H, , C=n(H - H,,) - C=eH,--H _ -C,
contradicting that C' =, 0. O

Proposition 8.4. Let f : X — X be a surjective endomorphism of a Q-factorial lc

projective variety X. Let m : X — Y be an f-equivariant Fano contraction with general
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fibre F. Suppose §y > dy,, and f*D = 67D for some w-ample D € NYX). Then D¢ #, 0
and D™ =, 0 (weak numerical equivalence) with d := dim(X) — dim(Y).

Proof. Note that D|r is ample, hence D¢ - F' = (D|p)?

Set x := D. Let {y;, h1<i<k,1<j<¢, be a basis of NS¢ (Y') such that g*(y;,) = Ay, + ¥i,4,
if j < {;, and g*(y;;) = Ay, if j = £;. For two sequences of integers, we say (a;;) < (b;,)
if for some i’ and j', ay, < by, and a;; < b;; for any i > ¢’ and for any j > j' with i =",
Let s > d be the maxirjnal int;eger such that z* §éw 0. Let (a;;) be the maximal sequence
such that >, a;; = dim(X) — s and 2* - [, yl 7 # 0. For convenience, we call (a;,) the
degree sequence of yZ Y and > ai; the i-th degree of (aj;).

Note that

fr(z* - H yj;j) = 052° - {H()\Z-yij)“i]’ + A}
] 5

where the degree sequence of each term of A is larger than (a;,). Thus z°- A = 0, so
deg f = 65 - [[ A"

Lemma 8.3 implies HZ.], y;j Y 2, 01in Y, noting that ¥ is Q-factorial (cf. [19, Corollary
3.18]). So [, yziﬁbij # 0 for some b;; > 0 and }_, (a;; +b;;) = dim(Y) Let (c;;) be the
maximal sequence such that ). c;; = > (a;; +b;;) for each i and H yZ 7 = 0. Note that

Hy% H Zyij)% + A

where the degree sequence of each term of A’ is larger than (c;;) and the i-th degree of
each term of A" is still 3 (a;; + b;;) for each i. Then A’ =0 and hence

degg = H)\izjcij.

We may write Hij yic;j = tF on X for some 0 # t € C. Since D|r is ample, we have
d . Cij
a® - [I;, u;,” # 0. Note that

f*(xd.H ) = 6fa?- H iti;)

Then
d 22, ¢;
deg f =6 - [T A7

Finally, we have 5;_‘1 =11, )\izj(cij “4) Since >_i(ci; —ai;) > 0 for each 4, Zij(cij -
a;;) = dim(Y) — (dim(X) — s) = s —d and |\;| < 0, < &5, we have s = d. O
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Lemma 8.5. Let 1 : X — Y be a degree two finite surjective morphism of normal
varieties. Let f : X — X and g : 'Y — Y be surjective endomorphisms such that
mo f=gom. Suppose g is quasi-étale, and there is no g~ *-periodic prime divisor of Y .

Then w and [ are quasi-étale.

Proof. Suppose prime divisor Q; of Y is in B, the branch locus of 7. Then 771(Q,) = P,
and Q) = 2P;, where P; is a prime divisor of X. Now 7o f = g o7 implies 2f*(P;) =
7™ g*(Q1). Thus ¢~ *(Q,) C B; since g is quasi-étale. So the set g~'(B;) is contained in
the set B;. Hence these two sets are the same since 7 is surjective. We then have B, = 0,

by the assumption. Thus, m and hence gow = 7o f and also f are quasi-étale. O
Theorem 8.6. In Case TIR, Conditions (A1)-(A4) imply Condition (A5).

Proof. We assume (Al) - (A4). We will deduce (Ab5). If dim(Y) = 0, then X is a kit
Fano variety, so k(X, —Kx) > 0, contradicting Condition (Al). Thus dimY > 1.

We still have to consider the case dim(X) = dim(Y) + 1. Let Z : X — X be an
int-amplified endomorphism. We may assume 7 is Z-equivariant, after Z is replaced by a
positive power (cf. [24, Theorem 1.10]). By Theorem 6.2, Z~!(D) = D and Supp Rz = D.

We first claim that 7|p : D — Y is finite. Since D ~g —K is m-ample and dim(D) =
dim(Y’), 7|p is generically finite. If 7|p is not finite, then D contains some curve C
contracted by 7. Since D is m-ample, D - C' > 0. However, D? =,, 0 by Proposition 8.4.
So D|p =0 (cf. [12, Lemma 3.2]) and hence D - C'= D|p - C' = 0, a contradiction. The
claim is proved.

Let X be the normalization of X Xy Y where Y is the normalization of D. Denote
by p; : X — X and Do X — Y the induced projections. Denote by ]7: X — X and
7 : X — X the equivariant liftings of f and Z. Set D:= p; *(D). Since the general fibre
F of mis P!, we have Kx - F = —2 and D - F = 2. Since there is a diagonal embedding
D — D xy D, our D is reducible. Write D := Z?Zl El with lN)Z irreducible. Replacing
f and 7 by positive powers, we may assume D; is f_l and Z~'-invariant for each .

Note that p; is a double cover and Z|x\p is quasi-étale. By Lemma 8.5, p1|g\5 and
I])}\f) are quasi-étale. Thus, K¢+ D = pi(Kx + D) ~q 0, using also the log ramificaiton
divisor formula. Then (X, D) is lc and X\ D is kit by [19, Proposition 5.20]. Further, po
has connected fibres and ps|5 : D — Y is a finite surjective morphism since so is 7|p.

Denote by

S(D;) := {x € D; | D; is not Q-Cartier at }.

Then E(IN)Z) is Z~'-invariant closed and does not dominate Y. Replacing 7 by a positive
power, po(2(D;)) is T |§1—invariant by [0, Lemma 7.5] since py has connected fibres. Let
Z = p; ' (p2(3(D;))). Then Z is T~ -invariant. By Theorem 8.2, Z C D. Then X(D;) =
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(), since D contains no fibre of Pa. S0 ZN)Z is Q-Cartier and f*lN)Z = (5le)¢ for each 7 .
Moreover, K5 is Q-Cartier and X is kit by [19, Lemma 2.27].

Since the general fibre of X — Y is still P!, K is not pseudo-effective over Y. By
the relative cone theorem (cf. [19, Theorem 3.25] and [23, Theorem 1.1]), replacing Z
by a positive power, there is an f—equivariant contraction 7 : X — B over Y of some
K g-negative extremal ray Rg. If mx is birational with £ the exceptional locus, then
pa(FE) C Y is f]%l—invariant by [5, Lemma 7.5] and hence p,*(p2(E)) is Z~'-invariant.
By Theorem 8.2, py'(pa(E)) C D, a contradiction since D does not contain any fibre
of py. So dim(X) — 1 = dim(Y) < dim(B) < dim(X). Thus the induced morphism
5 B > Y is generically finite and hence birational since p, has connected fibres.
Similarly, 7g has to be isomorphic. So ps is a Fano contraction.

Note that D; is py-ample. Then for some rational number ¢ > 0, Dy —tD, € pj(Picg(Y))
by the cone theorem (cf. [19, Theorem 3.7]). Denote by g := ﬂf,. Then §*(Dy — tDy) =
87(Dy — tDs). Note that 6; = Oy < 0y =07 (cf. Lemma 2.4). Since f]y is int-amplified
(cf. [24, Lemma 3.4]), the Albanese morphism of Y is surjective by [21, Theorem 1.8]. So
Dy — tD, ~qg 0 by Proposition 3.3. Therefore, I@'(}?, 51) > 0 and hence k(X,—Kx) =
k(X, D) > 0. This contradicts (Al). Thus (A5) holds. O

9. REDUCTION TO CASE TIR: PROOF OF THEOREM 1.7

The following result is simple but useful.

Lemma 9.1. Let f : V — V be an invertible linear map of a positive dimensional normed
real vector space V' such that f(C) = C for a closed convex cone C' C V which spans V
and contains no line. Suppose f(x) = qx for some x € C' and ¢ > 0. Suppose further
that q is the only eigenvalue of f which has modulus q. Then the ray R, generated by x

1s extremal in C.

Proof. Let I be the minimal extremal face containing z and W the space spanned by
F. Then f(F) = F and f(W) =W by (cf. [20, Lemma 2.7]). By [25, Lemma 4.2] and
[26, Proposition 2.9], all the eigenvalues of f|y are of modulus ¢. So dim(W) =1 by the

assumption. In particular, F' = R, is an extremal ray of C. U

The following is the key in the proof of Theorem 1.7 for the induction purpose.

Proposition 9.2. Let X be a Q-factorial kit projective variety. Let m : X — Y be a Fano
contraction (so'Y is still Q-factorial klt). Let f : X — X and g :' Y — Y be surjective
endomorphisms such that gom = mo f. Suppose k(X, —Kx) > 0 and any finite sequence
of MMP starting from X 1is f-equivariant after replacing f by a positive power. Suppose
further the Albanese morphism of X is surjective. Then one of the following holds.
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(1) KSC holds for f.

(2) 05 > 0,; K(X,—Kx) =0, so —Kx ~g D > 0; the class of —Kx ‘s extremal in
both the cone Nef(X) and the cone PE*(X); and Supp D is irreducible.

(3) Replacing f by a positive power, there is an f-equivariant MMP 7 : X --» Y’
which is a composition of some birational contractions followed by a Fano con-
traction, such that Y' is still Q-factorial kit, dim(Y") < dim(X), and &5, = dy.

Proof. 1f 6; = é,, then we have Case (3) with 7 = 7. So it suffices to consider the case
when d; > 6,. We show by induction on p(X). If p(X) = 1, then we have Case (1)
(cf. [14, Theorem 2]). So we assume p(X) > 2.

Note that N'(X)/7* N*(Y) is 1-dimensional and J¥INt(x)/m+ N1 vy = ¢id for some integer
q > 0. Then g = d; and it is the only eigenvalue of f*|y1(x) with modulus 6;. By a version
of the Perron-Frobenius theorem (cf. [2]), f*D = ;D for some nef and w-ample Cartier
divisor D € N'(X). Moreover, the ray Rp generated by D in N'(X) is extremal in both
Nef(X) and PE'(X) by Lemma 9.1. Let a > 0 such that B := D+aK satisfies B-C' = 0,
where C' is a (rational) curve so that R¢ is the extremal ray of NE(X) contracted by 7.
Then B € 7" N*(Y) by the cone theorem (cf. [19, Theorem 3.7]).

Suppose B is pseudo-effective. Since — K is effective, D = B + (—aKx) implies that
the rays Rp = Rp = R_k,. In particular, f*Kx = 0;Kx and —Kx is extremal in both
Nef(X) and PE'(X). If (X, —Kx) > 0, then KSC holds for f by Proposition 1.6 and
we have Case (1).

If K(X,—Kx) = 0, write —Kx ~q >, a;D; with a; > 0 rational number and D;
irreducible. Since — K is extremal in PE'(X), we have the rays Rp, = R_g,. Applying
Proposition 6.1 to —Kx, we have f~1(D;) = D; for each i after replacing f by a positive
power. Since f*D; = 6;D; and D; is not numerically trivial, f*D; = d;D;. Suppose
Supp D is reducible. Then sDy —tD, € PicO(X ) for some positive integers s and t. Note
that f*(sDy —tDy) = 0¢(sDy — tDs) and df > 1. Since the Albanese morphism of X is
surjective by the assumption, we have sD; — tDy ~qg 0 by Proposition 3.3. Therefore,
k(X,—Kx) > k(X,D;) > 0, a contradiction. So we have Case (2).

Suppose B is not pseudo-effective. For a small effective ample Q-Cartier divisor F,
(1/a)B + E is not pseudo-effective. Denote by A := E + (1/a)D which is ample since D
is nef. Thus Kx + A = (1/a)B + E is not pseudo-effective. By [I, Corolllary 1.3.3], we
may run ¢ : X --+ X', a birational (Ky + A)-MMP and end up with a Fano contraction
™ X' = Y’ of some (Kyx + A')-negative extremal ray R where A’ is the strict
transform of A. By the assumption, replacing f by a positive power, we may assume
this MMP is f-equivariant. If p(X’) < p(X), then we are done by induction (noting that
X" — Alb(X') = Alb(X) is still surjective). If p(X') = p(X), then ¢ consists of only
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flips. Hence, we can use ¢* to identify N*(X’) with N'(X). Let D’ and E’ be the strict

transform of D and E. Since the curves in Rc cover X', we have E' - C" > 0. Then
1
(KX/ + —D,) O = (KX/ —|—A/> O'—FE-C <.
a

So Ky + 1D’ (identified with Ky + 1D = (1/a)B € 7* N'(Y)) is not in (7’ 0 )* N'(Y”).
Thus 7* N'(Y) and (7' 0 ¢)* N'(Y”) are two different f*-invariant hyperplanes of N'(X).
Note that f*|x1(yx) has only one eigenvalue of modulus d; and 0y > d,. Then oy = 0y,
So we have Case (3). O

Proof of Theorem 1.7. If Kx is pseudo-effective, then X is @Q-abelian by [21, Theorem
1.9] (without using the Q-factorial condition on X). So (1) follows from Theorem 2.8.
For (2), we show by induction on dim(X). Since KSC holds for curves, assume
dim(X) > 2. By (1), we may assume Ky is not pseudo-effective. Let Z : X — X
be an int-amplified endomorphism. By [28, Theorem 1.2], replacing f and Z by positive

powers, we may run f and Z-equivariant MMP
X=X1-»->2X,-»- - X, =2 X, 1 =Y,

where X; --» X1 (¢ < r) is birational, 7 : X, — Y is a Fano contraction, each X;
(7 <r+1) is still Q-factorial klt, and the descending of Z to each X is still int-amplified.
By Lemma 2.5, we may replace X by X,.

Note that any finite sequence of MMP starting from X is f and Z-equivariant after
iterations by [28, Theorem 1.1], and (X, —Kx) > 0 by Theorem 1.5. Moreover, the
Albanese morphism of X is surjective by [24, Theorem 1.8]. So we may apply Proposition
9.2 and it suffices for us to consider Cases (2) and (3) there. For Case (2), it is further
Case TIR by Theorems 6.2 and 8.6; by the assumption, KSC holds for f. For Case (3),
we may replace X by a lower dimensional one and we are done by induction (cf. Lemma
2.5). O

10. ToriIC CHARACTERIZATIONS AND PROOF OF THEOREM 1.11

In this section, we show that Case TIR3 will not happen during any MMP starting
from a rationally connected smooth projective threefold which admits an int-amplified
endomorphism. The key of the proof is a characterization of a toric pair in the presence
of an int-amplified endomorphism with totally invariant ramification.

Recall that a normal projective variety X over k is said to be toric or a toric variety
if X contains an algebraic torus 7' = (k*)™ as an (affine) open dense subset such that the
natural multiplication action of T" on itself extends to an action on the whole variety X.
In this case, let D := X\T, which is a divisor; the pair (X, D) is said to be a toric pair.

We mainly focus on the following question in this section.
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Question 10.1. Let X be a rationally connected smooth projective variety and D C X
a reduced divisor. Suppose f : X — X s an int-amplified endomorphism such that
f7H D) =D and flx\p : X\D — X\D is quasi-étale. Is (X, D) a toric pair?

First, Question 10.1 has been affirmatively answered when X is a Fano manifold of
Picard number 1. Indeed, Hwang and Nakayama showed then that X is isomorphic to
P" and D is a simple normal crossing divisor consisting of n + 1 hyperplanes; see [13,
Theorem 2.1]. Later, their result was generalized by the authors [27, Corollary 1.4],
answering the above question affirmatively when f is polarized.

We sketch the idea of the proof when f is polarized. A key step is in applying the
dynamical property of f to verify that the reflexive sheaf of germs of logarithmic 1-
forms Q% (log D) (cf. [27, 2.1]) is free, i.e., isomorphic to O where n = dim(X); see
[13, Proposition 2.3] and [27, Theorem 5.4]. Thus h°(X, Q% (log D)) = dim(X). The
remaining steps do not involve f at all. Write D = Zle D; with D; irreducible. Then
one calculates by [27, Theorem 4.5 and Remark 4.6] the complexity of the pair (X, D) as

¢(X, D) := dim(X) + (D) — (D) = dim(X) + h*(X, Ox) — h*(X, Q% (log D)) = 0

where ¢(D) := ¢ and r(D) is the rank of the vector space spanned by Dy,---, D, in
N'(X). Finally, (X, D) is a toric pair by the complexity criterion [3, Theorem 1.2].
Thus, to fully answer Question 10.1, we only need to generalize the above key step to

the int-amplified case. Imitating the proof of [13, Proposition 2.3] and [27, Theorem 5.4],
we just need to verify the following two conditions for some ample Cartier divisor H:

(i) e1(Q% (log D)) - H™ ' = (O (log D))? - H"2 = (O (log D)) - H"* =0,

(i) QL (log D) is H-slope semistable.
We will see late on that the second condition is not easy to verify and remains unprovable
for the general int-amplified case. For the easy comparison with the polarized case, we
will also consider the singular case.

We need the following to show the vanishing of ¢5(Q (log D)).

Proposition 10.2. (¢f. [13, Proposition 2.4]) Let X be a normal projective variety smooth
in codimension 2 and D C X a reduced divisor. Suppose f : X — X is an int-amplified
endomorphism such that f~'(D) = D and f|x\p : X\D — X\D is quasi-étale. Then
there is a smooth open subset U C X such that D NU 1is a normal crossing divisor and
codim(X\U) > 3. In particular, Q}((log D) is locally free over U.

Proof. Let v : D — D C X be the normalization of D and ¢ the conductor of D, regarded

as a Weil divisor on D. Since X is smooth in codimension 2, the adjunction formula gives

Ky +c=v(Kx+ D)
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where v*(Kx + D) is regarded as the pullback of a divisorial sheaf. There is an endo-
morphism A : D — D such that voh = f ov and its ramification divisor Ry, is h*c — ¢.
In fact, we have Kz + ¢ = h* (K5 + ¢) from Kx + D = f*(Kx + D).

Note that h is int-amplified and ¢ is reduced (cf. [21, Theorem 3.3], [11, Lemma 5.3, the
arxiv version|). If a plane curve has a reduced conductor over a singular point, then the

singularity is nodal. So D has only normal crossing singularities in codimension one. [J

We now apply [24, Lemma 3.8] to show the vanishing of the Chern classes.

Proposition 10.3. Let X be a normal projective variety which is of dimension n > 2
and smooth in codimension 2, and D C X a reduced divisor. Suppose f : X — X is
an int-amplified endomorphism such that f~'(D) = D and f|lx\p : X\D — X\D is

quasi-€étale. Let H be an ample divisor on X. Then
cl(Qﬁf(log D))-H" ' = cl(Qﬁ((log D)) - H" %= cg(Qk(log D))-H" 2 =0.

Proof. Let the open set U be as in Proposition 10.2. Then f|s-1 ) p is étale, since f|x\p
is quasi-étale and by the purity of branch loci.

There is a natural morphism ¢ : f*Q% (log D) — Q% (log D) and @l -1y is an isomor-
phism. So for 1 <i < 2, we have

frei(§x (log D)) = ei(f*Q (log D)) = ci(Q (log D).
Then the projection formula implies
ci(Qx(log D)) - H"™' = ¢;(Q (log D) - (f*)"(H"™")/(deg f)'
for any t > 0. By [24, Lemma 3.8], ¢;(Q% (log D))-H"~* = 0. The proof for ¢, (Q (log D))?-

H"2 = (), is similar. O

Lemma 10.4. Let f : X — X be a surjective endomorphism of a projective variety X .
Suppose f*]Nl(X) s diagonalizable with positive integral eigenvalues ¢ > p, and no other
eigenvalues. Let H be an ample Cartier divisor. Then H = A+ B for some nef Q-Cartier
divisors A and B such that f*A = pA and f*B = ¢B.

Proof. If p = ¢, then f*|N1(X) = ¢id and we may take A = H and B = 0. Assume
q > p. Let o= f*|yi1(x). Let A = Z}Einoopigo_i(H) and B = Zl}inoo ¢©'(H)/q'. Since ¢ is
diagonalizable with only integral eigenvalues p and ¢, the above limits are Q-Cartier and
H = A+ B. It is clear that p(A) = pA and ¢(B) = ¢B. Note that A and B are limits

of ample divisors. So A and B are nef. U

We are not able to show the slope semistability for the general int-amplified case.
However, the following case is enough for us to rule out Case TIRj3 in the proof of
Theorem 1.11.
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Proposition 10.5. Let X be a normal projective variety of dimensionn > 2, and D C X
a reduced divisor. Suppose f : X — X s an int-amplified endomorphism such that
f7HD) =D and flx\p : X\D — X\D is quasi-étale. Suppose further that Nt is
diagonalizable with one or two positive integral eigenvalues and no other eigenvalues. Let

H be an ample divisor on X. Then f& (log D) is H-slope semistable.

Proof. By Lemma 10.4, we can write H = A+ B where A and B are nef Q-Cartier divisors
such that f*A = pA and f*B = ¢B. We may assume ¢ > p > 1 (cf. [24, Theorem 1.1]).
Let F C Qﬁ( (log D) be the maximal destablizing subsheaf with respect to H. Then:

B CILF) . fgn—1 Ain—l n—1 Clﬂ;j.l4i‘lgnflfiAgrn— n—1 |
pn(F) = rank F Z i rank F B Z i papro=(F).

1
=0 =0

Suppose the contrary that gz (F) > pg(Q4(log D)) = 0 (cf. Proposition 10.3). Then
frai.pn-1-i(F) > 0 for some i. In particular, A*- B"~'~" #, 0. Since f*|x1x) is diagonal-
izable, A®. Bn~1=t. (' £ 0 for some Cartier divisor C' with f*C' = aC. Here a = p, or ¢,

so a > 1. By the projection formula, we have

(deg f)AI - BP0 . O = (f*A) - (f*B)"170 . f*C = (pig" ' "la) AT - B*17 . C

i n—1—1

Therefore, we have deg f/p'q =a > 1. Since A and B are nef, we have

s = sup{piai.gn-1-1(F) | F € Q4 (log D)} < oc.
Then for some k> 1 and g := f*, we have

,UAi.anlfi(g*}—) = (deg f/piqnflfi)kﬂAi.anlfi(]:) = akﬂAi-anlfi(]:) > 8.

Let the open set U be as in Proposition 10.2. Let j : ¢7'(U) — X be the inclu-
sion map and let G := j.((¢°F)|g-1@wy). Then ppipn-1-i(G) = paign1-i(g*F) > s.
Note that (g*F)|,-1y is a subsheaf of the locally free sheaf (9*QL (log D)) g1y =
QL (log D)|g-1y. Since codim(X\g~'(U)) > 2 and j, is left exact, G is a coherent
subsheaf of Q% (log D) . So we get a contradiction. O

With the preparation done, we have the following criterion of toric pairs.

Theorem 10.6. Let X be a rationally connected smooth projective variety and D C X
a reduced divisor. Suppose f : X — X is an int-amplified endomorphism such that
[N (D) = D and flx\p : X\D — X\D is quasi-étale. Suppose further f*|xi x) is
diagonalizable with one or two positive integral eigenvalues, and no other eigenvalues.
Then (X, D) is a toric pair.

Proof. By the assumption, Kx + D = f*(Kx + D); it is zero in N'(X) since f is int-

amplified and hence all eigenvalues of f*|y1(y) are of modulus > 1 (cf. [24, Theorem 1.1}).
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So Kx + D ~ 0, because X is simply connected, and hence has no non-trivial torsion
line bundle (cf. [6, Corollary 4.18]). This relation also implies (X, D) is a toric pair when
dim(X) = 1.

Assume now dim(X) > 2. By Propositions 10.3, 10.5 and [12, Theorem 1.20], Q% (log D)
is free. In particular, h%(X, Q% (log D) = dim(X). Note that 2'(X,Ox) = 0. By [27,
Theorem 4.5], the complexity ¢(X, D) < 0 and hence (X, D) is a toric pair by [3, Theorem
1.2] (cf. [27, Theorem 4.3 and Remark 4.4]). O

Proposition 10.7. Let f : X — X be an int-amplified endomorphism of a ratio-

nally connected smooth projective variety X with totally invariant ramification, i.e.,
/7' (Supp Ry) = Supp R;. Suppose X admits some MMP

X=X - ->X,-Y=P

where X; --+ X;y1 18 birational and 7 : X,, — Y is a Fano contraction. Then we have:
(1) Replacing f by a positive power, f*|N1(X) 15 diagonalizable with one or two pos-
itiwe integral eigenvalues, and no other eigenvalues; f descends to int-amplified
endomorphism f; of X; (i <r), and each f; still has totally invariant ramification.
(2) (X, Supp Ry,) is a toric pair for each i <r.
(3) KSC holds for any surjective endomorphism of X;.

Proof. By [24, Theorems 1.10 and 1.11], replacing f by a positive power, this MMP is
f-equivariant, f*|\1(x) is diagonalizable with all the eigenvalues being integers greater
than 1, and all f; ;= f|x, and g := f|y are still int-amplified. Let 7 : X --» X, be the
composition.

Let W be the graph of 7 and let p; : W — X and py : W — X, be the two projections.
Then f lifts equivariantly to a surjective endomorphism h : W — W. Let E be an
exceptional prime divisor of 7. Write f*F = aF for some a > 0. Then h*Ey = aEw
where Eyy is the strict transform of £ in W.

If 7o pa(Ew) is a closed point y of Y, then Ey, is contained in the support of W, :=
psm*(y). Since h*W, = 6,W,,, we have a = d,.

Suppose mops(FEw ) = Y. Since g is polarized, the set Per(g) of periodic points is Zariski
dense in Y by [9, Theorem 5.1]. Then h(Fy ) = Fy for some (irreducible) general fiber
Fy of ps o7, after replacing f (and h) by positive powers. Denote by F' := p;(Fy ) and
F, .= py(Fyw). Clearly, p1|p, and ps|r, are birational morphisms and F, is also a general
fibre of . Since F dominates Y, we have FF' N E # () and hence E|p is an effective Q-
Cartier divisor which is not numerically trivial. Note that f*H, = qH, for some m-ample
Cartier divisor H, and integer ¢ > 0. Then H,|r. is ample and (f.|r.)* H,|r, = ¢H,|F,.
Since f, is int-amplified, ¢ > 1 (cf. [241, Lemma 3.5, Theorem 1.1]). So f,|g. is g-polarized
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and hence so is f|r; see [20, Proposition 1.1 and Corollary 3.12]. Since (f|p)*E|r = aE|F
and E|p # 0, we have a = ¢ (cf. [11, Lemma 2.4] or [20, Proposition 2.9]).

Thus f *|N1( x) has positive integral eigenvalues d, and ¢, and no other eigenvalues. (1)
is proved. Indeed, Ry, is the (birational image) of R; and f;*(Supp Rs,) = Supp Ry,
holds for : = 1 and hence for all i.

By (1) and Theorem 10.6, (X;, Supp Ry,) is a toric pair for ¢ = 1, and hence for all
1 < r. Indeed, let T" be the big torus acting on X. Then the MMP is T-equivariant, and
T stabilizes Supp Ry, for i = 1 and hence for all i. (2) is proved.

Since a toric variety is of Fano type, (3) follows from (2) and [21, Corollary 4.2]. O

Proof of Theorem 1.11. By [28, Theorem 1.4], we have the following finite sequence of
G-equivariant MMP for some submonoid G < SEnd(X) of finite index

X:Xl ___)"'___)Xi ___)Xi+1 ——-)~"XT%Y

where X; --» X, is birational and 7 : X, — Y is a Fano contraction. Let f be a
surjective endomorphism of X. Replacing f by a positive power, we may assume f € G.
By Theorem 1.7, it suffices to show that f. := f|x, : X, — X, does not satisfy Case
TIRs3.

Suppose the contrary. Then dim(Y) =1, and Y = P! since X is rationally connected.
By the assumption, G contains (a positive power of) an int-amplified endomorphism
Z: X — X. Replacing f by f*oZ for some k > 1, we may assume [ is also int-amplified
and f, still satisfies Case TIR3 (cf. [28, Theorem 1.4]). So f, and hence f have totally
invariant ramification (the MMP being G-equivariant). By Proposition 10.7, X, is toric,
contradicting the assumption k(X,, —Kx,) = 0. 0
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