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KAWAGUCHI-SILVERMAN CONJECTURE FOR SURJECTIVE
ENDOMORPHISMS

SHENG MENG, DE-QI ZHANG

Abstract. We prove the Kawaguchi-Silverman conjecture (KSC), about the equality of

arithmetic degree and dynamical degree, for every surjective endomorphism of any (pos-

sibly singular) projective surface. In high dimensions, we show that KSC holds for every

surjective endomorphism of any Q-factorial Kawamata log terminal projective variety

admitting an int-amplified endomorphism, provided that KSC holds for any surjective

endomorphism with the ramification divisor being totally invariant and irreducible. In

particular, we show that KSC holds for every surjective endomorphism of any rationally

connected smooth projective threefold admitting an int-amplified endomorphism. The

main ingredients are the equivariant minimal model program, the effectiveness of the

anti-canonical divisor and a characterization of toric pairs.
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1. Introduction

We work over an algebraically closed field k of characteristic zero. The Kawaguchi -

Silverman Conjecture (KSC for short, see [16]) asserts that for a surjective endomorphism
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f : X → X of a projective variety X over Q, the arithmetic degree αf (x) of any point x

with Zariski dense f -orbit is equal to the first dynamical degree δf of f (cf. Definitions

2.2 and 2.3).

Conjecture 1.1. (Kawaguchi-Silverman Conjecture = KSC) Let f : X → X be a sur-

jective endomorphism of a projective variety X over Q. Then the following hold.

(1) The limit defining arithmetic degree αf (x) exists for any x ∈ X(Q).

(2) If the (forward) orbit Of (x) = {fn(x) |n ≥ 0} is Zariski dense in X, then the

arithmetic degree of x is equal to the dynamical degree of f , i.e., αf (x) = δf .

Remark 1.2. The original conjecture is formulated for dominant rational self-maps

of smooth projective varieties. In our setting, Conjecture 1.1 (1) has been proved by

Kawaguchi and Silverman themselves (cf. [15]); more precisely, αf (x) is either 1 or the

absolute value of an eigenvalue of f ∗|N1(X) for any x ∈ X(Q). In particular, αf (x) ≤ δf .

Conjecture 1.1 (2) has been proved at least in the following cases.

(i) f is polarized ([15, Theorem 5]).

(ii) X is a smooth projective surface and f is an automorphism ([14, Theorem 2(c)]).

(iii) X is a smooth projective surface ([22, Theorem 1.3]).

(iv) X is a Mori dream space (eg. of Fano type; see [21, Theorem 4.1, Corollary 4.2]).

(v) X is an abelian variety ([15, Corollary 32], [38, Theorem 2]).

(vi) X is a Hyperkähler variety ([20, Theorem 1.2]).

(vii) X is a smooth projective 3-fold with κ(X) = 0 and deg f > 1 ([20, Prop 1.6]).

First, as a warmup, we look at a surjective endomorphism f of a (possibly singular)

surface X. By taking the normalization which is f -equivariant, we may assume X is

normal. When f is an automorphism, one can further take an f -equivariant resolution

and reduce to the smooth case; see [14, Theorem 2(c)]. When f is non-isomorphic,

Wahl [40, Theorem 2.8] showed that X has at worst log canonical (lc) singularities. The

smooth case is done by Matsuzawa, Sano and Shibata [22, Theorem 1.3], by reducing the

problem to three precise cases: P1-bundles, hyperelliptic surfaces, and surfaces of Kodaira

dimension one.

However, for the singular case, it is in general not possible to find an f -equivariant

resolution. Nevertheless, we are able to run an f -equivariant minimal model program

(MMP) after iterating f ; see Section 4. Our key observation is Theorem 5.2 (see also

Theorem 5.4) which shows that the only troubled case of Fano contraction, involved in the

KSC, is in fact of product type; see also Theorem 8.6 for a higher dimensional analogue.

Conjecture 1.1 is thus fully solved for surfaces in Theorem 1.3.

When deg(f) ≥ 2, our proof does not depend on (and recover) [22, Theorem 1.3].
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Theorem 1.3. KSC holds for any surjective endomorphism of a projective surface.

We now look at a higher dimensional projective variety X. A surjective endomorphism

P : X → X is said to be q-polarized if P∗H ∼ qH for some ample (integral) Cartier

divisor H and q > 1. A surjective endomorphism I : X → X is said to be int-amplified if

I∗L− L = H for some ample Cartier divisors L and H. Every polarized endomorphism

is int-amplified. See [24], [26], [28] and [29] for properties of such P or I.

Let f : X → X be a (not necessarily int-amplified) surjective endomorphism. We wish

to run an MMP f -equivariantly (after replacing f by a positive power). On the one hand,

to run an MMP, we need to assume that X has only mild singularities, eg. Q-factorial

Kawamata log terminal (klt) singularities; see [19, Definition 2.34], [1]. On the other

hand, for the f -equivariance, we need to assume that X admits at least one int-amplified

endomorphism; see [28, Theorems 1.1 and 1.2].

Therefore, in higher dimensions, we focus on the following question:

Question 1.4. Let X be a normal projective variety which has only Q-factorial Kawa-

mata log terminal (klt) singularities and admits an int-amplified endomorphism. Does

KSC hold for every surjective endomorphism of X?

In [21, §5], Matsuzawa provided a possible solution by adding three more assumptions:

the anti-Iitaka dimension κ(X,−KX) > 0, X being rationally connected, and the flip

termination conjecture. The flip termination conjecture is proved when dim(X) ≤ 3

(cf. [30], [37]). However, it remains very difficult in higher dimensions. On the other hand,

it is proved in [5, Theorem 1.1] of authors’ joint paper that −KX is numerically effective

when X admits a polarized endomorphism. This result was further generalized by the

first author to the int-amplified case [24, Theorem 1.5]. In general, a numerically effective

divisor may not be effective. Nevertheless, we are able to strengthen [24, Theorem 1.5]

and show below that −KX is indeed effective, or equivalently κ(X,−KX) ≥ 0.

Theorem 1.5 (cf. Theorem 6.2). Let X be a Q-Goreinstein normal projective variety

admitting an int-amplified endomorphism. Then we have:

(1) −KX ∼Q D (Q-linear equivalence) for some effective Q-Cartier divisor D.

(2) Suppose further the anti-Iitaka dimension κ(X,−KX) = 0. Then D is a reduced

Weil divisor such that g−1(D) = D and g|X\D : X\D → X\D is quasi-étale, i.e.,

étale in codimension 1, for any surjective endomorphism g of X.

In view of Theorem 1.5, we are led to the case κ(X,−KX) = 0, or κ(X,−KX) > 0.

In [21, Proposition 3.6] (cf. Proposition 2.7), Matsuzawa showed that KSC holds for f

if f ∗D ∼ δfD with κ(X,D) > 0. In general, one cannot weaken the linear equivalence
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assumption here to numerical equivalence if H1(X,OX) 6= 0. However, we are able to

prove the following, by using the anti-Iitaka fibration and the Chow reduction; see §7.

Proposition 1.6. Let f : X → X be a surjective endomorphism of a Q-Goreinstein

normal projective variety X with the anti-Iitaka dimension κ(X,−KX) > 0. Suppose

f ∗KX ≡ δfKX (numerical equivalence). Then KSC holds for f .

Let π : X → Y be a finite surjective endomorphism of normal projective varieties.

Denote by Rπ the ramification divisor of π so that KX = π∗KY + Rπ. For a sur-

jective endomorphism f : X → X, it is said to have totally invariant ramification if

f−1(SuppRf ) = SuppRf .

By another key observation (cf. Proposition 9.2) and induction on the dimension, after

running an equivariant minimal model program, we may assume f ∗KX ≡ δfKX , or else

KSC holds. Together with Proposition 1.6, we further show that for Question 1.4 we are

only left with the following case. Here, we remark in advance that Condition (A5) below

is implied by Conditions (A1) - (A4); see Theorem 8.6.

Case TIRn (Totally Invariant Ramification case). Let X be a normal projective

variety of dimension n ≥ 1, which has only Q-factorial Kawamata log terminal (klt)

singularities and admits an int-amplified endomorphism. Let f : X → X be a surjective

endomorphism. Moreover, we impose the following conditions.

(A1) The anti-Iitaka dimension κ(X,−KX) = 0; −KX is nef, whose class is extremal

in both the nef cone Nef(X) and the pseudo-effective divisors cone PE1(X).

(A2) f ∗D = δfD for some effective Q-Cartier irreducible divisor D ∼Q −KX .

(A3) The ramification divisor of f satisfies Supp Rf = D.

(A4) There is an f -equivariant Fano contraction π : X → Y with δf > δf |Y (≥ 1).

(A5) dim(X) ≥ dim(Y ) + 2 ≥ 3.

Precisely, we have the following result.

Theorem 1.7. Let X be a normal projective variety having only Q-factorial Kawamata

log terminal (klt) singularities and an int-amplified endomorphism. Then we have:

(1) If KX is pseudo-effective, then KSC holds for any surjective endomorphism of X.

(2) Suppose that KSC holds for Case TIR (for those f |Xi
: Xi → Xi appearing in any

equivariant MMP starting from X). Then KSC holds for any surjective endomor-

phism f of X.

Now Question 1.4 can be reduced to the following:

Question 1.8. Does there exist f : X → X satisfying Case TIR (plus, if necessary, that

X is rationally connected as defined below)? If such f exists, does it satisfy KSC?
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Remark 1.9. Condition (A5) of Case TIR implies that dim(X) ≥ 3. Recently, Mat-

suzawa and Yoshikawa constructed in [23, §7] an interesting example: a klt rational

surface X satisfying all the conditions of Case TIR2 except (A4) and (A5). Moreover,

X admits an (equivariant) quasi-étale cover which is a (smooth) ruled surface over an

elliptic curve, and the totally invariant divisor D there is an elliptic curve.

A projective variety X is said to be rationally connected, in the sense of Campana and

Kollar-Miyaoka-Mori ([4], [18]), if two general points of X(C) are connected by a rational

curve, after taking one (and hence every) embedding of the defining field of X into C;

see also [17, Definition 3.2, Exercise 3.2.5].

Let X be a rationally connected smooth projective variety admitting an int-amplified

endomorphism f with totally invariant ramification. In [27, Corollary 1.4], the authors

showed that X is then toric if f is polarized. For the int-amplified case, the difficulty lies

in showing the semistablity for the reflexive sheaf of germs of logarithmic 1-forms; see

Section 10 for the details. Nevertheless, we are able to prove the following:

Proposition 1.10. (cf. Proposition 10.7) Let f : X → X be an int-amplified endo-

morphism of a rationally connected smooth projective variety X with totally invariant

ramification, i.e., f−1(SuppRf ) = SuppRf . Suppose that X admits some MMP

X = X1 99K · · · 99K Xr → Y = P1

where Xi 99K Xi+1 is birational and Xr → Y is a Fano contraction. Then Xi is a toric

variety for each i. In particular, KSC holds for any surjective endomorphism of Xi.

By Proposition 1.10, one can rule out Case TIR3 during any MMP starting from a

rationally connected smooth projective threefold. Namely, we have:

Theorem 1.11. Let X be a rationally connected smooth projective threefold admitting

an int-amplified endomorphism. Then KSC holds for any surjective endomorphism of X.

Acknowledgement. Many thanks to Y. Matsuzawa for inspiring discussions, to Max

Planck Institute for Mathematics, Bonn for the first author’s Postdoc Fellowship, to

organisers of Simons Symposium on Algebraic, Complex and Arithmetic Dynamics, May

2019, for the opportunity of a talk, and NUS for an ARF (both to the second author).

2. Preliminaries

Notation and Terminology. Let X and Y be projective varieties of dimension n. Let

f : X → X be a surjective endomorphism and π : X → Y a finite surjective morphism.

We say π is quasi-étale if it is étale in codimension 1.
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Two R-Cartier divisors Di of X are numerically equivalent, denote as D1 ≡ D2, if

(D1 −D2) · C = 0 for any curve C on X. Two r-cycles Ci of X are weakly numerically

equivalent, denoted as C1 ≡w C2, if (C1 −C2) · L1 · · ·Ln−r = 0 for all Cartier divisors Li.

The numerical equivalence implies weak numerical equivalence; see [26, Section 2].

We use the following notation throughout the paper unless otherwise stated.

Pic(X) the group of Cartier divisors of X modulo linear equivalence ∼
PicK(X) Pic(X)⊗Z K with K = Q,R,C
Pic0(X) the group of Cartier divisors of X algebraically equivalent to 0

Pic0K(X) Pic0(X)⊗Z K with K = Q,R,C
NS(X) Pic(X)/Pic0(X), the Néron-Severi group

N1(X) NS(X) ⊗Z R, the space of R-Cartier divisors modulo numerical

equivalence ≡
NSK(X) NS(X)⊗Z K with K = Q,R,C
Nr(X) the space of r-cycles modulo weak numerical equivalence ≡w
Nr(X) the dual space of Nr(X), used briefly only in Lemma 8.3

f ∗|V the pullback action on V , which is any group or space above

f∗|V the pushforward action on V , which is any group or space above

Nef(X) the cone of nef classes in N1(X)

NE(X) the cone of pseudo-effective classes in N1(X)

PE1(X) the cone of pseudo-effective classes in N1(X)

Rπ the ramification divisor of π assuming that X and Y are normal

SuppD the support of D =
∑
aiDi which is

⋃
iDi, where ai > 0 and Di

are prime divisors

SEnd(X) the monoid of all the surjective endomorphisms of X

κ(X,D) Iitaka dimension of a Q-Cartier divisor D

ρ(X) Picard number of X which is dimR N1(X)

Definition 2.1. Let f : X → X be a surjective endomorphism of a variety X and Z ⊆ X

a subset. Z is said to be f -invariant (resp. f−1-invariant) if f(Z) = Z (resp. f−1(Z) =

Z). Z is said to be f -periodic (resp. f−1-periodic) if f s(Z) = Z (resp. f−s(Z) = Z) for

some s > 0.

Definition 2.2. (Dynamical degree; δf , ιf ) Let f : X → X be a surjective endomorphism

of a projective variety X. The (first) dynamical degree δf of f is defined as the spectral
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radius of f ∗|N1(X). Another equivalent definition is

δf = lim
m→+∞

((fm)∗H ·Hdim(X)−1)1/m,

where H is any nef and big Cartier divisor of X. Denote by ιf the minimum of eigenvalues

of f ∗|N1(X). When X is smooth over the complex field, δf (resp. ιf ) is equal to the

maximum (resp. minimum) of eigenvalues of f ∗|H1,1(X,R) (cf. [7], [8, §4]). Note that

δfs = (δf )
s.

Definition 2.3. (Weil height function and arithmetic degree) Let X be a normal projec-

tive variety defined over Q. We refer to [16] or [21, Section 2.2] for the detailed definition

of the Weil height function hD : X(Q)→ R associated with some R-Cartier divisor D on

X. Here, we simply list some fundamental facts which will be used later.

• hE is bounded below outside SuppE for any effective Cartier divisor E.

• h∑ aiDi
=
∑
aihDi

+O(1) where O(1) means some bounded function.

• Let π : X → Y be a surjective morphism of normal projective varieties and B

some R-Cartier divisor of Y . Then hB(π(x)) = hπ∗B(x) +O(1) for any x ∈ X(Q).

The arithmetic degree αf (x) of f at x ∈ X(Q) is defined as

αf (x) = lim
m→+∞

max{1, hH(fm(x))}1/m,

where H is an ample Cartier divisor. This limit exists and is independent of the choice

of H (cf. [15, Theorem 2], [16, Proposition 12]). Moreover, αf (x) is either 1 or the

absolute value of an eigenvalue of f ∗|N1(X) (cf. [15, Remark 23]). Note that αf (x) ≤ δf

and αfs(x) = αf (x)s. This allows us to replace f by any positive power whenever needed.

In the rest of this section, we list several fundamental results about KSC which are

important and will be frequently used in the rest of the paper.

Lemma 2.4. Let π : X 99K Y be a dominant rational map of projective varieties. Let

f : X → X and g : Y → Y be surjective endomorphisms such that g ◦ π = π ◦ f . Then

δg ≤ δf . Further, if π is generically finite, then δg = δf .

Proof. For the convenience of the reader, we give a quick proof of this well known result.

Let W be the graph of π and pX : W → X and pY : W → Y the two projections. Here

pX is a birational morphism and pY is a surjective morphism. Denote by h : W → W

the lifting of f . Let H be any ample Cartier divisor of X. By the projection formula,

δf = lim
m→+∞

[(fm)∗H ·Hdim(X)−1]1/m = lim
m→+∞

[(hm)∗(p∗XH) · (p∗XH)dim(W )−1]1/m = δh

since p∗XH is nef and big. Note that p∗Y : N1(Y ) → N1(W ) is injective. So δg ≤ δf .

Suppose π is generically finite. Let A be an ample divisor of Y . Then p∗YA is nef and

big. A similar argument shows that δg = δf . �
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The proof of the following lemma is taken from [21, Lemma 5.6].

Lemma 2.5. Let π : X 99K Y be a dominant rational map of projective varieties. Let

f : X → X and g : Y → Y be surjective endomorphisms such that g ◦ π = π ◦ f . Then

the following hold.

(1) Suppose π is generically finite. Then KSC holds for f if and only if KSC holds

for g.

(2) Suppose δf = δg and KSC holds for g. Then KSC holds for f .

Proof. For (1), by taking the graph of π, it suffices for us to consider the case when π is

a generically finite surjective morphism. By Lemma 2.4, δf = δg. Let x be a closed point

of X. It is clear that Of (x) = X if and only if Og(π(x)) = Y . Take any x ∈ X with

Zariski dense orbit. Let H be an ample Cartier divisor of Y . We have

hH(gm(π(x))) = hH(π(fm(x))) = hπ∗H(fm(x)) +O(1).

So αg(π(x)) ≤ αf (x). Since π is generically finite, we may write π∗H = A + E for some

ample Cartier divisor H and effective Cartier divisor E after replacing H by a multiple.

There exists an infinite sequence n1 < n2 < · · · such that {fni(x) | i = 1, 2, · · · } is Zariski

dense in X and fni(x) 6∈ SuppE. Since hE is bounded below outside SuppE, we have

hH(gni(π(x))) = hA(fni(x)) + hE(fni(x)) +O(1) ≥ hA(fni(x)) +O(1).

This implies that αg(π(x)) ≥ αf (x). So (1) is proved.

For (2), we may assume that π is a surjective morphism by (1). By the first equality,

we have δg = αg(π(x)) ≤ αf (x) ≤ δf and (2) is proved. �

Lemma 2.6. (cf. [35, Lemma 3.2]) Let f : X → X and g : Y → Y be two surjective

endomorphisms of projective varieties. Suppose KSC holds for both f and g. Then KSC

holds for f × g.

Proposition 2.7. (cf. [21, Proposition 3.6]) Let f : X → X be a surjective endo-

morphism of a normal projective variety X. Suppose f ∗D ∼Q δfD for some effective

Q-Cartier divisor with Iitaka dimension κ(X,D) > 0. Then KSC holds for f .

Theorem 2.8. (cf. [38, Theorem 2]) Let X be a Q-abelian variety, i.e., it has a quasi

étale cover by an abelian variety. Then KSC holds for any surjective endomorphism of

X.

Proof. Let g : X → X be a surjective endomorphism. There exists a finite surjective

morphism π : A → X with A being an abelian variety, such that g lifts to a surjective

endomorphism f : A → A (cf. [34] or [5, Corollary 8.2]). Then the result follows from

[38, Theorem 2] and Lemma 2.5. �
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3. Pullback Action on Pic(X)

In this section, we discuss the relation between f ∗|Pic0(X) and f ∗|N1(X).

Proposition 3.1. Let f : A → A be an isogeny of an abelian variety A. Denote by

AC := A⊗Z C and fC : AC → AC the induced linear map. Let λ be an eigenvalue of fC.

Then ιf ≤ |λ|2 ≤ δf (cf. Definition 2.2).

Proof. After embedding the defining field of A and f in C, we may assume that A is

defined over C. Suppose fC(x) = λx for some λ 6= 0 and 0 6= x ∈ AC. Let Pf ∈ Z[t]

be the characteristic polynomial of f ∗|H1(A,Z). Then Pf (f) = 0 and hence Pf (fC) =

(Pf (f))C = 0. In particular, Pf (fC)(x) = 0. Then λ is a root of Pf and hence an

eigenvalue of f ∗|H1(A,Z). Therefore, |λ|2 is an eigenvalue of f ∗|H1,1(A,R). The proposition

is proved. �

Lemma 3.2. Let f : A→ A be a surjective endomorphism of an abelian variety A. Let

f∨ : A∨ → A∨ be the dual endomorphism. Then δf = δf∨ and ιf = ιf∨.

Proof. We may replace the base field by C. Note that the dual of a translation is still a

translation and the pullback action of a translation on N1(A) is always an identity. So we

may assume that f is an isogeny. Let mf ∈ Z[t] be the minimal polynomial of f ∗|H1(A,Z).

Then mf (f) = 0 and mf (f
∨) = mf (f)∨ = 0. A dual argument shows that mf is also the

minimal polynomial of (f∨)∗|H1(A∨,Z). Therefore, f ∗|H1,1(A,R) and (f∨)∗|H1,1(A∨,R) have the

same eigenvalues. The lemma is proved. �

Proposition 3.3. Let f : X → X be a surjective endomorphism of a normal projective

variety X whose Albanese morphism is surjective. Let λ be an eigenvalue of f ∗|Pic0C(X).

Then ιf ≤ |λ|2 ≤ δf .

Proof. Let π : X → A be the Albanese morphism. Note that A is the dual of Pic0(X).

Denote by g := f |A. Then g∨ = f ∗|Pic0(X) +a for some a ∈ Pic0(X). Since π is surjective,

we have ιf ≤ ιg = ιg∨−a ≤ δg∨−a = δg ≤ δf by Lemma 3.2. Then the result follows from

Proposition 3.1. �

Proposition 3.4. Let f : X → X be an int-amplified endomorphism of a normal pro-

jective variety X. Then all the eigenvalues of f ∗|PicQ(X) are of modulus greater than 1.

Proof. Note that NSC(X) = PicC(X)/Pic0C(X) and all the eigenvalues of f ∗|NSC(X) are of

modulus greater than 1 by [24, Theorem 1.1]. By Proposition 3.3, all the eigenvalues of

f ∗|Pic0C(X) are of modulus greater than 1. The result follows. �

Lemma 3.5. (cf. [15, Lemma 19]) Let f : X → X be a morphism. Then there is a monic

integral polynomial Pf (t) ∈ Z[t] with the property that Pf (f
∗) annihilates Pic(X).
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Definition 3.6. Let f : X → X be a surjective endomorphism of a projective variety X.

Let D ∈ PicR(X). Denote by Vf (D) the subspace of PicR(X) spanned by {(fm)∗D}m≥0.
Denote by Ef (D) the convex cone of effective R-Cartier divisors in Vf (D). Note that

Ef (D) does not contain any line. However, the closure of Ef (D) may contain lines.

We need the following to show the effectiveness of anti-canonical divisor in Section 6.

Proposition 3.7. Let f : X → X be a surjective endomorphism of a projective variety

X. Then the following hold.

(1) For any D ∈ PicR(X), Vf (D) and Ef (D) are finite dimensional and f ∗|PicR(X)-

invariant.

(2) f∗f
∗ = f ∗f∗ = (deg f) id on PicR(X).

Proof. By Lemma 3.5, Vf (D) is finite dimensional. Clearly, f ∗(Vf (D)) ⊆ Vf (D). By the

projection formula, f∗f
∗ = (deg f) id on Pic(X). So f ∗|PicR(X) is injective, hence f∗f

∗ =

f ∗f∗ on Vf (D). Note that f ∗D is effective if D is effective. So f ∗(Ef (D)) = Ef (D). �

4. Equivariant Minimal Model Program for Surfaces

In this section, we recall the (monoid) equivariant minimal model program for a (pos-

sibly singular) normal projective surface admitting a non-isomorphic endomorphism.

Lemma 4.1. Let X be a normal projective surface and C an irreducible curve on X.

Then there exists an integer n0 > 0 (depending only on X) such that n0C ≡w D (weak

numerical equivalence) for some (integral) Cartier divisor D.

Proof. Let D1, · · · , Dr be (integral) Cartier divisors which form a basis of N1(X). Denote

by A := (Di · Dj)1≤i,j≤r the intersection matrix which is invertible by the Hodge index

theorem. Then there is some D =
∑
aiDi such that D ·Di = C ·Di ∈ Z for each i. Since

(a1, · · · , ar) ∈ A−1(Zr) ⊆ Zr/ det(A), we are done by letting n0 = det(A). �

Let X be a normal projective surface. By [42, Lemma 3.2], there is a natural embedding

N1(X) ⊆ N1(X). Let C be an irreducible curve on X. We say that C has negative self-

intersection if C2 := D2 < 0 for some D ∈ N1(X) with D ≡w C, which is independent

of the choice of D (cf. Lemma 4.1). Denote by RC := R≥0[C] the ray generated by [C]

in NE(X). Denote by ΣC the union of curves whose classes are in RC . Let f : X → X

be a surjective endomorphism. The projection formula implies that f(ΣC) = Σf(C) and

f−1(ΣC) = ΣC′ for any curve C ′ with f(C ′) = C; see [28, Lemma 4.2].

Lemma 4.2. Let X be a normal projective surface with only log canonical (lc) singulari-

ties. Let π : X → Y be a divisorial contraction of some KX-negative extremal ray having
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the exceptional divisor E =
∑
Ei with Ei irreducible. Then Y has only lc singularities.

Further, E2
i < 0 and ΣEi

= E.

Proof. Y is lc by [11, Theorem 3.3]. In particular, KY is Q-Cartier.

Write KX ∼Q π∗KY +
∑
aiEi. Since KX · Ei < 0, we have ai > 0 for each i by the

negativity lemma (cf. [19, Lemma 3.39]). Note that the rays REi
= REj

in N1(X) and

ΣEi
= E. Then E1 ≡w t(

∑
aiEi) for some t > 0. Since (

∑
aiEi) · E1 = KX · E1 < 0, we

have E2
1 < 0. �

Let X be a normal projective surface. Denote by S(X) the set of all irreducible curves

C on X with negative self-intersection and ΣC being a finite union of irreducible curves.

Lemma 4.3. (cf. [31]) Suppose X is a normal projective surface. Then we have:

(1) The action SEnd(X) on S(X), via (f, C) 7→ f(C), is well defined.

(2) Suppose X has a non-isomorphic surjective endomorphism. Then S(X) is finite;

and f−t0(C) = C for any f ∈ SEnd(X) and C ∈ S(X) where t0 = |S(X)|!.

Proof. For (1), let f ∈ SEnd(X), C ∈ S(X). By Lemma 4.1, n0C ≡w D for some fixed

integer n0 > 0 and (integral) Cartier divisor D. Write f∗C = df(C). Then f(C) ≡w
f∗D/(dn). By the projection formula,

f(C)2 = (f∗D)2/(d2n2) = (deg f/d2)C2 < 0.

On the other hand, Σf(C) = f(ΣC). Therefore (1) is proved.

For (2), let g ∈ SEnd(X) be a non-isomorphic one.

Claim 4.4. For any f ∈ SEnd(X) and C ∈ S(X), f−1f(C) = C.

Since f−1f(ΣC) = ΣC , our f−1 induces a bijection between the (finitely many) irre-

ducible components of Σf(C) and ΣC . Since C ⊆ f−1f(C), the claim is proved.

Claim 4.5. For some t > 0, gt(C) ⊆ SuppRg, where Rg is the ramification divisor of g.

Suppose the contrary. By Claim 4.4, we have g∗(gt(C)) = gt−1(C) and hence (gt)∗C =

(deg g)tgt(C) for any t > 0. Therefore,

gt(C)2 = (deg g)−tC2 < 0.

By Lemma 4.1, n2
0g
t(C)2 ∈ Z<0 for any t > 0. Note that C2 < 0 and deg g > 1. Then we

get a contradiction by letting t� 1. The claim is proved.

Denote by

S0(X) := {C ∈ S(X) |C ⊆ SuppRg}
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which is a finite set. For any C ∈ S(X), gi(C) = gj(C) ∈ S0(X) for some i > j > 0 by

Claim 4.5. Let sC = i− j which is determined by C. Then

C = g−igi(C) = g−igj(C) = g−sC (C).

Claim 4.6. Let s =
∏

C∈S0(X) sC. Then S(X) =
⋃s−1
i=0 g

i(S0(X)), hence it is a finite set.

Let C ∈ S(X). By Claim 4.5, C0 := gt(C) ∈ S0(X) for some t > 0. There exist some

integers a > 0 and b ≥ 0 such that as = t+ b and 0 ≤ b < s. By Claim 4.4 and the choice

of s, we have C = g−tgt(C) = g−t(C0) = g−tgas(C0) = gb(C0). The claim is proved.

Finally, by (1) and Claim 4.6, for any f ∈ SEnd(X) and C ∈ S(X), we have f i(C) =

f j(C) for some i > j > 0 with i− j ≤ |S(X)|. By Claim 4.4, C = f−if i(C) = f−(i−j)(C).

So (2) is proved. �

A submonoid G of a monoid Γ is said to be of finite-index in Γ if there is a chain

G = G0 ≤ G1 ≤ · · · ≤ Gr = Γ of submonoids and homomorphisms ρi : Gi → Fi such

that Ker(ρi) = Gi−1 and all Fi are finite groups.

Theorem 4.7. Let X be a normal projective surface admitting a non-isomorphic surjec-

tive endomorphism. Then any MMP starting from X is G-equivariant for some finite-

index submonoid G of SEnd(X).

Proof. By [40, Theorem 2.8], X has only lc singularities, so one can run MMP within

the lc category (cf. [11, Theorem 1.1]). Any MMP of X has at most ρ(X) steps and

involves only divisorial and Fano contractions. Let π : X → Y be the first step. Suppose

π is a Fano contraction. By the finiteness of Fano contractions (cf. [28, Lemma 4.4], [26,

Lemma 6.2]), there is a submonoid G ≤ SEnd(X) such that π is G-equivariant.

Suppose π is divisorial. By Lemma 4.2, each irreducible component of the π-exceptional

divisor is in S(X). By Lemma 4.3, S(X) is finite and there is a submonoid G ≤ SEnd(X)

of finite index such that G|S(X) = id. So π is G-equivariant. Since G and hence G|Y admit

non-isomorphic endomorphisms, we may replace X by Y and repeat the argument. �

5. KSC for Surfaces: Proof of Theorem 1.3

In this section, we will prove KSC for surfaces. Indeed, we provide a very detailed

characterization of a non-isomorphic surjective endomorphism f : X → X of a nor-

mal projective surface X. Note that such X has log canonical (lc) singularities by [40,

Theorem 2.8]. In particular, the canonical divisor KX is Q-Cartier.

First, we recall a result of Nakayama which characterizes the case when the canonical

divisor is pseudo-effective.
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Theorem 5.1. (cf. [32, Theorem 7.1.1]) Let f : X → X be a non-isomorphic surjective

endomorphism of a normal projective surface X with KX being pseudo-effective. Then

KX is nef, f is quasi-étale, and there is a quasi-étale finite Galois cover ν : V → X such

that ν ◦fV = f ` ◦ν for a non-isomorphic surjective endomorphism fV of V and a positive

integer `, and that V and ν satisfy exactly one of the following conditions:

(1) V is an abelian surface.

(2) V ∼= E×T for an elliptic curve E and a smooth projective curve T of genus ≥ 2.

Moreover, fV and f have no Zariski-dense orbit.

Proof. This follows from [32, Theorem 7.1.1] by letting the totally invariant divisor S = 0

there. In fact, we only have Cases (3) and (2) there corresponding to our Cases (1) and

(2) here. For our Case (2), we only need to check the assertion about the non-existence

of dense orbits. For this, note that fV (E ×{t}) has genus ≤ 1 (an elliptic curve, indeed)

and it cannot dominate T which is of genus ≥ 2. Thus f : V → V descends to a surjective

endomorphism h : T → T by the rigidity lemma [6, Lemma 1.15]. Since T has genus ≥ 2,

this h has finite order. So fV and hence f have no Zariski-dense orbit. �

We refer to [10, Theorem 1.1 (4) iii] for the cone theorem frequently used late on.

Theorem 5.2. Let X be a normal projective surface with only log canonical singularities

and π : X → Y a Fano contraction with dim(Y ) = 1. Let f : X → X and g : Y → Y be

surjective endomorphisms such that g ◦ π = π ◦ f . Suppose δf > δg. Then we have:

(1) f ∗D ∼ δfD for some semi-ample and π-ample prime divisor D with RD being an

extremal ray of NE(X).

(2) There is a δf -polarized endomorphism h : P1 → P1 such that h ◦ φ = φ ◦ f where

φ : X → P1 is the Iitaka fibration of D.

In particular, there is a finite surjective morphism τ : X → P1×Y such that (g×h)◦τ =

τ ◦ f .

Proof. First, X has rational singularities, hence Q-factorial (cf. [32, Lemmas 2.4.9 and

2.4.10]). By the assumption, the Picard number ρ(X) = ρ(Y ) + 1 = 2.

Note that δg is a positive integer. Since π∗(N1(Y )) is an f ∗-invariant hyperplane of

N1(X), another eigenvalue δf of f ∗|N1(X) is also an integer. Let F ∼= P1 be a general fibre

of π. Then f ∗F ≡ δgF . Let RD be another extremal ray of Nef(X). Then D · F > 0,

and f ∗D ≡ δfD. We have D2 = 0, for otherwise, D2 > 0 and

(δfδg)D
2 = (deg f)D2 = (f ∗D)2 = (δf )

2D2

imply that δf = δg, contradicting the assumption. Thus,

Nef(X) = PE1(X) = NE(X).



14 SHENG MENG, DE-QI ZHANG

Claim 5.3. Some choice of D has κ(X,D) > 0.

Once Claim 5.3 is proved, the new D has κ(X,D) = 1 since D2 = 0. Then we have

D ∼Q Da +Dc ∼Q Db +Dc for effective Q-Cartier divisors Da, Db, Dc such that SuppDa

and SuppDb are non-empty and have no common irreducible component. Since RD is

extremal in NE(X), we have RD = RDa = RDb
. Then Da is nef and Da · Db = 0. So

SuppDa ∩ SuppDb = ∅. In particular, Da is semi-ample. Replacing D by mDa for some

m > 0, we may assume D is base point free. Then the Iitaka fibration φ : X → B is a

morphism with B being a smooth projective curve. Note that D ∼Q φ
∗H for some ample

Q-Cartier divisor H of B. Let C be any irreducible curve of X. Then φ(C) is a point if

and only if D · C = H · φ∗C = 0. Note that f∗C · D = C · f ∗D = δf (C · D). So φ(C)

is a point if and only if so is φ(f(C)). Since the Iitaka fibration φ has connected fibres,

there is a surjective endomorphism h : B → B such that h ◦ φ = φ ◦ f by the rigidity

lemma (cf. [6, Lemma 1.15]). Note that F dominates B since F ·D > 0. Then B ∼= P1

and h∗|Pic(B) = δf id. In particular, f ∗D ∼Q f
∗φ∗H = φ∗h∗H ∼Q δfD.

This proves the assertion (1) of the theorem. For the assertion (2), τ is naturally

induced by the two fibrations π and φ. It is finite because ρ(X) = ρ(P1 × Y ) = 2.

Therefore, to prove the theorem, we only need to show Claim 5.3 which will be proved

in several steps below.

Step 1. Suppose KX · D < 0. By the cone theorem, RD is generated by a rational

curve again denoted as D. Note that (aD − KX) · D > 0 and (aD − KX) · F > 0 for

a > 0. Then aD−KX is ample by Kleiman’s ampleness criterion (cf. [19, Theorem 1.8])

and hence D is semi-ample by the base point free theorem (cf. [10, Theorem 2.1]). So

Claim 5.3 is proved in this case.

Step 2. From now on, we assume that KX ·D ≥ 0. Note that

0 ≤ D ·Rf = D · (KX − f ∗KX) = D ·KX − f ∗D · f ∗KX/δf = (1− δg)D ·KX ≤ 0.

Then D · Rf = 0. Hence either Rf = 0 or RD = RRf
. If Rf = 0, then KX = f ∗KX

implies that KX is an eigenvector of N1(X). So KX is numerically parallel to one of D

and F and it must be the former since −KX and D are relatively ample (but not F ) over

Y . Hence 1 = δf > δg ≥ 1, a contradiction. Therefore, Rf 6= 0 and RD = RRf
. Write

Rf =
∑
aiDi where ai > 0 are integers and Di are irreducible components. Since RRf

is

extremal in NE(X), RDi
= RD for every i.

Step 3. Suppose D1 is not f−1-periodic. Then there exists infinitely many different

irreducible curves Et such that f∗Et = etEt−1 for some integer et > 0 and E1 = D1. By

Proposition 3.7, Et ∼Q (et/ deg f)f ∗Et−1. Then Vf (D1) (cf. Definition 3.6) is spanned

by {Et}t≥0. By Proposition 3.7, Vf (D1) is finite dimensional. Then we have A :=
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∑
i∈I biEi ∼Q

∑
j∈J bjEj =: B where I ∩ J = ∅ and bi, bj are positive integers. Note that

RD = RA and κ(X,A) > 0. So in this case, Claim 5.3 holds by taking A as new D.

Step 4. Now we may assume that f−1(Di) = Di for every i after replacing f by a

positive power. Then f ∗Di = δfDi.

Suppose SuppRf is not irreducible. Then we have D1 ≡ tD2 for some rational number

t > 0. Note that m(D1 − tD2) ∈ π∗(Pic0(Y )) for some positive integer m and

f ∗(D1 − tD2) = δf (D1 − tD2).

If D1−tD2 ∼Q 0, then κ(X,D1) > 0, and we are done. Otherwise, D1−tD2 ∈ π∗(Pic0(Y ))

is not a torsion. Hence g∗ has an eigenvector in Pic0C(Y ) corresponding to the eigenvalue

δf > 1; thus the condition of Proposition 3.3 cannot be satisfied, i.e., the Albanese

morphism of X is not surjective. So the genus of Y is at least 2, and then g has finite

order and all the eigenvalues of g∗|Pic0C(Y ) are roots of unity, again a contradiction.

Step 5. Finally, we are left with the case that SuppRf = D1 is irreducible and

f−1-invariant. Replace D by D1. Then KX +D = f ∗(KX +D). Note that

(KX +D) · F = f ∗(KX +D) · f ∗F/δg = δf (KX +D) · F.

So (KX +D) · F = 0 and D · F = −KX · F = 2.

Let X̃ be the normalization of X ×Y Ỹ where Ỹ is the normalization of D. Denote

by p1 : X̃ → X and p2 : X̃ → Ỹ the induced projections. Denote by f̃ : X̃ → X̃

the equivariant lifting of f and D̃ := p−11 (D). Note that there is a diagonal embedding

D → D ×Y D and π|D : D → Y is a double cover. Then D̃ is not irreducible. Note that

the general fibre of p2 is a smooth rational curve. So X̃ has only rational singularities

and is Q-factorial (cf. [32, Lemmas 2.4.9 and 2.4.10]). Write D̃ :=
∑2

i=1 D̃i. Replacing f̃

by a positive power, we may assume f̃−1(D̃i) = D̃i for each i. Then f̃ ∗D̃i = δfD̃i.

We assert that p2 : X̃ → D̃ is a Fano contraction. First, deg(f̃) = deg(f) ≥ 2 implies

that X̃ is lc, thus we can run MMP ofX (cf. [11, Theorem 1.1]). Now let C̃ be any negative

curve of X̃. By Lemma 4.3, f̃−1(C̃) = C̃ after replacing f̃ by a positive power. Write

f̃∗(C̃) = tC̃ for some t > 0. Then f̃ ∗(C̃) = (deg f̃/t)C̃. Now f∗p1∗C̃ = p1∗f̃∗C̃ = tp1∗C̃.

Since p1 is finite, p1(C̃) is not a point and hence either t = δf or δg. However, C̃2 < 0

implies that t2 = deg f̃ = deg f . Then δf = δg, a contradiction. Thus the relative MMP

of X̃ over D̃ has only one step Fano contraction which is p2 (as asserted).

Note that D̃ ⊆ SuppRf̃ . By the same argument of Step 4, since D̃ is not irreducible,

we have κ(X̃, D̃i) > 0 and hence κ(X,D) > 0.

So Claim 5.3 is proved in this case. This also proves the theorem. �

We now characterize the case when the canonical divisor is not pseudo-effective.
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Theorem 5.4. Let f : X → X be a non-isomorphic surjective endomorphism of a normal

projective surface X with KX not being pseudo-effective. Then, replacing f by a positive

power, one of the following holds.

(1) f is polarized and f ∗|N1(X) = q id for some integer q > 1.

(2) ρ(X) = 2; there is an f -equivariant Fano contraction π : X → Y with δf = δf |Y .

(3) ρ(X) = 2; there exist a finite surjective morphism τ : X → P1×Y and a surjective

endomorphism h : P1 → P1 such that (g × h) ◦ τ = τ ◦ f .

Proof. Note that X is lc by [40, Theorem 2.8]. By [11, Theorem 1.1] and Theorem 4.7,

replacing f by a positive power, we may run f -equivariant MMP

X = X1 → · · · → Xi → · · · → Xr → Y

with πi : Xi → Xi+1 being divisorial contractions for i < r and πr : Xr → Y being a Fano

contraction. Denote by fi := f |Xi
and g := f |Y . If Y is a point, then ρ(Xr) = 1 and fr is

automatically polarized since deg fr = deg f > 1. Then f is polarized by [26, Corollary

3.12] and further f ∗|N1(X) is a scalar action (cf. [26, Theorem 1.8]).

Suppose now that Y is a curve and fr is not polarized. We claim that r = 1. Replacing

X by Xr−1, it suffices for us to consider the case when r = 2. Let E be the exceptional

divisor of π1 : X → X2. Then f−1(E) = E and write f ∗E = tE for some t > 0. Let

P := π2 ◦ π1(E) be a point in Y . Then g∗P = δgP . Let F2 := π∗2P and F := π∗1F2.

Then F = F̃2 + aE where a > 0 and F̃2 is the strict transform of F2 in X. Since

f−1(SuppF ) = SuppF , we have f−1(Supp F̃2) = Supp F̃2. Note that

δgF̃2 + δgaE = δgF = f ∗F = f ∗F̃2 + atE.

Therefore, t = δg. On the other hand, E2 < 0 implies that δ2g = t2 = deg f = deg f2,

hence the two eigenvalues of f ∗2 |N1(X2) are both δg. Since deg f > 1, f is then polarized,

a contradiction. So the claim is proved. In particular, ρ(X) = 2.

The theorem is finished then by applying Theorem 5.2. �

Remark 5.5. In [23, §7], Matsuzawa and Yoshikawa constructed a family of int-amplified

surjective endomorphisms f : X → X of a klt rational surface satisfying Theorem 5.4 (2)

but not the others. Their example has the properties: κ(X,−KX) = 0, and −KX ∼Q D

with D = SuppRf being an f−1-invariant elliptic curve.

Proof of Theorem 1.3. We may assume that X is normal after normalization by Lemma

2.5. If f is an automorphism, then we may further take an f -equivariant resolution and

KSC holds for f by [14, Theorem 2(c)] and Lemma 2.5.

Suppose f is non-isomorphic. Then X is lc by [40, Theorem 2.8]. If KX is pseudo-

effective, then the theorem follows from Theorem 5.1, [38, Theorem 2] and Lemma 2.5.
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If KX is not pseudo-effective, then the theorem follows from Proposition 2.7, Theorem

5.4 and Lemmas 2.5 and 2.6. �

6. Effectiveness of −KX: Proof of Theorem 1.5

In this section, we show the effectiveness of the anti-canonical divisor of any variety

admitting an int-amplified endomorphism. Theorem 6.2 below includes Theorem 1.5.

Proposition 6.1. Let f : X → X be a surjective endomorphism of a normal projective

variety X. Let D be an effective Cartier divisor of X with κ(X,D) = 0 and f ∗D ∼Q D+B

for some effective Q-Cartier divisor B. Then f−1(SuppD) = SuppD and SuppB ⊆
SuppD.

Proof. Pushing forward the assumption, we get (deg f)D ∼Q f∗D + f∗B. Thus, since

κ(X, f ∗D) = κ(X,D) = 0 (cf. [39, Theorem 5.13] or Lemma 7.5), we have

f−1(SuppD) = (SuppD) ∪ (SuppB) ⊇ SuppB, SuppD = (Supp f∗D) ∪ (Supp f∗B).

Hence Supp fn+1
∗ D ⊆ Supp fn∗D, and by DCC we eventually get the equality. Replacing

D by fn∗D we may assume Supp f∗D = SuppD.

Note that

Supp f ∗D = Supp f ∗f∗D = Supp f∗f
∗D = SuppD.

The first equality is from SuppD = Supp f∗D, while the second follows from (deg f)D =

f∗f
∗D ∼Q f

∗f∗D (cf. Proposition 3.7) and κ(X,D) = 0. So f−1(SuppD) = SuppD. �

Theorem 6.2. Let X be a Q-Gorenstein normal projective variety admitting an int-

amplified endomorphism f . Then we have:

(1) −KX ∼Q D for some effective Q-Cartier divisor D.

(2) Suppose further κ(X,−KX) = 0. Then D is an (integral) reduced effective Weil

divisor; SuppRf = SuppD and it is f−1-invariant. Moreover g−1(D) = D, and

SuppRg ⊆ SuppD, i.e., g|X\D : X\D → X\D is quasi-étale, for any surjective

endomorphism g of X.

Proof. (1) We use the notation in Definition 3.6. By the ramification divisor formula,

f ∗(−KX)− (−KX) = Rf ∈ Ef (Rf ).

Therefore, −KX ∈ Ef (Rf ) by Propositions 3.4, 3.7 and [24, Proposition 3.2]. This and

KX being Q-Cartier, imply that −KX ∼Q D for some effective Q-Cartier divisor D.

(2) Suppose κ(X,−KX) = 0. By Proposition 6.1, f−1(SuppD) = SuppD and SuppRf ⊆
SuppD. Write D =

∑
aiDi where Di is the irreducible components of D and ai > 0.
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Replacing f by a positive power, we may assume f−1(Di) = Di. Since f is int-amplified,

we have f ∗Di = qiDi with qi > 1 (cf. [24, Theorem 1.1]). So∑
(qi − 1)Di = Rf ∼Q f

∗D −D =
∑

ai(qi − 1)Di.

Since κ(X,Rf ) = 0 and qi > 1, we have ai = 1 for each i. The last assertion of (2) follows

from Proposition 6.1 since g∗(−KX)− (−KX) = Rg ≥ 0. �

7. Anti-Iitaka Fibration: Proof of Proposition 1.6

In this section, we focus on the case when f ∗KX ≡ δfKX and κ(X,−KX) > 0. We

show that the Chow reduction of the Iitaka fibration π : X 99K Y of−KX is f -equivariant.

By some further cone analysis, we show that f |Y is δf -polarized.

We first recall the definition and properties of the Chow reduction in [33, Proposition

4.14 and Definition 4.15], using the formulation in his RIMS preprint version.

Proposition 7.1 (Chow reduction). Let π : X 99K Y be a dominant rational map from a

projective variety X to a normal projective variety Y . Then there exist a normal projective

variety T and a birational map µ : Y 99K T satisfying the following conditions:

(1) The graph γµ◦π : Γµ◦π → T of µ ◦ π is equi-dimensional.

(2) Let µ′ : Y 99K T ′ be a birational map to another normal projective variety T ′ such

that the graph γµ′◦π : Γµ′◦π → T ′ of µ′ ◦ π is equi-dimensional. Then there exists

a birational morphism ν : T ′ → T such that µ = ν ◦ µ′.

We call the composition µ ◦ π : X 99K T above satisfying Proposition 7.1 (1) - (2) the

Chow reduction of π : X 99K Y , which is unique up to isomorphism.

Theorem 7.2 below is a generalization of Nakayama [33, Theorem 4.19] with exactly the

same proof. Note that his special MRC fibration there (also a Chow reduction) is used

only to secure our following assumption that g ◦ π = π ◦ f for some dominant self-map g

on the base of the Chow reduction π, precisely, for him to show in [33, Proof of Theorem

4.19, page 592, lines 4-9, after the display] that his Y and Y1 there are birational (to the

same W there) so that f : X → X descends to a rational self-map g : Y 99K Y .

Then his argument there further shows that g is a surjective endomorphism. His

polarized assumption is only used to show that g is polarized.

Theorem 7.2. (cf. [33, Theorem 4.19]) Let π : X 99K Y be a dominant map of normal

projective varieties with connected general fibres. Let f : X → X be a surjective endo-

morphism and g : Y 99K Y a dominant self-map such that g ◦ π = π ◦ f . Suppose π is a

Chow reduction of itself. Then g is a surjective endomorphism.

We now recall some fundamental results about Iitaka fibrations.
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Lemma 7.3. Let X be a normal projective variety. Let D1 and D2 be two effective

Cartier divisors with D2 − D1 effective and κ(X,D1) = κ(X,D2). Then for t � 1, the

Iitaka fibrations φtDi
satisfy φtD1 = σ ◦ φtD2 for some birational map σ.

Proof. Let s0, · · · , sm(1) be a basis of H0(X, tD1) and let t0, · · · , tm(2) be a basis of

H0(X, tD2) where ti = ξsi (0 ≤ i ≤ m(1)) with div(ξ) = t(D2 − D1). Define p1 :

X 99K Pm(1) via p1(x) = (s0(x) : · · · : sm(1)(x)) and p2 : X 99K Pm(2) via p2(x) = (t0(x) :

· · · : tm(2)(x)), so that pi is the composition of the Iitaka fibration φtDi
: X 99K Yi and em-

bedding Yi ⊆ Pm(i). Define h : Pm(2) 99K Pm(1) via h(x0 : · · · : xm(2)) = (x0 : · · · : xm(1)).

Then p1 = h ◦ p2. Since the Iitaka fibrations have connected general fibres, there ex-

ists some dominant rational map σ : Y2 99K Y1 with connected general fibre such that

φtD1 = σ ◦ φtD2 by the universal property of Stein factorization of φtD1 . Moreover, σ is

birational since dim(Y1) = dim(Y2). �

Lemma 7.4. Let f : X → X be a surjective endomorphism of a normal projective

variety. Let D be an effective Cartier divisor. Let φtD : X 99K Y and φtf∗D : X 99K Y ′

be the Iitaka fibrations with t� 1. Then g′ ◦ φtf∗D = φtD ◦ f for some dominant rational

map g′ : Y ′ 99K Y .

Proof. Let φf∗|tD| : X 99K Z be the dominant rational map defined by f ∗|tD| where |tD|
is the complete linear system of tD. Clearly, Z = Y and φf∗|tD| = φtD ◦ f . Since f ∗|tD|
is a sub linear system of |tf ∗D|, by the argument in the proof of Lemma 7.3, there is a

dominant rational map g′ : Y ′ 99K Y such that φf∗|tD| = g′ ◦ φ|tf∗D| = g′ ◦ φtf∗D. �

We recall the following well-known useful result.

Lemma 7.5. (cf. [39, Theorem 5.13]) Let f : X → Y be a surjective morphism of

projective varieties and let D be a Cartier divisor of Y . Then κ(Y,D) = κ(X, f ∗D).

Corollary 7.6. Let f : X → X be a surjective endomorphism of a normal projective

variety. Let φ−mKX
: X 99K Y be the Iitaka fibration with m � 1. Then there is a

dominant self-map g : Y 99K Y such that g ◦ φ−mKX
= φ−mKX

◦ f .

Proof. Let φmf∗(−KX) : X 99K Y ′ be the Iitaka fibration with m � 1. By Lemma 7.4,

g′ ◦ φmf∗(−KX) = φ−mKX
◦ f for some dominant rational map g′ : Y ′ 99K Y .

By the ramification divisor formula, we have f ∗(−KX) = −KX +Rf . By Lemma 7.5,

κ(X, f ∗(−KX)) = κ(X,−KX). Then φ−mKX
= σ ◦ φmf∗(−KX) for some birational map

σ : Y ′ 99K Y by Lemma 7.3. Let g := g′ ◦ σ−1. Then g ◦ φ−mKX
= φ−mKX

◦ f . �
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Lemma 7.7. Consider the following commutative diagram of normal projective varieties

W
σW //

φW
��

X

φmD

��
Y

σY // Z

where φmD is the Iitaka fibration of some effective Cartier divisor D of X with m � 1,

σW is a birational morphism, σY is a birational map, and φW is a surjective morphism.

Let F ⊆ PE1(W ) be the minimal extremal face containing σ∗WD. Then φ∗W (PE1(Y )) ⊆ F .

Proof. Taking a sufficiently high resolution i : W ′ → W , we have a birational morphism

σW ′ : W ′ → X such that σ∗W ′ |mD| = d + ∆ where d is a free linear system and ∆ is the

fixed component. Then φd = φmD ◦ σW ′ . Let M ∈ d. Then M = φ∗dA for some ample

Cartier divisor A on Z.

Consider the following commutative diagram

W ′ i //

j
��

φd

~~

W

φW
��

Z Ỹ
p1oo

p2 // Y

where Ỹ is the graph of σY , p1 and p2 are the two (birational) projections, and j is a

morphism induced by the two morphisms φW ◦ i and φd.

Let H be an effective Cartier divisor of Y . The class of E ′ := p∗1sA− p∗2H is the class

of an effective divisor for some s� 1. Note that

σ∗W ′smD ∼ sM+s∆ = φ∗dsA+s∆ = j∗p∗1sA+s∆ = j∗p∗2H+j∗E ′+s∆ = i∗φ∗WH+j∗E ′+s∆.

Taking the pushforward of i, we have

σ∗W smD = φ∗WH + i∗(j
∗E ′ + s∆).

Since F is the minimal extremal face of PE1(W ) containing σ∗WD, we have φ∗WH ∈ F .

Therefore, φ∗W (PE1(Y )) ⊆ F . �

Theorem 7.8. Let f : X → X be a surjective endomorphism of a Q-Goreinstein nor-

mal projective variety X such that f ∗KX ≡ qKX for some integer q > 1. Suppose

κ(X,−KX) > 0. Then there is an f -equivariant dominant rational map π : X 99K Y to

a normal projective variety Y such that dim(Y ) > 0 and f |Y is q-polarized.

Proof. Let φmD : X 99K Z be the Iitaka fibration of D := −KX with m� 1. By Corollary

7.6 and Theorem 7.2, there is a birational map σY : Y 99K Z such that π := σ−1Y ◦ φmD
is (the Chow reduction of φmD and) f -equivariant. Denote by g := f |Y .
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Let W be the normalization of the graph of π. We have the following commutative

diagram

W
σW //

φW
��

X

φmD

��
Y

σY // Z

Let F be the minimal extremal face containing σ∗WD in PE1(W ). By Lemma 7.7, we

have φ∗W (PE1(Y )) ⊆ F .

Note that f lifts to a surjective endomorphism h : W → W . Since h∗σ∗WD ≡ qσ∗WD,

we have h∗(F ) = F by the uniqueness of F (cf. [25, Lemma 4.2]). Denote by 〈F 〉 the

subspace in N1(W ) spanned by F . By [26, Propositions 2.9], h∗|〈F 〉 is diagonalizable

with all the eigenvalues being of the same modulus q. Therefore so is g∗|N1(Y ) since

N1(Y ) = 〈PE1(Y )〉 ⊆ 〈F 〉. By [26, Propositions 2.9 and 1.1], g is q-polarized. �

Now we can show Proposition 1.6 easily.

Proof of Proposition 1.6. We may assume δf > 1. Then the theorem follows directly from

Theorem 7.8, Lemma 2.5 and Proposition 2.7. �

8. Case TIR: Conditions (A1) - (A4) Imply Condition (A5)

In this section, we show that in Case TIR, Conditions (A1)-(A4) imply Condition (A5).

The main idea is to take the double cover as in Step 5 of the proof of Theorem 5.2.

We first recall the result below.

Lemma 8.1. (cf. [32, Lemma 3.3.1], [34, Lemma 2.5]) Let f : X → X be a non-

isomorphic surjective endomorphism of a normal projective variety X. Let θk : Vk → X

be the Galois closure of fk : X → X for k ≥ 1 and let τk : Vk → X be the induced

finite Galois covering such that θk = fk ◦ τk. Then there are finite Galois morphisms

gk, hk : Vk+1 → Vk such that τk◦gk = τk+1, τk◦hk = f◦τk+1 and (deg hk)/(deg gk) = deg f .

The following result about periodic subvarieties is another application of the technique

used in the proofs of [34, Theorem 3.3] and [24, Theorem 5.2].

Theorem 8.2. Let f : X → X be an int-amplified endomorphism of a normal projective

variety X. Suppose D := SuppRf is f−1-invariant and X\D is klt. Let Z be an f−1-

periodic proper subset of X. Then Z ⊆ SuppRf .

Proof. It suffices for us to consider the case when Z is irreducible and closed (cf. [5,

Lemma 7.2]). We apply Lemma 8.1 and use the notation there. Set d := deg f . Then

d = (deg hk)/(deg gk), and d > 1 (cf. [24, Lemma 3.7]). Denote by Uk := Vk\τ−1k (D).

Then Uk+1 = g−1k (Uk) = h−1k (Uk). By the ramification divisor formula, f |X\D : X\D →
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X\D is quasi-étale. Hence θk|Uk
, τk|Uk

, gk|Uk+1
and hk|Uk+1

are quasi-étale and Galois by

the construction. So Uk is klt by [19, Proposition 5.20]. Therefore, gk|Uk+1
and hk|Uk+1

are

étale for k � 1 by [12, Theorem 1.1]. Let A be an ample Cartier divisor on X. Denote

by Ak := τ ∗kA and (f ∗A)k := τ ∗k (f ∗A). Denote by Sk := τ−1k (Z). In the rest of the proof,

we always assume k � 1.

Suppose Z 6⊆ D. Then Sk+1 = g−1k (Sk) = h−1k (Sk) and Sk+1 = g∗kSk = h∗kSk as cycles.

Let m = dim(Z) < dimX. By the projection formula, we have

Sk+1 · (f ∗A)mk+1 = Sk+1 · g∗k((f ∗A)k)
m = (deg gk)Sk · (f ∗A)mk

and

Sk+1 · (f ∗A)mk+1 = Sk+1 · h∗k(Ak)m = (deg hk)Sk · Amk .

Then Sk · (f ∗A)mk = dSk · Amk . Note also that (τk)∗Sk = tkZ for some integer tk > 0.

Thus, by the projection formula, we have tkZ · (f ∗Am) = dtkZ · Am. Therefore,

1 ≤ Z · Am = lim
i→+∞

Z · (f i)∗Am

di
= 0

with the last equality by [24, Lemma 3.8], a contradiction. �

Lemma 8.3. Let π : X → Y be a surjective morphism of normal projective varieties.

Take a codimension-r cycle C ∈ Nr
C(Y ) := Nr(Y ) ⊗R C. Suppose Y is Q-factorial and

C ≡w 0 (weak numerical equivalence). Then π∗C ≡w 0.

Proof. Let n = dim(X) ≥ m := dim(Y ) and d := n−m. If r = 0, then C ≡ λY for some

λ ∈ C. So C ≡w 0 implies that λ = 0 and hence the lemma is true.

Now assume r ≥ 1. Suppose the contrary that π∗C 6≡w 0. Then we can find (general)

very ample divisors Hi of X such that H1 · · ·Hn−r · π∗C 6= 0. Since X is normal, we may

assume H1 is a normal variety (cf. [36]). Inductively, by the Bertini’s theorem, we may

assume that each Zs := H1 ∩ · · · ∩Hs (1 ≤ s ≤ n− r) is an irreducible normal subvariety

(and a Cartier divisor) of Zs−1 with dim(Zs) = n−s ≥ r ≥ 1, and π|Zs : Zs → π(Zs) (s ≥
d) is generically finite. Then π(Zd) = Y and π(Zs) = π(Zs−1 ∩Hs) =

⋂
d<i≤s π(Hi ∩ Zd)

for s > d. Note that H ′s := (π|Zd
)∗(Hi|Zd

) (s > d) is a Q-Cartier divisor on Y since Y is

Q-factorial. In particular, π∗(H1 · · ·Hn−r) = eH ′d+1 · · ·H ′n−r for some e > 0. Note that

n− r ≥ d. By the projection formula:

0 6= H1 · · ·Hn−r · π∗C = π∗(H1 · · ·Hn−r) · C = eH ′d+1 · · ·H ′n−r · C,

contradicting that C ≡w 0. �

Proposition 8.4. Let f : X → X be a surjective endomorphism of a Q-factorial lc

projective variety X. Let π : X → Y be an f -equivariant Fano contraction with general
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fibre F . Suppose δf > δf |Y and f ∗D ≡ δfD for some π-ample D ∈ N1(X). Then Dd 6≡w 0

and Dd+1 ≡w 0 (weak numerical equivalence) with d := dim(X)− dim(Y ).

Proof. Note that D|F is ample, hence Dd · F = (D|F )d > 0.

Set x := D. Let {yij}1≤i≤k,1≤j≤`i be a basis of NSC(Y ) such that g∗(yij) = λiyij + yij+1

if j < `i, and g∗(yij) = λiyij if j = `i. For two sequences of integers, we say (aij) < (bij)

if for some i′ and j′, ai′
j′
< bi′

j′
and aij ≤ bij for any i > i′ and for any j > j′ with i = i′.

Let s ≥ d be the maximal integer such that xs 6≡w 0. Let (aij) be the maximal sequence

such that
∑

ij
aij = dim(X)− s and xs ·

∏
ij
y
aij
ij
6= 0. For convenience, we call (aij) the

degree sequence of y
aij
ij

and
∑

j aij the i-th degree of (aij).

Note that

f ∗(xs ·
∏
ij

y
aij
ij

) = δsfx
s · {

∏
ij

(λiyij)
aij + ∆}

where the degree sequence of each term of ∆ is larger than (aij). Thus xs ·∆ = 0, so

deg f = δsf ·
∏
i

λ
∑

j aij
i .

Lemma 8.3 implies
∏

ij
y
aij
ij
6≡w 0 in Y , noting that Y is Q-factorial (cf. [19, Corollary

3.18]). So
∏

ij
y
aij+bij
ij

6= 0 for some bij ≥ 0 and
∑

ij
(aij + bij) = dim(Y ). Let (cij) be the

maximal sequence such that
∑

j cij =
∑

j(aij + bij) for each i and
∏

ij
y
cij
ij
6= 0. Note that

g∗(
∏
ij

y
cij
ij

) =
∏
ij

(λiyij)
cij + ∆′

where the degree sequence of each term of ∆′ is larger than (cij) and the i-th degree of

each term of ∆′ is still
∑

j(aij + bij) for each i. Then ∆′ = 0 and hence

deg g =
∏
i

λ
∑

j cij
i .

We may write
∏

ij
y
cij
ij
≡ tF on X for some 0 6= t ∈ C. Since D|F is ample, we have

xd ·
∏

ij
y
cij
ij
6= 0. Note that

f ∗(xd ·
∏
ij

y
cij
ij

) = δdfx
d ·
∏
ij

(λiyij)
cij .

Then

deg f = δdf ·
∏
i

λ
∑

j cij
i .

Finally, we have δs−df =
∏

i λ
∑

j(cij−aij )
i . Since

∑
j(cij − aij) ≥ 0 for each i,

∑
ij

(cij −
aij) = dim(Y )− (dim(X)− s) = s− d and |λi| ≤ δg < δf , we have s = d. �



24 SHENG MENG, DE-QI ZHANG

Lemma 8.5. Let π : X → Y be a degree two finite surjective morphism of normal

varieties. Let f : X → X and g : Y → Y be surjective endomorphisms such that

π ◦ f = g ◦ π. Suppose g is quasi-étale, and there is no g−1-periodic prime divisor of Y .

Then π and f are quasi-étale.

Proof. Suppose prime divisor Q1 of Y is in Bπ, the branch locus of π. Then π−1(Q1) = P1

and π∗Q1 = 2P1, where P1 is a prime divisor of X. Now π ◦ f = g ◦ π implies 2f ∗(P1) =

π∗g∗(Q1). Thus g−1(Q1) ⊆ Bπ since g is quasi-étale. So the set g−1(Bπ) is contained in

the set Bπ. Hence these two sets are the same since π is surjective. We then have Bπ = 0,

by the assumption. Thus, π and hence g ◦ π = π ◦ f and also f are quasi-étale. �

Theorem 8.6. In Case TIR, Conditions (A1)-(A4) imply Condition (A5).

Proof. We assume (A1) - (A4). We will deduce (A5). If dim(Y ) = 0, then X is a klt

Fano variety, so κ(X,−KX) > 0, contradicting Condition (A1). Thus dimY ≥ 1.

We still have to consider the case dim(X) = dim(Y ) + 1. Let I : X → X be an

int-amplified endomorphism. We may assume π is I-equivariant, after I is replaced by a

positive power (cf. [24, Theorem 1.10]). By Theorem 6.2, I−1(D) = D and SuppRI = D.

We first claim that π|D : D → Y is finite. Since D ∼Q −KX is π-ample and dim(D) =

dim(Y ), π|D is generically finite. If π|D is not finite, then D contains some curve C

contracted by π. Since D is π-ample, D · C > 0. However, D2 ≡w 0 by Proposition 8.4.

So D|D ≡ 0 (cf. [42, Lemma 3.2]) and hence D · C = D|D · C = 0, a contradiction. The

claim is proved.

Let X̃ be the normalization of X ×Y Ỹ where Ỹ is the normalization of D. Denote

by p1 : X̃ → X and p2 : X̃ → Ỹ the induced projections. Denote by f̃ : X̃ → X̃ and

Ĩ : X̃ → X̃ the equivariant liftings of f and I. Set D̃ := p−11 (D). Since the general fibre

F of π is P1, we have KX · F = −2 and D · F = 2. Since there is a diagonal embedding

D → D ×Y D, our D̃ is reducible. Write D̃ :=
∑2

i=1 D̃i with D̃i irreducible. Replacing

f̃ and Ĩ by positive powers, we may assume D̃i is f̃−1 and Ĩ−1-invariant for each i.

Note that p1 is a double cover and I|X\D is quasi-étale. By Lemma 8.5, p1|X̃\D̃ and

Ĩ|X̃\D̃ are quasi-étale. Thus, KX̃ + D̃ = p∗1(KX +D) ∼Q 0, using also the log ramificaiton

divisor formula. Then (X̃, D̃) is lc and X̃\D̃ is klt by [19, Proposition 5.20]. Further, p2

has connected fibres and p2|D̃ : D̃ → Ỹ is a finite surjective morphism since so is π|D.

Denote by

Σ(D̃i) := {x ∈ D̃i | D̃i is not Q-Cartier at x}.

Then Σ(D̃i) is Ĩ−1-invariant closed and does not dominate Ỹ . Replacing Ĩ by a positive

power, p2(Σ(D̃i)) is Ĩ|−1
Ỹ

-invariant by [5, Lemma 7.5] since p2 has connected fibres. Let

Z := p−12 (p2(Σ(D̃i))). Then Z is Ĩ−1-invariant. By Theorem 8.2, Z ⊆ D̃. Then Σ(D̃i) =
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∅, since D̃ contains no fibre of p2. So D̃i is Q-Cartier and f̃ ∗D̃i = δfD̃i for each i .

Moreover, KX̃ is Q-Cartier and X̃ is klt by [19, Lemma 2.27].

Since the general fibre of X̃ → Ỹ is still P1, KX̃ is not pseudo-effective over Ỹ . By

the relative cone theorem (cf. [19, Theorem 3.25] and [28, Theorem 1.1]), replacing Ĩ
by a positive power, there is an Ĩ-equivariant contraction πC̃ : X̃ → B over Ỹ of some

KX̃-negative extremal ray RC̃ . If πC̃ is birational with E the exceptional locus, then

p2(E) ( Ỹ is Ĩ|−1
Ỹ

-invariant by [5, Lemma 7.5] and hence p−12 (p2(E)) is Ĩ−1-invariant.

By Theorem 8.2, p−12 (p2(E)) ⊆ D̃, a contradiction since D̃ does not contain any fibre

of p2. So dim(X̃) − 1 = dim(Ỹ ) ≤ dim(B) < dim(X̃). Thus the induced morphism

πB : B → Ỹ is generically finite and hence birational since p2 has connected fibres.

Similarly, πB has to be isomorphic. So p2 is a Fano contraction.

Note that D̃i is p2-ample. Then for some rational number t > 0, D̃1−tD̃2 ∈ p∗2(PicQ(Ỹ ))

by the cone theorem (cf. [19, Theorem 3.7]). Denote by g̃ := f̃ |Ỹ . Then g̃∗(D̃1 − tD̃2) =

δf (D̃1 − tD̃2). Note that δg̃ = δf |Y < δf = δf̃ (cf. Lemma 2.4). Since Ĩ|Ỹ is int-amplified

(cf. [24, Lemma 3.4]), the Albanese morphism of Ỹ is surjective by [24, Theorem 1.8]. So

D̃1 − tD̃2 ∼Q 0 by Proposition 3.3. Therefore, κ(X̃, D̃1) > 0 and hence κ(X,−KX) =

κ(X,D) > 0. This contradicts (A1). Thus (A5) holds. �

9. Reduction to Case TIR: Proof of Theorem 1.7

The following result is simple but useful.

Lemma 9.1. Let f : V → V be an invertible linear map of a positive dimensional normed

real vector space V such that f(C) = C for a closed convex cone C ⊆ V which spans V

and contains no line. Suppose f(x) = qx for some x ∈ C and q > 0. Suppose further

that q is the only eigenvalue of f which has modulus q. Then the ray Rx generated by x

is extremal in C.

Proof. Let F be the minimal extremal face containing x and W the space spanned by

F . Then f(F ) = F and f(W ) = W by (cf. [26, Lemma 2.7]). By [25, Lemma 4.2] and

[26, Proposition 2.9], all the eigenvalues of f |W are of modulus q. So dim(W ) = 1 by the

assumption. In particular, F = Rx is an extremal ray of C. �

The following is the key in the proof of Theorem 1.7 for the induction purpose.

Proposition 9.2. Let X be a Q-factorial klt projective variety. Let π : X → Y be a Fano

contraction (so Y is still Q-factorial klt). Let f : X → X and g : Y → Y be surjective

endomorphisms such that g ◦ π = π ◦ f . Suppose κ(X,−KX) ≥ 0 and any finite sequence

of MMP starting from X is f -equivariant after replacing f by a positive power. Suppose

further the Albanese morphism of X is surjective. Then one of the following holds.
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(1) KSC holds for f .

(2) δf > δg; κ(X,−KX) = 0, so −KX ∼Q D ≥ 0; the class of −KX is extremal in

both the cone Nef(X) and the cone PE1(X); and SuppD is irreducible.

(3) Replacing f by a positive power, there is an f -equivariant MMP τ : X 99K Y ′

which is a composition of some birational contractions followed by a Fano con-

traction, such that Y ′ is still Q-factorial klt, dim(Y ′) < dim(X), and δf |Y ′ = δf .

Proof. If δf = δg, then we have Case (3) with τ = π. So it suffices to consider the case

when δf > δg. We show by induction on ρ(X). If ρ(X) = 1, then we have Case (1)

(cf. [14, Theorem 2]). So we assume ρ(X) ≥ 2.

Note that N1(X)/π∗N1(Y ) is 1-dimensional and f ∗|N1(X)/π∗ N1(Y ) = q id for some integer

q > 0. Then q = δf and it is the only eigenvalue of f ∗|N1(X) with modulus δf . By a version

of the Perron-Frobenius theorem (cf. [2]), f ∗D ≡ δfD for some nef and π-ample Cartier

divisor D ∈ N1(X). Moreover, the ray RD generated by D in N1(X) is extremal in both

Nef(X) and PE1(X) by Lemma 9.1. Let a > 0 such that B := D+aKX satisfies B ·C = 0,

where C is a (rational) curve so that RC is the extremal ray of NE(X) contracted by π.

Then B ∈ π∗N1(Y ) by the cone theorem (cf. [19, Theorem 3.7]).

Suppose B is pseudo-effective. Since −KX is effective, D = B + (−aKX) implies that

the rays RD = RB = R−KX
. In particular, f ∗KX ≡ δfKX and −KX is extremal in both

Nef(X) and PE1(X). If κ(X,−KX) > 0, then KSC holds for f by Proposition 1.6 and

we have Case (1).

If κ(X,−KX) = 0, write −KX ∼Q
∑
aiDi with ai > 0 rational number and Di

irreducible. Since −KX is extremal in PE1(X), we have the rays RDi
= R−KX

. Applying

Proposition 6.1 to −KX , we have f−1(Di) = Di for each i after replacing f by a positive

power. Since f ∗Di ≡ δfDi and Di is not numerically trivial, f ∗Di = δfDi. Suppose

SuppD is reducible. Then sD1− tD2 ∈ Pic0(X) for some positive integers s and t. Note

that f ∗(sD1 − tD2) = δf (sD1 − tD2) and δf > 1. Since the Albanese morphism of X is

surjective by the assumption, we have sD1 − tD2 ∼Q 0 by Proposition 3.3. Therefore,

κ(X,−KX) ≥ κ(X,D1) > 0, a contradiction. So we have Case (2).

Suppose B is not pseudo-effective. For a small effective ample Q-Cartier divisor E,

(1/a)B +E is not pseudo-effective. Denote by A := E + (1/a)D which is ample since D

is nef. Thus KX + A = (1/a)B + E is not pseudo-effective. By [1, Corolllary 1.3.3], we

may run ϕ : X 99K X ′, a birational (KX +A)-MMP and end up with a Fano contraction

π′ : X ′ → Y ′ of some (KX′ + A′)-negative extremal ray RC′ where A′ is the strict

transform of A. By the assumption, replacing f by a positive power, we may assume

this MMP is f -equivariant. If ρ(X ′) < ρ(X), then we are done by induction (noting that

X ′ → Alb(X ′) = Alb(X) is still surjective). If ρ(X ′) = ρ(X), then ϕ consists of only
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flips. Hence, we can use ϕ∗ to identify N1(X ′) with N1(X). Let D′ and E ′ be the strict

transform of D and E. Since the curves in RC′ cover X ′, we have E ′ · C ′ ≥ 0. Then

(KX′ +
1

a
D′) · C ′ = (KX′ + A′) · C ′ − E ′ · C ′ < 0.

So KX′ +
1
a
D′ (identified with KX + 1

a
D = (1/a)B ∈ π∗N1(Y )) is not in (π′ ◦ϕ)∗N1(Y ′).

Thus π∗N1(Y ) and (π′ ◦ ϕ)∗N1(Y ′) are two different f ∗-invariant hyperplanes of N1(X).

Note that f ∗|N1(X) has only one eigenvalue of modulus δf and δf > δg. Then δf = δf |Y ′ .

So we have Case (3). �

Proof of Theorem 1.7. If KX is pseudo-effective, then X is Q-abelian by [24, Theorem

1.9] (without using the Q-factorial condition on X). So (1) follows from Theorem 2.8.

For (2), we show by induction on dim(X). Since KSC holds for curves, assume

dim(X) ≥ 2. By (1), we may assume KX is not pseudo-effective. Let I : X → X

be an int-amplified endomorphism. By [28, Theorem 1.2], replacing f and I by positive

powers, we may run f and I-equivariant MMP

X = X1 99K · · · 99K Xi 99K · · · 99K Xr → Xr+1 = Y,

where Xi 99K Xi+1 (i ≤ r) is birational, π : Xr → Y is a Fano contraction, each Xj

(j ≤ r+1) is still Q-factorial klt, and the descending of I to each Xj is still int-amplified.

By Lemma 2.5, we may replace X by Xr.

Note that any finite sequence of MMP starting from X is f and I-equivariant after

iterations by [28, Theorem 1.1], and κ(X,−KX) ≥ 0 by Theorem 1.5. Moreover, the

Albanese morphism of X is surjective by [24, Theorem 1.8]. So we may apply Proposition

9.2 and it suffices for us to consider Cases (2) and (3) there. For Case (2), it is further

Case TIR by Theorems 6.2 and 8.6; by the assumption, KSC holds for f . For Case (3),

we may replace X by a lower dimensional one and we are done by induction (cf. Lemma

2.5). �

10. Toric Characterizations and Proof of Theorem 1.11

In this section, we show that Case TIR3 will not happen during any MMP starting

from a rationally connected smooth projective threefold which admits an int-amplified

endomorphism. The key of the proof is a characterization of a toric pair in the presence

of an int-amplified endomorphism with totally invariant ramification.

Recall that a normal projective variety X over k is said to be toric or a toric variety

if X contains an algebraic torus T = (k∗)n as an (affine) open dense subset such that the

natural multiplication action of T on itself extends to an action on the whole variety X.

In this case, let D := X\T , which is a divisor; the pair (X,D) is said to be a toric pair.

We mainly focus on the following question in this section.
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Question 10.1. Let X be a rationally connected smooth projective variety and D ⊂ X

a reduced divisor. Suppose f : X → X is an int-amplified endomorphism such that

f−1(D) = D and f |X\D : X\D → X\D is quasi-étale. Is (X,D) a toric pair?

First, Question 10.1 has been affirmatively answered when X is a Fano manifold of

Picard number 1. Indeed, Hwang and Nakayama showed then that X is isomorphic to

Pn and D is a simple normal crossing divisor consisting of n + 1 hyperplanes; see [13,

Theorem 2.1]. Later, their result was generalized by the authors [27, Corollary 1.4],

answering the above question affirmatively when f is polarized.

We sketch the idea of the proof when f is polarized. A key step is in applying the

dynamical property of f to verify that the reflexive sheaf of germs of logarithmic 1-

forms Ω̂1
X(logD) (cf. [27, 2.1]) is free, i.e., isomorphic to O⊕nX where n = dim(X); see

[13, Proposition 2.3] and [27, Theorem 5.4]. Thus h0(X, Ω̂1
X(logD)) = dim(X). The

remaining steps do not involve f at all. Write D =
∑`

i=1Di with Di irreducible. Then

one calculates by [27, Theorem 4.5 and Remark 4.6] the complexity of the pair (X,D) as

c(X,D) := dim(X) + r(D)− `(D) = dim(X) + h1(X,OX)− h0(X, Ω̂1
X(logD)) = 0

where `(D) := ` and r(D) is the rank of the vector space spanned by D1, · · · , D` in

N1(X). Finally, (X,D) is a toric pair by the complexity criterion [3, Theorem 1.2].

Thus, to fully answer Question 10.1, we only need to generalize the above key step to

the int-amplified case. Imitating the proof of [13, Proposition 2.3] and [27, Theorem 5.4],

we just need to verify the following two conditions for some ample Cartier divisor H:

(i) c1(Ω̂
1
X(logD)) ·Hn−1 = c1(Ω̂

1
X(logD))2 ·Hn−2 = c2(Ω̂

1
X(logD)) ·Hn−2 = 0.

(ii) Ω̂1
X(logD) is H-slope semistable.

We will see late on that the second condition is not easy to verify and remains unprovable

for the general int-amplified case. For the easy comparison with the polarized case, we

will also consider the singular case.

We need the following to show the vanishing of c2(Ω̂
1
X(logD)).

Proposition 10.2. (cf. [13, Proposition 2.4]) Let X be a normal projective variety smooth

in codimension 2 and D ⊂ X a reduced divisor. Suppose f : X → X is an int-amplified

endomorphism such that f−1(D) = D and f |X\D : X\D → X\D is quasi-étale. Then

there is a smooth open subset U ⊆ X such that D ∩ U is a normal crossing divisor and

codim(X\U) ≥ 3. In particular, Ω̂1
X(logD) is locally free over U .

Proof. Let ν : D̃ → D ⊆ X be the normalization of D and c the conductor of D, regarded

as a Weil divisor on D̃. Since X is smooth in codimension 2, the adjunction formula gives

KD̃ + c = ν∗(KX +D)
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where ν∗(KX + D) is regarded as the pullback of a divisorial sheaf. There is an endo-

morphism h : D̃ → D̃ such that ν ◦ h = f ◦ ν and its ramification divisor Rh is h∗c − c.

In fact, we have KD̃ + c = h∗(KD̃ + c) from KX +D = f ∗(KX +D).

Note that h is int-amplified and c is reduced (cf. [24, Theorem 3.3], [41, Lemma 5.3, the

arxiv version]). If a plane curve has a reduced conductor over a singular point, then the

singularity is nodal. So D has only normal crossing singularities in codimension one. �

We now apply [24, Lemma 3.8] to show the vanishing of the Chern classes.

Proposition 10.3. Let X be a normal projective variety which is of dimension n ≥ 2

and smooth in codimension 2, and D ⊂ X a reduced divisor. Suppose f : X → X is

an int-amplified endomorphism such that f−1(D) = D and f |X\D : X\D → X\D is

quasi-étale. Let H be an ample divisor on X. Then

c1(Ω̂
1
X(logD)) ·Hn−1 = c1(Ω̂

1
X(logD))2 ·Hn−2 = c2(Ω̂

1
X(logD)) ·Hn−2 = 0.

Proof. Let the open set U be as in Proposition 10.2. Then f |f−1(U)\D is étale, since f |X\D
is quasi-étale and by the purity of branch loci.

There is a natural morphism ϕ : f ∗Ω̂1
X(logD)→ Ω̂1

X(logD) and ϕ|f−1(U) is an isomor-

phism. So for 1 ≤ i ≤ 2, we have

f ∗ci(Ω̂
1
X(logD)) = ci(f

∗Ω̂1
X(logD)) = ci(Ω̂

1
X(logD)).

Then the projection formula implies

ci(Ω̂
1
X(logD)) ·Hn−i = ci(Ω̂

1
X(logD) · (f t)∗(Hn−i)/(deg f)t

for any t > 0. By [24, Lemma 3.8], ci(Ω̂
1
X(logD))·Hn−i = 0. The proof for c1(Ω̂

1
X(logD))2·

Hn−2 = 0, is similar. �

Lemma 10.4. Let f : X → X be a surjective endomorphism of a projective variety X.

Suppose f ∗|N1(X) is diagonalizable with positive integral eigenvalues q ≥ p, and no other

eigenvalues. Let H be an ample Cartier divisor. Then H = A+B for some nef Q-Cartier

divisors A and B such that f ∗A ≡ pA and f ∗B ≡ qB.

Proof. If p = q, then f ∗|N1(X) = q id and we may take A = H and B = 0. Assume

q > p. Let ϕ := f ∗|N1(X). Let A = lim
i→+∞

piϕ−i(H) and B = lim
i→+∞

ϕi(H)/qi. Since ϕ is

diagonalizable with only integral eigenvalues p and q, the above limits are Q-Cartier and

H = A + B. It is clear that ϕ(A) = pA and ϕ(B) = qB. Note that A and B are limits

of ample divisors. So A and B are nef. �

We are not able to show the slope semistability for the general int-amplified case.

However, the following case is enough for us to rule out Case TIR3 in the proof of

Theorem 1.11.
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Proposition 10.5. Let X be a normal projective variety of dimension n ≥ 2, and D ⊂ X

a reduced divisor. Suppose f : X → X is an int-amplified endomorphism such that

f−1(D) = D and f |X\D : X\D → X\D is quasi-étale. Suppose further that f ∗|N1(X) is

diagonalizable with one or two positive integral eigenvalues and no other eigenvalues. Let

H be an ample divisor on X. Then Ω̂1
X(logD) is H-slope semistable.

Proof. By Lemma 10.4, we can write H = A+B where A and B are nef Q-Cartier divisors

such that f ∗A ≡ pA and f ∗B ≡ qB. We may assume q ≥ p > 1 (cf. [24, Theorem 1.1]).

Let F ⊂ Ω̂1
X(logD) be the maximal destablizing subsheaf with respect to H. Then:

µH(F) =
c1(F) ·Hn−1

rankF
=

n−1∑
i=0

(
n− 1

i

)
c1(F) · Ai ·Bn−1−i

rankF
=

n−1∑
i=0

(
n− 1

i

)
µAi·Bn−1−i(F).

Suppose the contrary that µH(F) > µH(Ω̂1
X(logD)) = 0 (cf. Proposition 10.3). Then

µAi·Bn−1−i(F) > 0 for some i. In particular, Ai ·Bn−1−i 6≡w 0. Since f ∗|N1(X) is diagonal-

izable, Ai · Bn−1−i · C 6= 0 for some Cartier divisor C with f ∗C ≡ aC. Here a = p, or q,

so a > 1. By the projection formula, we have

(deg f)Ai ·Bn−1−i · C = (f ∗A)i · (f ∗B)n−1−i · f ∗C = (piqn−1−ia)Ai ·Bn−1−i · C.

Therefore, we have deg f/piqn−1−i = a > 1. Since A and B are nef, we have

s = sup{µAi·Bn−1−i(F) | F ⊂ Ω̂1
X(logD)} <∞.

Then for some k � 1 and g := fk, we have

µAi·Bn−1−i(g∗F) = (deg f/piqn−1−i)kµAi·Bn−1−i(F) = akµAi·Bn−1−i(F) > s.

Let the open set U be as in Proposition 10.2. Let j : g−1(U) ↪→ X be the inclu-

sion map and let G := j∗((g
∗F)|g−1(U)). Then µAi·Bn−1−i(G) = µAi·Bn−1−i(g∗F) > s.

Note that (g∗F)|g−1(U) is a subsheaf of the locally free sheaf (g∗Ω̂1
X(logD))|g−1(U)

∼=
Ω̂1
X(logD)|g−1(U). Since codim(X\g−1(U)) ≥ 2 and j∗ is left exact, G is a coherent

subsheaf of Ω̂1
X(logD) . So we get a contradiction. �

With the preparation done, we have the following criterion of toric pairs.

Theorem 10.6. Let X be a rationally connected smooth projective variety and D ⊂ X

a reduced divisor. Suppose f : X → X is an int-amplified endomorphism such that

f−1(D) = D and f |X\D : X\D → X\D is quasi-étale. Suppose further f ∗|N1(X) is

diagonalizable with one or two positive integral eigenvalues, and no other eigenvalues.

Then (X,D) is a toric pair.

Proof. By the assumption, KX + D = f ∗(KX + D); it is zero in N1(X) since f is int-

amplified and hence all eigenvalues of f ∗|N1(X) are of modulus > 1 (cf. [24, Theorem 1.1]).
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So KX + D ∼ 0, because X is simply connected, and hence has no non-trivial torsion

line bundle (cf. [6, Corollary 4.18]). This relation also implies (X,D) is a toric pair when

dim(X) = 1.

Assume now dim(X) ≥ 2. By Propositions 10.3, 10.5 and [12, Theorem 1.20], Ω̂1
X(logD)

is free. In particular, h0(X, Ω̂1
X(logD) = dim(X). Note that h1(X,OX) = 0. By [27,

Theorem 4.5], the complexity c(X,D) ≤ 0 and hence (X,D) is a toric pair by [3, Theorem

1.2] (cf. [27, Theorem 4.3 and Remark 4.4]). �

Proposition 10.7. Let f : X → X be an int-amplified endomorphism of a ratio-

nally connected smooth projective variety X with totally invariant ramification, i.e.,

f−1(SuppRf ) = SuppRf . Suppose X admits some MMP

X = X1 99K · · · 99K Xr → Y = P1

where Xi 99K Xi+1 is birational and π : Xr → Y is a Fano contraction. Then we have:

(1) Replacing f by a positive power, f ∗|N1(X) is diagonalizable with one or two pos-

itive integral eigenvalues, and no other eigenvalues; f descends to int-amplified

endomorphism fi of Xi (i ≤ r), and each fi still has totally invariant ramification.

(2) (Xi, SuppRfi) is a toric pair for each i ≤ r.

(3) KSC holds for any surjective endomorphism of Xi.

Proof. By [24, Theorems 1.10 and 1.11], replacing f by a positive power, this MMP is

f -equivariant, f ∗|N1(X) is diagonalizable with all the eigenvalues being integers greater

than 1, and all fi := f |Xi
and g := f |Y are still int-amplified. Let τ : X 99K Xr be the

composition.

Let W be the graph of τ and let p1 : W → X and p2 : W → Xr be the two projections.

Then f lifts equivariantly to a surjective endomorphism h : W → W . Let E be an

exceptional prime divisor of τ . Write f ∗E = aE for some a > 0. Then h∗EW = aEW

where EW is the strict transform of E in W .

If π ◦ p2(EW ) is a closed point y of Y , then EW is contained in the support of Wy :=

p∗2π
∗(y). Since h∗Wy = δgWy, we have a = δg.

Suppose π◦p2(EW ) = Y . Since g is polarized, the set Per(g) of periodic points is Zariski

dense in Y by [9, Theorem 5.1]. Then h(FW ) = FW for some (irreducible) general fiber

FW of p2 ◦ τ , after replacing f (and h) by positive powers. Denote by F := p1(FW ) and

Fr := p2(FW ). Clearly, p1|FW
and p2|FW

are birational morphisms and Fr is also a general

fibre of π. Since E dominates Y , we have F ∩ E 6= ∅ and hence E|F is an effective Q-

Cartier divisor which is not numerically trivial. Note that f ∗rHr ≡ qHr for some π-ample

Cartier divisor Hr and integer q > 0. Then Hr|Fr is ample and (fr|Fr)
∗Hr|Fr ≡ qHr|Fr .

Since fr is int-amplified, q > 1 (cf. [24, Lemma 3.5, Theorem 1.1]). So fr|Fr is q-polarized
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and hence so is f |F ; see [26, Proposition 1.1 and Corollary 3.12]. Since (f |F )∗E|F = aE|F
and E|F 6≡ 0, we have a = q (cf. [41, Lemma 2.4] or [26, Proposition 2.9]).

Thus f ∗|N1(X) has positive integral eigenvalues δg and q, and no other eigenvalues. (1)

is proved. Indeed, Rfi is the (birational image) of Rf and f−1i (SuppRfi) = SuppRfi

holds for i = 1 and hence for all i.

By (1) and Theorem 10.6, (Xi, SuppRfi) is a toric pair for i = 1, and hence for all

i ≤ r. Indeed, let T be the big torus acting on X. Then the MMP is T -equivariant, and

T stabilizes SuppRfi for i = 1 and hence for all i. (2) is proved.

Since a toric variety is of Fano type, (3) follows from (2) and [21, Corollary 4.2]. �

Proof of Theorem 1.11. By [28, Theorem 1.4], we have the following finite sequence of

G-equivariant MMP for some submonoid G ≤ SEnd(X) of finite index

X = X1 99K · · · 99K Xi 99K Xi+1 99K · · ·Xr → Y

where Xi 99K Xi+1 is birational and π : Xr → Y is a Fano contraction. Let f be a

surjective endomorphism of X. Replacing f by a positive power, we may assume f ∈ G.

By Theorem 1.7, it suffices to show that fr := f |Xr : Xr → Xr does not satisfy Case

TIR3.

Suppose the contrary. Then dim(Y ) = 1, and Y ∼= P1 since X is rationally connected.

By the assumption, G contains (a positive power of) an int-amplified endomorphism

I : X → X. Replacing f by fk ◦I for some k � 1, we may assume f is also int-amplified

and fr still satisfies Case TIR3 (cf. [28, Theorem 1.4]). So fr and hence f have totally

invariant ramification (the MMP being G-equivariant). By Proposition 10.7, Xr is toric,

contradicting the assumption κ(Xr,−KXr) = 0. �
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