CHARACTERISTIC CLASSES AND SPECTRAL

SEQUENCES OF ATIYAH-HIRZEBRUCH TYPE

(Preliminary version)

by

Ch.B.Thomas

Max-Planck-Institut

fiir Mathematik
Gottfried-Claren-StraBe 26
5300 Bonn 3

West Germany

MPI/86-52






CHARACTEﬁiSTIC"CLASSES AND SPECTRAL

SEQUENCES OF ATIYAH-HIRZEBRUCH TYPE
(Preliminary version)
by

Ch.B.Thomas

This paper develops some of the ideas in my survey article
for the First Singapore Topology Conference, June 1385, which
has been available for some time as a preprint (ETH-Ziirich). The
aim is to rephrase Atiyah's famous result on the topological
K-theory of the classifying space of a finite group G in the
language of algebraic K-theory, and to prove it for as general
a family of coefficient rings as possible. The role of charac-
teristic classes is to suggest thé’correct form of the spectral
sequence linking group cohomology and the K-theory of the
classifying space in general, and to help with calculations in
the few cases where enough is known about K, (A) to make these
worthwhile., The best result which we obtain is Theorem 13 below
which states that there is a fourth quadrant spectral sequence

r,-s r

_ 1
E, = H (Spec O[f,]'

Y6,
s X2
conts

N

where Gﬂ is a group of f¢-primary order and (¢ 1is the ring of
integers in the £ th. cyclotomic extension of @ (£ = odd and

regular). Completion is to :-be understand in the [f-adic sense,



but is equivalent to completion with respect to powers of the
augmentation ideal, if we restrict attention to groups of ‘prime
power order. We wish to emphasise that the resuits we obtain

are certainl& not the best possible, and that in particular

the proofs in section three below on extensions of rings of
algebraic integers will need to be expanded in a later version.
There is also considerable oVerlap with the work of R.Thomason
(see numerous preprints), although we have chosen to work with
étale K-theory rather than with algebraic K-theory with the

Bott element inverted.



1. General Framework

Let A be a commutative ring with 1, satisfying the follo-

wing conditions:
(1) K,(a) =2,

(ii) The algebraic K-groups KS(A) are finitely generated
groups for all s > 0 . Examples of such rings are the finite
fields :Fq(q=pt) and rings of algebraic integers (¢ 1in a
number field F . For technical reasons it will be necessary
to enlarge 0 to a ring of S-integers by inverting some prime
£ — this does not affect the finite generation of the K-groups,
see [D-F1]. Let BGL(A)+ be the classifying space for algebraic
K-theory obtained by adding 2- and 3-cells to some classifying
space (unigue up to homotopy) for the discrete group
GL(A) = U GL(n,A) . Consider the negatively graded cohomology
theory g?ién on the category of countable CW-complexes with

finite skeleta in each dimension by
ka%(x) = [s °X, ZxBGL(A)'], s s 0

The coefficients of this theory are given by

K (A), s <0
s -s
KA {point) = Z , s =
0 , s>0
1f x = U Xk , wWhere Xk equals the finite k-skeleton of X ,

k=0
we wish to restrict attention to those spaces X such that the



Atiyah~Hirzebruch spectral sequence with

E;,s = Hr(x,KAS(pt.)) converges
to a graded group associated to 41%3 KAr+S(Xk) , and the
short exact sequence

0 - R elﬁﬂ k571 5 kS(x) - 45%3 kS (x5) - 0

has vanishing left hand term. For example let X = BG , when G
is a finite group. Since KS(A) is a finitely generated abelian
group Hr(BG,KS(A)) is finite for all values of r and s , so'
that the inverse systems {H" (BG",K_(A))}, and (K°(BG%)}, both
satisfy condition (F) in [A] page 33, which implies the
Mittag-Leffler condition, op.cit. Lemma 4.6. Again because the
cohomology groups of a finite group with finitely generated

coefficients are finite, the derived functor R1 vanishes, so

that

THEOREM 1. If the ring A satisfies the conditions (i) and

(ii) and G is a finite group, there is a fourth guadrant

spectral sequence

E = 5Y (G,K% (pt)) ,

which 1is strongly convergent to a graded group associated to

kAT S (Bg) .



Before listing the conditions which we would like our
characteristic classes to satisfy, it is convenient to define

the flat bundle homomorphism
@« : RA(G) - KA®(BG) = [BG, % x BGL(A) ]

Here RA(G) equals the Grothendieck group of finitely generated
A{(G) -modules which are (stably) free over A , modulo the equi-
valence relation of short exact sequences, i.e.

[E] = [E'] + [E"] if there is a short exact sequence

0 - E' > E->E" >0 of G-representation modules over A . If W
equals the disjoint union of the objects WGL(n,A) where W

is the simplicial classifying complex associated to GL{(n,3) ,
then the operation of taking the direct sum of two matrices
induces a free simplicial semigroup structure on W . If UW

denotes its enveloping group there is a homotopy equivalence
+
Z x BGL(A) = |UW| , and

using this model, it is clear how to construct a flat bundle
map o . Under very general assumptions on A , which hold for
example if A is a field or A = O[%] ; & ring of algebraic

integers with a single prime inverted, a is well-defined on

equivalence classes of representations and
a(E') + «(E") = a(E) , see [Q3, Theorem 2']

The characteristic classes ©9(E) of the representation module



E are the characteristic classes of the "flat GL(n,A)-bundle"

a(E) over BG .
If the ring A satisfies condition (i) and (ii) we would
like to construct a family of characteristic classes

j

where o : G » GL(n,A) 1is the homomorphism defining a G-structure
on the A-module E (possibly stabilised). These classes should

have the following properties:
1. (h(p) =1, j(p) =0 for j>n = dimAE

2. Given a homomorphism f : G' - G , then
oc, (£'p) = £%(0,p)
Cj p - jp ’

1
where f° and f* denote the restriction maps in represen-

tation and cohomology theory.
3. Assuming that there is a natural, associative, (skew) commu-
tative product

KS(A) ® Kt{A) > KS (ay ,

+t
which induces a product on H*(G,K,(A)) , the total charac-

teristic class

n
o.(p) = 1 + ]

o.(p)
j=1



satisfies the Whitney formula
: = « e.
©.(py+p,) 6. (p,) @ (p,)

Note that if 1 is the trivial representation, and ©0.(1) = 1 ,

then the class 6 are stable, i.e.

J
©.(p+1) = 0.(p)

In addition we ask for formulae corresponding to the classical

ones for the components of e‘.(_p1 @A‘QQ) and 9-(Alp) .

If Oj is indexed by the natural numbers, then @1(9) is
defined by the homomorphism G - K1(A) , which associates to
each element g € G the class of the representing matrix
pt(g) . However if the suffix Jj belongs to the even natural
numbers, as 1is the case for the classical Chern classes and
the variations on them discussed below, we need some rule
for normalizing the definition of 'éé(n) € HZ(G,Kz(A)) . In
the most general case the following procedure seems natural:
above let p : G - K1(A) be induced by o . Then since
K1(A) is abelian, p factors through the commutator sub-
group [G,G] . There is an extension of the group of elementary

matrices E(A) by G , induced from the extension
1 > E(A) - GL(A) - K1(A) -1,

and since the relations in the Steinberg group St(A) are



modelled on the familiar relations satisfied by elementary
matrices, the 1lift of the map G - Out(E(A)) to Aut(E(A))
needed to define the extension can be copied in the Steinberg

group to give
1 - 8t(A) » * G- 1.

Since Kz(A) is isomorphic to the centre of St(A) , the
extension (*) is classified by Oz(p} in HZ(G,K2(A)) . This

putative definition of © generalises that of the second

2
Stiefel-Whitney class wz(b) for real representations, which
equals the (mod 2) reduction of c1(p) , whenever p has an

underlying complex structure.

5. If the ring A has a natural automorphism # , for example
conjugation if A < T :, or the Frobenius automorphism if
%

A =2Fq , then the characteristic classes of p“ should be

simply related to those of p .

6. In order to use characteristic classes in conjunction with
the spectral sequence we need three filtrations on the
representation ring- RA(G) , each of which also exists on

ka 0(BG) .

(i) Since KO(A) = Z we can define the augmentation map
€ : RA(G) - Z ; let I = Ker(eg) the ideal of represen-
tations with virtual dimension equal to 0 . Then the

I-adic filtration equals



and topologically defines a nested sequence of neighbourhoods

of zero.

(ii) The topological filtration is defined by

top

k-1
; ))

RA (G) = Ker{RA(G) 3 KA®(BG) - KA®(BG
(iii) If we introduce exterior powers (Al) and Grothendieck
operations (Yi) into the graded ring K, (A) as in [B, Chapter

131}, then

RA(G)E = the subgroup generated by monomials of

i i
1 r : . . N
the form vy (x1) ..... Y (xr) , Where l1+l2+""'+lr 2 k
Note that since we suppose in general that the classes ej ‘may
be defined for odd as well as for even suffixes Jj , it is
necessary to define REOP for all suffixes k . However, since

BG is connected, and we may suppose that the O-skeleton consists

of a single point, -

top

1(6) < RA(G),°F .

k

Both filtrations are multiplicative, so I < RA(G)tOP

k r
that the topological filtration on RA(G) is weaker than the

so

I-adic. It ‘follows that if we filter.

AG) = 1+ TT wl(e,x, (a)

j=1 )
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A(G)k = {a =.TT a, :a, =0 for 1s 3 sk-1},

then the total characteristic class ©. defines a homomorphism

of filtered objects
©. : RA(G) - A(G) ,

where the domain is filtered as in either (i) or (ii). Completing

I-adically we have
o." : Ra@?® - ac@ ,

which, even when A = € , need not be a monomorphism for an
arbitrary group G .

Turning to the spectral sequence let H'(G,KA*(pt.)) denote
the subgroup of universal cycles on the line of total degree 0 ,
i.e. those elements of .; Hj(G,Kj(A)) which are killed by each
differential. Dividing oazoby the universal boundaries we obtain

a family of . epimorphisms

. v J _— top
wj : H (G,Kj(A)) >> KA(BG) . .

top
KA(BG)j+1

Then

L.

7. For all p € RA(G) and all values of j , Oj(p) is a

universal cycle, and if p € RA(G)g'Op then wjej(p) equals
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. modulo elements of filtration degree (j+1) ;, up to some

simple numerical factor.

Hence wherever they can be defined the family of charac-
teristic classes {61,62,...} provide a means of detecting
universal cycles in the spectral sequence. Properties 1. to
5. - are not enough to prove the existence and uniqueness of such
classes, except for representation modules having composition
series; such that successive factors are either one or two

dimensional. In order to include more general representations

one needs a good formula for the classes

where p 1is a representation of some subgroup G' of G .
Using the methods of [E2] or [F-M] it ought to be possible
to find such a formula, which under suitable restrictions or

for components of sufficiently low degree reduces to

I

‘ei(f!p) N(G.p)(f!T)r, r = degAR ’

where N(.) is Evens' multiplicative transfer, see [E1] . Such
a formula is particularly useful if there is an analogue of
Blichfeldt's theorem for representations over the ring A , i.e.
for a suitable class of groups (containing groups of prime power
order) an irreducible representation of augmentation greater
than 2 is induced up from a 1 or 2-dimensional representation

of a proper subgroup.



-12-

In addition to characteristic classes we wish to study
the relation between RA(G) and KA(BG) in the hope of
showing that after I-adic completion the homomorphism «
induces an isomorphism. For various technical reasons we replace
algebraic K-theory with the é&tale K-theories ﬁA( ) and

Ka( ,Z/4v) , defined for example in [D-F1, §4] . Since there

is a natural transformation (which is compatible with transfer)
©, ¢ KA*( ) -» Ka*( ) ,

with a parallel definition for finite coefficients, by composition
with o we obtain a flat bundle homomorphism into iAO(BG) ’
which by definition is f¢-adically complete. If A 1is a suitable
Dedekind domain with quotient field F , consider the diagram
below, the construction of which is motivated by [S, Prop.2.1] .

Here p  denotes a prime, and hence maximal, ideal in A

RF'1(G) —> | |rA/P(G) —> RA(G) —>> RF(G)
] p
aF -I-—I-ap GA C!F
v v v v
KF~' (BG) —> J_Lf(A/p(BG) — ’;(A(BG) >> f(F(BG)
dl Bl .YI
P

The upper row is Swan's exact sequence extended to the left
by Quillen’'s higher Grothendiéck's groups {(which are modules
over the representation ring, see ' [R] ), B is obtained by
transfer along the projections A - A/p and <y by extension

of scalars from- A to F . The lower row is localisation in

étale K-theory, justified formally by first carrying out the
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known localisation argument in the Dwyer-Friedlander model for

algebraic K-theory, and then replacing geometric by f£-adic maps.

F A
A contains an invertible prime. As usual we assume this, e.g.

Working from the right « and o are always defined, a if

A = O[%] . The map a;1 is then defined as in [R] . The right
hand square commutes by naturality, the middle square because
the original flat bundle map commutes wiFh transfer (cdmpare
[A, 26-27])) , as does o, above, see [D-F, §6] . The

commutativity of the left hand square is formal, depending on

the definitions of d4 and 4'

In order to make sense of completion we have to know that
the representation rings concerned are finitely generated and free
as abelian groups, i.e. that each representation modulé is
equivalent modulo short exact sequences to a unigque finite direct
sum of indecomposable modules. For F and A/p this is immediate,

for A = O[%] we have:

LEMMA 2, If A = O[l] and G = G, 1is a finite group of order a

== ) o2l

power of ¢ , then RA(GE) is finitely generated.

Proof. The usual proof of Maschke's Theorem holds, since |G|
is invertible in A , i.e. we can replace an A-splitting by an
A(GL) splitting. Hence the ring A(G;) is semisimple, and the

classical theory applies.

RF_1(G£) is a finitely generated free abelian group,

LEMMA 3., 1If
]

“and A = 0[2] , the top row of the commutative exact diagram above

‘remains exact when tensored with 2, , i.e. after g-adic com-

pletion,
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Proof. This is immediate, since we are considering finitely
generated free abelian groups throughout. Note that since 2% is
invertible in A , A/p(G,)} 1is semisimple for all prime ideals

p

LEMMA 4, Let A = 0[%] » G =G, . For each of the coefficient

rings A/p, A and F the g2-adic and I-adic topologies coincide

on the representation ring.

./‘—.
Proof. Recall the argument for this lemma over the complex
- numbers € . Let |G| = &% , then (i) 2 . 1" =—> ™ for
n >0 . To see this consider the pair of maps
i*
R(G) ™ R(1)
——
i*
related by Frobenius reciprocity. Then iji*(x) = xi, (1) = 0 ,
because i*(x) = 0 . Therefore (1% - i, (1)) € I , and
2Sx = (1€ - i, (1}))x Dbelongs to In+1 if x belongs to .
. g€
In other direction (ii) (x - e{(x)) € 2.1 .
1€ g€ 2 €
We have (x - e¢(x)) = X - e{x)
e .
= wl (x) - e(x) all modulo 2R(G) .
=0

Part (i) holds for more general coefficients, because Frobenius

reciprocity does. Part (ii) uses a property of the Adams operations
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which holds in any finite extension of @ and in the finite
field A/p , hence also in A , since RA(GQ) is trapped

between representation rings over fields.

As a purely formal consequence of Lemmas 2-4 we have

LEMMA 5. Let A = 0[%] » G =G, and RF_1(G£) be a finitely

generated free abelian group. Then if «"  denotes completion

1 - -~

with respect to the 1-adic topology, and. a; ' ap and a% are

-~

all isomorphisms, then so is Ap -

Proof. This is a simple diagram chase. In order to prove that
;A is a monomorphism, one needs &p ’ ;F to be monic, and
;;1 to be epic. For the epimorphism one needs the weaker
conditions that ;F and ;p be epic. It is this half of the

lemma, which needs no assumption on a;1 , which we shall

actually use in the final section below.

Given the framework which we have now set up, we can ask

two gquestions:

(I) Do the classes @j(w) generate a subring of H*(G,K,(A))

which projects onto the image of y, ?

(II}) Does the completion of o 1in the I-adic topology

define an isomorphism onto either KAO’alg(BG) or KA(%BG) ?

In the three sections which follow we discuss both problems
for A =2Fq (obtaining complete answers), and for A = 0[-]

(where the situation is much less satisfactory).
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2. Modular Representations

In the case when A =2Fq(q=pt) ;, a finite field, the answer

to the test guestion (II) is the best possible.

THEOREM 6. If G 1is a finite group the I-adic completion

ML RF (G = KT _°(BG)
q - q

of the flat bundle homomorphism is a continuous isomorphism,

which is natural with respect to group homomorphisms and field

extensions.

Proof. This depends on the homotopy equivalence between the
spaces qu and BGL(iqu)+ , see [Q2])] and [R] . Because of
[D-F, Cor.8.6] there is no need to distinguish between algebraic

-and étale K-theory.

The theory of charactersitic classes is equally satisfactory,
since universal classes are provided by the isomorphism, see

[F-P]

* N A ;
H (BGL(IFq),Z) x[c1,cz,...]/“q1_1)ci -0} ¢
where the degree of c,; equals 21 . We obtain these classes
by'pulling back the Chern classes in characteristic zero along

the Brauer map BGL(IFq) - BGL(C) , see [Q2] .
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DEFINITION. If p: G ~» GL(n,:Fq)C——> GL(:Fq) is a represen-=
tation of the finite group G , the 3jth modular characteristic

class equals
- 23 .
cj(p) = p*(cj) € H°'(G, Z) , 7 =1,2,...n .

We explain the shift in dimension and the change in coefficients
from the rather experimental earlier definition as follows. We

have

K,,{(F_) =0 (F_) s %/qi_

21 Fy r Kpiq U By 1

The Bockstein homomorpnism g associated with the coefficient

sequence

Z > & >> &/ 1
q—

multn. 1

induces

o1
. . . B . x(g™=1)
21i-1 2i-1 21 .
- H (GL (]Fq) rz) - H (GL chq) eri_.l GFq) ) >—>H (GL qu) rx) —
0
Since the order of the universal class Cy is (ql-1) r Cy

belongs to the image of B8 , which is a monomorphism. Hence
there exists a well-defined element
2i-1
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mapping to cy under B . Define o (p) = p*@i .

Working with the evenly indexed classes c, or with the

odd classes i properties 1. and 2. are satisfied. There is

an isomorphism from K1 Eﬁ to F * = z/q_1 given by taking
determinants, hence as over € , cy = 601 is obtained by
applying B8 to the class in H1 given by det(p) . The only

possible ambiguity arises from the identification of F * with
a subgroup of t* used in the construction of the Brauer map.

Hence 4. is satisfied.

The Whitney sum formula (3) holds both for O.l and Cy -
For the latter this follows as over € , for the former from
the structure of K*GFq) as a ring. This can be read off from
the corresponding result for complex K-theory (Bott periodicity)

- again we identify K*UFq) with the kernel of wq-1

A natural automorphism of ZFq is the Frobenius map,
Fr :ZFq AIFq given by x > xP , the effect of which on
representations is measured by powers of the Adams operation

wp . Furthermore

LEMMA 7. ci(wkp) = klci(m

Proocf. See [E-M] .

As a corollary of this lemma we obtain a test for the field
of definition of the modular representation p . Suppose that
p takes values in GL(n,ZFq) ;, where g = pt , so that 2Fq is

the unique extension of the prime field :Fq of degree t . The
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elements of ZFq are invariant under wq , so that wqm = p.
Hence by Lemma 7 (ql-1)Ci(p) = 0 . This numerical bound
corresponds to the familiar result in characteristic zero that
the odd indexed Chern classes of a real representation have

order dividing 2.

In discussing the relation with the spectral sequence we start
with the evenly indexed classes ci(p) , and hence slightly modify
the definition of the y-filtration on RJFq(G) to make it even.

For the topological filtration

top 2k -1
R T G) = Ker{RTF_(G) —> KTF_(BG) —> KIF_I(BG
q,2k (& RF,(G) ) g (BG) q! )}
_ top . even . . -
= R:Fq'Zk_1(G) + Since KIFq (point) is trivial.

(Note the shift in index in comparison with the complex case.)

In this case the augmentation ideal

top _ top k tép
q,2(G) = RZFq'1(G) , so that I(G)" < R:Fq,2k

Theorem 6 implies that the two filtrations actually define the

I(G) = RTF Q) .

same topology on the completed representation ring.

Arguing as in the previous section we see that the total

modular Chern class defines a homomorphism
c.:RF_G) ~ 4@ =1+ T vl ,
j=1

which may be extended to a continous homomorphism of completions.
As a simple illustration let G = Cn , & cyclic group of order

n with (n,p) = 1 . Assume that g is sufficiently large so
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that :Fq contains a primitive nth. root of unity ¢ . Then if
p 1is the one-dimensional representation which maps some

generator of C to t , write x = c1(py , SO that
AG) = 1+ § axt,

a ring of formal power series in one variable over z/n . Since

q 1is sufficiently large, the irreducible representations are

n-1

1lpl"'lp ,and
n-1 r n-1 mr
c.( }mop") =T (1 + rx)
r=0 r=0

If n = g a prime number distinct from p , the characteristic
of Eﬁ , the right hand product vanishes if and only if m. = 0
for all r z 1 , so that in this case ¢. 1is a monomorphism. As
Atiyah shows in the appendix to [A] this is not the case more

generally, even when n = £2 - consider the equation

c (zﬁg—z) = (1+Lx)£ = 1(mod 22) .

Another simple example is provided by the identity map

'lp 3 GL(n,ZFp) - GL(n,ZFP) . Lifted to the complex numbers this

is a virtual representation, rather than a homomcrphism, the
character of which is trivial at all elements of p-power order.
Again let 2 be a prime different from p . If h,(p) 1is the
order of the residue class of p in Z/gx » then the cohomology
of GL(n,:Fp) is p-periodic with period 2h,(p) = 2h, provided
n

5 <hzsn, see [B-E, 4.2] . Localising the coefficients

that 5
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from E to Z(i} it follows that the modular characteristic

class ch(lﬁ

){R) generates the polynomial algebra H*(GL(nJFp),m(z).

Next consider the role of the characteristic classses in the

fourth quadrant spectral seguence

‘
EL'T = 0
0 <r, 1% s; Eg’o = H' (G,Z)
r,-2s+1 _ _.r
E, = H (G,Z/qs_1)

Since the terms of negative even fibre degree are all zero, there
are no non-zero even differentials d2j entering or leaving
terms of total degree zerco. On this line the universal cycles in
degree 2s-1 from a subgroup of

2s-1

H (G 2s

- -1 S_
Kygo1 F) = BZT1(G,2/q°-1)

which contains the elements Os(p) =B 'c_(p) , as o runs: through
the modular representations of G over IFq . As in [T2] the
Grothendieck operation Ys is compatible with the Brauer lifting

of representations, and hence Os(p) projects to YS(D-E(P)) ’

modulo terms of higher topological filtration. However note that

in accordance with our numerical conventions ys(p*e(p)) € R§221
EXAMPLE 8. G = SL(2, F_,), g’ =pt ,pz5
The group G has order (g'-1)q'{g'+1} , G 1is perfect, and has

cohomological f-period equal to 4 for all primes £ # p . Since

a p-Sylow subgroup is elementary abelian of rank t' , a p-period
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exists only when ¢gq' = p , but in the context of modular
representations this case does not concern us. With coefficients
(note the different roles of g and qg' !), the

in x'./qs_71

cohomology groups are as follows:

-~

4r , ~ 0 =
(G, B/ s_4) = H(G, z/qs_1) = Coker (%/_s_, > z/qs_1)
x|G]
H4r+1(G. Z/qS_1) = H4r+2(G, Z/qs_1) = 0, because G 1is perfect.
H4r+3(Gr Z/ s .,) = H_1(G, Z/ s ,) = Ker (Z/_s > %/ s ,)
g -1 g -1 -1 X‘GI g -1

Here g and q' are powers of the same prime p ; given g’
choose the field of coefficients ZFq such that t = nt' . We
have
gir-l,=4r+l _ yér-1G m/ 2r ) = %/ /2 . ; indeed if n is even
2 qg -1 q' -1
all non-zero terms at the Ez—level of the spectral sequence away

from the origin have the same order.

z 3 4 7 8
Yy . - ve >
AN
T g = even power of q',
AN
\\ all non-zero terms
\\f/q':z—‘l except Eg'o are iso-
3 N _ s
N morphic, and all
J .
>
N N differentials are
AN
5 ‘\\ trivial.
N
[ AN
AN
LB 2

7 AN

v AN
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On the line of total degree zero consider the term

H4r_1(G,

n

(Fq)) Z/q.2

Kar-1 -1

The Brauer character of the lift of *hq. to the complex numbers

depends on the eigenvalues of the matrices A € SL(2, F_,) in

¢ 9) r where 1 generates E‘.x ’
0 ¢ !

since ¢ 1lifts to a primitive root of unity, czllq,[<A>)

some extension field. If A = (

generates H4(Gr z(q._1)) . Similarly if B is an element of
order (g'+1) , which diagonalises over T 5 then

o q'
Czltq1|<B>) generates H4(G, Z(q.+1)).. Pulling back this Chern

class along the monomorphism

3 | 4 )
B : HT(G, z/q2_1) > > H (G, B) = z/q,(q,2_1)
we see that Eg’—B is generated by 63(¢q.) . Furthermore as a
*

ring H3 (G,K3*(:Fq)) is polynomial on this class. Passing to

the E_-level of the spectral sequence we see that R§g§1 = Rzip
. r _ top - ptop

is generated by vy (1q, 2} , modulo R4r+1 R4r+2 . Therefore

these Grothendieck classes generate RZFq(G) , and hence as a
A-ring the modular representation ring of SL(2,ZFq.) is generated

by the single class ‘tq, .

Remark. If we wish to study modular representations over small
fields, i.e. with g < gq' , then the spectral sequence is a little

more complicated. However for large values of s Z/qzs_ will

1

be divisible by 'q'2-1 , and hence the behaviour of modular

representations of "sufficiently high filtration” is independent
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of the ground field.

EXAMPLE 3. G = A, = PSL(2, Ej) , the alternating group on four
symbols. A, has four conjugacy classes, of which {11} aﬁd
{elements of order 2} are 3-regular. Hence there are two irre-
ducible representations over Fjy the trivial representation and
g of dimension 3. Furthermore

A B

H*(3a,, 3/35_1) —> H*(c2 x Cyy T

2) !
which is polynomial on two 1-dimensional generators. Write o and
B for the reductions of the Chern classes of the complex repre-

sentations which map A (resepectively B ) to -1 . Then
c.lo|a, 5) = (1+a) (148) (1+a+B)

and in particular 03(0|A4 2) = a23+a82 € H6(c2xc2, Z) . However

an easy calculation shows that a3+B%+Ba2 and a3+63+a62 are

o
also invariant under the action of the cyclic group A4/A4 2 of
order 3, and thus belong to H6(A4, Z) . Comparison of the spectral
sequences for A4 and CZXC2 shows that all invariant elements

survive to infinity, and hence that Rtop

: Y
6 (A4) contains R6(A4)
as a subgroup of index 2. Put another way there are insufficient

Chern classes to generate the universal cycles.

Remarks. (i) We work with the class C, rather than with 05 to

emphasise the similarity to ordinary complex representations.
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(ii) A similar argument applies to PSL(Z,EP) for all,

p = £ 3(mod 8) , since a 2-Sylow subgroup has order 4 and is

isomorphic to szcz , compare [T1] .
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3. Extensions of rings of algebraic integers

Let (¢ be the ring of integers in a global number field F ,
and A = O[l] , with & a rational prime, which will usually be
odd. In contrast to the previous section it is not immediately
obvious that there are characteristic classes in Hj(G,Kj(A)) e
although Grothendieck's theory of "mixed Chern classes" does at
least provide a means of detecting universal cycles in the Atiyah-
Hirzebruch spectral sequence. Indeed, working with the ring A
rather than with some extension of its field of fractions does
allow us to avoid problems raised by the huge Galois cohémology
of F . However we shall find it more convenient to work with
étale K-theory rather than with algebraic. If the (mod 2)
cohomological dimension of A is sufficiently small, the
coefficients %A*‘(point) can be calculated using the étale
cohomology of Spec A , which are known, at least in principle,

see [D-F1] or [D-F2] . In particular we have

LEMMA 10. The groups Kj(A) are'finitely generated for all j .

If ¢ 1is odd, the groups KAj (point) are finitely generated

2 -modules.

Proof. Quillen has proved that Kj(O) is finitely generated,
[Q1] . The same holds for Kj(A) by the localisation exact
sequence in algebraic K-theory (compare the construction of the
commutative exact diagram in section one). The second statement

follows from the existence of the natural surjection
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Q. Kj(A) @ E - Kj(Spec Ay, 3 2 2,

see Theorem 8.7 in [D-F1] , or alternatively from knowledge of
the é&tale cohomology groups and the spectral sequence below. When
3 =1 or 2 , use Proposition 8.2 in the same paper. When 1 = 2 ,

the same conclusion holds, provided that v-1 € 0 .

.Dwyer and Friedlander establish the existence of a spectral
sequence linking cohomology and étale K-theory, op.cit. Proposition
5.2 and 5.2. Thus let X be a connected simplicial scheme over A
of finite (mod g) cohomological dimension. Then there is a natural,
strongly convergent fourth gquadrant spectral sequence

) (g)

r.=s r v ) = RKAS T (X, Z/,v) .

= H (X z/

et’ L

Replacing Z/gv by ZL_ and étale by continuous cohomology we
obtain KAs_r(X) in the limit. We need the assumption of finite

dimension to ensure strong convergence in both cases, and by -~
®.(3)

talm

convention Z/Ev vanishes, unless s 1s a non-negative
even integer. Let Y be another finite dimensional scheme over

A admitting G as a finite group of operators and write

with G acting on the right on EG and on the left on Y . Here
EGk is a finite dimensional approximation to an (algebraic) model
for the classifying space of G . Such certainly exists - for

example allow G to act on sufficiently high dimensional Stiefel
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variety via an embedding in some unitary group. In particular
let Y = Spec A with trivial G-action, and if ¢ 1is not

odd, again suppose that V-1 € ¢ .

PROPOSITION 11. Let A = 0[%], L= odd or ‘¢—14€ 0 . There

is a strongly convergent fourth guadrant spectral sequence,

natural with respect to ring extensions and group homo- -

morEhisms

) 8 () _
E = H' (Spec A,G; Z/,v ) = kAT (BG: Z/,v) .

NI

Proof. This is the limit spectral sequence obtained from

lim X(k) = EG x Y , i.e. we define the equivariant cochomology
k- G
groups of Y to be the Borel groups. The Kiinneth formula gives

a short exact sequence

1 t @(g) r,-s
0 - & xt (H (G,Z), H (Spec A, Z/,v )) » EY
. s-1 L 2
r=s+t

- ® Hom(HS(G, Z), H (Spec A, z/gv }) - 0
r=s+t

[\S110)]

Since the cohomology groups of G with coefficients in Z

are finite torsion groups, the same holds for Eg,—s , and

hence, as in the first section, the inverse limit <1im E(I-c)‘l?"_S
k
satisfies the Mittag-Leffler condition. Similar considerations

show that the spectral sequence converges to KA*(BG, x/gv)

rather than a homomorphic image, i.e. R1<lim is trivial.
k

Passing to the limit with v we can replace Z/,v by the

g=-adic integers z2 , S0 long as we work with continuous
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cohomology, and take a little care with the edge terms of
the spectral sequence, see [D-F1] Proposition 5.1 and the

remark following its statement.

Given the spectral sequence in Proposition 11 we detect
universal cycles by means of the Grothendieck characteristic
classes

23 ) ¢ g2i-
Cj(p) € H"” (Spec A,G; u,v ) € ESY'

Recall from [G) that these satisfy properties 1. to 4. in the
first section. In particular normalisation (4) takes the form:
if p: G -+ A* = units (O[%}) defines a 1-dimensional represen-
tation module L , then L"is determinedlby an element in
H1(Spec A,G;A*) , and using the Kummer exact sequence (% 1is

invertible in A )

0 - LI A* 5 A* 5 0 ,
W '\]

a — a*

we define C1(p) = B[L] € H2(Spec A,G; ugv) . (At this point we
interpret the Kummer exact sequence as an exact sequence of
abelian sheaves with operators.) The discussion of the total
Chern class as a homomorphism into A(G) , defined in the
obvious way, and the definition of the topological and
y-filtrations on RA(G) , are similar to the case of finite
fields. In order to see that cj(ﬁ) is a universal cycle it is

necessary to look a little more closely at the definition of
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YJ in étale K-theory. One way to do this is via the projective

A-scheme Grass . representing locally free coherent sheaves
1

of rank n generated by m global sections. In the limit

over € this gives a model for the classifying space BGL(T) .,

which admits a self-map YJ corresponding to the classical

operation on vector bundles. Working backwards mimic the

J

construction of v and obtain an algebraic map
J . :
Y Grassm,n - Grassm'n {m and n large). Composition

with y] then defines y;(x) € KA(X) with a similar construction

for finite coefficients.

As in the classicalgcase a 1-dimensional representation
of a finite group G is determined by its first Chern class.

Furthermore it is clear from the spectral sequence that

2,=-2 _ _2,-2
2 B Ew’

with 71(9;1) = 5=-1 , modulo elements of filtration level 4.

E and that if ¢ is 1-dimensional, c1(QJ coincides

More generally the class cj(p) € Egj"zj survives to infinity
as Yj(g) , modulo elements of level 2j+2 . We show this first
for sums of 1-dimensional elements, and then use a splitting
principle [A-T, Thm. 6.1] , which holds, since using the

Grassmann scheme again KA(BG) 1is a special A-ring.

Although the Grothendieck classes are naturally associated
with the Dwyer-Friedlander spectral sequence, in line with the
framework of the first section we wish to make a first tentative
approach to classes Oj associated with the spectral sequence
with coefficients in Kzlg(A) . Consider the projection map

given by the Kiinneth formula
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25 ® 23
H™- (Spec A,G,iu v ) - ® Hom{H
k=0

®J

k
2j-k(G' Z), H (Spec A, u,v ))

cy(p) I > {dj'k(p)} .

Since cd (Spec A) s 2 , we need only consider the components

and is the (mod iv) reduction of

cj,O' éj,1 cj,2 . cj,O
the usual Chern class, obtained by embedding A in the complex
numbers; the other two components are more interesting. Put

X = Spec A in the non-equivariant version of the Dwyer-Fried-
lander spectral sequence, and obtain isomorphisms

®]

et
Hk(Spec A, fgv )} =

Kys_y (B0 B/pv), k= 1,2 .

It follows that cj k(p) belongs to a summand of
14

2j-k et . . ,
H (G'KZj—k(A’ z/iv)) , and for any ring for which the
Quillen conjecture that the isomorphism above still holds with
algebraic K-theory replacing K-theory, i.e. such that © is
an isomorphism see ([D-F1] , we will obtain a sequence of classes
92j—k . These will have at least some of the properties of section

one, although it is clear that the Whitney sum formula (3) must

be replaced by something more complicated.
EXAMPLE 12. C1(p) determines a component of mixed type

0,(p) € H“(G,H1(Spec A, "iv)) .

1

The coefficients are in turn determined by a short exact sequence
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0 - ax/ Al H1(Spec A, p,ul\:) - Pic(A) v > o,
(A*) (")

where the term on the right equals the kernel of multiplication

by gv » and hence vanishes if this group has.no ¢-torsion.

Consider the special case when G = C_ . , a cyclic group of

2_.
order % , A = {%] with 0 = Z(z) , z a primitive g2th-root
of unity and v = 1 . Then (compare the claculation in Lemma 4.4
of [D-F2] ) H1 is an extension of the direct sum of (£+1)/2

copies of %/, by a‘finite group which_vanishes if ¢ 1is
regular., Note that the number of summands in A* is determined
by the Dirichlet unit theorem together with the fact that 2—1
generates é further free summand. Let 51(p) denote the pro-
jection of @1(p) in H1(Cf,(Pic A)(R)) = Pic(A)(g) ;, Since
thig group is elementary and therefore killed by multiplication
by & . From the point of view of representations an ideal A
representing a class in Pic(O) can be thought of as a one-
dimensional representation -A of C2 over A (extend the
scalars from Z to z[%] ) . The discussion shows that 61(ph)

is non-zero if and only if the order of A in the Picard

group equals £ . In particular, if ¢ is regular 61(OA) =0
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4. Completion of the representation ring

Let us continue with the ring of coefficients from
Example 12. If ¢ is odd and regular, the #%-adic homotopy

type of the classifying space ggh is determined by the fibre

square
KA ——— > T U
AN 2_1
2
KIF ¢ d > * -
KE E Fy , see [D-F2]
Here is a rational prime number whose image in the f =adic

* *
units Z, is a topological generator of Ker( Z, - Z/2_1)

In order to understand this homotopy equivalence, first

claculate the (mod 2) é&tale homology, thus as in Example 12,
r‘
b 4 =0
/211
N UL ) R
Hi(Spec A Z/ )} = i w z/g, i =1, (& 1is regular)

It follows that there is a (mod ¢) homology equivalence

between (Spec A)ét and v ST . Interpret the étale
2+1
2.
fundamental group as the Galois group of a maximal unramified

®
extension of A , and allow n1(Spec z[%]) to act on Zn via

the action of the Galois group on roots of unity. The homology
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equivalence above then implies, that apart from a wedge of
circles (corresponding to the copies of U in the upper right
hand corner of the fibre space) the 2-adic homotopy type of
Spec A 1is determined by the last circle S1 with fundamental
group having a generator which maps to a topological generator
of ZXKer( Zz - Z/£f1) . (Taking the kernel allows for the
replacement of Z[%] by A .) Replace the circle S1 by a
copy of (SpecZFq)étn~ with g as above, obtaining f :
Spec(IE‘q)ét v Vﬁ_.]/zs1 - Spec O[%]ét . The relation between

étale K-theory and cohomology discussed in [D-F1, § 5] is strong
enough to give the g-adic homotopy equivalence claimed in the

diagram.

Now let G = Gg be a finite group of order egual to a

power of ¢ . Since [BGi,U] =0 , see [A] ,
(e, (K] = (3G, K E]

with a similar statement for K-theory with coefficients in the
finite ring Z/,v . Lemma 2 implies that RA(G,) 1s finitely
generated, and the choice of g as topological generator of

Z is equivalent under the Brauer lifting from :Fq to € to
an identification of RZFq(Gz) with those representations

invariant under the action of m,(Spec A ) = G . As before

. t)
G acts on the g-primary roots of unity contained in a

sufficiently large finite extension of Q@ . This means that



-35-

The right hand inclusion is clear, and at least if & is an
odd prime, we may identify RA(G;) with the Galois invariant

subgroup.

is a finite group of order 2% (2 = odd

' THEOREM 13. If G,

and reqular), then the f-adic completion of the flat bundle

homomorphism

-~ -
~

o 1 R(6) % —Z—> Ka(BG,)

is a continuous isomorphism,

Proof. This feollows from the dicussion above, Theorem 6 and

Lemma 4.

For the prime 2 the situation is not quite so simple.

When A = z[%] one obtains the 2-adic homotopy type of

K z[%] from the fibre sqgare
AN
K 3[1] > B0
/\/Vﬂz
v l
i 3
KIF, =~ Fy > BU

The prime 3 plays the role of g in the odd case, that is 3
*
maps to a topological generator of Zz/{¢1} . Turning to

representation rings define B2 by the pull-back diagram
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<-.-|-—¢

RLF3(G2) —_— > RU(GZ) .

Br

Since the complexification (c) and the Brauer map (Br) are

both injective, we can consider B2 as a subgroup of RU(GZ) ’

which can be identified with the subset of elements invariant

under the action of ni(Spec z[%]ét) on the 2-primary roots

of unity. (The space B0 enters into the determination of the

2-adic homotopy type, since for a ring 0  of algebraic integers '’

. r
H2l+1(Spec O» 2/2) = (z/z) 1 , where r, equals the number of

real embeddings of the gquotient field.) The elements of

R z[%](Gz) are certainly Galois invariant in this sense, and
hence contained in B2 . The familiar example of representations
of quaternion type shows that for an arbitrary 2-group this

inclusion is proper.

-~

Arguing as for an odd prime ¢ one sees that B2 (2-adic

completion) is isomorphic to K Z[%](BGz) . The proof needs the
fact that aF“ is an isomorphism for F =F; , R and € ; the

middle case depends on [A-S, Thm. 7.1] . In all three cases
2—-adic completion is equivalent to I-adic completion (Lemma 4
again), and is given by tensoring a finitely generated free
abelian group with z2 . This preserves exactness, hence

-~ -

a|B, is an isomorphism onto K z[%](BGZ)

Remarks. There are versions of the theorem just proved with
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finite coefficients both for "~ £=2 and 2\ = odd and regular.
If one uses algebraic rather than étale K-theory, then since
the Dwyef—Friedlander map ¢, 1is split, a* maps the completed
representation ring onto a direct summand of

xo[11%9(8g,) © 3z, .

Although Theorem 13 depends on the description of the &:adic
homotopy type of iA given in [D-F2] some further information
can be extracted from the commutative exact ladder at the
end of the first section. Let A be the ring of integers in a
global number field F with the prime ¢ inverted, and let

G = Gl

RF™'(G,) —> ||RA/p(G,) —> RA(G,) —>> RF(G,)
d p - B ' Y
-1
GF l_]__‘_ap .O'.A C!F
v v v
KF_1(BG£) —> LlKA/p(BGg) —> KA(BG,) —>> KF(BG,)
. dl p Bl .Yl

~

By Theorem 6 each completed map ap is an isomorphism, since
A/p is a finite field. In certain cases we have Jjust shown that

~

a is also an isomorphism, where in both cases completion is

A

to be understood in the 2-adic sense. Take the tensor product
of the upper row with Z, - except perhaps at the left exactness

is preserved. An easy diagram chase, which uses no assumptions

~ -~

on ap shows that if %a and ap are isomorphisms, then

so is «a, . This proves part of

~

F
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THEOREM 14. Let ¢ be an odd regular prime and G, a finite

group of order a power of . Then

-~

Q

-~
~

Rm(GQ)A ———> KR (BG,)

o3

is a continuous isomorphism.

~

Proof. The diagram above with A = x[c,%] shows that o« is
an isomorphism over the gth. cyclotomié field Q(z) . Finite
Galois descent holds for étale K-theory [D-F1, § 7] , hence

aA restricts to an isomorphism between l‘im(c)(Gz)inv and
Em(BGR) . Since & 1s odd the Galois invariant representations

coincide with RQ(G )

It would be interesting to have a more direct proof of the
last theorem, which would apply to fields more general than those
lying between {§ and Q(z) , and without restricting £ to be
regular. The evidence that such exists as follows: as a conse-
quence of A.Suslin's description of the algebraic K-theory of

algebraically closed subfields of € , see [T2] ,

~

ag * RQ(BG&) —> KR(BGy)

where completion is again g2-adic, and the cohomology theory- on
the right can be taken to be either étale or algebraic. This
follows because the coefficients differ only by uniquely

divisible groups, which make no contribution with domain space

BG, . Choosing é&tale K-theory the problem is to show that
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1

KQ(BG,) = KQ(t) (BG,) .

where ¢ 1is an g-primary root of unity of sufficiently high
order, since such an isomorphism certainly exists for the
completed representation rings. A priori such an isomorphism
looks improbable, given that ﬁ*(m(;)) has a huge component
coming from the Brauer group of {Q(g) . However it is possible
that it makes no contribution to be K-theory of BG,. o since
it corresponds to mapping into copies of U - compare the

calculation of the g-adic homotopy type of the spectrum

KO[%] above.
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