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Abstract. We give a short and uniform proof of a special case of Tits’ Centre Conjecture
using a theorem of J-P. Serre [8] and a result from [1]. Precisely, we show that this conjecture
holds for fixed point subcomplexes XH of the building X = X(G) of a connected reductive
algebraic group G, where H is a subgroup of G.

1. Introduction

Let G be a connected reductive linear algebraic group defined over an algebraically closed
field k. Let X = X(G) be the spherical Tits building of G, cf. [10]. Recall that the simplices
in X correspond to the parabolic subgroups of G, [8, §3.1]; for a parabolic subgroup P of
G, we let xP denote the corresponding simplex of X. The conjugation action of G on itself
naturally induces an action of G on the building X, so we can view G as a subgroup of the
automorphism group of X. Given a subcomplex Y of X, let NG(Y ) denote the subgroup of
G consisting of elements which stabilize Y (in this induced action).

Recall the geometric realization of X as a bouquet of n-spheres. A subcomplex Y of X is
called convex if whenever two points of Y (in the geometric realization) are not opposite in
X, then Y contains the unique geodesic joining these points, [8, §2.1]. A convex subcomplex
Y of X is contractible if it has the homotopy type of a point, [8, §2.2]. The following is a
version due to J-P. Serre of the so-called “Centre Conjecture” by J. Tits, cf. [9, Lem. 1.2], [6,
§4], [8, §2.4], [11]. This has been proved by B. Mühlherr and J. Tits for spherical buildings
of classical type [5].

Conjecture 1.1. Let Y be a convex contractible subcomplex of X. Then there is a simplex

in Y which is fixed by all automorphisms of X which stabilize Y .

For a subgroup H of G let XH be the fixed point subcomplex of the action of H, i.e., XH

consists of the simplices xP ∈ X such that H ⊆ P . Thus, if H ⊆ K ⊆ G are subgroups
of G, then we have XK ⊆ XH ; observe that XH is always convex, cf. [8, Prop. 3.1]. Our
main result, Theorem 3.1, gives a short, conceptual proof of a special case of Conjecture
1.1; namely, we consider subcomplexes of the form Y = XH for H a subgroup of G, and we
consider automorphisms from NG(Y ). The special case of Theorem 3.1 when G = GL(V )
generalizes the classical construction of upper and lower Loewy series, see Remark 3.2(ii).

The initial motivation for Tits’ Conjecture 1.1 was a question about the existence of a
canonical parabolic subgroup associated with a unipotent subgroup of a Borel subgroup of
G (cf. [6, §4.1], [8, §2.4]). This existence theorem was ultimately proved by other means, [3,
§3]. In Example 3.6 below we show that this result is a special case of Theorem 3.1.
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2. Serre’s notion of complete reducibility

Following Serre [8, Def. 2.2.1], we say that a convex subcomplex Y of X is X-completely

reducible (X-cr) if for every simplex y ∈ Y there exists a simplex y ′ ∈ Y opposite to y in X.
The following is part of a theorem due to Serre, [6, Thm. 2]; see also [8, §2] and [11].

Theorem 2.1. Let Y be a convex subcomplex of X. Then Y is X-completely reducible if

and only if Y is not contractible.

The notion of convexity for subcomplexes of X has the following nice characterization in
terms of parabolic subgroups due to Serre, [8, Prop. 3.1].

Proposition 2.2. Let Y be a subcomplex of X. Then Y is convex if and only if whenever

P, P ′, and Q are parabolic subgroups in G with xP , xP ′ ∈ Y and Q ⊇ P ∩ P ′, then xQ ∈ Y .

Note that many subcomplexes which arise naturally in the building are fixed-point sub-
complexes. For example, the apartments of X are the subcomplexes XT for maximal tori T

of G and, more generally, the convex hull of two simplices xP and xP ′ is XP∩P ′

.
Following Serre [8], we say that a (closed) subgroup H of G is G-completely reducible (G-

cr) provided that whenever H is contained in a parabolic subgroup P of G, it is contained in
a Levi subgroup of P ; for an overview of this concept see for instance [7] and [8]. In the case
G = GL(V ) (V a finite-dimensional k-vector space) a subgroup H is G-cr exactly when V is
a semisimple H-module, so this faithfully generalizes the notion of complete reducibility from
representation theory. An important class of G-cr subgroups consists of those that are not
contained in any proper parabolic subgroup of G at all (they are trivially G-cr). Following
Serre, we call them G-irreducible (G-ir), [8]. As before, in the case G = GL(V ), this concept
coincides with the usual notion of irreducibility. If H is a G-completely reducible subgroup
of G, then H0 is reductive, [7, Property 4].

Since XH is a convex subcomplex of X = X(G) for any subgroup H of G, Theorem 2.1
applies in this case, [8, §3]:

Theorem 2.3. Let H be a subgroup of G. Then H is G-completely reducible if and only if

the subcomplex XH is X-completely reducible.

Remark 2.4. By convention, the empty subcomplex of X is not contractible. This is consis-
tent with Theorem 2.1, because H is G-ir if and only if XH = ∅, and a G-ir subgroup is
G-cr.

Our next result [1, Thm. 3.10] gives an affirmative answer to a question by Serre, [7, p.
24]. The special case when G = GL(V ) is just a particular instance of Clifford Theory.

Theorem 2.5. Let N ⊆ H ⊆ G be subgroups of G with N normal in H. If H is G-completely

reducible, then so is N .

3. Tits’ Centre Conjecture for fixed point subcomplexes

Here is the main result of this note.

Theorem 3.1. Let Y be a convex, contractible subcomplex of X. Suppose that Y is of the

form Y = XH for a subgroup H of G. Then there is a simplex in Y which is fixed by all

elements in NG(Y ).
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Proof. Let M be the intersection of all parabolic subgroups of G corresponding to simplices
in Y . Since H ⊆ M , we have XM ⊆ XH . But every parabolic subgroup containing H

contains M , by definition of M . Hence XM = XH . Set K := NG(Y ). It is clear that M

is normal in K. Since XK ⊆ XM , it suffices to show that XK 6= ∅. Now Y = XM is
contractible, so Theorem 2.3 implies that M is not G-cr. Thus, by Theorem 2.5, it follows
that K is not G-cr and again by Theorem 2.3 that XK is contractible. In particular, XK is
non-empty, by Remark 2.4. Thus K has a fixed point in XM , as claimed. �

Remarks 3.2. (i). Let H ⊆ K ⊆ G be subgroups of G with H normal in K. Suppose that
XH is contractible. Since H is normal in K, the latter permutes the parabolic subgroups in
XH , and so K ⊆ NG(XH). It thus follows from Theorem 3.1 that K fixes a simplex in XH .

(ii). Observe that Theorem 3.1 can be viewed as a generalization of the classical construc-
tion of upper and lower Loewy series in representation theory (for definitions, see e.g., [4]).
Let V be a finite-dimensional k-vector space. Let H ⊆ K ⊆ GL(V ) be subgroups of GL(V )
with H normal in K and suppose that V is not H-semisimple. Then the upper and lower
Loewy series of the H-module V are proper K-stable flags in V , and so they provide “natural
centres” for the action of K on the complex X(V )H , where X(V ) is the flag complex of V .

(iii). In [8, Prop. 2.11], J-P. Serre showed that Theorem 2.5 is a consequence of Tits’
Centre Conjecture 1.1. So, Theorem 3.1 is just the reverse implication of Serre’s result [8,
Prop. 2.11] in the special case when Theorem 2.5 applies.

(iv). Let k0 be any field and let k be the algebraic closure of k0. Suppose that G is defined
over k0. One can define what it means for a subgroup H defined over k0 to be G-completely
reducible over k0, cf. [1, Sec. 5], [8, Sec. 3]. In [1, Thm. 5.8], it is proved that if k0 is perfect,
then a subgroup H is G-cr over k0 if and only if it is G-cr. Using this, one can show that the
proof of Theorem 3.1 goes through for buildings of the form X = X(G(k0)). In particular,
this includes many finite spherical buildings attached to finite groups of Lie type.

(v). In the Centre Conjecture 1.1, one considers all automorphisms of the building. If
X = X(G), then in many cases, Aut X is generated by inner and graph automorphisms of G,
together with field automorphisms (cf. [10, Intro.]). We will consider graph automorphisms
in the setting of Theorem 3.1 in future work (see [2, Sec. 6]).

Our final result gives a characterization of subcomplexes of X of the form XH for a
subgroup H of G.

Proposition 3.3. Let Y ⊆ X be a subset of simplices of X. Then Y is a subcomplex of X

of the form Y = XH for some subgroup H of G if and only if for every n ∈ N, the following

condition holds:

(3.4) if P1, . . . , Pn, Q are parabolic subgroups with xPi
∈ Y and Q ⊇

n⋂

i=1

Pi, then xQ ∈ Y.

Proof. First suppose that Y = XH for some subgroup H of G. Let n ∈ N and let
xP1

, . . . , xPn
∈ Y . If Q is a parabolic subgroup of G containing ∩n

i=1
Pi, then Q contains

H, because each Pi does, so xQ ∈ Y .
Conversely, suppose that condition (3.4) holds for all n ∈ N. Let H be the intersection of

all P such that xP ∈ Y . By the descending chain condition, we have H = ∩m
i=1

Pi for some
m ∈ N and some Pi with xPi

∈ Y . It follows from condition (3.4) for n = m that for any
parabolic subgroup P containing H, xP ∈ Y , so XH ⊆ Y . It is clear from the definition of
H that Y ⊆ XH . �
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Remark 3.5. Note that Y is a subcomplex of X precisely when condition (3.4) holds for
n = 1. Further, by Proposition 2.2, Y is convex if and only if condition (3.4) holds for n = 2.

As indicated in the Introduction, a fundamental theorem of Borel and Tits on unipotent
subgroups of Borel subgroups of G [3, §3] yields a key example for Theorem 3.1.

Example 3.6. Let U be a non-trivial unipotent subgroup of G contained in a Borel subgroup
B of G. Let Y = XU . Note that U is not G-cr; for if U is contained in a Borel subgroup B−

opposite to B, then U is contained in the maximal torus B− ∩ B of G, which is absurd. So
Y is contractible, by Theorem 2.3. Thus, by Theorem 3.1, NG(U) fixes a simplex in Y , i.e.,
there is a parabolic subgroup P of G containing NG(U).

Indeed, the construction of Borel and Tits [3, §3], yields a canonical parabolic subgroup
P of G (depending only on U) such that U ⊆ Ru(P ) and NG(U) ⊆ P ; the framework for
G-complete reducibility developed in [1] and subsequent papers allows one to associate such
canonical parabolic subgroups to all non-G-cr subgroups of G, see [2].
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[1] M. Bate, B. Martin, G. Röhrle, A geometric approach to complete reducibility, Inv. math. 161, no. 1
(2005), 177–218.

[2] M. Bate, B. Martin, G. Röhrle, R. Tange, Closed orbits and uniform S-instability, preprint (2009).
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