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1. Introduction

In the last few years, methods from commutative algebra, algebrai«
geometry, complex analysis of several variables, and even cohomology
theory have been used to solve problems in transcendence theory which
had long been regarded as inaccessible. One of the central objects is
the so-called zero—-estimates, or more generally multiplicity-estimate:
on certain algebraic objects. Using these estimates and the technigue:
developed to obtain them, many open problems in transcendence theory
have been solved. On the other hand, many new problems have arisen, ai
it seems that transcendence theory has finally become a theory. In th
article, we would like to describe this developement, and for this we
have to begin with a short description of the theory of multiplicity-
estimates. Let us begin with two very elementary examples to desribe
what we mean by multiplicity-estimates.

Example 1. Let Qqreeesdy be pairwise different complex numbers and
Nyseee,ny positive integérs. Then it is of course always possible to
construct a polynomial P(X) in one variable of degree

n a2 n1+...+nl

such that F vanishes at the points Aqreccry to order at least
n,,...,ny. On the other hand it is well-known that a polynomial P (X)
of degree n that has n+1 zeroces ( counted with multiplicities ) i
necessarily the zero-polynomial.

This is a trivial example of what we mean by multiplicity estimat
It generalizes to several variables in the following way.
Example 2. Let P1,...,Pl be given points in cd for 4 2 1 which
pairwise different and again let Ryseeerny be positive integers. We
want to construct a polynomial P(x1,...,xd) of a given degree D t
vanishes in P1""'Pl with multiplicity Nyseeesny respectively. It
turns out that this is possible as soon as

n, +d-1 n, +d-1.
1 1l D ~
N = a )t oo d ) < ( ;d)-

On the other hand it is not clear at all that the second implication .
Example 1 should hold. It is in general not true in the case d4d 2 2
that a polynomial F(x1....,xd) in 4 variables and of degree D tl
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vanishes at all these points with multiplicity ni,...,nl is necessa-
rily the zero polynomial if only

vz (039

holds.

These two examples illustrate that the situation in several variables
is much more complicated than in one variable. Nevertheless situations
like this have been studied quite extensively by many authors ( Wald-
schmidt {wa1], Chudnovsky [Ch1], Demailly [D], Masser [Ma1], [Ma2],
Wiistholz [wii1], Philippon [Ph1], Bombieri [Bo)], Esnault-Vieweg [E-V1],
[E-V2] ) under very different points of view. It has turned out that the
answer for such types of questions depends very much on the distribution
of the points in question. Fortunately in most cases arrising in trans-
cendence theory we are concerned with a much more special situation
which we want to describe now.

2, Zero estimates on group varieties

We consider a commutative algebraic group ( group variety ) G
defined over the field of complex numbers, for example Ga, the additive
group, Gm’ the multiplicative group, E, an elliptic curve, or an arbi-
trary abelian variety. An arbitrary algebraic group G is then obtained
by forming products or so-called extensions. Such an algebraic group G
is a quasi-projective variety and can be embedded in some projective
space in a nice way ( see [Se] and [Fa-Wii] )

G >N

for some N. For this one first compactifies G to G in such a way
that G operates on G and after this embeds G 4into PN by means
of a certain very ample divisor. We denote the dimension of G by d.
Then G replaces the space c¢d o Example 2.

Next we take a finite set X ©« G of elements of G that contains

the neutral element of G. Then for integers r 2 1 we define the sets
rX as. '

X+ ,.. + X ( r-times ).

Then dX replaces the set of points {(P,,...,P;} in Example 2. Now
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we define for integers r with 1 § r § 4 the numbers Qr(X) as

X1 if G has no algebraic subgroup
0 (X) = { of codimension r
r
min IX+H/HI otherwise.
HcC G
H algebraic
cod H =1r

H connected

The numbers Q (X) measure the distribution of the set X in G. The
Example 1 and Example 2 generalize in the following way.

Theorem 1 ( [Ma-Wii1], [Ma-Wii2] ). Let P(xo,...,xN) be a homogeneous
polynomial of degree at most D that vanishes on dX. Then if

Q (X) > degG.D® (1srsa)

the polynomial P vanishes on all of G.

Here degG is the degree of G in PN.

Remarks. 1. A geometric proof of a weaker version.of Theorem 1 was
given by Moreau ( ([Mo1] and [Mo2] ). Unfortunately this proof does
not seem to generalize to zeroes counted with multiplicities.

2. Various extensions and modifications of this result have been prove
now. So for example there exists a version which also takes into accov
different degrees ( [Ma-Wii2], see also [Wii4] ). Another modification
"are the so-called "zero estimates with knobs on" used to prove resul
on large transcendence degree ( see section 5 and [Ma-Wi3] ). They
also appear very useful for obtaining transcendence measures and mea-
sures for algebraic independence.

3. Multiplicity estimates on group varieties

|

As in the two examples at the beginning we now allow the zeroes
have multiplicities. We can do this even more generally than in these
examples. Instead of taking into account multiplicities in all direc-
tions we take multiplicities only with respect to a certain subset of
all directions. First results in this direction were obtained by Neste
renko [Ne1] and by Brownawell and Masser [Br-Mai, (Br1], [Br2]. But
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we are considering the following general situation.

Let A € G be an analytic subgroup of G and let a = dim A be
the dimension of A. This is the image of an analytic homomorphism

O Ca

-+ G(C)

from the complex a-space to the complex Lie-group G(C). This is the set
of complex valued points of G. ( It would be more precise but not more
illuminating to work here with the notion of group schemes.) Such an
analytic subgroup A provides us via its Lie-algebra with derivations
A1,...,Aa on G. This enables us to define the order of vanishing in
the following way. We say that a homogeneous polynomial P(xo,...,xN)
vanishes to order at least T along A (or @) at a point g in G
with X,(g) #0 if

t t ‘
1
a, ... Aa a P(1,x1/x0,...,xN/xo)(g) =0

for all non-negative integers t1""'td with t1+...+ta < T. Here

Xgre-ssXy are the restrictions of the coordinate functions XO""’XN

on PN to G.

obvious examples force us in the same way as with the points to
measure the "distribution" of the derivations correspondig to A. For
this we define integers <t(V) in the following way. For algebraic sub-
varieties V of G with VNA# @ we define

(V) =‘codAV na

where codA denotes the codimension in A. Then for integers r with
1 Srsd we put

Te = min T (V)
cod V=1

and we can state the following fundamental result.

Theorem 2 ( [Wii2] ). There exists a positive constant o¢: with the follow
ing property. Let p(xo,...,xN) be a homogeneous polynomial of degree

at most equal to D that vanishes in dX along A with multiplicity
at least T. Then if

T
(2/n) Fe@(X) > (eD)F (1sSxrsn)
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the polynomial P vanishes on all of G.

Remark. It can be shown that Theorem 3 is best possible up to a nume-
rical constant. It is very likely that Teorem 2 has the same property
It would be interesting to verify this.

we now illustrate our result with an explicit example.

Example 3. Let E be an elliptic curve and K = (End E)eQ the field
of complex multiplications, where End E is the ring of endomorphisms
of E. Associated with E is a Weierstra8 elliptic function %)(z) .
Then let XqreeorXy be complex numbers which generate over K a ve™
space of dimension n. This implies, as one verifies without any 4diffi
culties, that the functions

Pplzd, ooe s plz), plxgz v ex 2 )

are algebraically independent over € or even over (:(z1 . ...,zn) . Thi:
also follows from a general result of Brownawell and Kubota [Br-Kul

Now we take a polynomial P(X1 ""'xn+1) of degree D and define the
function o(z,,... ,zn) by

(2, ,...,2 ) = P(P(z1) yeeoys p(zn),p(x1z1+...+xnzn)) .

This function is identically zero only if the polynomial P is the 2¢
polynomial. Let now w = (wT,...,wn) be a point in ¢ such that @
is defined for all non-zero integer multiples of w and suppose that
for some integexrs S S 1, T S 1 we have ’

t

1 t

n

O(sw) =0 (1Ssss,0$t+...+tn<’1‘)«

() ()
'5;? .otrz_; 1

Then we have the following corollary to Theorem 2.

Corollary. If (2/n)®(S/n) > (cD)™'  then the polynomial P is the
zero polynomial.

Here the coefficients T e aswell .as the nother inequalities, do not.appe
anymore. The reason for this is that the conditions on the numbers
XqresesXy imply that Te 2r for 1S rsSsn and The1™ Do It then
follows easily that the missing inequalities are consequences of the
given one. What this example also shows is that the ~onditions of
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Theorem 2, which seem to be very abstract, can be verified in all given
situations without much difficulty. It reduces to a problem in linear
algebra.

4. Small transcendence degree

In 1949 Gel'fond developed a new method to prove algebraic inde-
pendence of two numbers out of a certain given set of numbers. The cen-
tral point in his method was a general criterion for algebraic indepen-
dence of two complex numbers, called "Gel'fond's criterion”. In practice
this criterion was until recently only applicable to numbers connected
with the exponential function. The most striking result here was
Gel'fond's result on the algebraic independence of the numbers

where a#0,1 is algebraic and 8 cubic over the rationals.

One of tthe motivations for developing the theory of zero and multi-
plicity estimates was to prove the elliptic analogues of these types of
results. In the same way as in the exponential case ( for a complete
account of this see [{Wa2] ) it is possible to embed this kind of results
in a more general context. Here we will content ourselves with giving
the elliptic analogue of Gel'fond's result. The general result can be
found in ([Ma-Wu4].

For this let §(z) be a WeierstraB elliptic function with algebraic
invariants 9, and g4 Denote as before by K its field of complex
multiplications and denote by d its degree over Q. Then it is known
that 4 = 1,2. Let then B be an algebraic number of degree 1=Zigill
over K and u a complex number such that p(u) is algebraic. Then
we have the following result.

Theorem 3 ( [Ma-WH4] ). At least two of the numberﬁ
plgu), ..., ptat T
are algebraically independent ( over Q ).
As an immediate consequence of th;s theorem we obtain in the case

d=2 the elliptic analogue of Gel'fond's result.
The proof of this and related results will be given in [Ma-Wi5].



5. Large transcendence degree

The method initiated by Gel'fond was considerably extended by sev
ral authors to obtain algebraic independence of more than two numbers
connected with the exponential function ( Smelev [Sm], Waldschmidt
[{wa2] ) but these were still small transcendence degree results. It
was G.V. Chudnovsky who then developed a method for proving the firs
result on large transcendence degree in this context ( [Ch2] ). He pr
that the field generated over @ by numbers of the form

. v v

u1,...,un,v1,...,vm,eu1 1,...,eun n

has transcendence degree which tends to infinity if m and n tend
infinity. Here one has to impose certain measures of linear independe
on the Uyrese, 0 and VyreeosVpe A number of authors have developed
Chudnovsky's ideas .( Reyssat [R], Philippon [Ph2], Endell [E], Neste
renko [N2] ) and this arsa of research is at the moment very active
( Wwaldschmidt [wWa3]l, Zhu Yao Chen [Wa-Z] and Endell ). A very natura
and interesting question of course is to extend this sort of results
arbitrary algebraic groups. The main obstacle for doing this was the
lack of the lemma of Tijdeman [T] in the general situation but sinc
we have the zero estimates and the multiplicity estimates and both al
"with knobs on" it is now possible to consider the general situation
The first step in this direction is due to D.W. Masser and the author
[Ma-Wii3] where one elliptic curve is considered and an elliptic analo
of Chudnovsky's result is obtained.

In order to state it let E be an elliptic curve defined over th
field of algebraic numbers and $(z) an associated Weierstras ellipt
function with algebraic invariants 9, and g5- We assume that E b
no complex multiplication. Then let Uypeos, iy and Vireee sV be cor
numbers linear independent over the rationals respectively such that
there exists a positive real number K with the property that

K
|s1u1+...+snun| > exp(-S")
and
|t1v1+...+tmvm| > exp (-T¥)

for all integers 8,,...,8 ,ty,...,t, Wwith S = Is1l*...+|sn| and T
It1|+...+ltm| sufficiently large. Then we have the following result.
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Theorem 4 ( [Ma-W{i3] ). Suppose that the integers m and n satisfy

mn 2 {Zk+1

(k+7) +4c } (m+2n)
for some integer k 2 0. Then the transcendence degree of the field ge-
nerated over the rationals by the numbers

P(uivj) (1s$4is$n;1s$3sm)
is at least equal to k.

This result is of course only relatively weak and there might be
some chance to improve it slightly using the result of Waldschmidt and
Zhu Yao Chen already mentioned. Of course on can also ask for measures
of algebraic independence. The general problem in this direction is the
following one.

Problem. Let G be a commutative algebraic group defined over a finite-
ly generated subfield K of the field of complex numbers and let T

be a finitely generated subgroup of the tangent space T(G) of G in
the neutral element of G. Determine the transcendence degree of the
smallest field L contained in the field of complex numbers such that

exps (') ¢ G(L).

Of course in many special cases the answer is trivial. But in gene-

ral this problem seems to be very difficult. For example it contains
n_.n

Schanuel's conjecture with G = €, x6 =~ and T= 2-~(x1,...,xn,x1,...,xn).

6. Results of Lindemann's type

In 1882 Lindemann [Li] proved his famous theorem which is sill
one of the most beautiful results in transcendence theory. This result
solved the old greek problem of squaring the circle. The theorem says

that if @qreesra, are pairwise different algebraic numbers then the
numbers

G1 a
e 'oo.'e n

are linearly independent over the field of algebraic numbers. It is an im-
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mediate consequence of this result that if 81"“'Bm are Q-linearly
independent algebraic numbers then the numbers

B B
e1'...'e

m

are algebraically independent over @. This result created a big theor
developed by C.L. Siegel [Si1]in 1929 and later by Shidlovsky [Sh]
and his schoocl, namely the theory of so-called E- and G-functions. He
one is able to prove the algebraic independence of certain values of th
E- and G-functions.

It seemed hopeless to obtain results of this sharpness for other
classes of functions. But recently the newly developed theory of zero
and multiplicity estimates together with effective algebraic construc-
tions made it possible to prove in the complex multiplication case the
abelian analogue of Lindemann's result on algebraic independence. The
general result is very complicated to state. Therefore we restrict our
selves for simplicity to the elliptic case. For this let gﬂz) be as
usual a Weierstraf elliptic function with algebraic invariants g, an
gs- Furthermore we assume that the associated elliptic curve has compl
multiplication. As usual we denote by K the associated imaginary qua
dratic field. ’

Theorem 5 ( [wii3], [wWi4] ). Let 81,...,8m be algebraic numbers linea
ly independent over K. Then the numbers

P(B1).---, ?(Bm)
are algebraically independent over Q.

A slightly different proof of this result was given by Philippon
{Ph4] using some ideas of the author. We should perhaps remark that ou
proof also gives the best possible ( up to a € ) measure for algebraic
independence. Let € be a positive number.

Theorem 6 ( see [Wi4] ). Under the same hypothesis as before let 0 7

p(x1,...,xm) be a polynomial with integer coefficients of degree df(F
and height H(P). Then

log IP(P(By), ..., p(B))I > = a(P)"* 109 H(P)

where ¢ is an effectively computable positive constant.
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These results were proved for m = 2,3 by G.V.Chudnovsky [Ch3].

A somewhat related problem was posed by Gel'fond and by Schneider.
Suppose that «#0,1 is an algebraic number and 81""'Bm are algebraic
numbers that are linearly independent over Q. Then the problem is to
show that the numbers

81 8

a ,...,0

m

are algebraically independent.

We do not know much on this problem. We know only in special situa-~
tions from the result of Chudnovsky that the transcendence degree of
the field generated by numbers of this type tends to infinity with m.
And at present we do not know how to improve this in a significant way.
Another special case which we know is the already mentioned result of
Gel'fond.

Surprisingly the situation is quite different in the case of abelian
functions. Here we know very sharp ( but not yet best possible ) results.
They were proved by Philippon (Ph3] again relying on multiplicity
estimates on group varieties. Here we will state only the simplest case
of a more general result, and only the case of complex multiplication,
which yields the best result. Por this let ;xz) again be a Weiersra$
elliptic function with algebraic 92 and 9q- Let K have its usual
meaning. Furthermore let F be an algebraic extension of K of degree
m and 81,...,Bm be a K-basis of F. Finally let u be a complex
number such that p(Biu) is finite for 1 S i § m. Then the following
holds.

Theorem 7 ( [Ph3] ). At least B - 1 of the numbers

nN

?(61\1) rose JP(Bm‘l’
are algebraically independent.
Both, Theorem 5 and Theorem 7, give a partial answer to the prob-

lem stated at the end of the last gsection. We end this section with the
following

Conjecture. Let E1""'En be pairwise non~isogeneous elliptic curves
defined over the field of algebraic numbers and let G = Gme1x...xEn.
Let u € T(G)(Q) be a rational tangent vector. Thon the dimension of
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the Zariski closure X of expG(u) with respect to the Q-topolgy is
equal to n+1. In other words e,p1(1),...,pn(1) are algebraically in
dependent .

7. Analytic subgroups of algebraic groups

Since A.Baker had proved his famous theorem on linear forms in loga-
rithms ( see for this [Bal] ) a great number of authors have tried to
prove analoguous results for elliptic and more generally abelian loga-
rithms. These studies were initiated by Masser [Ma3] and further
developed by Masser, Lang [L] and Coates and Lang [C-L]. It turne
out that the crucial point here was a general multiplicity estimate
which was not available. Therefore the authors had to use adhoc argume
to overcome these difficulties in very special situations. In addition
the results that could be derived were rather weak except in the ellip
tic case .with complex multiplication ( Masser and Anderson ). More re-
cently Bertrand and Masser [B-M] succeeded to treat the elliptic cas
completely using a quite different method. Very surprisingly but in so
sense guite naturally they could apply the criterion of Schneider and
Lang in this situation. Nevertheless their approach is not very satis-
factory for different reasons.

Since the necessary multiplicity estimates are now available ( The
rem 2 ) we obtain a completely general and universal result that cov
all problems in this field.

In order to state it let G be as usual a commutative algebraic
group defined over @ and A © G an analytic subgroup defined over
By this we mean that A is defined in the tangent space T(G) of G
in the neutral element, which is in a natural way a Q-vector space, by
Q-subspace T(A). Then the exponential map exp.: T(G) * G induces a
local diffeomorphism between T(A) and A ( or more precisely between
their complex valued points T(A)(€) and A(C)). Then we have the fol
lowing result.

Theorem 8 ( [Wi5] ). Suppose that A contains a non-trivial algebraic
point, i.e. A(Q)#0. Then there exists an algebraic subgroup H of G
with the following properties: '

(1) H is defined over (,

(ii) dim H > 0,

(111) H €A .
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Remark. 1. It is obvious that the existence of such a subgroup H of

G implies that A(Q) # 0. Hence the condition is also necessary. __
2, As was pointed out by Gabber the theorem can also be stated as A (D)
S A. Here the second bar denotes the Zariski closure with respect to the
Q-topology. In other words the Zariski closure (with respect to Q) of
A(Q) is contained in A. ' '

-1t is not very difficult to deduce Baker's theorem {(in its gualita-
tive version) from this general result. But we prefer to give the follow-
ing more general result conjectured by Wéldschmidt.

For this let n,m 2 1 be integers and Qqreees®y be algebraic num-
bers such that loga1,...,log¢_xn are Q-linearly independent (for any
fixed choice of the logarithms). Let further §(z) be a Weierstral el-
liptic function with algebraic: g, and g3 and UgsooesUp be complex
numbers that are K-linearly independent ( K = (End E)eQ ) and satisfy
pluy) reees plu) € Q. Finally let Bsre--sBy @and Yq,...0Yy be algebra-
ic numbers not all zero.

Theorem 9 ( [wWi6] ). B1loga1+...+Bnlogan+y1u1+...+ymum # 0.
Remark. The case Yq% eoe Y, = 0 is Baker's theorem and for B1= .o
=Bm = 0 we obtain the theorem of Bertrand and Masser.

A nice corollary of this result is the following result which was
pointed out by Masser. Here we do not assume that logu1,...,logan are
Q-linearly independent but that the numbers 1 and the non-zero ones
among 81,...,8n are Q-linearly independent.

Corollary. The complex number

8 8 YU, *e..ty U

is transcendental.

Of course it is not difficult to extend this result to abelian lo-
garithms. Furthermore it is also possible to obtain quantitative versions
of Theorem 8 nearly as precise as the bounds given by Baker for linear
forms in classical logarithms. This applies for example to Siegel's theo-
rem on integer points on curves and can be used to eliminate Roth's
theorem, which is non-effective, in the proof of this theorem.
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8. Periods of rational integrals.

Transcendence properties of periods of certain differential forms
especially elliptic and abelian, have been studied for a long time. Tt
first result in this field was proved by Lindemann who obtained the
transcendency of the non-zero periods of the differential form dx/x.
Then Siegel [Si2] proved the transcendency of the periods of the ell
tic differential dx/védx®-4x . Since then many authors ( Schneider
[(sch1], [Sch2], [sch3], Baker [Ba2], [Ba3], Coates [Co1] , [Co2], [Co:
Masser [Ma3], [Ma4], [Ma5], Laurent (La1], [La2] and Bertrand [Be]
have obtained partial results. With the help of Theorem 8 it is now
possible to prove a general result on arbitrary periods of rational 1i
integrals. This result covers all these results just refered to.

Let X be a smooth quasiprojective variety defined over @ and
a closed holomorphic 1-form on X defined over Q. Suppose that y
a closed path in X ( in other words: y represents an element in the
first homology group H1(x,2) ) . Then we have the following result.

Theorem 10 ( [(Wii5] ). The rational integral

i

Y

is either zero or transcendental.
One obtains immediately the following Corollary.

Corollary. The periods of an abelian integral ( first, second and thir
kind-).". are either zero or transcendental.

At the present we can only deal with periods of 1-forms. It would
be extremely interesting to extend this result as far as possible to 3
bitrary r-forms with r 2 2. Of course it is not too hard to decide
when the periods are zero. This can happen without the differential bé
ing exact or the path being homotopic to zero. This is done in [Wii7]
in the case of arbitrary elliptic integrals where the group generated
the polar divisor of the part of the third kind plays the essential IC
Furthermore this is worked out in the caseof abelian integrals of the
second kind at most for products of elliptic curves ([Wil8]). This solv
a problem of Baker.

Of course it is possible to extend Theorem 10 to non-closed pathe
going from one algebraic point on X to another. One obtains then a I
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sult of the following type. Either the integral is transcendental or it
is algebraic and one can determine why this is the case. But the details
have yet to be worked out.
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