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On regularity of small primes in function fields

Ernst-mrich Gekeler

Abstract: Let p be a finite prime of the rational function field K = IFq(T) and K(p) : K

the p-th cyclotomic extension. We study the p-component of various dass groups asso­

ciated with K(p) , using criteria of Kummer-Herbrand-Ribet type and explicit fonnulas

for Bernoulli-Goss and Bernoulli--earlitz numbers. Results of computer calculations are

given for p of degree two and three and small constant fields IFq .
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1. Introduetion

Let q be apower of the prime p, (fq the finite field with q elements, and A = (fq [T]

the polynomial ring in an indeterminate T. Fix a prime ideal p (always assumed non­

zero) of A of degree dEN. Hy abuse of notation, we also write p(T) for the monie irre­

ducible polynomial that generates p. Let K(p) be the field extension of K = (fq(T) ,

determined up to isomorphism by the following eonditions;

K(p) : K is abelian, unramified outside p and m, and its eonduetor

divides the divisor p. m of K ;

(ii) T is a norm at Q) j

(üi) IFq ia algebraically closed in K(p) j

(iv) K(p) ia maximal with (i), (ii), (iii).

Thus in terms of class field theory, the subgroup of nOrDlS in the unita Uq of the q-adic

completion Kq is Uq ,if q is a place of K different flom p, Q) , and ia the l-units in

Uq ,if q equals p or m. Also, let K+(p) be the maximal aubfield of K(p) unramified

at (J). Then p completely ramifiea in K(p) , the place m splits completely in K+(p) ,

and ramifies completely in K(p); K+(p) . We have canonically

(1.2) ~ * * NGal(K(p) : K+(p)) t--l-IFq c~-+. (Alp) ----=----+1 Gal(K(p) : K) = G .

An explicit construction of K(p) by means of "cyclotomic ll polynomials may be found in

[9]. By the far-reaching analogy of K with the rational number field ~, K(p) and

K+(p) correspond to the p-th cyclotomic field extension ~(p) , the maximal real sub­

field ~+(p) of ~(p) , respectively, see [9,3,7].
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Let C = C(p) be the p-primary part 01 the group 01 degree zero divisor classes of K(p) ,

and Cm the subgroup of classes supporied by the infinite primes 01 K(p) . Then we have

an exact sequence of finite P-gl'oups

(1.3)

where ~ ia the p-part of the ideal class group Pie B , B = integral closure of A in

K(p) . Similarly, if K ( L (K(tJ) ia an intermediate field and BL , Cm,L ' CL '~L are

the objects as80ciated with L,

is also exact. If L = K+(p) , we write B+ I C+..... for BL , CL .....

(1.4) Let now K ( L ( M (K(p) be two intermediate fields. The natural mapping

i : CL ---+ CM eompoaed with the norm N: CM ---+ CL is multiplication with

[M : L] ,which ia prime to p. Hence i ia injective and N ia surjective, and eorrespon­

ding statements hold for C replaced by C
m

and ö.

(1.5) Let W be the ring of Witt vectors of the finite field Alp, and m its maximal

ideal. All the W-valued charactera of G = (A/P)* are powera wk (0 ~ k < qd_1) of the

*Teichmüller character w: G ---+ W ,which satisfiea w(g) == g mod m, g E G . Tenso-

ring with W over Hp' we may decompose our dass groupa according to charaeters of G:

C GiD W = md C( wk) ,
1lp O~k<q -1
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similarly for C and Ö. We write C(k) for C( wk ) .
CD

1.6 Lemma: For any intermediate field K ( L ( K(p) J

*where the sum on the right hand side ie over those characters x: G~ W that facta-

rize over Gal(L: K) .

Prco!: Let H = Gal(K(p) : L) . By (1.4), it suffices to show that CH = CL . Since #(H)

is prime to p, H2(H,C) = ° . But H is cyclic, so CH/N(C) = ir°(H,C) = ° ,where N is

the norm of K(p) : L .

In particular, C( ,•..0) =°,and

(1.7) C+~ W = EB d C(k).
O<k<q -1

k:O (q-1)

Note also that for k == 0 (q-l), C (k) = 0 and C(k)~~(k) , which follows from the
CD

ramification type of K(p) : K+(p) .

1.8 Definition: The prime p is regular, if C =0 . Otherwise, it is called irregularj

plus--irregular or minus-irregular, if there exists k < qd_1 t k == 0 (q-1) or k f. 0 (q-1) ,

respectively, with C(k) f 0 .

The different components C(k) are not quite independent. Define the equivalence relation
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k' Pk ~ there exists a p-power pn such that

Then from the action of the Frobenius automorphism on W , we derive

(1.10) k' N k implies C(k') ~ C(k) ,

and the corresponding statements for C and Ö.
lD
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2. We give some numerical criteria, analogons with the Kummer-Herbrand-Ribet erite­

rion, for the non-vanishing of C(k) . These involve two different series of Bernoulli -like

numbers, corresponding to zeta values at positive and negative integers. First, define for

non-negative i

(2.1)
i

[i] = Tq-T

L. = [i] [i-1] ... [1]
1

i-1
D. = [i] [i-1] q ... [1] q

1

In particular, [0] =0 and LO= DO= 1 . Further, for k given in its q-adic expansion

k =l aiqi, 0 ~ &i < q , let

a.
r k = 1: Di 1 and

the sum of its q-adie digits. Note that for i > 0, [i] ia the produet of all the monie

primes whose degree divides i. rk ia the substitute for the faetorial k! = f(k+1) in our

context. Put

k
e(X) = l Xq /Dk

k~O

as a formal power series, and define the Bernoulli--earlitz numbers B(k) E K by
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eTxr = 1: ~ X
k

(see [1,6]).
k~O k

Then B(O) = 1 I B(k) = 0 unless q == 0 (q-1) , and e.g.

B(k) = (-1)i(D1°o.Di_1)q-1/Li I jf k = qi_1 . There is a von Staudt-Hke result on the

denominator of B(k) , whieh in partieular implies that B(k) ia p-integral if k < qd-1 .

Besides the above and the mysterious identities of [5] , nothing is known about the B(k) .

Next, let

(2.3)

summing over the monie polynomials of degree i in A. Then si(k) = 0 for

i > t(k)/(q-1) [4, 2.12] . Hence we may define the Bernoulli-:Goss numbers ~k)

(see [7]) by

(2.4) Äk) = 1: si(k)
i~O

=- 1: i si(k)

i~O

k == 0 (q-1) .

The si(k) (and therefore the ,ß(k) ) satisfy

(2.5)

and the Kummer eongruences

8.(pk) = s.(k)P
1 1
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(2.6)

In particular,

(2.7) " Iß(k) ~ "I ß(k '), if k I Pk .

Dur interest in B(k) and ,ß(k) results from the next two theorems.

2.8. Theorem [7,6.2.2]: Let 0 < k < qd_1 . Then

2.9. Theorem [12,2.18]: Let 0 < k < qd_1 ,k divisible by q-1 . Then

Ö(k) *0 =t tJ IB(k)

(Le.,,, divides the numerator of B(k)) .

2.10. Remark: In view of (1.10), an equivalence above would imply a statement like (2.7)

for B(k). In fact, it is easy to see thai if pk < qd_1 , "I B(k) impliea "I B(pk) . But in

general, (2.7) doesn't hold for B(k). A counterexample ia given by q = 3 and

p(T) = T3-T-1 , which dividea B(10) , but not B(4) (4 + 33_1 = 3 -10) .

From 2.8, we may derive the stability of divisibility properties oI ß(k) under constant

fjeld extensions. Let r > 1 be a natural number and K I = (fqr(T) . We denote with a
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prime ( )' all the objects related to K' instead of K . Suppose the degree d of p is

relatively prime with r. Then p is inert in K' . Let p' be the corresponding prime in

K ' d 1 ' rd 1,n=q-,n=q-.

2.11. Theorem: If p divides ß(k), then p' divides the Bernoulli-Goss number ß' (k')

associated with K' , where k' = k • n' In .

Proof: By (2.6), we may assume that k < n , so k' < n' . Consider the field extensions

K'(p')

I
~K(P) ·K' = L'

K (p) I
I K '

K~

*Then G' = Gal(K'(p'): K') = (A' Ip') acts on L' via the norm

* *N : (A' Ip') --+ (Alp) = Gal(L' : K') = Gal(K(p) : K) = G . If we think of W

imbedded in W' ,we have 61 0 N = w,n' In for the Teichmüller character 61' of G' .

Combined with (1.6) and the injectivity of C----+ CL' , we get

"C(n-k) f 0 =t C' ((n-k)n' In) f Oll , which by (2.8) is equivalent with the assertion.
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3. Next, we show how to calculate B(k) and ß(k) effectively. Direct1y hom definitions,

we get the recursion formula for B(k)

(3.1)
f k .

B(k) = - l 0.1' . B(k+1-ql)
i>O 1 k+1-ql

(k > 0) .

Also, ß(k) might be calculated via the recUIsion described in [7]. Instead, we will use the

generating function for si(k) , derived in [4], which is computationally simpler:

(3.2)

where

i
k i Di xq -1

\ s.(k) X = (-1) -r- ,L 1 L. 1 1 1
k~O 1 e.(X- )xq -D.xq

1 1

The resulting B(k) and ~k) are rational functions or polynomials in T of very large

degrees, but, using invarlance propertiea, we can drastically reduce the degrees. Let V

(resp. U ) be the group of affine transformations T t--+ aT + b (a,b E IFq) ,where a 4= 0

(resp. a = 1 ) , and put S = [1] = TCLT, R = Sq-1 . Then V acts on A = IF [T] ,q

and the invariants are

(3.3) u V
A = IFq [S] =: AO' A = IFq [R] =: Al .

Since the coordinate change T t--+ T + b affects neither [i] nor Si(k) , B(k) and
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{:(k) may be expressed through S.

3.4. Lemma: Let k == 0 (q-l). Then B(k) , considered a.s a rational {unetion in T, satis­

fies

B(k)(aT) = a-€.(k)/(q-l)B(k)(T) (o:f: a E f q) .

Proof: For k = 1: aiqi given in its q-a.die expansion, let O(k) = 1: i ai . Then the asser­

tion {ollows by induetion trom (3.1) and the following easily proved facts:

[k] (aT) = a [k] (T)
k

Dk(aT) = a Dk(T)

r k(aT) = a 8(k)rk(T)

8(k) ==~mOd(q-l)

In view of the lemma, it ia convenient to somewhat modi{y the definition of B(k) .

Let m = q-1 , and define

(3.5) B*(k) = st(k)/mB(k) ,

which by (3.3) and (3.4) is a rational function in R. Since S = [1] = TI (T-b)

*(b E IFq)' B(k) and B (k) have the same prime divisors p(T) o{ degree > 1 . Let

further L~ = S-kLk Ef q [R] ,and, for 0 < k == 0 (q-l) given q-adically

k = 1: aj~' and 0 < i 5 N ,

05j~N
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r(i,k) = inf({j Iaj < m}, i) ,

s(i,k) = inf{j ~ i Iaj > O} ,if r(i,k) < i ,and s(i,k) = i otherwise.

Proo{: Let 0 < i ~ N be given, r = r(i,k), s = s(i,k) . The q-adic expansion of k+l-qi

is given by

( ) r r+l i-I i s-1= ar+lq+ar+ 1q + ... ai- 1Q +mq + ... mq

(r = j)

(r < i) .

r kTherefore, in both cases, ---- =
D.r .

1 k+l-ql

(D1· ..Dr-1)mDs

Dj Dr{Di ...Ds_ 1)m

r L
Hut for all i, D. = (D....D. l)mL., hence D I' k =.-!r- . Since

1 1 1- 1 . ..Lt .1l.

1 k+l-ql r 1

t(k+l-qi) = t(k) + (s-i-r)m , the assertion follows from (3.1).

For the si(k) , we have by definition

(3.7)
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Thu8 if ß(k) = l ~ .sj, bk · f 0 implies j == k , 2k... (m) . In particular:
,J J

(3.8) If k == O(m) , 8j (k) and ß(k) are polynomials in R = Sq-l .
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4. We now derive explicit expressiona for B*(k) and ß(k) , in case 0 < k < q3-1 . First,

note that each k < q3_1 divisible by m = q-1 has a unique representation

k = s(q2_1) + t(q-1) , where either (0 ~ s < q, 0 ~ t < q) or (8 = q, t = 0) .

4.1. Theorem: Let k = s(q2_1) + t(q-1) as above. Then

* R
S

B (k) = R+T

- (-1)t L (_I)i [t+:-1J RB-i

0~i~8

(t =0)

(t > 0) .

Proof: Since k < q3-1 , the sum in (3.6) containa only two terms. For

2k = a + bq + cq , 0 ~ a,b,c ~ m = q-1, we get

* * * 2B (k) = -0 B (k+1-q) -ß B (k+1-q ) ,where 0 = R+1 (a< m , b = 0 , c> 0) ,

o = 1 otherwise, ß= (R+1)-1 (a = b = m, c = 0) ,and ß= 1 otherwise. The result

now follows by double induction on s and t J which involves some case considerations on

the q-adic expansion of k = s(q2_1) + t(q-1) . We omit the details.

4.2. Corollary: Ir k = s(q2_1) (1 ~ 8 ~ q) or k = s(q2_1) + q(q-1) (1 ~ s < q) ) each

*prime divisor p(T) of (the numerator of) B (k) has degree one.

P 091: The fird OBeB deacr in ue recona care. al the binowJ c~ci [IJ

*vanish except for i = 0 ,hence B (k) =_Rs .

4.3. Corollary: Let k = (q-1)(q2_1) + t(q-l) (1 ~ t ~ q) . Then

B*(k) = (-1)tRt-1(R+1)q-t ) and is not divisible by primes P(T) of degree > 2 .
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Proof Ac aoove, [r- vumhw for 1> q-t , Hence

B*(k) = (_I)t l (_1)1 [t+~-I] Rq-l-i

O~i~q-t

Further R+1 = Sq-1+1 = [2] / [1] ,which is the product of all monie irreducible qua­

dratic polynomials ,,(T).

The eorollaries give vanishing resu1ts for p--class groups ~(k) for primes P(T) of degree

> 2 . Other special eases of (4.1) are

(4.4)

and

k=s(q2_1)+q-1 (1~8<q)

B*(k) = -{R8+ 1 + (-1)S)/(R+l)

(4.5) 2k = q -1 + t(q-l)

B*(k) = (-1)t(R-t) .

Next, let us consider ß(k), where k has the q-adic expansion a + bq + cq2 ,
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t = t(k) = a+b+c, m = q-l . Since k < q3_1 , si(k) = 0 if i > 2 , and we have to

calculate s2(k) , sI(k), and sO(k) = 1 . From (3.2), one may derive the following ex­

pression for S2(k) (see [4, 3.13] ):

which vanishes if t = a+b+c < 2m .

For i = 1 , the generating function (3.2) becomes

We read off

summing over pairs (aJl) of non-negative integers that satisfy

(*) am + f3q = k-m .

Let (00, ßO) be the solution with aO maximal. All the other solutions are given by

(ai'~)' ai = aO-iq, !1 = ßO+ im, i ~ QO/q. We have to separate the cases A)

t < m, B) m 5 t. < 2m, and C) 2m ~ t. . In case A, sI(k) = 0 . In case B l

aO= m-a+cq, ßO= t-m . Looking at the q-adic expansions of a. + ß· and of ~ , and
1 1 1

[O'+~Jusing Lueu' eongruenee on binomial eoefficients, one sees that 1ßi1 = 0 unless

b+c-q < i 5 i-m , in which case one has
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Now suppose C J i.e., t ~ 2m . Then 00 = m-a+(c+l)q, ßO= t-2m . Again determi­

ning q-adic expansions yields

[ai;~i] = r+c-m-i] [ctl] (i ~ t-2m)ID-a
1

- 0 (t-2m < i ~ b+c-m)

= r+~~-i] [i:l] (b+c-m < i ~ c+l)

- 0 (c+l < i) .

With the usua! conventions [k] = 0 if k < 0 or k > n , all these cases are included in

(4.7)

sI(k) = -1: [b+~_~-i] [ctl]St+(i-2)m -1: [b~:;] mSt+(i-l)m .
O~i~t-2m b+c-m~i5c

Summarizing:

4.8. Theorem: Let 0 < k = a+bq+cq2 < q3_1 with 0 ~ a,b,c < q, t = a+b+c,

m = q-l. Then

~k) = 1 + SI(k) + s2(k)

= -BI (k) - 2s2(k)

the si(k) being given by (4.6) and (4.7).

(k ~ O(m))

(k == O(m)) I
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Note that since k =t(m) 1 k =O(m) means t = m or 2m. For the binomial coefficients

[:] in (4.6) and (4.7). always r.n e {O•...•q-l}. with the exception of n = c+1 = q in

(4.7). But [?] == O(p) if 0 < i < q . Hence (4.8) may directly be implemented for com­

puter calculations.

4.9. Example: Let k = a+bq . Then

~k) = 1

= 1- [ b] st-m
m-a

(A special case of this has been shown in [10].)

4.10. Examole: Let k = a + mq + Cq2, 0 < a+c ~ m . Then

ß(k) = 1 + (_l)a+l Sa+cq .

4.11. Example: Let k = a + bq + cq2, t = a+b+c = 2m . Then

(t ~ m)

(m< t ~ 2m) .

,6(k) = 1+ 1: [b~~][n Ri+1+2(_I)a+1 [m:.a] 1: [a+~-m] Rq-a+i ,

b+c-m~i~c O~i~a+c-m

where R = Sq-l . Specializing b yields e.g.

~k) = 1 + (_1)c+1 Rc+ 1

Äk) = 1 + (-l)cc RC(R+1)

(k = m-<: + mq + Cq2) , or

(k = m-<:+1+(m-l)q+cq2, c > 0) .
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5. By the results of the last section, we are given B(k) and ß(k) aB rational functions (or

polynomials) in S = TLT or even in R = Sq-l . Therefore, we examine the behavior of

prime ideals in the ring extensions

More precisely, given a prime ideal p of A of degree ~ 3 and fE AO or Al ' we want

to decide whether pI f . Let KO and Kl be the quotient fields of AO ' Al' respectively.

The following ia obvious:

(5.1) K: KO ia galois with group IFq' b E iFq acting via T I--t T+b . It is unramified at

finite places and completely ramified at Q). The T+b are the zerc>ea of the minimal

polynomial ;(X)-S = XLX-S E AO[X] . A prime Po of AO splits into q or q/p

primes P of A (since the residual extension must be cyclic).

5.2. Lemma: The following statements are equivalent:

(i) Po splits completely, Le., into q factors;

(ii) tP(X)-8 mod Po haB one, thus all its zeroes in AO/PO j

(iii) Tr(s) = 0, where s ia the dass of S mod Po and Tr: AO/PO --+ [fq ia the

trace map.

Proof: (i) ~ (ii) is obvious. Let F be the Frobenius automorphisID of AO/PO: (fq . Then

;(AO/PO) = im(F-l) ( Ker(Tr) . By dimension reasons, im(F-l) = Ker(Tr) , hence
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(ii) <==> (iii) .

5.3. Corollary: The primes p(T) of degree d = 2 in A are those lying over primes

PO(S) of AO that satisfy a) deg Po = 2, Tr(s) = 0 ,or b) PO(S) = S-a, 0 =1= a E IFq ,

case b) occurring in char 2 only. Similarly, the primes p(T) of degree d =3 in A are

those over PO(S) that satisfy a) deg Po = 3) Tr(s) = 0 ,or b) PO(S) = S-a ,

o =1= a E IFq , where b) occurs in char 3 only.

Next, which primes PI in Al lie below the Po described above ? Note that

TI (S-a) = Sq-1-1 = R-I , hence we may restrict to cases a).
OfaElFq

Let first d = 2 . If P = 2 ,no Po aB required exists. If p > 2 , the product over the mcr

nie irreducible S2_b gives Sq-1+1 = R+1 .

Let now d = 3 . In any case) the product TI p(T) over the primes or degree 3 equals

2 2
[3]/[1] = ([I]q + [I]q + [1])/[1] = sq -1 + Sq-I + I = Rq+1 + R+ 1 ,

whieh is divisible by (R-l) , if q =0(3) , and by (R-p)(R-p2), if q =1(3) and p is a

primitive third root of unity. Besides these linear factors) Rq+1 + R + 1 is divisible by

q/3, (q-1)/3, (q+I)/3 different cubie irreducible factors, if q == 0,1,2(3) , respeetively.

Summing up, the following primes PI(R) of Al = lFq [R] decompose into primes p(T)

of degree d =2 or 3 of A = lFq [T] :
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P1(R) =R+l

PI(R) = irreducible cubic divisor of Rq+l + R + 1 ,or

R-l (q =0(3) only), or R-p, R_p2 (q ~ 1(3) only,

p = prim. third root of unity).

Playing around with Newton's formulas, one can show that the cubic divisors of

Rq+l + R + 1 have necessarily the form R3 + aR2 + (a-3)R -1 . The special primes

P(T) dividing R-l, R-p, R_p2 respectively are those having a non-trivial stabilizer

group under T ........ aT+b , Le., p(T) =T3 - bT - c, b a square (q =0(3)) , and

P(T) = T3-e (q =1(3) , c a non-eube). Combined with Theorems 4.1 and 4.8, the con­

siderations above enormously simplify the verification of pI ß(k) or B(k) .
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6. Applications

Let now tJ be a prime of A of degree ~ 3 . If d = 1, K(p) is rational and has trivial

dass group, so we exclude that case. If d = 2, K+(p) is rational, so all of the C(k) with

k == 0 (q-1) are trivial (which corresponds to the fact that all the associated ~k) and

B(k) are never divisible by primes of degree 2). Hence only ß(k) with 0 < k < q2-1 ,

k ~ 0 (q-1) ia interesting. Recall that m = q-1 .

6.1. Theorem: Let q == 3(4), q ~ 7 , and let P{T) be a prime divisor of PO(S) = 82+1 .

Then p is irregular. (The prime divisors of 82+1 are the shifts under T t--+ T+b of

T
2
+1/4.)

Proof: Let k = m + bq ,where 0 < b < m, b == 0(4) . Then from (4.9), ß(k) = I-Sb,

which is divisible by 82+1 . The result now followB from Thm. 2.8.

But the most intereating case ia where d = 3 .

6.2. Theorem: Let p(T) be a special prime of degree 3 (see (5.4)). Then p is plus-irregu­

lar.

Proof: Let k = m--e + mq + cq2 ,where 0 < c ~ m, c == 2(6) . From (4.11), we have

~k) = 1 + (_l)C+IRC+l , which is divisible by R-l in char 3, and by (R-p)(R-p2) , if

q == 1(3) .

Recall that in the number field case, the class number of ~+(p) should not be divi­

sible by p by Vandiver's conjecture. Actually, it occurs very rarely that a non-special

prime p is plus-irregular.
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6.3. Example: For q ~ 64 , there are only 4 examples of non-special plus-irregular primes

of degree 3, involving IFq with q = 16,32,47,49. The examples with the non-prime

fields are complicated to be written down. For q = 47 ,let p(T) be the prime

T
3 + 5T + 20 , which divides PI(R) = R

3 + 41 R
2 + 38 R + 46 . For

k = 81 696 = 10 + 46· 47 + 36· 472 , (4.11) gives ~k) = l_R37 , which ia divisible by

PI ! Hence IF47(T)+ (p) has a elass number divisible by 47.

Let now p have degree 3, n a divisor of q3_1 , and let K ( L (K(p) be the unique

*intermediate field of degree n over K. Then Gal(K(p) : L) = {n-th powers in (Alp) }

* *= : H , and the ramification group of L : K at m ia IFq/lFq n H .

6.4. Example: Let p > 2 and n = 2_.. Then L ia ramified at m, and the Hurwitz for­

mula shows L to be elliptic. Since T is a norm at m, the elliptic curve E aBsociated

with L ia given by the equation _y2 = p(T) . The relevant Bemoulli-Goss number ia

ß«(q3_1)/2) = 1- L [:7~J [m(2J Sm/2+im ,
0~i~m/2

whose divisibility by P is equivalent with E having non-trivial p-division points over

lFq .

6.5. Example: Let q == 1(3) and n =3 . Then L is unramified at lD, and Hurwitz again

gives L elliptic. The relevant B.-G. numbers are ß(k) for k = ki = i(q3_1)/3, i = 1,2 .

We have Äk1) = 1, and ß(k2) is a polynomial in R given by (4.11). In the range

q ~ 64, ß(k2} has cubic prime divisors only for q = 49 .
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In the next examples, we let p(T) have degree 2 and, assuming nl q2_1 , we consider the

unique subfield L oi K(p) of degree n over K . Let ki =i(q2-1)/n, 0 < i < n .

6.6. Example: Let q =1(3) and n =3 . L is ramified at m, and elliptic with equation

X3 =P(T) , from which we see that the corresponding elliptic curve has }-invariant O. We

have ß(k1) = 1 and

ß(k ) - 1 - [2m/3] Sm/3
2 - m/3 .

One easily shows TI ((T+b)2~)= S2-4c , provided that c ia a non-square in IFq .
bEltq

Therefore, the elliptic curve

has p-division points over IFq M p(T) =T2--e Iß(k2) M 1 = [2:m (4c)m/6 in IFq .

6.7. Example: Let q =2(3) and n = 3 . L splits at CD and is rational. Therefore, the

~k.) have no quadratic prime divisors.
1

6.8. Examole: Let q =1(4) and n = 4 . L ramifies at CD with index 2, so by Hurwitz is

2elliptic. AJJ.y contribution to C(k) comes from k = k3 = 3(q -1)/4 ,

ß(k) = 1 _ [3:~~] Sm/2 .

Let us now consider the "affine" dass group Ö(k) and the divisibility properties of

B(k) ,a8suming deg p =3 . Recall that if Ö(k) f 0 , then for all k I < q3-1 that satisfy
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k' N k, P divides B(k') and also ~q3-1-k') . Here "Nil = "pli is the equivalence

relation (1.9). Cases were pI B(k') for all k' N k are rare. For q ~ 32, they exist for

q = 9, 16, 27. Also, we found some examples for q = 43 and 49. In all these cases, we also

found pI ß(q3_1-k) J and in BOme of them (see (6.10)), we could verify Ö(k) f 0 . This

leads to the following conjecture, that states a converse of Theorem 2.9:

6.9. Conjecture: Let p be a prime of A of arbitrary degree d. Suppose that for all

k' N k (Le., such that there exists apower pn of p with k' == pnk (qd_1)) ,p divides

(the numerator of) B(k). Then Ö(k) f 0 .

6.10. Example: Consider the follwing data, where p(T) is a divisor of P1(R) :

q k P1(R) p(T)

a) 9 112 R-1 3T -T-1

b) (p a root of

X2+X+1) 16 585 R-p T3_p2

c) 49 39216 R3+4R2+R+6 3T -T-2

d) 49 12384 R-2 T3-2

R-4 T3-3

Then always p divides B(k') for all k' N k , and, furthermore, all the Ö(k) are

non-zero. In particular, the dass numbers of the corresponding rings B+ are divisible by

p.

The facts on divisibility result from explicit calculation. We will prove the non-vanishing

of Ö(k) in ca.se a. Modifications of the argument used work in the other cases b,cJd, but

not in the cases mentioned earlier where q = 27 and 43.
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6.11. Proposition: Let q = 9 and k = 112 . Then Ö(k) f 0 .

Proof: The equivalence class of 112 is M = {112, 280, 336} . We have pI B(k') and

pl,ß(q3_1- k,), k' E M ,therefore C(k') f 0 . We roust show that actually the "affine"

k'
part Ö(k) is non-zero. The characters w ,where k' E M , generate a subgroup of

•order 13 in the character group of (Alp) ,thus fD C(k') belongs to the subfield
k'EM

L : K of K+(P) of degree 13. Let L3 = K3,+ (P3) be the abelian extension of

Kg = IF3(T) constructed from P3 . Here, P3 = Pn K3 ,so L3 is the maximal abelian

extension of K3 unramified outside of P3 and completely split at CD, which haB degree

(33-1)I2 = 13 over K3 . From the ramification conditionB, L = L3 •K = L3 e IF9 . All
1F3

the infinite places of L3 are IF3-rational, hence the tanonical map C L ---+ C L isCD, 3 CD,
*bijective. The action of Gal(K(p) : K) = (Alp) on K3(P3) is via the norm

* *N : (Alp) ---+ (A3/Pg) = Gal(K3(pg) : Kg) , thus the component Cm,L
3

(kg)

corresponds to CCD)L(k), k = kg·n ,where n = #(Ker(N)) = 28 . From the calculation

of ßg(kg) (Le., the B.--G. numbers in the IFg-fiituation), we see that CL (kg) is
g

non-zero for k3 = 2, 6, 18 only. Hence C L(112) = C L (4) = 0 and
00, al, 3

~(112) I ~ C(112) f 0 .
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7. Numerical results

By the computations of Johnson [11] and Wagstaff [14], the numerators of classical

Bernoulli numbers Bk seem to be equidistributed mod p , for any prime p > 2 . In parti­

cular, the hypothesis "probability of p IBk = P-1" very well"explains ll the frequency of

irregular primes p and their indices of irregularity for p < 125 000 (see also [13]).

In our situation, the validity of PI~k) depends on

a) the equivalence dass of k relative to P (see (1.9)), and

b) the orbit of P under the translation group U , or possibly a larger subgroup of V ,

which depends on k (see (3.3)).

But there are equivalence classes of different lengths, and also U-orbits of different lengths,

which complicates the situation. Let P have degroo d, and consider indices

o< k < qd_1 . Call the pair (k,p) regular if p ~ ß(k) , and irregular otherwise. In certain

C&Bes, fixing (k,p), we are given apriori information of whether pdivides ß(k) , e.g.

(6.1), or (6.2). The general pattern sooms to be that, leaving aside the above mentioned

pairs (k,p) , irregular pairs are equidistributed among all pairs, where the probability de­

pends on the type a), b) of (k,p) . In the following, we give some heuristic considerations

about the expected number of irregular pairs of a given type, based on the equidistribution

assumption, and the &etual numbers determined by ma.chine calculations.

Instead of the condition P(T) l,ß(k) , we use the equivalent condition pO(8) Iß(k) or even

P1(R) l,ß(k) ,whenever ,8(k) is a polynomial in 8 = TLT , or R = Sq-1 ,and Pli Po Ip

(see section 5). For simplicity, we aBsume from now on that q = p > 3 . (For non-prime

constant fjelds IFq , similar, but more complicated arguments apply.)
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2(7.1) Let d = deg I' = 2, k = a+bq < q -1 , 0 ~ a,b ~ m = q-1, t = a+b . If

~k) f 1 ,then

(i) m < t < 2m .

In that case, if PO(S) = S2-e is a prime, the residue dass of ~k) mod P is some element

f 1 of IF q ,if t is even, and non-zero, if t is odd, as we see from (4.9). If q == 3(4) , we

get precisely (p-3)/4 irregular pairs (k,PO) from Po = S2+1 (see prcof of (6.1)). Since

there are m/2 primes PO(S) = S2-e and m2/4-1 numbers k that satisfy (i) and

(ii) t == 0(2) ,

we expect

EV = m2/8 -1/2

2
= m /8 - m/4 - 1/2 - I/rn

(p == 1(4))

(p == 3(4))

irregular pairs (k,PO) with PO(S) =F S2+1 . (The assumption used is that ~k) mod Po is

equidistributed in IF q\ {I} for k that satisfy (i) and (ii).) In the next table, 0 V is the

observed value of irregular pairs as above. We also give the sums of expected and observed

values for the first 5, 10, ... , 25 primes q ~ 5 .
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7.2. Table (irregular pairs (k,pO)' Po 'f S2+1, d = 2 )

q

5

7

11

13

17

N

17

37

59

79

103

EV

1.50

2.67

9.60

17.50

31.50

IEV(q)

62.77

516.40

1920.97

4880.51

10343.03

OV

1

2

10

14

26

IOV(q) 5 ~ q ~ N

53

497

1868

5013

10201

(7.3) The number of regular Po we expect is (1-1/m)em/ 2 , if q == 1(4) , and

(1-1/m)e(m/2-1) t if q == 3(4) ,where e = (q2-JJ)/8 is the number of equivalence classes

of k with (i) and (ii). The Bum of these values for all primes q ~ 5 converges to a finite

limit ~ 6.8866 . This raises the question of whether there exist only a finite number of

regular quadratic primes .,O(S) = S2--e . Ireland and Small [10] found there exist pre­

cisely 5 of them with q ~ 269 , given in our S--<:oordinates by S2-3 (q = 5) ,

S2-3 (q = 7), S2--6 (q = 13), S2-11 , and S2-24 (q = 31) . In [2], some conse-

quences for non-prime q are derived.
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(7.4) Nerl, let d = deg p= 3, k = a + bq + cq2 < q3_1 , 0 ~ a,b,c ~ m = q-1 ,

l = a+b+c . If q == 1(3) ,let p be a primitive third root of unity in IFq . H ,ß(k) f 1 ,

then

(i) m < t < 3m .

Among all the k with (i), there are (5q3 - 6q2 - 5q - 6)/6 that also satisfy

(ii) t f 2m , Le., k == O(m) ,

and q(q+l)/2 with t = 2m .

(7.5) Let us first consider the "minus"_part where k == O(m) . From (4.8),

~k) = 1 + Sif(SID) + Sjg(SID) with polynomials f,g and i == t(m) , j == 2t(ID) . There­

fore, if Po = S3-e is special (which implies that 31 m ), the values f(Sm) and

g(Sm) ~od Po lie in IFq ,and ,ß(k) == 0 mod Po is possible for those k only, for which

also

(ili) t:: 0(3)

holds. Hence we expect

EVs = #{kl(i), (ii), (iii) holds} x #{special PO} x q-l

minus--irregular pairs (k,pO) with Po special, and
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EVn = #{k I(i), (ii) holds} x #{non-special PO} x q-3

minus--irregular pairs (k,PO) with Po non-special. This yields

EVs = (10q3--40q2~q+20+16q-1)/54 , 0

EV
n

= (5q2_16q+12+2q-1+7q-2-6q-3)/18, (5q2-6q-10+5q-2+6q-3)/18

in the cases q:: 1(3) , q == 2(3) , respectively.

7.6. Table (minus--irregular pairs (k,tJO)' d = 3 )

q

5

7

11

13

17

26.86

280.62

29

262

EV DVnn

4.75 2

8.05 15

29.39 31

36.05 53

74.06 117

(7.7) The number of minus-regular Po we would expect !rom the equidistribution hypo­

thesis is

e
EVs = #{special PO} x (1-I/q) s

EVn = #{non-special PO} x (1-1/q)e

(po special)

(PO non-special) ,

where es' e is the number of equivalence elasSeB of numbers k that satisfy (i), (ii), (iii)
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or (i), (li), respectively.

7.8. Table (minus-regular primes PO(S), d = 3 )

q EVa OVa EVn OVn

5 6.49 6

7 0.29 0 9.56 6

11 31.21 20

13 3.0 )( 10-5 0 37.30 22

17 74.13 45

The discrepancy between expected and observed values in (7.6) and (7.8) results !rom the

unexpectedly high divisibility by non-fipecial cubic primes PO(S) of those ß(k) where k

has the form i(q2 + q + 1) . For this fact, I presently have no explication. Note that, be­

sides probability arguments, there is no reason for a special prime PO(S) to be minus­

irregular. For example, for the non-prime constant fjeld (f4' PO(S) = S3_p is minus­

regular.

(7.9) Let us finally consider the "plusfl-part, Le., t = 2m in (7.4). Here, ß(k) is a poly­

nomial in R. From those k equivalent with k I = m-e + mq + cq2 (their number is

23q-3 ), we get precisely q-l plus-irregular pairs (k,P1) with PI = R-p or R-p

special. Hence we expect

EV
S

= (q(q+1)/2-3q+3) )( 2 )( q-1 = q-5+6/q

plus-irregular pairs (k,P1) with k N m--e+mq+cq2, PI special, and
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EVn = q(q+1)/2)( (q-1)/3)( q-3 = (l--q-2)/6

= q(q+1)/2 )( (q+1)/3 )( q-3 = (l+q-1)2/6

plus-irregular pairs (k,p1) with PI non-;;pecial.

7.10. Table (plus-irregular pairs (k,p1), PI special)

q :: 1(3) EVs OVs

7 2.86 6

13 8.62 3

19 14.32 18

31 26.19 18

37 32.16 39

43 38.14 36

61 56.10 42

(q :: 1(3))

(q::2(3))

178.38 162

For plus-!rregular pairs with PI non-;;pecial, the expected value is ~ 1/6 for each q.

The observed values Are 0 for the 15 primes q with 5 ~ q ~ 61, q f 47 ,and 3 for

q= 47.

Note that, in order to perform a X2-test on goodness of fit of our data, we had to divide

expected and observed values by d to get meaningful results, since for each equivalence

dass of length d of elements k, there is only one independent event "p Iß(k)" .

Also, instead of considering primes of fixed degree over varying fields 0=q , it is a natural
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question to ask for the behavior of primea p of degree ~ d J where d ---+ m ,and q ia

fixed.
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