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On regularity of small primes in function fields

Ernst—Ulrich Gekeler

Abstract: Let p be a finite prime of the rational function field K =F q(T) and K(p): K
the p—th cyclotomic extension. We study the p—component of various class groups asso-
ciated with K(p) , using criteria of Kummer—Herbrand—Ribet type and explicit formulas
for Bernoulli—-Goss and Bernoulli—Carlitz numbers. Results of computer calculations are

given for p of degree two and three and small constant fields IFq .



1. Introduction

Let q be a power of the prime p, [ q the finite field with q elements, and A = IFq [T]
the polynomial ring in an indeterminate T . Fix a prime ideal p (always assumed non—
zero) of A of degree d € N. By abuse of notation, we also write p(T) for the monic irre-
ducible polynomial that generates p. Let K(p) be the field extension of K = IFq(T) ,

determined up to isomorphism by the following conditions:

(r1)y (i) K(p) : K is abelian, unramified outside p and w, and its conductor
divides the divisor p-w of K ;

(ii) T isanorm at o;
(1ii) [Fq is algebraically closed in K(p) ;
(iv) K(p) is maximal with (i), (i), (iii).

Thus in terms of class field theory, the subgroup of norms in the units U q of the g—adic

completion K _ is Uq,if q is a place of K different from p, w, and is the 1—units in

q
Uq ,if q equals p or m. Also, let K +(p) be the maximal subfield of K(p) unramified
at o . Then p completely ramifies in K(p) , the place o splits completely in K +(p),

and ramifies completely in K(p) : K +(p) . We have canonically
~ * * ~
(1.2) Gal(K(p): K+(p)) '—Lu:q —— (A/p) ——— Gal(K(p): K)=G .

An explicit construction of K(p) by means of "cyclotomic" polynomials may be found in
[9]. By the far—reaching analogy of K with the rational number field Q, K(p) and

K +(p) correspond to the p—th cyclotomic field extension Q(p), the maximal real sub-
field Q +(p) of Q(p), respectively, see [9, 3, 7].
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Let C = C(p) be the p—primary part of the group of degree zero divisor classes of K(p),
and Cm the subgroup of classes supported by the infinite primes of K(p) . Then we have

an exact sequence of finite p—groups

(1.3) 0 A,Cm +C—8—0 ,

where & is the p—part of the ideal class group Pic B , B = integral closure of A in
K(p) . Similarly, if K C L C K(p) is an intermediate field and B;,C,1:CL> GL are
the objects associated with L, ‘

(13;) 0—C » O — & — 0

o,L

is also exact. If L = I(+(p) , we write B, ,C

+
(1.4) Letnow K CL CM CK(p) be two intermediate fields. The natural mapping

i: CL — CM composed with the norm N : CM —_— CL is multiplication with
[M:L] , which is prime to p . Hence i is injective and N is surjective, and correspon-

ding statements hold for C replaced by C, and ¢.

(1.5) Let W be the ring of Witt vectors of the finite field A/p, and m its maximal

ideal. All the W—valued characters of G = (A/p)* are powers o (0<k< qd—l) of the
*

Teichmiiller character w: G — W , which satisfies w(g) =gmod m, g€ G . Tenso-

ring with W over Hp , we may decompose our class groups according to characters of G :

C® W= ® d C(Nk) ,
Hp 0<k<q -1



similarly for C_ and & . We write C(k) for C(s*).
1.6 Lemma: For any intermediate field K C L C K(p),
CL@W=8C(x) ,

*
where the sum on the right hand side is over those characters y: G — W  that facto-

rize over Gal(L : K) .

Proof: Let H = Gal(K(p) : L) . By (1.4), it suffices to show that cl = Cy, - Since #(H)
is prime to p, H2(H,C) = 0. But H is cydlic, so CH/N(C) = HO(H,C) = 0, where N is
the norm of K(p): L.

In particular, C(wo) =0, and

(1.7) C+®W= @ d C(k) .
0<k<q -1

k=0(q-1)

Note also that for k=0(q-1), C_(k) =0 and C(k) £, 8(k) , which follows from the
ramification type of K(p) : K+(p) :

1.8 Definition: The prime p is regular, if C = 0. Otherwise, it is called irregular;
plus—irregular or minus—irregular, if there exists k < qd—l , k=0(q-1) or k f_ 0 (q-1),

respectively, with C(k) #0.

The different components C(k) are not quite independent. Define the equivalence relation



(1.9) k’ ; k & there exists a p—power p" such that
k/ =p*-k (qd—l) :
Then from the action of the Frobenius automorphism on W , we derive

(1.10) k’ ~k implies C(k’) ~ C(k) ,

and the corresponding statements for Cm and C.



2. We give some numerical criteria, analogous with the Kummer—Herbrand—Ribet crite-
rion, for the non—vanishing of C(k) . These involve two different series of Bernoulli — like
numbers, corresponding to zeta values at positive and negative integers. First, define for

non—negative i

(2.1) [i] = Tqi-T
L, = [i] [i1] ... [1]

D, = [i] [-1]9 ... [1]‘1i_1 .

In particular, [0] =0 and I‘O = D0 = 1. Further, for k given in its g—adic expansion
. i
k-Eaiq , OSai<q,let

e(k)=)a

the sum of its g—adic digits. Note that for i > 0, [i] is the product of all the monic
primes whose degree divides i.T) is the substitute for the factorial k! =I'(k+1) in our

context. Put

k
eX)= ) X% /D,
k20

as a formal power series, and define the Bernoulli—Carlitz numbers B(k) € K by



(2.2) e_}({m= kZOB t XE  (see [1,6]).

Then B(0) =1, B(k) =0 unless q =0 (g-1),and e.g.

B(k) = (—l)i(Dl...Di_l)q—1 /L, if k= qi—l . There is a von Staudt—like result on the
denominator of B(k) , which in particular implies that B(k) is p—integral if k < qd—l .
Besides the above and the mysterious identities of [5], nothing is known about the B(k) .
Next, let

(23) si(k) = Yo

summing over the monic polynomials of degree i in A . Then s,(k) =0 for
i> &(k)/(q—1) [4,2.12]. Hence we may define the Bernoulli—Goss numbers &k)
(see [7]) by

(2.4) A =Y (k) k£0 (¢-1)
i>0
=—2 i 8,(k) k=0 (g-1) .
>0

The s,(k) (and therefore the B(k) ) satisfy
(2.5) 5, (pk) = 5,(k)P

and the Kummer congruences



2.6 s.(k’)=s.(k)mod p, if k’ =k (q4-1) .
1 1

In particular,

(2.7) pIAk) 2 plAk"), if k' k.

Our interest in B(k) and S(k) results from the next two theorems.
2.8. Theorem [7,6.2.2]: Let 0 <k < qd—ll. Then
Ck)$0 & plﬁ(qd—l—k) :
2.9. Theorem [12, 2.18]: Let 0 < k < q%—1, k divisible by q—1 . Then
8(k)#0 3 p|B(k)

(i.e., p divides the numerator of B(k)) .

2.10. Remark: In view of (1.10), an equivalence above would imply a statement like (2.7)

for B(k) . In fact, it is easy to see that if pk < q9—1, p|B(k) implies p|B(pk) . But in

general, (2.7) doesn’t hold for B(k) . A counterexample is given by q =3 and

p(T) = T>-T-1 , which divides B(10) , but not B(4) (4 + 3°-1 = 3-10).

From 2.8, we may derive the stability of divisibility properties of §(k) under constant

field extensions. Let r > 1 be a natural number and K’ =F (T). We denote with a

q
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prime ( )’ all the objects related to K’ instead of K . Suppose the degree d of p is

relatively prime with r. Then p isinertin K’ .Let p’ be the corresponding prime in

K’, n=qd—1, n’ =qrd—1.

2.11. Theorem: If p divides B(k), then p’ divides the Bernoulli—-Goss number 8’(k’)

associated with K’ , where k' =k - n’/n.

Proof: By (2.6), we may assume that k <n,s0 k” < n’ . Consider the field extensions

K'(p")

/K(p)'K’ =L’

K(p)
KI
L

Then G’ = Gal(K'(p’): K’) = (A’/p')* actson L’ via the norm
N:(A’/p’") — (A/p) = Gal(L’ : K’) = Gal(K(p) : K) = G . If we think of W
7/
imbedded in W’ , we have wo N = ' /D for the Teichmiller character w’ of G .

Combined with (1.6) and the injectivity of C — C£/ , we get
"C(n—k) #0 2 C’((n—k)n’/n) # 0", which by (2.8) is equivalent with the assertion.
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3. Next, we show how to calculate B(k) and A(k) effectively. Directly from definitions,

we get the recursion formula for B(k)

r . |
(3.1) B)=- Y ppr——B(k+lq)  (k>0) .
i>0 ! k+1-'

Also, A(k) might be calculated via the recursion described in [7]. Instead, we will use the

generating function for si(k) , derived in [4], which is computationally simpler:

. D, qi-1
k X
(3.2) Y &k XS = (1) £ —
>0 Pe,(x1)x —p.x1

where

e(X)= Y ()7 ir x?
0<j<i DJ.L?_j
The resulting B(k) and &k) are rational functions or polynomials in T of very large
degrees, but, using invariance properties, we can drastically reduce the degrees. Let V
(resp. U ) be the group of affine transformations T+—aT + b (a,b €F q) , where a0
(resp.a=1),andput S=[1] =TLT, R= S9! Then V actson A = IFq[T] ,

and the invariants are
U Vv
(3.3) A =IFq[S] = AO, A =IFq[R] =: Al )

Since the coordinate change T+~ T + b affects neither [i] nor s(k), B(k) and
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(k) may be expressed through § .

3.4 Lemma: Let k=0 (q—1). Then B(k), considered as & rational function in T , satis-
fies

B(k)(aT) = a ¢/ (@ DpayT) (0#a€ Fy) -

Proof: For k= Z a.iqi given in its q—adic expansion, let d(k) = Ei a, . Then the asser-
tion follows by induction from (3.1) and the following easily proved facts:

[k](aT) = a[k](T)
D, (aT) = a*D,(T)
r,(aT) = X (1)

8(k) = “a_ﬂkl mod(g—1) .

In view of the lemma, it is convenient to somewhat modify the definition of B(k) .

Let m = g-1, and define

(3.5) B (k) = st&)/mp(y) |

which by (3.3) and (3.4) is a rational function in R . Since S= [1] =T [ (T-b)
(b€ IFq) , B(k) and B*(k) have the same prime divisors p(T) of degree > 1. Let

*
further L, =S kLk €EF q [R] ,and,for 0 <k=0 (q—1) given q—adically

k= 2 a.jqj,a.nd 0<i{N,
0<j<N
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1(i,k) = inf({j|aj <m},i),
8(i,k) = inf{j 2 ila.j > 0} ,if r(i,k) <i,and s(i,k) =i otherwise.

*
L_,. .
3.6. Lemma: B*(k) = - z ﬁi(l—&)-,B*(lwl—ql) :
S FEPTRRY R
i>0 "r(ik)"i

Proof: Let 0 <i< N begiven, r =1(i,k), s = s(i,k) . The g—adic expansion of k-+-1--qi

is given by
i i N .
ktl-q =aq + .. apyq (r=1i)
= (a.r+l)qr+ar+1qr+1 + ... ai_lql_1 +mqg +..m qs—l
N .
+ (as—l)qs +agy qs"'1 + .. ang (r<i) .
r (D,...D_,)™D
Therefore, in both cases, k = 1 r-1 sm :
Di I‘]H_1 i Di Dr(Di' "Ds—l)
—q
. m I-‘k Ls .
But forall i, D;=(D,..D; ;)"L,, hence yyr = L_L - Since

) ! k+1—qi
L(k+1—q') = £(k) + (s—i—r)m , the assertion follows from (3.1).

For the s,(k) , we have by definition

(3.7) 5,(k)(aT) = al¥s,(k)(T) .
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Thus if A(K) = ) by ; sl by;# 0 implies j=k, 2k... (m) . In particular:

(3.8) If k=0(m), (k) and k) are polynomials in R =53
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*
4. We now derive explicit expressions for B (k) and A(k),incase 0 <k < q3—1 . First,
note that each k < q3—1 divisible by m = q—1 has a unique representation

k=s(q2—1)+t(q—1) , where either (0{8<q, 0St<q)or (8=q, t=0).
4.1. Theorem: Let k = s(q2—1) + t(q—1) as above. Then

5’0 = R =0

- (@ Y [t+§—1] g (>0 .
0<i<s

Proof: Since k < q3—1 , the sum in (3.6) contains only two terms. For
k=a+bq+cq2, 0<abec{m=g-1, weget

B*(k) =—-a B*(k+l—q) - B*(k+1—q2) , where e =R+1 (a<m,b=0,c>0),

a =1 otherwise, = (R+1)_1 (a=b=m, ¢=0),and f=1 otherwise. The result
now follows by double induction on s and t, which involves some case considerations on

the g—adic expansion of k = s(q2——1) + t(q—1) . We omit the details.

4.2. Corollary: If k = s(q2—1) (1<8<q) or k= s(q2—1) + q(q-1) (1 <8< q),each

prime divisor p(T) of (the numerator of) B*(k) has degree one.

Proof: The first case is clear. In the second case, all the binomial coefficients [q+i—1]

*
vanish except for i = 0, hence B (k) = —R®.

4.3. Corollary: Let k = (q—l)(q2—1) + t(g—1) (1<t <q). Then
B*(k) = (—1)th_1(R.+1)q_t , and is not divisible by primes p(T) of degree > 2.
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Proof: As above, [H'}_l] vanighes for i > g—t . Hence

By =t Y ([ ret
0<i<q—t

NEN) [‘li'*] R
= ()R R4)T

Further R-+1 =89 41 = [2]/[1] , which is the product of all monic irreducible qua-
dratic polynomials p(T) .

The corollaries give vanishing results for p—class groups C(k) for primes p(T) of degree
> 2. Other special cases of (4.1) are |

(44) k=s(g’1)+q-1  (1<s<q)
B (k) = ~(R*! + (-1)%)/(R+1)

and

(4.5) k=gl +t(-])  (1<t<q)
B (k) = (-1)'(R~) .

Next, let us consider B(k), where k has the q—adic expansion a + bq + cq2 ,



—16 —

£ = (k) = a+b+c, m =qg-1. Since k < q3—1 , 8,(k) =0 if i > 2, and we have to
calculate 6,(k), 8;(k), and 8y(k) = 1. From (3.2), one may derive the following ex-
pression for s,(k) (see [4, 3.13]):

)

(46)  sy(k) = (-1)? [mia ] [a;—lfgm] Sl(q+1)-§-1—q2—(a+l)m(1 +Sm)a,+c—m

which vanishes if £ = a+b+¢c < 2m .

For i =1, the generating function (3.2) becomes
Y5, (X" = - X™/(1-X"-$X%), m=q-1, §= [1] = T9-T .

We read off

=-3[F)9

summing over pairs (a,) of non—negative integers that satisfy
* om + g =k—m .

Let (aj, B,) be the solution with a; maximal. All the other solutions are given by
(ai, ﬂl) , @ =ay —iq, B = ﬂo +im, i€ aO/q . We have to separate the cases A)
t<m, B)m<2<2m, and C) 2m< ¢ .Incase A, (k)=0.Incase B,

ay = m—a+cq, ﬂo = £—m . Looking at the q—adic expansions of a; + ﬂi and of ,Bi , and
a.+
using Lucas’ congruence on binomial coefficients, one sees that [ ! ﬁ.l] =0 unless
1

b+c—q < i € £—m , in which case one has
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(%) = ] ok

Now suppose C,i.e, £ 2 2m . Then a, = m—-a+(c+1)q, ﬁo = £—2m . Again determi-

ning q—adic expansions yields
a.+p. .
171 _ +c—m—i]| [c+1 .
[s,) = (a7 (1) (12 t=2m)
= 0 (£—2m < i £ b+c—m)
= [b"';i;_'] [ifl] (b+c—m < i€ ctl)

With the usual conventions [ﬂ] =0 if k<0 or k> n, all these cases are included in

(4.7)
_ b+ c—m—] [c+1] £+(i2)m b+c-] [c] oL+ (i—1)m
w0= § [remi[r)seom g P,
0<i<2—-2m b+c—m<i<e
Summarizing:
4.8 Theorem: Let 0 <k = a+bq+cq2 < q3—1 with 0€ab,c<q, L =a+b+c,
m = q—1 . Then
Ak)=1+ sl(k) + sz(k) (k # 0(m))
= —8;(k) — 28,(k) (k = 0(m)) ,

the s.(k) being given by (4.6) and (4.7).
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Note that since k = £(m), k= 0(m) means £ =m or 2m . For the binomial coefficients

[Ir‘] in (4.6) and (4.7), always r,n € {0,...,q—1} , with the exception of n =c+1 =gq in

(4.7). But [(11] = 0(p) if 0 <i < q. Hence (4.8) may directly be implemented for com-

puter calculations.
4.9. Example: Let k = a+bq . Then

Kk) =1 (£ {m)
=1-[ b]s“"m (m < € < 2m) .

(A special case of this has been shown in [10].)
4.10. Example: Let k=a + mq + cq2 , 0 <a+c<m. Then
Ak) =1 + (1)1 g3+ca

4.11. Example: Let k=a + bq + cq2 , £ =a+b+c=2m . Then

AK) = 1+ 2 [br-ir-::] [(l:] pit! +2(_1)a.+1 [mEa. ] 2 [a-{-;:—m] Ra—a+

b+c—m<i<e 0<ia+c—m

where R = 8971 Specializing b yields e.g.

Ak)=1+ (_1)c+1 RCH! (k =m—+ mq + cq2) , Or

Ak) = 1 + (-1)% RE(R+1) (k = m—c+1+(m—1)g+cq? ¢ > 0) .
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5. By the results of the last section, we are given B(k) and A(k) as rational functions (or
polynomials) in S = TLT orevenin R = Sq—1 . Therefore, we examine the behavior of

prime ideals in the ring extensions

A = F[T]
L= £ 151
L=rm .

More precisely, given a prime ideal p of A of degree <3 and f€ Ao or A1 , we want
to decide whether p|f. Let KO and K1 be the quotient fields of AO , Al , Tespectively.

The following is obvious:

(5.1) K: K|, is galois with group IFq , bEF q acting via T +— T+b . It is unramified at
finite places and completely ramified at o . The T+b are the zeroes of the minimal
polynomial ¢(X)-S = X4-X-§ € A [X] . A prime po of A, splitsinto q or q/p

primes p of A (since the residual extension must be cyclic).

5.2. Lemma: The following statements are equivalent:

(i) Po splits completely, i.e., into q factors;
(ii) ¢(X)—S mod p, has one, thus all its zeroes in A,/p, ;
(iii) Tr(s) = 0, where s is the class of Smod p, and Tr:A,/p,—F q is the
trace map.

Proof: (i) ¢ (ii) is obvious. Let F be the Frobenius automorphism of A,/p, : [ q Then
¢(Aq/py) = im(F-1) C Ker(Tr) . By dimension reasons, im(F-1) = Ker(Tr) , hence



— 20 —

(i) & (iii) .

5.3. Corollary: The primes p(T) of degree d =2 in A are those lying over primes
po(S) of A, that satisfy a) degpy =2, Tr(s) =0,o0r b) py(S)=5-a, 0fa€ [Fq ,
case b) occurring in char 2 only. Similarly, the primes p(T) of degree d =3 in A are
those over py(S) that satisfy a) deg Pp=3, Tr(s) =0, 0r b) py(S) =S—a,

0#ac€ EFq , where b) occurs in char 3 only.

Next, which primes P in Al lie below the Po described above 7 Note that

H (S—a) = s41_1 = R—1 , hence we may restrict to cases a).

F
an

Let first d=2.1f p=2, no Py a8 required exists. If p > 2, the product over the mo-
nic irreducible S2—b gives S3141 = R+1.

Let now d = 3. In any case, the product T [ p(T) over the primes of degree 3 equals

[31/[1] =([1]‘12+ [119+ [11)/[1] =sq2—1+sq‘1+ 1=RIT R4,

which is divisible by (R-1) ,if q=0(3), and by (R—p)(R—p?),if q=1(3) and p isa
primitive third root of unity. Besides these linear factors, r4t! + R + 1 is divisible by
q/3, (g-1)/3, (q+1)/3 different cubic irreducible factors, if q = 0,1,2(3) , respectively.
Summing up, the following primes pl(R) of A, = IFQ [R] decompose into primes p(T)
of degree d =2o0r3 of A=[Fq[T] :
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(5.4) d=2:  p(R)=R+l
d=3:  py(R)= irreducible cubic divisor of RI*! 4+ R+ 1, 0r
R-1 (q = 0(3) only), or R—p, R—p* (q=1(3) only,

p = prim. third root of unity).

Playing around with Newton’s formulas, one can show that the cubic divisors of

RI*! L R +1 have necessarily the form R + aR? + (a—3)R — 1. The gpecial primes
p(T) dividing R-1, R—p, R—p2 respectively are those having a non—trivial stabilizer
group under T +— aT+b,ie., p(T) = T _bpT—c , b asquare (q=0(3)), and

p(T) = ¢ (@q=1(3), ¢ anon—cube). Combined with Theorems 4.1 and 4.8, the con-

siderations above enormously simplify the verification of p|A(k) or B(k) .
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6. Applications

Let now p be aprime of A of degree <3.If d =1, K(p) is rational and has trivial
class group, so we exclude that case. If d =2, K +(p) is rational, so all of the C(k) with
k =0 (q-1) are trivial (which corresponds to the fact that all the associated Ak) and
B(k) are never divisible by primes of degree 2). Hence only A(k) with 0 <k < q2—1 ,

k ¥ 0 (g—1) is interesting. Recall that m = g-1.

6.1. Theorem: Let q=3(4), q2 7, andlet p(T) be a prime divisor of pO(S) = 32+1 .
Then p is irregular. (The prime divisors of 52+1 are the shifts under T »— T+b of
T24+1/4 )

Proof: Let k = m + bq, where 0 <b < m, b= 0(4) . Then from (4.9), A(k) = 1-5° ,
which is divisible by Sz-l-l . The result now follows from Thm. 2.8.

But the most interesting case is where d =3 .
6.2. Theorem: Let p(T) be a special prime of degree 3 (see (5.4)). Then p is plus—irregu-

lar.

Proof: Let k = m— + mq + cq2 ,where 0 <c<{m, c=2(6). From (4.11), we have
Ak) =1+ (-1)°TIRET | which is divisible by R—1 in char 3, and by (R—p)(R—p?) , if
q=1(3).

Recall that in the number field case, the class number of § +(p) should not be divi-
sible by p by Vandiver’s conjecture. Actually, it occurs very rarely that a non—special

prime p is plus—irregular.
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6.3. Example: For ¢ € 64, there are only 4 examples of non—special plus—irregular primes
of degree 3, involving [Fq with q = 18, 32, 47, 49. The examples with the non—prime
fields are complicated to be written down. For q = 47 ,let p(T) be the prime

T3 4+ 5T + 20, which divides p,(R) = R® + 41R? + 38 R + 46 . For

k = 81 696 = 10 + 46-47 + 36-472, (4.11) gives &k) = 1-R37 , which is divisible by

p, ! Hence IF”(T)+ (p) has a class number divisible by 47.

Let now p have degree 3, n a divisor of q3—1 ,andlet K CL CK(p) be the unique
intermediate field of degree n over K. Then Gal(K(p): L) = {n—th powers in (A/p)*}
* %
=: H, and the ramification groupof L: K at m is [Fq/[l‘q NH.

6.4. Example: Let p> 2 and n= 2. Then L is ramified at o, and the Hurwitz for-
mula shows L to be elliptic. Since T is a norm at o, the elliptic curve E associated

with L is given by the equation Y= p(T) . The relevant Bernoulli-Goss number is

A =1 3 (a7 [ sl
0<im/2

whose divisibility by p is equivalent with E having non—trivial p—division points over

F qQ

6.5. Example: Let q=1(3) and n = 3. Then L is unramified at o, and Hurwitz again
gives L elliptic. The relevant B.—G. numbers are (k) for k =k, = i(q3—1)/3 ,1i=1.2.
We have k) =1, and fHk,) is a polynomial in R given by (4.11). In the range
q<64, ,6(]{2) has cubic prime divisors only for q = 49 .
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In the next examples, we let p(T) have degree 2 and, assuming n | q2—1 , we consider the

unique subfield L of K(p) of degree n over K. Let k =i(q2—1)/n, 0<i<n.

6.6. Example: Let q=1(3) and n =3.L is ramified at o, and elliptic with equation
X3 = p(T) , from which we see that the corresponding elliptic curve has j-invariant 0. We
have Bk;)=1 and

Bk =1 [2m/3] s™/3

One easily shows ]1 ((T+b)2—c) = §24c , provided that c is a non—square in IFq .
b€

q
Therefore, the elliptic curve

T2=X3+c

has p—division points over [Fq & p(T) = T2—c| ko) & 1= [2353] (4c)m/ 6 in {Fq .
6.7. Example: Let q =2(3) and n=3.L splits at ® and is rational. Therefore, the

Ak;) have no quadratic prime divisors.

6.8. Example: Let q=1(4) and n=4.L ramifies at o with index 2, so by Hurwitz is
elliptic. Any contribution to C(k) comes from k = k; = 3(a>-1)/4,
Ak)=1- [3251] sm/2

Let us now consider the "affine" class group (k) and the divisibility properties of
B(k) , assuming deg p = 3 . Recall that if &(k)# 0, then for all k’ < q3—1 that satisfy
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k’ ~k, p divides B(k’) and also Aq°—1-k’). Here "w" = "~" i the equivalence
relation (1.9). Cases were p|B(k’) forall k/ ~ k are rare. For q < 32, they exist for
q =9, 16, 27. Also, we found some examples for q = 43 and 49. In all these cases, we also
found p| ﬂ(qs—l-k) , and in some of them (see (6.10)), we could verify (k) # 0 . This

leads to the following conjecture, that states a converse of Theorem 2.9:
6.9. Conjecture: Let p be a prime of A of arbitrary degree d . Suppose that for all
k’ ~k (i.e., such that there exists a power p" of p with k' = p"k (qd—l)) , p divides

(the numerator of) B(k). Then C(k)#0.

6.10. Example: Consider the follwing data, where p(T) is a divisor of p,(R):

q k py(R) p(T)
a) 9 112 R-1 11
b) (p aroot of
2 | 32
X2+ X+1) 16 585 R—p T-p
¢) 49 39216 R3+4R%4+R+6 T3 -T—2
d) 49 12384 R-2 139
R4 -3 |

Then always p divides B(k’) for all k’ ~k, and, furthermore, all the &(k) are

non-zero. In particular, the class numbers of the corresponding rings B, are divisible by

+
p.

The facts on divisibility result from explicit calculation. We will prove the non—vanighing
of C(k) in case a. Modifications of the argument used work in the other cases b,c,d, but

not in the cases mentioned earlier where q = 27 and 43.
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6.11. Proposition: Let q =9 and k =112. Then &(k)#0.

Proof: The equivalence class of 112is M = {112, 280, 336} . We have p|B(k’) and
p| ﬁ(qs—l—k’ ), k' € M, therefore C(k’) # 0. We must show that actually the "affine"
/

part ﬁ(k) is non—zero. The characters wk , where k' € M, generate a subgroup of

order 13 in the character group of (A/p)* , thus @ C(k’) belongs to the subfield
k'eM

L:K of K +(p) of degree 13. Let L,y = K3, + (p3) be the abelian extension of

K, = IF3(T) constructed from p, . Here, py = pN K, , 80 Ly is the maximal abelian
extension of K3 unramified outside of Pg and completely split at o , which has degree
(33—1)/2 =13 over K, . From the ramification conditions, L = Ly*K =L, ® [y . All

3 8F,.
Fq

the infinite places of L3 are Il:3—rationa.l, hence the canonical map Cm,L —_— Cm,L i8

3
bijective. The action of Gal(K(p): K) = (A/p)* on Kg(ps) is via the norm

* *
N:(A/p) — (Ag/pg) = Gal(Ky(pq) : Kg) , thus the component Cm,L3(k3)
corresponds to C_ L(k) » k=ky-n, where n = #(Ker(N)) = 28 . From the calculation
of B4(ks) (i.e., the B—G. numbers in the F,—situation), we see that C (kj) is

3
non—zero for k, =2, 6, 18 only. Hence Cm,L(112) = Cm,L3(4) =0 and

B(112) —=—c(112) # 0.
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7. Numerical results

By the computations of Johnson [11] and Wagstaff [14], the numerators of classical
Bernoulli numbers Bk seem to be equidistributed mod p , for any prime p > 2. In parti-
cular, the hypothesis "probability of p| Bk = p_l" very well "explains" the frequency of
irregular primes p and their indices of irregularity for p < 125 000 (see also [13]).

In our situation, the validity of p|&k) depends on

a) the equivalence class of k relative to p (see (1.9)), and

b) the orbit of p under the translation group U, or possibly a larger subgroup of V ,
which depends on k (see (3.3)).

But there are equivalence classes of different lengths, and also U—orbits of different lengths,
which complicates the situation. Let p have degree d, and consider indices

0<k<qd

—1. Call the pair (k,p) regular if p | (k) , and irregular otherwise. In certain
cases, fixing (k,p) , we are given a priori information of whether p divides k), e.g.
(6.1), or (6.2). The general pattern seems to be that, leaving aside the above mentioned
pairs (k,p) , irregular pairs are equidistributed among all pairs, where the probability de-
pends on the type a), b) of (k,p) . In the following, we give some heuristic considerations
about the expected number of irregular pairs of a given type, based on the equidistribution
assumption, and the actual numbers determined by machine calculations.

Instead of the condition p(T)|B(k), we use the equivalent condition pO(S) | B(k) or even
py(R)|A(k) , whenever (k) is a polynomial in S = T9-T,or R= a1 , and p, | Polb
(see section 5). For simplicity, we assume from now on that q = p > 3. (For non—prime

constant fields [F q’ similar, but more complicated arguments apply.)
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(7.1) Let d=degp=2, k=a+bq<q2—l, 0ab<{m=q-1, L=a+b.If
Ak) # 1, then

(i) m<e<2m .

In that case, if pO(S) =52 cisa prime, the residue class of k) mod p is some element
F1of F ¢ if £ is even, and non—zero, if £ is odd, as we see from (4.9). If q = 3(4) , we
get precisely (p—3)/4 irregular pairs (k,p;) from p, = 5241 (see proof of (6.1)). Since
there are m/2 primes p(S) = s%—¢ and m2/4—1 numbers k that satisfy (i) and

(i) £=0(2) ,
we expect

EV = m?/8 —1/2 (p = 1(4))
=m?/8—m/4—-1/2~1/m (p = 3(4))

irregular pairs (k,po) with pO(S) # 52+1 . (The assumption used is that Ak) mod Pg i8
equidistributed in [F q\{1} for k that satisfy (i) and (ii).) In the next table, OV is the
observed value of irregular pairs as above. We also give the sums of expected and observed

values for the first 5, 10, ..., 25 primes q 2 5.
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7.2, Table (irregular pairs (k,p,), py# S7+1, d=2)

q EV oV
5 1.50 1
7 2.67 2
11 9.60 10
13 17.50 14
17 31.50 26
N Y EV(q) YOV(g) 5<q<N
17 62.77 53
37 516.40 497
59 1920.97 1868
79 4880.51 5013
103 10343.03 10201

(7.3) The number of regular Py we expect is (1-1/m)°m/2 , if q =1(4), and
(1-1/m)®(m/2-1) ,if q=3(4), where e = (q2—9)/8 is the number of equivalence classes
of k with (i) and (ii). The sum of these values for all primes q > 5 converges to a finite
limit ~ 6.8866 . This raises the question of whether there exist only a finite number of
regular quadratic primes p,(S) = $2_¢ . Ireland and Small {10] found there exist pre-
cisely 5 of them with q < 269, given in our S—coordinates by 523 (¢ =95),

523 (e=7), s2¢ (q=13), 5211, and S%-24 (q =31).In [2], some conse-

quences for non—prime q are derived.
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3

(7.4) Next,let d=degp=3, k=a+bg+cq®<q>-1, 0<abc<m=q-1,

£ =a+b+c.If q=1(3),let p be a primitive third root of unity in Il:q I Bk #L,
then

(i) m<f<3m .

2

Among all the k with (i), there are (5q3 —6q° —5q —6)/6 that also satisfy

(i) £ #2m,ie, k=0(m),
and q(q+1)/2 with £ =2m.
(7.5) Let us first consider the "minus"—part where k = 0(m) . From (4.8),
Ak)=1+ Sif(Sm) + Sjg(Sm) with polynomials f,g and i= &(m), j=2€(m). There-
fore, if Py = s3—¢ is special (which implies that 3|m ), the values f(S™) and

g(S™) mod p, liein F o 22d Ak) =0 mod py is possible for those k only, for which
algo

(iii) £=0(3)

holds. He;lce we expect

EV, = #{k](i), (ii), (iii) holds} x #{special py} x !

minus—irregular pairs (k,po) with Po gpecial, and
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EV_ = #{k|(i), (ii) holds} x #{non—special py} x ¢~
minus—irregular pairs (k,po) with Py non—special. This yields

EV, = (10g°—40q2-6q+20+1601)/54 , 0
EV_ = (50°-160+1242q 47 2—6q2)/18, (5q°~6q-10+5q+6q)/18

in the cases q=1(3), q=2(3), respectively.

7.6. Table (minus—irregular pairs (k,po) , d=23)

q EV, ov, EV, oV,
5 4.75 2
7 26.86 29 8.05 15
11 29.39 31
13 280.62 262 36.05 53
17 74.06 117

(7.7) The number of minus—regular py we would expect from the equidistribution hypo-

thesis is

e
EV, = #{special p,} x (1-1/q) ° (p, special)
EV_ = #{non—special po} x (1-1/q)® (pO non—special) ,

where e, e is the number of equivalence classes of numbers k that satisfy (i), (ii), (iii)



or (i), (ii), respectively.
7.8. Table (minus—regular primes p,(S), d =3)

a EV ov EV. ov

8 8 n n
5 6.49 6
7 0.20 0 9.56 6
11 31.21 20
13 3.0 %107 0 37.30 22
17 74.13 45

The discrepancy between expected and observed values in (7.6) and (7.8) results from the
unexpectedly high divigibility by non—special cubic primes p,(S) of those B(k) where k
has the form i(q2 + q + 1) . For this fact, I presently have no explication. Note that, be-
sides probability arguments, there is no reason for a special prime pO(S) to be minus—

irregular. For example, for the non—prime constant field [, , pO(S) = Ss——p is minus—

regular.

(7.9) Let us finally consider the "plus"—part, i.e., £ = 2m in (7.4). Here, A(k) is a poly-
nomial in R . From those k equivalent with k/ = m—c + mq + cq2 (their number is
3q—3 ), we get precisely q—1 plus—irregular pairs (k,pl) with P = R—p or R—p2
special. Hence we expect

EV, = (a(q+1)/2-3q+3) x 2 x ¢! = q-5+6/q

plus—irregular pairs (k,pl) with k~m—c+mq+cq2, p, special, and
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EV_ = q(q+1)/2 % (¢-1)/3 x ¢ = (1-q2)/6
= q(a+1)/2 x (a+1)/3 x g0 = (1+q 1)?/6

plus—irregular pairs (k,pl) with p, non—special.

7.10. Table (plus—irregular pairs (k,pl), P special)

(q=1(3))
(a=2(3))

q=1(3) EV, ov,
7 2.86 6
13 8.62 3
19 14.32 18
31 26.19 18
37 32.16 39
43 38.14 36
61 56.10 42
) 178.38 162

For plus—irregular pairs with p, non—special, the expected value is ~ 1/6 for each q .

The observed values are 0 for the 15 primes q with 5 < q< 61, q#47 ,and 3 for

q=47.

Note that, in order to perform a xz—test on goodness of fit of our data, we had to divide

expected and observed values by d to get meaningful results, since for each equivalence

class of length d of elements k , there is only one independent event "p|A(k)" .

Also, instead of considering primes of fixed degree over varying fields IFq , it i8 a natural
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question to ask for the behavior of primes p of degree < d, where d — o, and q is

fixed.
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