Explicit computations around the Lichtenbaum-Hartshorne vanishing theorem

Peter Schenzel

Fachbereich Mathematik und Informatik Martin-Luther-Universität Halle-Wittenberg Postfach O-4010 Halle Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

,

.

Germany

Germany

Explicit computations around the Lichtenbaum-Hartshorne vanishing theorem

Peter Schenzel *

1. Introduction

Let I denote a proper ideal of a local (Noetherian) ring (A, M). By [2] and [3] it is of great importance in algebraic geometry and commutative algebra to have vanishing results for the local cohomology modules $H_I^i(X), i \in \mathbb{N}$, for an A-module X. See [2] for the definition and basic results on local cohomology. It is known, see [2], that $H_I^i(X) = 0$ for all $i > \dim X$. The Lichtenbaum-Hartshorne vanishing theorem, see [3], states that $H_I^d(A) = 0, d = \dim A$, provided dim $\hat{A}/(I\hat{A} + P) > 0$ for all $P \in Ass\hat{A}$ with dim $\hat{A}/P = d$. Here \hat{A} denotes the completion of A. Now there are several proofs of this vanishing result, see [1], [3], [5]. In particular, R.Y. Sharp has also shown the necessity of the local condition for the vanishing of $H_I^d(A)$, see [8]. All the proofs use the fact that, under certain circumstances, the I-adic topology on A is equivalent to the topology induced by a filtration $\{J_n\}_{n\in\mathbb{N}}$ of ideals such that A/J_n does not have M-torsion.

The main point of the present paper is an explicit computation of $H_I^d(A)$ and, by the same way, to clarify the equivalence of the topologies involved. It turns out that the local cohomology module $H_I^d(A)$ is the obstruction for the equivalence of these topologies. In fact we extend the vanishing result to $H_I^n(X)$, where X denotes a finitely generated A-module with $n = \dim X$. To this end one has to

[•]The author is grateful to SERC for a grant (No. GR/F/55584) supporting this research and to the Max-Planck-Institut für Mathematik for the help during the final preparation of the paper.

generalize the notion of the canonical module. To be more precise, assume that (A, M) possesses a dualizing complex, see [4], [6] and [7]. Then we introduce the canonical module K_X of X, see Section 3 for the definition and a brief summary of properties needed in the paper. The canonical module K_A of A is nothing else but the ordinary canonical module. Note that $K_{\hat{X}}$ always exists, where \hat{X} denotes the completion of X. Let $\operatorname{Ass}_{\hat{A}}K_{\hat{X}} = \{Q_1, \ldots, Q_t\}$ and $0 = Y(Q_1) \cap \ldots \cap Y(Q_t)$ be a minimal primary decomposition of $K_{\hat{X}}$. Define $T_I(X) = \{P \in \operatorname{Ass}_R X : \dim A/(I+P) = 0\}$.

(1.1) THEOREM. a) There is an isomorphism

$$\operatorname{Hom}_{A}(H_{I}^{n}(X), E) \cong \bigcap_{Q_{i} \notin T_{I\lambda}(K_{\lambda})} Y(Q_{i}),$$

where E denotes the injective hull of the residue field. b) The \hat{A} -module Hom_A $(H_I^n(X), E)$ is finitely generated and

Ass_{\hat{A}} Hom_A $(H^n_I(X), E) = \{P \in T_{I\hat{A}}(\hat{X}) : \dim \hat{A}/P = n\}.$

c) The following conditions are equivalent:

(i) $H_{I}^{n}(X) = 0.$

(ii) $\{P \in T_{I\hat{A}}(\hat{X}) : \dim \hat{A}/P = n\} = \emptyset.$

(iii) The topology defined by $\{I^n K_{\hat{X}} : \langle \hat{M} \rangle\}$ on $K_{\hat{X}}$ is equivalent to the $I\hat{A}$ -adic topology on $K_{\hat{X}}$.

The proof of 1.1 is given in Section 4. Section 2 is concerned with the equivalence of a certain topology on X with the *I*-adic topology. One of the main points is the computation and the vanishing of $\lim H^0_M(X/I^nX)$, see 2.3. The notation is the same as in [6].

2. On ideal topologies

Let X denote a finitely generated A-module, (A, M) a local ring. For an ideal I of A and a submodule $Y \subseteq X$ the increasing sequence of submodules

$$Y \subseteq Y :_X I \subseteq \ldots \subseteq Y :_X I^n \subseteq \ldots$$

becomes stationary. Denote its ultimate constant value by $Y :_X \langle I \rangle$. Note that

 $Y:_X \langle I \rangle = Y:_X I^n$ for all large n.

One has $\operatorname{Ass}_A X/Y :_X \langle I \rangle = \operatorname{Ass}_A X/Y \setminus V(I)$. Therefore the primary decomposition of $Y :_X \langle I \rangle$ consists of those primary components of Y whose associated prime ideals do not contain I. Let $\operatorname{Ass}_A X = \{P_1, \ldots, P_s\}$ and $0 = Z(P_1) \cap \ldots \cap Z(P_s)$ a minimal primary decomposition of X. For a prime ideal P of A let $X \to X_P, x \mapsto \frac{x}{1}$, denote the natural homomorphism.

- (2.1) LEMMA. The following submodules of X coincide: a) $\bigcap_{n \ge 1} I^n X :_X \langle M \rangle$, b) \bigcap ker $(X \to X_P)$, where $S_I(X) = \text{Supp } X/IX \setminus V(M)$,
- c) $\bigcap_{P_i \notin T_I(X)}^{P \in S_I(X)} Z(P_i)$, where

$$T_I(X) = \{P \in \operatorname{Ass}_A X : \dim A/(I+P) = 0\}.$$

Proof. First of all note that

$$IX:_X \langle M \rangle = \bigcap_{P \in S_I(X)} (IX_P \cap X).$$

Here $IX_P \cap X$ denotes the inverse image of IX_P under the natural map $X \to X_P$. To this end let $x \in IX :_X \langle M \rangle$. For any $P \in$ $S_I(X) =: S$ choose an element $r_P \in M^n \setminus P$, where *n* is such that $IX :_X \langle M \rangle = IX :_X M^n$. Hence, $r_P x \in IX$ and $x \in IX_P \cap X$. Conversely let

$$x \in \bigcap_{P \in S} (IX_P \cap X)$$

That is, for every $P \in S$ there is an element $s_P \in A \setminus P$ such that $s_P x \in IX$. Let J denote the ideal of A generated by $s_P, P \in S$, and by $Ann_A X/IX$. Then $Supp_A A/J \subseteq \{M\}$ and there is an integer n such that

$$M^n x \subseteq J x \subseteq I X.$$

Whence $x \in IX :_X \langle M \rangle$, as required.

With the aid of the above formula it follows that

$$\bigcap_{n \ge 1} I^n X :_X \langle M \rangle = \bigcap_{P \in S} \ker(X \to X_P)$$

since $\bigcap_{n \ge 1} I^n X_P = 0$ by the Krull intersection theorem. Now the equality of the second and third module is clear since $kor(X \to X_{-})$

equality of the second and third module is clear since $\ker(X \to X_P)$ is the intersection of those Q-primary components of X with $Q \subseteq P$. \Box

For the local ring (A, M) denote by (\hat{A}, \hat{M}) its *M*-adic completion. For a finitely generated *A*-module *X* the *M*-adic completion \hat{X} is isomorphic to $X \otimes_A \hat{A}$. Moreover $A \to \hat{A}$ is a faithfully flat extension.

(2.2) LEMMA. The following conditions are equivalent:
i) ∩ IⁿX̂:_{X̂} ⟨M̂⟩ = 0.

ii) For any integer n there is an integer m = m(n) such that $I^m X :_X \langle M \rangle \subseteq I^n X$.

Proof. By the faithful flatness it is easily seen that (ii) holds if and only if $I^m \hat{X} :_{\hat{X}} \langle \hat{M} \rangle \subseteq I^n \hat{X}$. That is, without loss of generality we may assume X complete. The implication ii) \Rightarrow i) is a consequence of Krull's intersection theorem. In order to prove i) \Rightarrow ii) let us make a slight modification of Chevalley's theorem, see [9], Ch. VIII, Theorem 13. For a fixed integer n the modules

$$E_{mn} = (I^m X : \langle M \rangle + I^n X) / I^n X, \quad m \ge n,$$

form a decreasing sequence of modules of finite length. Whence there is an integer $\ell = \ell(n)$ such that $E_{mn} = E_{\ell n}$ for all $m \ge \ell$. Put

$$E_n = I^{\ell} X : \langle M \rangle + I^n X.$$

Then $E_n + I^k X = E_k$ for all $n \ge k$. Suppose there is an integer k such that $E_k \ne I^k X$. Then $E_n \ne I^n X$ for all $n \ge k$. Now choose elements $y_n \in E_n \setminus I^n X$ such that

$$y_{n+1} \equiv y_n \mod I^n X$$
 for all $n \ge k$.

Then $\{y_n\}$ is a convergent series with

$$0 \neq z := \lim y_n \in X$$

Note that, see [9], X is complete with respect to the *I*-adic topology. For a given $n \in \mathbb{N}$ there is an integer $n_0 \ge n$ such that $z - y_m \in I^n X$ for all $m \ge n_0$. But then

$$0 \neq z \in \bigcap_{m \geqslant 1} E_m = \bigcap_{n \geqslant 1} I^n X :_X \langle M \rangle,$$

a contradiction. \Box

The condition ii) of 2.2 means nothing else but the equivalence of the topology defined by $\{I^n X :_X \langle M \rangle\}_{n \ge 0}$ to the *I*-adic topology on X. Therefore $\bigcap_{n \ge 1} I^n \hat{X} : \langle \hat{M} \rangle$ gives the obstruction for the equivalence of both of these topologies.

(2.3) LEMMA. The inverse system $\{X/I^nX\}_{n\geq 1}$ with the natural induced maps defines an inverse system $\{H^0_M(X/I^nX)\}_{n\geq 1}$ such that

$$\lim_{\leftarrow} H^0_M(X/I^nX) \simeq \bigcap_{n \geqslant 1} I^n \hat{X} :_{\hat{X}} \langle \hat{M} \rangle.$$

Proof. If we apply the local cohomology functor to $\{X/I^nX\}_{n\geq 1}$ we get the desired inverse system. Because $H^0_M(X/I^nX)$ is of finite length it possesses the structure of an \hat{A} -module such that

$$H^0_M(X/I^nX) \simeq H^0_M(X/I^nX) \otimes_A \hat{A} \simeq H^0_{\hat{M}}(\hat{X}/I^n\hat{X}).$$

That is, without loss of generality we may assume X as complete. Now $H^0_M(X/I^nX) = I^nX :_X \langle M \rangle / I^nX$ and there is the following short exact sequence of inverse systems

$$0 \to \{I^n X\} \to \{I^n X : \langle M \rangle\} \to \{I^n X : \langle M \rangle/I^n X\} \to 0.$$

By passing to the inverse limit there is an injection

$$0 \to \bigcap_{n \geqslant 1} I^n X : \langle M \rangle \xrightarrow{\varphi} \lim_{\leftarrow} \{ I^n X : \langle M \rangle / I^n X \}.$$

Now we claim that φ is surjective. To this end let

$$\{y_n+I^nX\}\in \lim\{I^nX:\langle M\rangle/I^nX\},\$$

where $y_n \in I^n X : \langle M \rangle$. Then the sequence defines an element $z \in \lim X/I^n X = X$. Note that X is *I*-adically complete, see [9], Ch. VIII. That is, for every *n* there exists an integer $n_0 \ge n$ such that $z - y_m \in I^n X$ for all $m \ge n_0$. Hence

$$z\in\bigcap_{m\geqslant 1}I^mX:\langle M\rangle,$$

as required. \Box

By view of 2.3 one might continue with the explicit computation of $\lim_{M} H^{i}_{M}(X/I^{n}X), i \in \mathbb{N}$, which is closely related to the cohomology groups of the formal completion of $U = \operatorname{Spec} A \setminus V(M)$ along V(I).

3. The canonical module of a module

In this section let (A, M) denote a local ring possessing a dualizing complex D_A^{\bullet} . See [4], [6], and [7] for basic results on dualizing complexes. If A is complete or, more general, the factor ring of a Gorenstein ring, then D_A^{\bullet} exists. One may normalize D_A^{\bullet} such that $D_A^i = 0$ for all $i < -d, d = \dim A$, resp. i > 0 and such that

$$D_A^i = \bigoplus_{P \in \operatorname{Spec} A, \dim A/P = -i} E_R(R/P), \quad -d \leq i \leq 0,$$

where $E_R(R/P)$ denotes the injective hull of R/P. It follows that $0 \neq H^{-d}(D_A^{\bullet})$, which is called the canonical module K_A of A. In [6] this concept is generalized to an arbitrary finitely generated A-module X as follows: Consider the complex $\operatorname{Hom}_A(X, D_A^{\bullet})$. Then $(\operatorname{Hom}_A(X, D_A^{\bullet}))^i = 0$ for i > 0 and $i < -\dim X$. Define

$$H^{-i}(\operatorname{Hom}_{A}(X, D_{A}^{\bullet})) = \begin{cases} K_{X}^{i} & \text{if } 0 \leq i < \dim X \text{ and} \\ K_{X} & \text{if } i = \dim X, \end{cases}$$

and call K_X the canonical module of X. Note that K_X is a finitely generated A-module.

We say that a finitely generated A-module X satisfies Serre's condition $S_r, r \in \mathbb{N}$, provided

$$\operatorname{depth}_{A_P} X_P \geqslant \min\{r, \dim_{A_P} X_P\}$$

for all prime ideals $P \in \text{Supp}_A X$. Note that X satisfies always S_0 , while S_1 holds if and only if X is unmixed. X is a Cohen-Macaulay

A-module if and only if it satisfies $S_n, n = \dim X$. Next summarize a few basic properties of K_X^i and K_X respectively.

(3.1) PROPOSITION. a) dim K_X = dim X and dim Kⁱ_X ≤ i for all 0 ≤ i < dim X.
b) X satisifies condition S_r if and only if dim Kⁱ_X ≤ i - r for all 0 ≤ i < dim X.
c) K_X satisfies condition S₂.
d) If dim_{AP} X_P + dim A/P = dim X for P ∈ SuppX, then (K_X)_P ≃ K_{XP}.

These results are shown in [6], 3.1.1 and 3.2.1. As it is convenient for duality one may relate X in a natural way to K_{K_X} , the canonical module of the canonical module. To this end let X[n] denote the module X considered as a complex concentrated in degree -n. Let $n = \dim X$. Then there is a short exact sequence of complexes

$$0 \to K_X[n] \to \operatorname{Hom}_A(X, D^{\bullet}_A) \to I^{\bullet}_X \to 0,$$

where I_X^{\bullet} is defined as the cokernel of the natural embedding. It follows that

$$H^{-i}(I_X^{\bullet}) = K_X^i, 0 \leq i < n, \ H^{-i}(I_X^{\bullet}) = 0$$
 otherwise.

Applying $\operatorname{Hom}_{A}(\bullet, D_{A}^{\bullet})$ to the above exact sequence and taking cohomology it yields the following exact sequence

$$0 \to H^{-1}(\operatorname{Hom}_{A}(I_{X}^{\bullet}, D_{A}^{\bullet})) \to X \to K_{K_{X}} \to H^{0}(\operatorname{Hom}_{A}(I_{X}^{\bullet}, D_{A}^{\bullet})) \to 0.$$

That is, there is a natural homomorphism

$$\tau_X: X \to K_{K_X}.$$

(3.2) PROPOSITION. Suppose X is equidimensional. Then the following holds for τ_X :

- a) τ_X is injective.
- b) τ_X is an isomorphism if and only if X satisfies condition S_2 .
- c) τ_{K_X} is an isomorphism.

For the proof of a) and b) see [6], 3.2.2. The statement in c) follows by b) and 3.1. In the following we describe coker τ_X .

(3.3) PROPOSITION. Suppose X is equidimensional. Then

Supp coker $\tau_X = \{P \in \text{Supp} X : X_P \text{ does not satisfy } S_2\}$

and dim coker $\tau_X \leq \dim X - 2$.

Proof. Let $C = \operatorname{coker} \tau_X$. By 3.2 there is a short exact sequence $0 \to X \to K_{K_X} \to C \to 0$. because X is equidimensional we know that

 $\dim X = \dim A/P + \dim_{A_P} X_P$ for $P \in \operatorname{Supp} X$

and therefore $(K_{K_X})_P \simeq K_{K_{X_P}}$, see 3.1. By the functoriality of τ_X we see that $C_P = 0$ if and only if X_P satisfies S_2 , see 3.2. This proves the first part of the statement. For the second let $P \in \text{Supp}X$ with $\dim A/P > \dim X - 1$. Then $\dim_{A_P} X_P \leq 1$ and X_P satisfies S_2 , i.e., $C_P = 0$ by the previous argument. \Box

We will end this section by relating the set of associated primes and the annihilator of X to that of K_X .

(3.4) PROPOSITION. a) $\operatorname{Ass}_A K_X = \{P \in \operatorname{Ass}_A X : \dim A/P = \dim X\}.$

b) $\operatorname{Ann}_A K_X = (\operatorname{Ann}_A X)_{\dim X}$, i.e., the intersection of all P-primary components of $\operatorname{Ann}_A X$ such that $\dim A/P = \dim X$.

Proof. a) is shown in [6], 3.1. b) We have $\operatorname{Ann}_A X \subseteq \operatorname{Ann}_A K_X$ by the definition of K_X . Equality holds provided X satisfies S_2 , see 3.2. Now let $P \in \operatorname{Ass}_A X$ be a prime ideal with dim $A/P = \dim X$. Then $\operatorname{Ann}_{A_P} X_P = \operatorname{Ann}_{A_P} K_{X_P}$. Since K_X is equidimensional it proves $\operatorname{Ann}_A K_X = (\operatorname{Ann}_A X)_{\dim X}$ as it is easily seen by the primary decomposition. \Box

4. On the vanishing of local cohomology

In the first part of this section let (A, M) denote a local ring possessing a normalized dualizing complex D_A^{\bullet} . Let X be a finitely generated A-module with $n = \dim X$. For an ideal I of A it is known, see e.g. [2], that

$$H_I^i(X) = 0$$
 for all $i > n$.

The following results concern the structure of $H_I^n(X)$. To this end let $\hat{X} \simeq X \otimes_A \hat{A}$ denote the completion of X. Let $\operatorname{Ass}_{\hat{A}} \hat{X} = \{P_1, \ldots, P_t\}$ and $\operatorname{Ass}_{\hat{A}} K_{\hat{X}} = \{Q_1, \ldots, Q_t\}$. Fix a minimal primary decomposition

$$0 = X(P_1) \cap \ldots \cap X(P_s) \quad \text{of} \quad \hat{X} \text{ resp.} \\ 0 = Y(Q_1) \cap \ldots \cap Y(Q_t) \quad \text{of} \quad K_{\hat{X}}.$$

considered as an \hat{A} -module resp.

(4.1) THEOREM. a) Suppose X satisfies S_2 . Then there is an isomorphism

$$\operatorname{Hom}_{A}(H_{I}^{n}(K_{X}), E) \simeq \bigcap_{P_{i} \notin T_{I\lambda}(\hat{X})} X(P_{i}).$$

b) There is an isomorphism

$$\operatorname{Hom}_{A}(H_{I}^{n}(X), E) \simeq \bigcap_{Q_{i} \notin T_{I\dot{A}}(K_{\dot{X}})} Y(Q_{i}).$$

Here E denotes the injective hull of the residue field A/M of A.

Proof. We begin with the proof of the formula claimed in a). By 2.1 and 2.3 it is enough to show the following isomorphism

$$\operatorname{Hom}_{A}(H^{n}_{I}(K_{X}), E) \simeq \lim H^{0}_{M}(X/I^{n}X).$$

The local duality theorem, see e.g. [4], provides an isomorphism

$$\lim_{\longrightarrow} H^0_M(X/I^nX) \simeq \operatorname{Hom}_A(\lim_{\longrightarrow} H^0(\operatorname{Hom}_A(X/I^nX, D^{\bullet}_A)), E)$$
$$\simeq \operatorname{Hom}_A(H^0_I(\operatorname{Hom}_A(X, D^{\bullet}_A)), E),$$

where we use that $R\Gamma_I(X^{\bullet}) \simeq \lim_{\to \infty} R \operatorname{Hom}_A(A/I^n, X^{\bullet})$ for a bounded complex X^{\bullet} with finitely generated cohomology modules, see [4]. As in Section 3 take the short exact sequence

$$0 \to K_X[n] \to \operatorname{Hom}_A(X, D_A^{\bullet}) \to I_X^{\bullet} \to 0$$

and apply the derived functor $R\Gamma_I$. The long exact cohomology sequence of the resulting short exact sequence of complexes yields the following four term exact sequence

$$H_I^{-1}(I_X^{\bullet}) \to H_I^n(K_X) \to H_I^0(\operatorname{Hom}_A(X, D_A^{\bullet})) \to H_I^0(I_X^{\bullet}).$$

Now the statement follows provided $H_I^i(I_X^{\bullet}) = 0$ for i = 0, -1. In order to prove this take the spectral sequence for computing the hypercohomology

$$E_2^{pq} = H_I^p(H^q(I_X^{\bullet})) \Rightarrow E^{p+q} = H_I^{p+q}(I_X^{\bullet}).$$

Because $H^q(I_X^{\bullet}) = K_X^{-q}$ and dim $K_X^{-q} \leq -q-2$, see 3.1, it follows that $E_2^{pq} = 0$ for all $p + q \in \{0, -1\}$. Therefore $H_I^i(I_X^{\bullet}) = 0$ for i = 0, -1, as required.

In order to prove b) we first show that $H_I^n(X) \simeq H_I^n(K_{K_X})$. To this end let U denote the maximal submodule of X such that dim U < n. Then X/U is equidimensional and

$$H_I^n(X) \simeq H_I^n(X/U)$$
 resp. $K_X \simeq K_{X/U}$

as easily seen. That is, without loss of generality we may assume X equidimensional. Then the short exact sequence

$$0 \to X \to K_{K_X} \to C \to 0$$

provides $H_I^n(X) \simeq H_I^n(K_{K_X})$ because dim $C \leq n-2$, see 3.2 and 3.3. Finally the statement b) follows now by a) because K_X satisfies condition S_2 , see 3.1. \Box

The following Corollary 4.2 b) is the dual statement of a result shown by R.Y. Sharp in [8] for the case X = A.

(4.2) COROLLARY. Let X denote a finitely generated module over an arbitrary local ring (A, M) with $n = \dim X$. a) There is an isomorphism

$$\operatorname{Hom}_{\mathcal{A}}(H^n_I(X), E) \simeq \bigcap_{Q_i \notin T_{I\dot{\mathcal{A}}}(K_{\dot{X}})} Y(Q_i),$$

where $\operatorname{Ass}_{\hat{A}}K_{\hat{X}} = \{Q_1, \dots, Q_t\}$ and $0 = Y(Q_1) \cap \dots \cap Y(Q_t)$ is a minimal primary decomposition.

b) $H_I^n(X)$ is an Artinian A-module and

Ass_{$$\hat{A}$$} Hom _{A} ($H_I^n(X), E$) = { $P \in T_{I\hat{A}}(\hat{X}) : \dim \hat{A}/P = n$ }.
c) $H_I^n(X) = 0$ if and only if { $P \in T_{I\hat{A}}(\hat{X}) : \dim \hat{A}/P = n$ } = \emptyset .

Proof. First note that $\operatorname{Hom}_A(H^n_I(X), E)$ admits a natural \tilde{A} -module structure such that

$$\operatorname{Hom}_{A}(H^{n}_{I}(X), E) \simeq \operatorname{Hom}_{\hat{A}}(H^{n}_{I}(X) \otimes_{A} \hat{A}, E).$$

Because $H_I^n(X) \otimes_A \hat{A} \simeq H_{I\hat{A}}^n(\hat{X})$ and since \hat{A} possesses a dualizing complex a) follows by 4.1. This shows also that $\operatorname{Hom}_A(H_I^n(X), E)$ is a finitely generated A-module. By Matlis duality the first part of b) is true. The second is an easy consequence of a). Finally c) follows by b). \Box

By view of the results shown in 2.2 and 4.1 b) now 4.2 proves the statements of 1.1 in the introduction.

Let us call A a quasi-Gorenstein ring, if K_A exists and $K_A \simeq A$. In this case A satisfies S_2 .

(4.3) COROLLARY. Let I denote an ideal of (A, M), a complete local quasi-Gorenstein ring with $d = \dim A$.

a) $\operatorname{Hom}_{A}(H_{I}^{d}(A), E) \simeq \bigcap_{\substack{P \in S_{I}(A) \\ P_{i} \notin T_{I}(A)}} \operatorname{ker}(A \to A_{P}).$ b) $\operatorname{Hom}_{A}(H_{I}^{d}(A), E) \simeq \bigcap_{\substack{P_{i} \notin T_{I}(A) \\ P_{i} \notin T_{I}(A)}} Z(P_{i})$ where Ass $A = \{P_{1}, \dots, P_{r}\}$ and $0 = Z(P_{1}) \cap \dots \cap Z(P_{r})$ is a minimal primary decomposition.

c) $H_I^d(A) = 0$ if and only if the topology defined by $\{I^n : \langle M \rangle\}$ is equivalent to the I-adic topology.

Proof. Because $K_A \simeq A$ the statements follow by 4.1 with the aid of 2.1 and 2.2. \Box

In the case of a complete Gorenstein ring a) of 4.3 is shown by F.W. Call and R.Y. Sharp, see [1]. Under the same assumption they got also a particular case of c). For a one-dimensional prime ideal Pof a complete Gorenstein ring A they have shown that $H_P^d(A) = 0$ if and only if the topology defined by the symbolic powers $\{P^{(n)}\}$ is equivalent to the *P*-adic topology. Now this is true also in the more general situation of 4.3 since $P^{(n)} = P^n : \langle M \rangle$ for a one-dimensional prime ideal *P* of *A*.

References

- F.W. Call and R.Y. Sharp, A short proof of the local Lichtenbaum-Hartshorne theorem on the vanishing of local cohomology, Bull. London Math. Soc. 18 (1986), 261-264.
- [2] A. Grothendieck, Local cohomology, Lecture Notes in Math. 41, Springer-Verlag, 1967.
- [3] R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. 88 (1968), 403-450.
- [4] R. Hartshorne, *Residues and duality*, Lecture Notes in Math.
 20, Springer-Verlag, 1966.
- [5] C. Peskine et L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S. 42 (1973), 77-119.
- [6] P. Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lecture Notes in Math. 907, Springer-Verlag, 1982.
- [7] R.Y. Sharp, Dualizing complexes for commutative Noetherian rings, Math. Proc. Camb. Phil. Soc. 78 (1975), 369-386.
- [8] R.Y. Sharp, On the attached prime ideals of certain artinian local cohomology modules, Proc. Edinburgh Math. Soc. 24 (1981), 9-14.
- [9] O. Zariski and P. Samuel, Commutative algebra, Vol II, Van Nostrand, New York, 1960.

Fachbereich Mathematik und Informatik, Martin-Luther-Universität Halle-Wittenberg, Postfach, O-4010 Halle, Germany.