
Explicit computations around the
Lichtenbaum-Hartshorne vanishing

theorem

Peter Schenzel

Fachbereich Mathematik und Informatik
Martln-Luther-Universität
Halle-Wittenberg
Postfach
04010 Halle

Gennany

MPI/92-25

Max-Planck-Institut für Mathematik
Gottfried-CIaren-Straße 26
D-53oo Bonn 3

Gennany



Explicit computations around the
Lichtenbaum-Hartshome vanishing theorem

Peter Schenzel •

1. Introduction

Let I denote a proper ideal of a local (Noetherian) ring (A, M). By
[2] and [3] it is of great importance in algebraic geometry and com·
mutative algebra to have vanishing results for the local cohomology
modules Hj(X), i E N, for an A-module X. See [2] for the defi­
nition and basic results on local cohomology. It is known, see [2},
that H}(X) = 0 for all i > dirn X. The Lichtenbaum-Hartshorne
vanishing theorem, see {3], states that H1(A) = 0, d = dimA, pro­
vided dirn AI(IA+P) > 0 for aU P E AssA with dirn AIP = d.
Here Adenotes the completion of A. Now there are several proofs
of this vanishing result, see [1], [3], [5]. In particular, R.Y. Sharp
has also shown the necessity of the local condition for the vanishing
of HY(A), see [8]. All the proofs use the fact that, under certain
circumstances, the I-adic topology on A is equivalent to the topo­
logy induced by a filtration {Jn}nEN of ideals such that AIJn does
not have M-torsion.

The main point of the present paper is an explicit computation
of HY(A) and, by the same way, to clarify the equivalence of the
topologies involved. It turns out that the local cohomology module
H1(A) is the obstruction for the equivalence of these topologies. In
fact we extend the vanishing result to Hj(X), where X denotes a
finitely generated A-module with n = dimX. To this end one has to

'The author is grattlul to SERe ror a grant (No. GR/F/55584) supponin« this research
and to the Max-Planck-In4titut für MathemAtik for the help during tbc final preparation of
the paper.
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generalize the notion of the canonical module. To be more precise,
Msume that (A, M) possesses a dualizing complex, see [4], [6] and
[7]. Then we introduce the canonical module K x of X, see Sec­
tion 3 for the definition and a brief summary of properties needed
in the paper. The canonical module KA of A is nothing else but
the ordinary canonical module. Note that Kx always exists, where
X denotes the completion of X. Let AssÄKx = {Q}, ... , Qt} and
o = Y(Ql) n ... n Y{Qt) be a minimal primary decomposition of
Kg . Define T1(X) = {P E AssRX : dimA/{I + P) = O}.

(LI) THEOREM. a) There is an isomorphism

HomA(H;(X), E) ~ n Y(Qi),
QitT] A(K.t)

where E denotes the injective hull 0/ the residue jield.
b) The A-module HOffiA(H;(X), E) is finitely generated and

AssÄ HomA(H;(X),E) = {P E T1..t(X): dimA/P = n}.

c) The following conditions are equivalent:
(i) H;(X) = O.
(ii) {P E T1Ä(X) : dimA/P = n} = 0.
(iii) The topology defined by {In K X : (M)} on K X is equivalent to

the I A-adic topology on I(g.

The proof of 1.1 is given in Section 4. Section 2 is concerned
with the equivalence of a certain topology on X with the /-adic
topology. One of the main points is the computation and the vani­
shing of limltk(X/ /nx), see 2.3. The notation is the same as in [6].-
2. On ideal topologies

Let X denote a finitely generated A-module, (A, M) a local ring.
For an ideal I of A and a submodule Y ~ X the increasing sequence
of submodules

Y ~ Y :x I ~ ... ~ Y :x In ~ ...

becomes stationary. Denote its ultimate constant value by Y :x (/).
Note that

Y :x (I) = Y :x In for alilarge n.
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One has ASSAX/Y :X (I) = ASSAX/Y\V(I). Therefore the primary
decomposition of Y :x (I) consists of those primary components of
Y whose associated prime ideals do not contain I. Let ASSAX =
{Pt, ... , Pli} and 0 = Z(P1 ) n ...n Z(P.) a minimal primary decom­
position of X. For a prime ideal P of A let X -+ X p , X 1-+ T' denote
the natural homomorphism.

(2.1) LEMMA. The /ollowing submodules 0/ X coincide:
a) n InX :x (M),

n)t

b) n ker (X -+ X p), where SI(X) = Supp X/IX\V(M),
peSdX)

c) n Z(Pi ), whe~
PitT](X)

T1(X) = {P E ASSAX : dimA/{I + P) = O}.

Proof First of all note that

IX: x (M) = n (IXp n X).
PESI(X}

Here I X p n X denotes the inverse image of I X p under the natural
map X -+ Xp. To this end 'let x E IX :X (M). For any P E
SI(X) =: S choose an element rp E Mn\p, where n is such that
IX :X (M) = IX :X MR. Hence, rpx E IX and x E IXp n X.
Conversely let

xE n(IXpnX).
pes

That is, for every PES there is an element Sp E A\P such that
Spx E IX. Let J denote the ideal of A generated by Sp, PES, and
by AnnAX/I X. Then SuPPAA/ J ~ {M} and there is an integer n
such that

MR X ~ Jx ~ IX.

Whence x E I X :x (M), as required.
With the aid of the above formula it follows that

n InX :x (M) = n ker(X -+ X p )
n~t peS
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Slnce n jnX p = 0 by the Krull intersection theorem. Now the
n;t:l

equaJity of the second and third module is clear since ker(X -Jo X p )

is the interseetion of those Q-primary components of X with Q ~

P. 0

For the local ring (A, M) denote by (A, M) its M-adie comple­
tion. For a finitely generated A-module X the M-adic completion
X is isomorphie to X ®A A. Moreover A -Jo A is a faithfully Hat
extension.

(2.2) LEMMA. The following conditions are equivalent:
i) n jnX :x (1\1) = O.

nlll

ii) For any integer n there JS an integer m = m(n) such that
jmx:x (M) ~ jnX.

Proo! By the faithful flatness it is easily seen that (ii) holds if
and only if jmX :x (M) ~ jnX. That is, without loss of generality
we may assume X complete. The implieation ii) ~ i) is a conse­
quence of Krull's intersection theorem. In order to prove i) => ii) let
us make a slight modification of Chevalley's theorem, see (9], Ch.
VIII, Theorem 13. For a fixed integer n the modules

form a decreasing sequenee of modules of finite length. Whence
there is an integer i = i(n) such that Emn = Ein for all m ~ l. Put

En = ]iX: (M) + ]nx.

Then E n + ]kX = EI. for all n ~ k. Suppose there is an integer k
such that EI. =f. jkX. Then En =f. ]nX for all n ~ k. Now ehoose
elements Yn E En\]nX such that

Yn+l =Yn modulo In X for all n ~ k.

Then {Yn} is a convergent series with

o=f. z := limYn E X.
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Note that, see [9], X is complete with respect to the I-adic topolo­
gy. Fot a given n E N there is an integer no ~ n Buch that z - Ym E
InX for all m ~ no. But then

o=1= ZEn Em = nIn X :x (M),
m;t:l n;t:l

a contradiction. 0

The condition ii) of 2.2 means nothing else hut the equivalenee
of the topology defined by {InX :x (M) }n)O to the I-adic topology
on X. Therefore n InX : (M) gives the obstruction for the equi­

n;a;l
valenee of both of these topologies.

(2.3) LEMMA. The inverse system {XI In X}n;t:l with the natu­
ral induced maps defines an inverse system {H~(XIIn X)}n;a;l such
that

l~Ht(X/Inx)~ nInX:x (AI).
n)l

Proof. If we apply the Ioeal eohomology funetor to {XI InX}n)]
we get the desired inverse system. Because HX,(XI InX) is of finite
length it possesses the strueture of an A-module such that

Ht(XI InX) ~ Ht(XIInX) 0A A~ ltJ.i(X I In X).
That is, without 10ss of generality we may assume X as eomplete.
Now H~ (XI In X) = In X :X (M) IInX and there is the following
short exaet sequenee of inverse systems

By passing to the inverse limit there is an injection

0-+ n InX: (M) ~ l~{Inx: (M)IInX}.
n~l

Now we claim that <p is Burjective. To this end let
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where Yn E InX : (M). Then the sequence defines an element z E
limX/IJlX = X. Note that X is I-adically complete, see [9], Ch.-VIII. That is, for every n there exists an integer no ~ n such that
z - Um E Inx for all m ~ no. Hence

ZEn Im X : (M),
m~1

as required. 0

By view of 2.3 one might continue with the explicit computation
of lim Hit (X/In X), i E N, which is closely related to the cohomology-groups of the formal completion of U = SpecA \ V(M) along V(I).

3. The canonical module of a module
In this section let (A, M) denote a local ring possessing a duali~

zing complex DÄ. See [4], [6], and (7] for basic results on dualizing
complexes. If A is complete or, more general, the factor ring of a
Gorenstein ring, then DÄ exists. One may normalize DÄ Buch that
D~ = 0 for all i < -d, d = dirn A, resp. i > 0 and such that

D~ = ffi ER(R/P), -d ~ i ~ 0,
PESpecA,dim AIP=-i

where ER(R/P) denotes the injective hull of R/P. It follows that
o :f H-d(DÄ), which is called the canonical module K A of A. In
[6] this concept is generalized to an arbitrary finitely generated A­
module X as follows: Consider the complex HomA(X, DÄ). Then
(HomA(X, DÄ))i = 0 for i > 0 and i < - dimX. Define

{
Ki if 0 ~ i < dim X and

H-i(HomA(X, D~)) = K
x
X t.f i = dimX,

and call Kx the canonical module of X. Note that Kx is a finitely
generated A-module.

We say that a finitely generated A-module X Batisfies Serre's
condition Sr, rEN, provided

depthApXP ~ rnin{ r, dimAp Xp}

for all prime ideals P E SUPPAX, Note that X satisfies always So,
while SI holds if and only if X is unmixed. X is a Cohen-Macaulay
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A-module if and only if it satisfies Sn, n = dim X. Next summarize
a few basic properties of K~ and Kx respectively.

(3.1) PROPOSITION. a) dimKx = dimXanddimKi- ~ i Jor all
O~i<dimX.

b) X satisifies condition Sr if and only iJ dim K~ ~ i - r Jor all
o~ i < dimX.
c) K X satisfies condition S2'
d) IfdimApXp+dimA/P = dimX JorP E SuppX, then (Kx)p ~

K xp .

These results are shown in [6], 3.1.1 and 3.2.1. As it is convenient
for duality one may relate X in a natural way to K Kx' the canonical
module of the canonical module. To this end let X[n] denote the
module X considered as a complex concentrated in degree - n. Let
n = dirn X. Then there is a ahort exact sequence of complexes

o--t Kx[n] -. HomA(X, D~) -. Ix -. 0,

where Ix is defined as the cokernel of the natural embedding. It
follows that

H-i(Ii) = K~,O ~ i < n, H-i(Ii) = 0 otherwise.

Applying HomA(., DÄ) to the above exact sequence and taking co­
homology it yields the following exact sequence

o-. H-l(HomA(Ix,D~))-. X -. KKx -. HO(HomA(Ix,D~))-. O.

That is, there ia a natural homomorphism

(3.2) PROPOSITION. Suppose X is equidimensional. Then the
Jollowing holds for TX:

a) TX is injeetive.
b) TX is an isomorphism if and only if X satisfies condition S'J'
c) TKx is an isomorphism.
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For the proof of a.) and b) see [6], 3.2.2. The sta.tement in c)
follows by b) and 3.1. In the following we describe coker TX'

(3.3) PROPOSITION. Suppose X is equidimensional. Then

Supp coker TX = {P E SuppX : X p does not satis/y S7.}

and dirn coker TX ~ dimX - 2.

Proof Let C = coker TX' By 3.2 there is a short exact sequence
o-. X -. KKx -. C -. O. because X is equidimensional we know
that

dimX = dirn AIP + dimAp X p for P E SuppX

and therefore (KKx)P ~ KKxp' see 3.1. By the functoriality of TX

we see that Cp = 0 if and only if X p satisfies S7., see 3.2. This proves
the first part of the statement. For the second let P E SuppX with
dimAIP > dimX - 1. Then dimAp X p ~ 1 and X p satisfies S7.,
i.e., Cp = 0 by the previous argument. 0

We will end this section by relating the set of associated primes
aod the annihilator of X to that of K x .

(3.4) PROPOSITION. a) ASSAKx = {P E ASSAX : dimAIP =
dimX}.
b) AnnAKx = (AnnAX)dimX, i.e., the intersection 0/ all P-primary
components 0/ AnnAX such that dirn AIP = dirn X.

Pro0/. a) is showo in {6],3.1. b) We have AnnAX ~ AnoAKx by
the definition of K x . Equality holds provided X satisfies 8 2, see 3.2.
Now let P E ASSAX be a prime ideal with dimAlP = dimX. Then
AnnApXp = AnoApKxp. Since K x is equidimensional it proves
AnnAKx = (AnnAX)dimx as it is easily seen by the primary de­
composition. 0

4. On the vanishing of local cohomology
In the first part of this section let (A, M) denote a local ring

possessing a normalized dualizing cornplex DÄ. Let X be a finitely
generated A-rnodule with n = dirn X. For an ideal I of A it is
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known, see e.g. [2], that

Hj(X) = 0 for all i > n.

The following results concern the structure of H,/(X). To this end let
X ~ XC51 A Adenote the completion of X. Let Ass..iX = {Pt, ... , Pd
and AssÄK x = {Q 1, .•. , Qt}. Fix a minimal primary decomposition

o= X(P1 ) n nX(P.)
o= Y(Ql) n n Y(Qt)

considered as an A-module resp.

of X resp.
of K g .

(4.1) THEOREM. a.) Suppose X satisfies 82 , Then there is an
isomorphism

HOffiA{H,/{Kx ), E) ~ n X{P;).
PitT1A (X)

b) There is an isomorphism

HOffiA{H'/{X) ,E) ~ n Y{Qi)'
QitT1Ä(Kx)

Here E denotes the injective hull 0/ the residue field A/M 0/ A.

Proof. We begin with the proof of the formula claimed in a). Hy
2.1 and 2.3 it is enough to show the following isomorphism

The loeal duality theorem, see e.g. [4], provides a.n isoffiorphism

limHt{Xj InX) ~ HOffiA{limJfl{HoffiA{X/In X, DÄ)), E)- -
~ HOffiA {HY{HomA {X, D~d), E),

where we use that Rrl{X·) ~ limRHoffiA(A/In
, X·) for a bounded-complex X· with finitely generated cohomology modules, see [4].

As in Section 3 take the short exact sequence
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and apply the derived functor RrI. The long exa.ct cohomology se­
quence of the resulting short exact sequence of complexes yield's the
following four term exact sequence

H[l(Ii) -+ H;(Kx ) -+ HJ(HomA(X, DÄ)) -+ HJ(Ii)·

Now the statement follows provided H}(Ix)= 0 for i = 0, -1. In
order to prove this take the spectral sequence for computing the
hypercohomology

Er = Hf(Hq(Ii)) =} EP+9 = m+q(Ii).

Because Hq(Ix)= Kiq
and dimKiq :s;; -q - 2, see 3.1, it follows

that E~q = 0 for all p + q E {O, -I}. Therefore H}(Ix) = 0 for
i = 0, -1, as required.

In order to prove b) we first show that Hj(X) ~ Hj(KKx )'
To this end let U denote the maximal submodule of X such that
dimU < n. Then X/U ia equidimensional and

Hj(X) ~ Hj(XjU) resp. K x ~ Kx/u

as easily seen. That is, without loss of generality we mayassume X
equidimensional. Then the short exact sequence

o-+ X -+ KKx -+ C -+ 0

provides Hj(X) ~ Hi(KKx) because dimC :s;; n - 2, see 3.2 and
3.3. Finally the statement b) follows now by a) because K x satisfies
condition 52, see 3.1. 0

The following Corollary 4.2 b) is the dual statement of a result
shown by R.Y. Sharp in [8] for the case X = A.

(4.2) COROLLARY. Let X denote a finitely generated module
ouer an arbitrary local ring (A, M) with n = dimX.
a) There is an isomorphism

HOffi..t(Hj(X),E) ~ n Y(Q.),
QitT1A(Kx)

where AssÄKg = {Qt, ... ,Qtl and 0 = Y(Ql) n ... n Y(Qt) IS a
minimal primary decomposition.
b) Hj(X) is an Artinian A-module and
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AssA HomA(Hj(X), E) = {P E T1A(X) : dimA/ P = n}.

c) Hj(X) = 0 if and only if {P E T1..t(X) : dimA/P = n} = 0.

Proo! First note that HomA(H;(X), E) admits a natural A-module
structure such that

HomA(H;(X), E) ~ HomÄ(H;(X) ®A A, E).

Because H;(X) ®A A~ H7ACX) and since Apossesses a dualizing
cornplex a) follows by 4.1. this shows also that HornA(H;(X), E)
is a finitely generated A-module. By Matlis duality the first part
of b) is true. The second is an easy consequence of a). Finally c)
follows by b). 0

By view of the results shown in 2.2 and 4.1 b) now 4.2 proves the
statements of 1.1 in the introduction.

Let us caU A a quasi-Gorenstein ring, if KA exists and K A ~ A.
In this case A satisfies S'J'

(4.3) COROLLARY. Let I denote an ideal of(A,M), a complete
local quasi-Gorenstein ring wilh d = dirn A.
a) HomA(H1(A),E) ~ n ker(A -t Ap ).

PESI(A)

b) HomA(H1(A),E) ~ n Z(Pi )

PitT](A)

where Ass A = {PI, ... ,Pr} and 0 = Z(Pd n ... n Z(Pr) is a mini­
mal primary decomposition.
c) H1(A) = 0 if and only if the topology dejined by {In: (M)} is
equivalent to the I -adic topology.

Proo/. Because K A ~ A the statements follow by 4.1 with the
aid of 2.1 and 2.2. 0

In the case of a complete Gorenstein ring a) of 4.3 is shown by
F.W. CaU and R.Y. Sharp, see [1]. Under the same assumption they
got also a particular case of c). For a one-dimensional prime ideal P
of a complete Gorenstein ring A they have shown that Hi(A) = 0
if and only if the topology defined by the symbolic powers {p(n)} is
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equivalent to the P-adic topology. Now this is true also in the more
general situation of 4.3 since p(n) = pn : (M) for a one-dimensional
prime ideal P of A.
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