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1. Introduction

Let I denote a proper ideal of a local (Noetherian) ring (A4, M). By
[2] and [3] it is of great importance in algebraic geometry and com-
mutative algebra to have vanishing results for the local cohomology
modules H}(X),i € N, for an A-module X. See [2] for the defi-
nition and basic results on local cohomology. It is known, see [2],
that H}(X) = 0 for all ¢ > dim X. The Lichtenbaum-Hartshorne
vanishing theorem, see [3], states that HY¢ (A) = 0,d = dim A, pro-
vided dlmA/(IA + P) > 0 for all P € AssA with dim A/P = d.
Here A denotes the completion of A. Now there are several proofs
of this vanishing result, see (1}, [3], [5]. In particular, R.Y. Sharp
has also shown the necessity of the local condition for the vanishing
of H¥(A), see [8]. All the proofs use the fact that, under certain
circumstances, the I-adic topology on A is equivalent to the topo-
logy induced by a filtration {J,},en of ideals such that A/J,, does
not have M-torsion.

The main point of the present paper is an explicit computation
of H}(A) and, by the same way, to clarify the equivalence of the
topologies involved. It turns out that the local cohomology module
HY(A) is the obstruction for the equivalence of these topologies. In
fact we extend the vanishing result to H}(X), where X denotes a
finitely generated A-module with n = dim X. To this end one has to
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generalize the notion of the canonical module. To be more precise,
assume that (A, M) possesses a dualizing complex, see [4], [6] and
[7]. Then we introduce the canonical module Kx of X, see Sec-
tion 3 for the definition and a brief summary of properties needed
in the paper. The canonical module K4 of A is nothing else but
the ordinary canonical module. Note that K3 always exists, where
X denotes the completion of X. Let Ass; Ky = {Q1,...,Q:} and
0=Y(h)N...NnY(Q,) be a minimal primary decomposition of
Ky. Define Ty(X) = {P € AssgX : dimA/(] + P) = 0}.

(1.1) THEOREM. a) There is an isomorphism
Homu(HP(X),E)= [ Y(Q)),
QifT;4(Kx)

where E _denotes the injective hull of the residue field.
b) The A-module Hom(H}(X), E) is finitely generated and

Ass; Homa(HP(X),E) = {P € T;4(X) : dim A/P = n}.
c) The following conditions are equivalent:
G) HpX)=0.
(ii) {P €T;;(X):dimA/P=n}=0. )
(iii) The topology defined by {I"K 3 : (M)} on K is equivalent to
the 1 A-adic topology on Ky.

The proof of 1.1 is given in Section 4. Section 2 is concerned
with the equivalence of a certain topology on X with the I-adic
topology. One of the main points is the computation and the vani-
shing of li.I_an,(X/I“X), see 2.3. The notation is the same as in [6].

2. On ideal topologies

Let X denote a finitely generated A-module, (A, M) a local ring.
For an ideal I of A and a submodule Y C X the increasing sequence
of submodules

YgY:ng...gY:xIng...

becomes stationary. Denote its ultimate constant value by Y :x (7).
Note that
Y:x{(I)=Y :x I" for all large n.
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One has Assy X/Y :x (I) = Ass, X/Y\V(I). Therefore the primary
decomposition of Y :x (I) consists of those primary components of
Y whose associated prime ideals do not contain I. Let Asss X =
{Pr,...,P,} and 0 = Z(P)N...N Z(P,) a minimal primary decom-
position of X. For a prime ideal P of A let X — Xp,r — £, denote
the natural homomorphism.

(2.1) LEMMA. The following submodules of X coincide:

a) () I"X :x (M),
ngl

b) [\ ker (X — Xp), where Si(X) = Supp X/IX\V(M),
PeS(X) .

c) () Z(F), where
PigT(X)

THX)={P € Ass, X :dimA/(I + P) = 0}.
Proof. First of all note that

I){Zx (ﬁf):: r} (I)(pr1)()
PeSi{X)

Here IXp N X denotes the inverse image of I Xp under the natural
map X — Xp. To this endlet z € IX :x (M). For any P €
S1(X) =: S choose an element rp € M™\ P, where n is such that
IX :x (M) =1IX :x M". Hence, rpz € IX and z € IXpN X.
Conversely let

z€ (J(IXpNX).

Pes

That is, for every P € S there is an element sp € A\P such that
spz € I X. Let J denote the ideal of A generated by sp, P € S, and
by AnnyaX/IX. Then SuppsA/J C {M} and there is an integer n
such that

Mrz CJz CIX.

Whence z € IX :x (M), as required.
With the aid of the above formula it follows that

N I"X :x (M) = [ ker(X — Xp)

nzl PeS



since n I"Xp = 0 by the Krull intersection theorem. Now the
nzl

equality of the second and third module is clear since ker(X — Xp)

is the intersection of those @)-primary components of X with @ C

P. 0O

For the local ring (A, M) denote by (A, M) its M-adic comple-
tion. For a finitely generated A-module X the M-adic completion
X is isomorphic to X ®4 A. Moreover A — A is a faithfully flat
extension.

(2.2) LEMMA. The following conditions are equivalent:
i) (1I"X :z (M) =0.
nzl
i) For any integer n there is an integer m = m(n) such that

I™X :x (M) C I"X.

Proof. By the faithful flatness it is easily seen that (ii) holds if
and only if I™X ‘2 (M) C I"X. That is, without loss of generality
we may assume X complete. The implication ii) = i) is a conse-
quence of Krull’s intersection theorem. In order to provei) = ii) let
us make a slight modification of Chevalley’s theorem, see [9], Ch.
VIII, Theorem 13. For a fixed integer n the modules

Emp = (I"X : (M) + I"X)/I"X, m > n,

form a decreasing sequence of modules of finite length. Whence
there is an integer £ = ¢(n) such that E, = E,, for all m 2 ¢. Put

E,=I'X: (M) + I"X.

Then E, 4+ I*X = E; for all n > k. Suppose there is an integer k
such that Ey # I*X. Then E, ;é I"X for all n > k. Now choose
elements y,, € E,\I"X such that

Ynt1 = yYn Mmodulo "X  foralln = k

Then {y,} is a convergent series with

0 # z:=limy, € X.



Note that, see [9], X is complete with respect to the I-adic topolo-
gy. For a given n € N there is an integer ng 2 n such that z — y,, €
I"X for all m 2 ny. But then

0#2€ () En=)I"X :x (M),

mzl ngl

a contradiction. O

The condition ii) of 2.2 means nothing else but the equivalence
of the topology defined by {I"X :x {(M)}n30 to the I-adic topology
on X. Therefore (| I"X : (M) gives the obstruction for the equi-

nzl
valence of both of these topologies.

(2.3) LEMMA. The inverse system {X/I"X},31 with the natu-

ral induced maps defines an inverse system {HYy(X/I"X)}ny1 such

that '
lim Hy (X/1"X) = () I"X :3 (M).

nal

Proof. If we apply the local cohomology functor to {X/I"X},y,
we get the desired inverse system. Because Hy(X/I"X) is of finite
length it possesses the structure of an A-module such that

HY(X/I"X) ~ HY(X/I"X) @4 A ~ HY (X /T"X).

That is, without loss of generality we may assume X as complete.
Now HY(X/I"X) = I"X :x (M)/I"X and there is the following
short exact sequence of inverse systems

0 - {I"X} =2 {I"X: (M)} > {I"X : (M)/I"X} — 0.
By passing to the inverse limit there is an injection

0— (Y I"X : (M) 5 im{I"X : (M)/I"X}.

nzl
Now we claim that ¢ is surjective. To this end let

{yn + I"X} € lim{I"X : (M)/I" X},
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where y,, € I"X : (M). Then the sequence defines an element z €
limX/I"X = X. Note that X is I-adically complete, see [9], Ch.
VIII. That is, for every n there exists an integer ny 2 n such that
z—Ym € I"X for all m 2 ny. Hence

z€ [ I™X : (M),

mzl

as required. O

By view of 2.3 one might continue with the explicit computation
of lim Hy,(X/I"X),i € N, which is closely related to the cohomology

groups of the formal completion of U = SpecA\V (M) along V(I).

3. The canonical module of a module

In this section let (A, M) denote a local ring possessing a duali-
zing complex DY%. See [4], [6], and {7] for basic results on dualizing
complexes. If A is complete or, more general, the factor ring of a
Gorenstein ring, then D% exists. One may normalize D% such that
D, =0 for all ¢t < —d,d = dim A, resp. ¢ > 0 and such that

DA - PESpccA,;.;mA/Pz—i ER(R/P)’ —d S ' g 0’

where Er(R/P) denotes the injective hull of R/P. It follows that
0 # H-4(DY%), which is called the canonical module K4 of A. In
[6] this concept is generalized to an arbitrary finitely generated A-
module X as follows: Consider the complex Homu(X, D%). Then
(Homu(X, DY) =0 for i > 0 and i < — dim X. Define .

Ki if 0<i<dimX and

H"(HomA(X, DY) = { Kx if i=dimX,

and call Kx the canonical module of X. Note that Kx is a finitely
generated A-module.

We say that a finitely generated A-module X satisfies Serre’s
condition S,,r € N, provided

depthAPXp 2 min{r, dil’l’lAP Xp}
for all prime ideals P € Supp,4X. Note that X satisfies always S,
while S, holds if and only if X is unmixed. X is a Cohen-Macaulay
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A-module if and only if it satisfies S;,n = dim X. Next summarize
a few basic properties of Ky and Ky respectively.

(3.1) PROPOSITION. a) dim Kx = dim Xanddim K% < ¢ for all
0<i<dimX.

b) X satisifies condition S, if and only if dim K% < i —r for all
0<i<dimX.

c) Kx satisfies condition S,.

d) Ifdimu, Xp+dimA/P = dim X for P € SuppX, then (Kx)p ~
Kx,.

These results are shown in [6], 3.1.1 and 3.2.1. As it is convenient
for duality one may relate X in a natural way to Kk, , the canonical
module of the canonical module. To this end let X[n] denote the
module X considered as a complex concentrated in degree — n. Let
n = dim X. Then there is a short exact sequence of complexes

0 — Kx[n] = Homu(X,D%) — Iy — 0,

where Iy is defined as the cokernel of the natural embedding. It
follows that

H7(Iy) = K%,0<i<n, H*(I%) =0 otherwise .

Applying Hom4(e, D}) to the above exact sequence and taking co-
homology it yields the following exact sequence

0 — H '(Homu(I%, DY) = X — Kk, — H°(Hom,(I%,D%)) — 0.
That is, there is a natural homomorphism

Tx:X—bKKX.

(3.2) PROPOSITION. Suppose X is equidimensional. Then the
following holds for tx:

a) Tx is injective.

b) 7x is an isomorphism if and only if X satisfies condition S,.

¢) Tk, t8 an isomorphism.



For the proof of a) and b) see [6], 3.2.2. The statement in c)
follows by b) and 3.1. In the following we describe coker 7x.

(3.3) PROPOSITION. Suppose X is equidimensional. Then
Supp coker 7x = {P € SuppX : Xp does not satisfy Sa}

and dim coker 7x € dim X - 2.

Proof. Let C = coker 7x. By 3.2 there is a short exact sequence
0 - X — Kg, = C — 0. because X is equidimensional we know
that

dim X = dim A/P + dimu, Xp for P € SuppX

and therefore (Kk,)p ~ K Kx,, See 3.1. By the functoriality of 7x
we see that Cp = 0 if and only if Xp satisfies S, see 3.2. This proves
the first part of the statement. For the second let P € SuppX with
dimA/P > dimX — 1. Then dim,, Xp < 1 and Xp satisfies 53,
i.e., Cp = 0 by the previous argument. O

We will end this section by relating the set of associated primes
and the annihilator of X to that of Kx.

(3.4) PROPOSITION. a) AssgyKx = {P € AssyX : dimA/P =
dim X}.

b) AnnaKx = (AnnaX)aimx, t-€., the intersection of all P-primary
components of Anns X such that dimA/P = dim X.

Proof. a)is shown in [6],3.1. b) We have AnngX C AnngKx by
the definition of Kx. Equality holds provided X satisfies S;, see 3.2.
Now let P € Ass4 X be a prime ideal with dim A/P = dim X. Then
Anng,Xp = Anny,Kx,. Since Kx is equidimensional it proves
Amng Ky = (AnnaX)aimx as it is easily seen by the primary de-
composition. O

4. On the vanishing of local cohomology

In the first part of this section let (A, M) denote a local ring
possessing a normalized dualizing complex DY. Let X be a finitely
generated A-module with n = dimX. For an ideal I of A it is



known, see e.g. [2], that
Hi(X)=0forall i > n.

The following results concern the structure of H}(X). To this end let

X ~ X®4 A denote the completion of X. Let Ass; AX {Pr,..., P}
and Ass ;K3 = {Q1,...,@Q:}. Fix a minimal primary decompos:tion

0=X(P)N...nX(P) of )i'resp.
=Y(Q1)ﬂ...ﬂY(Qg) of KX'

considered as an A-module resp.

(4.1) THEOREM. a) Suppose X satisfies S;. Then there is an

isomorphism

Homus(H}(Kx),E)~ (] X(R).
PigT, 4(X)

b) There is an isomorphism

Hom(H} (X)), E) ~ ﬂ Y(Q).

Qi¢T, ;(K3)
Here E denotes the injective hull of the residue field A/M of A.

Proof. We begin with the proof of the formula claimed in a). By
2.1 and 2.3 it is enough to show the following isomorphism

Hom(H7(Kx), E) ~ lim Hy, (X/I" X).
The local duality theorem, see e.g. [4], provides an isomorphism
IEnHR,(X/I"X) ~t HomA(li_r'nHO(HomA(X/I"X, D) E)
~ Hom, (H] (Hom4(X, D3)), E),

where we use that R['/(X*) ~ lim RHom,4(A/I", X*) for a bounded

complex X* with finitely generated cohomology modules, see {4].
As in Section 3 take the short exact sequence

0 — Kx[n] » Homu(X,D%) - I3 — 0
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and apply the derived functor RT';. The long exact cohomology se-
quence of the resulting short exact sequence of complexes yields the
following four term exact sequence

Hy'(Ix) — H(Kx) — Hp(Hom(X, D)) — Hi(Ix).

Now the statement follows provided Hi(I%) = 0 for i = 0,—1. In
order to prove this take the spectral sequence for computing the
hypercohomology

EY = HY(H*(I%)) = EP** = H["(I%).
Because H(I%) = Kx? and dim K¥* < —¢q — 2, see 3.1, it follows
that E}* = 0 for all p + ¢ € {0,~1}. Therefore H;(I%) = 0 for
t = 0, —1, as required.
In order to prove b) we first show that H}(X) ~ H}(Kk,).

To this end let U denote the maximal submodule of X such that
dimU < n. Then X/U is equidimensional and

HP(X)~ H}(X/U) resp. Kx ~ Kxuu

as easily seen. That is, without loss of generality we may assume X
equidimensional. Then the short exact sequence

0o X—>Kg, »C—-0

provides H}(X) ~ H}(Kk, ) because dimC < n — 2, see 3.2 and
3.3. Finally the statement b) follows now by a) because Kx satisfies
condition S5, see 3.1, O

The following Corollary 4.2 b) is the dual statement of a result
shown by R.Y. Sharp in [8] for the case X = A.

(4.2) COROLLARY. Let X denote a finitely generated module
over an arbitrary local ring (A, M) with n = dim X.
a) There is an isomorphism

Hom(H7(X),E)~ [] Y(Qi),
QifT, 4(K )
where Ass; Ky = {Q1,...,@Q:} and 0 =Y(Q1)N...NY(Q:) is a

minimal primary decomposition.

b) H}(X) is an Artinian A-module and
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Ass; Homa(H} (X), E) = {P € T;4(X) : dim A/ P = n}.
¢) H}(X) =0 if and only if {P € T;3(X): dimA/P = n} = §.

Proof. First note that Hom4(H}(X), E) admits a natural A-module
structure such that

Hom(HP(X), E) ~ Hom ;(H}X) ®4 A, E).

Because H}(X) @4 A =~ H;‘(f() and since A possesses a dualizing
complex a) follows by 4.1. fhis shows also that Hom,(H}(X), E)
is a finitely generated A-module. By Matlis duality the first part
of b) is true. The second is an easy consequence of a). Finally c)

follows by b). O

By view of the results shown in 2.2 and 4.1 b) now 4.2 proves the
statements of 1.1 in the introduction.

Let us call A a quasi-Gorenstein ring, if K4 exists and K4 ~ A.
In this case A satisfies 5.

(4.3) COROLLARY. Let I denote an ideal of (A, M), a complete
local quasi-Gorenstein ring with d = dim A.
a) Homy(HF(A),E)~ () ker(A— Ap).

PeS;(A)
b) Homu(Hf(A),E)~ [\ Z(P)

PigT1(A4)
where Ass A= {P,..., P} and 0= Z(P)N...NZ(P,) is a mini-
mal primary decomposition.
c) HZ(A) = 0 if and only if the topology defined by {I" : (M)} is
equivalent to the I-adic topology.

Proof. Because K4 ~ A the statements follow by 4.1 with the
aid of 2.1 and 2.2. O

In the case of a complete Gorenstein ring a) of 4.3 is shown by
F.W. Call and R.Y. Sharp, see [1]. Under the same assumption they
got also a particular case of ¢). For a one-dimensional prime ideal P
of a complete Gorenstein ring A they have shown that HE(A) =0
if and only if the topology defined by the symbolic powers { P("} is

i1



equivalent to the P-adic topology. Now this is true also in the more
general situation of 4.3 since P(® = P" : (M) for a one-dimensional
prime ideal P of A.
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