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HARMONIC SELF-MAPS OF COHOMOGENEITY ONE

MANIFOLDS

THOMAS PÜTTMANN AND ANNA SIFFERT

Abstract. We develop the theory of equivariant harmonic self-maps of com-

pact cohomogeneity one manifolds and construct new harmonic self-maps of

the compact Lie groups SO(4` + 2), ` ≥ 1 with degree −3, of SO(8), SO(14)

and SO(26) with degree −5 each, of SO(10) with degree −7, and of SO(14)

with degree −11 by exhibiting linear solutions to non-linear singular boundary

value problems.

1. Introduction

In this paper we develop the theory of equivariant harmonic self-maps of compact

cohomogeneity one manifolds and construct new harmonic self-maps of the compact

Lie groups SO(4` + 2), ` ≥ 1 with degree −3, of SO(8), SO(14) and SO(26) with

degree −5 each, of SO(10) with degree −7, and of SO(14) with degree −11 by

exhibiting linear solutions to non-linear singular boundary value problems.

Topologically non-trivial self-maps of compact manifolds are difficult to con-

struct. It is natural to look for constructions in the presence of symmetries. Since

every equivariant self-map of a compact homogeneous space is a diffeomorphism

the homogeneous setting is too restrictive to be of interest. The next step is to

consider cohomogeneity one manifolds.

Urakawa [U] calculated the tension fields of equivariant maps between cohomo-

geneity one manifolds and constructed some new examples of harmonic maps. For

our purposes, however, the hypothesis on the actions and the invariant metrics

given in this paper are too restrictive. By our more geometric approach, we extend

the results of [U] in the context of self-maps in several directions. Most notably,

we employ the construction of topologically non-trivial self-maps of cohomogeneity

one manifolds given by the first named author in [P1].

Let M be a Riemannian manifold with an isometric action G × M → M of

a compact Lie group G such that the orbit space M/G is isometric to a closed

interval [0, L] and such that the Weyl group W of the action is finite. In [P1] the

first named author constructed an infinite family of equivariant self-maps of M by

mapping g · γ(t) to g · γ(kt). Here, γ is a unit speed normal geodesic such that

γ(0) is contained in one of the non-principal orbits. The integer k is of the form
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2 THOMAS PÜTTMANN AND ANNA SIFFERT

j|W |/2 + 1 with j ∈ 2Z (depending on the action odd integers j might also be

allowed). We call the map g · γ(t) 7→ g · γ(kt) the k-map of M . The degree of a

k-map is equal to k if the codimensions of the non-principal orbits are both odd,

and equal to 0 or ±1 otherwise.

Given M , there is the natural question of whether some of the k-maps are har-

monic. More generally, we consider the equivariant (k, r)-maps, i.e., the maps

g · γ(t) 7→ g · γ(r(t))

where r : [0, L] → R is a smooth function with r(0) = 0 and r(L) = kL. Any

(k, r)-map is clearly equivariantly homotopic to the corresponding k-map. A (k, r)-

map of M is harmonic if and only if its tension field τ vanishes. The tension field

splits into two natural components, the component τ tan tangential to the orbits

and the component τnor perpendicular to the orbits. In order to state the normal

component of the tension field in a computationally convenient way, we need to

introduce some notation. Let

Π
r(t)
t : Tγ(t)(G · γ(t))→ Tγ(r(t))(G · γ(r(t))

denote the parallel transport along the normal geodesic γ. We have another natu-

ral but not neccessarily isometric homomorphism between the two tangent spaces

Tγ(t)(G·γ(t)) and Tγ(r(t))(G·γ(r(t))), namely, the action field homomorphism given

by X∗|γ(t) 7→ X∗|γ(r(t)). Let J
r(t)
t denote the endomorphism of Tγ(t)(G · γ(t)) given

by composing the action field homomorphism with (Π
r(t)
t )−1 = Πt

r(t).

Theorem A. The normal component of the tension field of a (k, r)-map of M is

given by

τnor
|γ(t) = r̈(t)− ṙ(t) traceS|γ(t) + trace (J

r(t)
t )∗(Π

r(t)
t )−1S|γ(r(t))Π

r(t)
t J

r(t)
t

for 0 < t < L. Here, S|γ(t) denotes the shape operator of the orbit G · γ(t) at γ(t)

and (J
r(t)
t )∗ denotes the adjoint endomorphism of J

r(t)
t .

The principal isotropy groups H = Gγ(t) along the normal geodesics are constant

for 0 < t < L. Let Q be a fixed biinvariant metric on G and let n denote the

orthonormal complement of the Lie algebra h of the principal isotropy group H

in g.

Theorem B. The tangential component of the tension field of a (k, r)-map of M

is given by

τ tan
|γ(t) = −

n∑
µ,ν=1

〈[Eµ, Fν ]∗, E∗µ〉|γ(r(t))F
∗
ν|γ(r(t))

for 0 < t < L. Here, E1, . . . , En ∈ n and F1, . . . , Fn ∈ n are such that E∗1|γ(t),. . . ,

E∗n|γ(t) form an orthonormal basis of Tγ(t)(G·γ(t)) and F ∗1|γ(r(t)), . . . , F
∗
n|γ(r(t)) form

an orthonormal basis of Tγ(r(t))(G · γ(r(t))).

For self-maps, Theorem A and Theorem B are a more general and more geometric

version of Theorem 2.2 of [U].
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A (k, r)-map of M is harmonic if both, the normal and the tangential component

of the tension field vanish. Theorem A leads to the non-linear singular boundary

value problem

0 = r̈(t)− ṙ(t) traceS|γ(t) + trace (J
r(t)
t )∗(Π

r(t)
t )−1S|γ(r(t))Π

r(t)
t J

r(t)
t

for functions r : ]0, L[→ R with limt→0 r(t) = 0 and limt→L r(t) = kL. If r is a

solution of this boundary value problem, the condition provided by Theorem B is an

infinite set of algebraic equations. It is hence clear that the tangential component

of the tension field of a (k, r)-map will only vanish in rather special geometric

situations. Simple examples where the tangential components fail to vanish for all

(k, r)-maps except the identity are provided by S2×S2
ρ where S2

ρ denotes the sphere

of radius ρ and ρ2 is a rational number 6= 1.

The special geometric situations that we consider here are the cohomogeneity

one actions on spheres and their lifts to the orthogonal groups that act transitively

on the spheres. For most of these actions the tangential components of the tension

fields turn out to vanish for all (k, r)-maps, no matter if r solves the boundary

value problem or not. Moreover, there are at most two eigenvalues of the Jacobi

operator along a normal geodesic. This fact is of central importance for the practical

evaluation of the ODE given in Theorem A.

The cohomogeneity one actions on spheres were classified by Hsiang and Lawson

[HL]. They showed that each of these actions is orbit equivalent to the isotropy rep-

resentation of a Riemannian symmetric space of rank 2. The orbits of any isometric

cohomogeneity one action G× Sn+1 → Sn+1 yield an isoparametric foliation of the

sphere. Takagi and Takahashi [TT] determined the number g of distinct principal

curvatures of the orbits and their multiplicities m0, . . . ,mg−1. It turned out that

m0 = m2 = . . . = mg−2 and m1 = m3 = . . . = mg−1.

In particular, n = m0+m1

2 g. Münzner [M] later showed that this is a general prop-

erty of isoparametric foliations of spheres. Up to ordering of m0 and m1 there are

only actions with the following (g,m0,m1):

(1,m,m), (2,m0,m1), (3, 1, 1), (3, 2, 2), (3, 4, 4), (3, 8, 8),

(4,m0, 1), (4, 2, 2), (4, 2, 2`+ 1), (4, 4, 4`+ 3), (4, 4, 5), (4, 6, 9), (6, 1, 1), (6, 2, 2).

The classification shows that all cohomogeneity one actions with given data (g,m0,m1)

are orbit equivalent except in the case (4, 2, 1) where two different classes exist. An

explicit list with detailed information can be found in [GWZ].

We call a cohomogeneity one action on a sphere with the data (g,m0,m1) briefly

a (g,m0,m1)-action. If m0 = m1 =: m (by Münzner’s results, this is necessarily

true for odd g) we simply call the action a (g,m)-action. Note that for each of all

these actions the Weyl group is the dihedral group Dg of order 2g and there are

k-maps for all integers k = jg + 1 with j ∈ Z.

Theorem C. Given a (g,m0,m1)-action on Sn+1 with n = m0+m1

2 g, a k-map is

harmonic if and only if k = 1, or (g = 2 and k = −1), or (m0 = m1 and k = 1−g).
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With this theorem we reproduce some known harmonic self-maps of spheres by

a different method: In [S1] the (1− g)-map of Smg+1 is identified with the gradient

map of the Cartan-Münzner polynomial of the associated isoparametric foliation.

It was previously known that the Cartan-Münzner polynomial and its gradient map

are harmonic if all multiplicities are equal [ER]. The degrees of the gradient map

were previously obtained in [PT] and [GX].

Any isometric cohomogeneity one action G × Sn+1 → Sn+1 can be lifted to an

isometric cohomogeneity one action of G×SO(n+ 1) on SO(n+ 2) with the metric
1
2 traceXtY by

G× SO(n+ 1)× SO(n+ 2)→ SO(n+ 2), (A, ( 1
B )) · C = AC

(
1
B−1

)
.

We call the lift of a (g,m0,m1)-action on Sn+1 a (g,m0,m1)-action on SO(n + 2)

(or simply a (g,m)-action if m0 = m1). This definition fits to the fact that the

Weyl group of the lifted action is again the dihedral group Dg. In contrast to the

actions on spheres, k-maps exist for the lifted actions only for all integers k = jg+1

with j ∈ 2Z.

Theorem D. Given a (g,m0,m1)-action on SO(n+2) with n = m0+m1

2 g, a k-map

is harmonic if and only if k = 1 or (m0 = m1 and k = 1− 2g).

This theorem is the source of the new concrete examples of harmonic self-maps

mentioned in the opening of this introduction: the −3-maps of the (2,m)-actions

on SO(2m+2) with degree +1 if m is odd and degree −3 if m is even; the −5-maps

of the (3,m)-actions on SO(5), SO(8), SO(14), and SO(26) with degree +1 in the

first case and −5 in the other cases; the −7-maps of the (4,m)-actions on SO(6)

with degree +1 and on SO(10) with degree −7; the −11-maps of the (6,m)-actions

on SO(8) with degree +1 and on SO(14) with degree −11.

In order to prove Theorems C and D we need to evaluate the general expressions

for the normal and tangential components of the tension fields of the (k, r)-maps

given in Theorem A and B for the (g,m0,m1)-actions on Sn+1 and SO(n+ 2). For

the normal component, a non-standard trigonometric identity (Lemma 8.2) is the

key to obtain the following result.

Theorem E. Given a (g,m0,m1)-action on a sphere Sn+1 with n = m0+m1

2 g, the

normal component of the tension field of a (k, r)-map vanishes if and only if r

satisfies the (g,m0,m1, k)-boundary value problem

0 = 4 sin2 gt · r̈(t) +
(
g(m0 +m1) sin 2gt+ 2g(m0 −m1) sin gt

)
ṙ(t)

− g(g − 2) sin 2(r(t)− t)
(
m0 +m1 + (m0 −m1) cos gt

)
− 2g sin

(
2(r(t)− t) + gt

)(
(m0 +m1) cos gt+m0 −m1

)
for functions r : ]0, πg [→ R with

lim
t→0

r(t) = 0 and lim
t→π

g

r(t) = k πg
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Note that in the special case where m0 = m1 = m the ODE above simplifies to

(1) 0 = 2 sin2 gt · r̈(t) +mg sin 2gt · ṙ(t)

−mg
(
(g − 1) sin 2(r(t)− t) + sin 2(r(t) + (g − 1)t)

)
.

It is remarkable that the same boundary value problems also appear for the

lifted actions. Due to the number of non-zero distinct principal curvatures and

their multiplicities, it is not the (g,m0,m1)-action on Sn+1 that is related to the

(g,m0,m1)-action on SO(n + 2) this way but the (2g,m0,m1)-action on S2n+1 (if

it exists). In order to make this connection visible we have to reparametrize the

normal geodesics by a factor of 2.

Theorem F. Given a (g,m0,m1)-action on SO(n + 2) with n = m0+m1

2 g, the

normal component of the tension field of the map g · γ̃(2t) → g · γ̃(2r(t)) vanishes

if and only if r solves the (2g,m0,m1, k)-boundary value problem.

In this paper we just look for linear solutions of the (g,m0,m1, k)-boundary

value problems.

Lemma G. The linear function r(t) = kt is a solution of the (g,m0,m1, k)-

boundary value problem if and only if k = 1, or (g = 2 and k = −1), or (m0 = m1

and k = 1− g).

There is the natural question of whether some of the (g,m0,m1, k)-boundary

value problems have nonlinear solutions. The cases g = 1, m0 = m1 = m, k = ±1

was treated in detail by Bizon and Chmaj [BC] in a different language. For each

m ∈ {2, 3, 4, 5} and each k ∈ {0, 1} they constructed an countably infinite family of

equivariant harmonic self-maps of Sm+1 with degree k and showed that such a family

could not exist for m ≥ 6. In [S2] the second named author of the current paper

constructed infinite families of nonlinear solutions of the (2,m0,m1,±1)-boundary

value problems. In a further subsequent paper the second named author will in

particular construct nonlinear solutions of the (3, 2, 2,−2)-, (4, 2, 2, 5)-, (6, 2, 2, 7)-,

(g, 1, 1, 1 + g)- and the (g, 1, 1, 1− 2g)-boundary value problems for g ∈ {2, 3, 4, 6}.
These solutions yield further new harmonic self-maps of the corresponding spheres

and orthogonal groups.

Finally, the general expression of the tangential part of the tension fields is evalu-

ated by two different strategies. Using Schur’s Lemma multiple times, we first show

that the tangential part vanishes for actions for which the isotropy representations

of the principal orbits G/H decompose into inequivalent irreducible H-modules.

This works for g ≤ 3 and for (g,m) = (4, 2) and (g,m) = (6, 2). The second, more

general strategy is to reduce the computations by determining the fixed point sets

of the principal isotropy groups and by employing the action of the Weyl group.

We work this strategy out for (g,m0,m1) = (4,m0, 1) and (g,m) = (6, 1).

Theorem H. Given a (g,m0,m1)-action on Sn+1 or SO(n + 2) the tangential

component of the tension field of any (k, r)-map vanishes except possibly for

(g,m0,m1) ∈ {(4, 2, 2`+ 1), (4, 4, 4`+ 3), (4, 4, 5), (4, 6, 9)}.
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In the remaining cases the function r(t) = kt is not a solution of the (g,m0,m1, k)-

boundary value problem and hence the normal component of the tension field of

the k-map does not vanish. This does not mean, however, that there are no har-

monic (k, r)-maps. Since the focus of the current paper is on linear solutions, we

have avoided the lengthy computation needed to answer the question whether the

tangential components in the remaining cases vanish for all (k, r)-maps.

We finally note that, somewhat exceptionally, the (6, 1)-action on S7 lifts to a

cohomogeneity one action on the compact Lie group Sp(2). The Weyl group of

the lifted action is again the dihedral group D6. In this case, k-maps exist for all

integers k = 6j + 1 with j ∈ Z. The tangential component of the tenison field of

any (k, r)-map on Sp(2) vanishes since the fixed point set of the principal isotropy

group just consists of one unparametrized normal geodesic. The normal component

vanishes if r solves the (6, 1, 1, k)-boundary value problem. Hence, a k-map of Sp(2)

is harmonic if and only if k = 1 or k = −5 (the degree of the −5-map is +1).

The paper is organized as follows: In Section 2 we review the construction of the

equivariant self-maps of cohomogeneity one manifolds introduced by the first named

author in [P1]. In Section 3 we compute the tensions fields of the (k, r)-maps in the

general setting and prove Theorem A and Theorem B. In Section 4 and Section 5

we evaluate the general expression for the normal component of the tension field

in the special case of the (g,m0,m1)-actions on Sn+1 and SO(n+ 2), respectively.

Theorem C is proved in Section 4, Theorem C is proved in Section 5. In Section 6

we investigate by elementary means when the linear function r(t) = kt solves the

(g,m0,m1, k)-boundary value problem and prove Lemma G. In Section 7 we eval-

uate the tangential components of the tension fields for the (g,m0,m1)-actions on

Sn+1 and SO(n+2) and prove Theorem H. The nonstandard trigonometric identity

used in the proofs of Theorem E and Theorem F is established in Section 8.

2. Equivariant self-maps of cohomogeneity one manifolds

In this initial section we briefly review the construction of the equivariant self-

maps of cohomogeneity one manifolds introduced by the first named author in [P1].

Let M be as in the introduction, i.e., a compact Riemannian manifold with an

isometric action G×M →M of a compact Lie group G on M such that the orbit

space M/G is isometric to the closed interval [0, L]. The end points 0 and L of

the interval correspond to non-principal orbits N0 and N1 while each interior point

t corresponds to a principal orbit. We fix a unit-speed normal geodesic γ, i.e.,

a geodesic γ : R → M with γ(0) ∈ N0 and γ(L) ∈ N1 that passes through all

orbits perpendicularly. The isotropy groups of the regular points γ(t) with t 6∈ ZL
are constant. We denote this common principal isotropy group by H. The Weyl

group W is by definition the subgroup of the elements of G that leave γ invariant

modulo the subgroup of elements that fix γ pointwise. The Weyl group W is a

dihedral subgroup of N(H)/H generated by two involutions that fix γ(0) and γ(L),

respectively. It acts simply transitively on the regular segments of the normal

geodesic. We assume that γ is closed or, equivalently, that W is finite.
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Theorem 2.1 (see [P1]). The assignment g ·γ(t) 7→ g ·γ(kt) leads to a well defined

smooth self-map of M , the k-map, if k is of the form k = j|W |/2 + 1 where j is

any even integer. This is even true for any integer j if the isotropy group at γ(L)

is a subgroup of the isotropy group at γ
(
(|W |/2 + 1)L

)
. The degree of the k-map is

given by

deg =

{
k if codimN0 and codimN1 are both odd,

+1 otherwise,

if j is even, and by

deg =


k if codimN0 and codimN1 are both odd,

0 if codimN0 and codimN1 are both even, |W | 6∈ 4Z,

−1 if codimN0 is even, codimN1 is odd, and |W | 6∈ 8Z,

+1 otherwise,

if j is odd.

When working with this construction it is very convenient to use extended group

diagrams. The usual group diagram of the action G ×M → M consists of the

group G, the principal isotropy group H along a fixed normal geodesic γ and the

two non-principal isotropy groups K0 = Gγ(0) and K1 = Gγ(L). In the extended

group diagram we draw a circle for γ, denote the pair (G,H) in the center of the

circle and denote the non-principal isotropy groups Ki at the positions γ(iL) where

they occur. We choose γ to start on the right and to proceed counter-clockwise.

As an example we consider the extended group diagram of the action SU(3) ×
SU(3)→ SU(3), (A,B) 7→ ABAt with the unit-speed normal geodesic

γ(t) =
(

cos t − sin t 0
sin t cos t 0

0 0 1

)
and L = π/2. The isotropy groups K0 and K1 are given by SO(3) and SU(2),

respectively. The Weyl group W is a dihedral group of order |W | = 4 generated

by the two involutions σ0 =
(

1
−1
−1

)
and σ1 =

(
i
−i

1

)
. The isotropy groups

SU(3),SO(2) SO(3)

SU(2)

(
i
i
−1

)
SO(3)

(−i
−i

1

)

SU(2)

Figure 1. Extended group diagram for the action SU(3) ×
SU(3)→ SU(3), (A,B) 7→ ABAt.



8 THOMAS PÜTTMANN AND ANNA SIFFERT

K2 and K3 at t = π and t = 3π/2 are equal to ρK0ρ
−1 6= K0 and ρK1ρ

−1 = K1,

respectively, where ρ = σ1 ◦ σ0, see Figure 1. From this diagram we see that we get

k-maps of SU(3) for all odd integers k. Note that if we use the normal geodesic

γ(t − π/2), i.e., if we start at the singular orbit N1 instead of at N0 we only get

k-maps for k ∈ 4Z− 1. Each of these k-maps is identical to the k-map constructed

starting from N0. In general, it matters only for odd integers j at which non-

principal orbit the normal geodesics start.

3. The tension field of the (k, r)-maps

In this section we compute the tension field τ of the (k, r)-maps defined in the

introduction. The normal component is given in terms of the shape operator of the

orbits while the formula for the tangential component involves more information

on the group action.

Below we let ψ be a given (k, r)-map, i.e., ψ(g · γ(t)) = g · γ(r(t)). In order to

compute the tension field we need the normal and tangential derivatives of ψ. The

derivative of ψ in normal direction is given by

dψ|γ(t) · γ̇(t) =
d

dt
(ψ ◦ γ(t)) = ṙ(t)γ̇(r(t)).

In order to compute the derivative of ψ in tangential directions we use action fields.

To each element X of the Lie algebra g of G there is the corresponding action field

X∗ on M given by

X∗|p =
d

ds
(exp sX · p)|s=0.

The map g/h→ Tp(G · p) is a vector space isomorphism for regular points p. Now

we get

dψ|γ(t) ·X∗|γ(t) =
d

ds
ψ(exp sX · γ(t))|s=0 =

d

ds

(
exp sX · γ(r(t))

)
|s=0

= X∗|γ(r(t)).

By its very definition the tension field τ of ψ is given by

τ|p =

n∑
µ=0

∇dψ|p(eµ, eµ) =

n∑
µ=0

(
∇eµ(dψ · eµ)− dψ · ∇eµeµ

)
|p

(2)

where the vectors e0, . . . , en form any orthonormal basis of TpM and can be ex-

tended arbitrarily to vector fields on a neighborhood of p. Because of the equivari-

ance of the tension field it suffices to evaluate the expression along γ(t). We denote

by T the unit normal field to the principal orbits given by T|g·γ(t) = g ·γ̇(t). Further-

more, we set e0 = γ̇(t) and choose E1, . . . , En ∈ g such that e1 = E∗1|γ(t), . . . , en =

E∗n|γ(t) form an orthonormal basis of Tγ(t)(G · γ(t)). Now,

∇e0(dψ · e0)|γ(t) =
∇
dt

(
ṙ(t)γ̇(r(t))

)
= r̈(t)γ̇(r(t))



HARMONIC SELF-MAPS OF COHOMOGENEITY ONE MANIFOLDS 9

and (dψ · ∇e0e0)|γ(t) = dψ|γ(t) · ∇dt γ̇(t) = 0. Hence, the tension field definition (2)

becomes

τ|γ(t) = r̈(t)γ̇(r(t)) +

n∑
µ=1

(
∇E∗µE

∗
µ|γ(r(t)) − dψ|γ(t) · ∇E∗µE

∗
µ|γ(t)

)
.(3)

The following theorem gives the normal component of the tension field in a way

that is suitable for actions on spaces where one has some information on the Jacobi

fields (e.g. symmetric spaces). Recall that

Π
r(t)
t : Tγ(t)(G · γ(t))→ Tγ(r(t))(G · γ(r(t))

denotes the parallel transport along the normal geodesic γ and that J
r(t)
t denotes the

endomorphism of Tγ(t)(G ·γ(t)) given by composing the action field homomorphism

X∗|γ(t) 7→ X∗|γ(r(t)) with (Π
r(t)
t )−1 = Πt

r(t). We are now able to prove Theorem A

from the introduction.

Theorem 3.1. The normal component τnor
|γ(t) = 〈τ|γ(t), γ̇(r(t))〉 of the tension field

is given by

τnor
|γ(t) = r̈(t)− ṙ(t) traceS|γ(t) + trace (J

r(t)
t )∗(Π

r(t)
t )−1S|γ(r(t))Π

r(t)
t J

r(t)
t

where S|γ(t) denotes the shape operator of the orbit G · γ(t) at γ(t) and (J
r(t)
t )∗

denotes the adjoint endomorphism of J
r(t)
t .

Proof. We evaluate the tension field formula (3). First notice that

〈∇X∗Y ∗, T 〉 = 〈X∗, S · Y ∗〉

by the definition of the shape operator. Hence,

〈
n∑
µ=1

∇E∗µE
∗
µ, T 〉|γ(t) =

n∑
µ=1

〈eµ, S|γ(t)eµ〉 = traceS|γ(t).

Similarly, we get

〈
n∑
µ=1

∇E∗µE
∗
µ, T 〉|γ(r(t)) =

n∑
µ=1

〈E∗µ|γ(r(t)), S|γ(r(t))E
∗
µ|γ(r(t))〉

=

n∑
i=1

〈Jr(t)t eµ, (Π
r(t)
t )−1S|γ(r(t))Π

r(t)
t J

r(t)
t eµ〉. �

Remark 3.2. For actions on concretely given spaces, the shape operator can be

computed by S ·X∗|γ(t) = −∇γ̇(t)X
∗. This standard fact follows from applying that

∇ is torsion free to the second derivatives of the map (s, t) 7→ exp sX · γ(t).

Remark 3.3. The (k, r)-maps can be defined analogously for singular codimension

one metric foliations with closed normal geodesics. Theorem 3.1 is still valid in this

situation. One only has to substitute the action fields by variation vector fields of

variations by normal geodesics.
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We now give a second formula in terms of data on the acting group G. We adopt

the notation from [P2] and [GZ].

Let Q be a fixed biinvariant metric on G. Denote the orthonormal complement

of the Lie algebra h of the principal isotropy group H in g by n. Define the metric

endomorphisms Pt : n→ n by

Q(X,Pt · Y ) = 〈X∗, Y ∗〉|γ(t).

Note that each Pt is symmetric with respect to Q and AdH equivariant. We have

〈X∗, S ·X∗〉|γ(r(t)) = −〈X∗,∇TX∗〉|γ(r(t)) = − 1
2ṙ(t)

d
dt 〈X

∗, X∗〉|γ(r(t))

= − 1
2Q(X, (Ṗ )r(t)X) = − 1

2 〈X
∗, (P−1

t (Ṗ )r(t)X)∗〉|γ(t)

and hence the following statement holds.

Theorem 3.4. The normal component of the tension field is given by

τnor
|γ(t) = r̈(t) + 1

2 ṙ(t) traceP−1
t Ṗt − 1

2 traceP−1
t (Ṗ )r(t).

Note that the objects of the formula in Theorem 3.1 depend only on the orbit

geometry of the action. Usually, however, orbit equivalent actions will yield differ-

ent endomorphisms fields Pt. For the (g,m)-actions with g ≥ 3 on SO(mg + 2),

for example, the metric endomorphisms Pt do not diagonalize simultaneously while

the shape operators S|γ(t) do diagonalize simultaneously in a suitable parallel or-

thonormal basis along γ. For these actions, the formula of Theorem 3.1 is much

easier to evaluate.

We now turn to the tangential component of the tension field. First of all, we

have the following standard fact.

Lemma 3.5. The tangential component τ tan
|γ(t) of the tension field is contained in

the common fixed point set
(
Tγ(t)(G · γ(t))

)H
of the principal isotropy group H on

Tγ(t)(G · γ(t)).

Proof. This follows from the equivariance of the tension field h ·τ|p = τ|hp = τ|p. �

We recall from formula (3) that the tangential component of the tension field is

given by

τ tan
|γ(t) =

( n∑
µ=1

∇E∗µE
∗
µ|γ(r(t))

)tan

− dψ|γ(t) ·
( n∑
µ=1

∇E∗µE
∗
µ|γ(t)

)tan

.

Note that
∑n
µ=1∇E∗µE

∗
µ and hence each summand in the formula above is indepen-

dent of the choice of the orthonormal basis e1 = E∗1|γ(t), . . . , en = E∗n|γ(t) of Tγ(t)(G·
γ(t)). Indeed, if F1, . . . , Fn are other elements of n such that F ∗1|γ(t), . . . F

∗
n|γ(t) is

an orthonormal basis of Tγ(t)(G · γ(t)) then Fµ =
∑n
ν=1 aνµEν where (aνµ) is an

orthonormal matrix. Hence,
n∑
µ=1

∇F∗µF
∗
µ =

n∑
ν,σ=1

n∑
µ=1

aνµaσµ∇E∗νE
∗
σ =

n∑
ν=1

∇E∗νE
∗
ν .
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In order to actually compute the tangential component, we need the connection

along the orbits. Using the skew-symmetry of ∇Z∗ we get

(4) 〈∇X∗X∗, Y ∗〉 = −〈∇Y ∗X∗, X∗〉 = −〈∇Y ∗X∗, X∗〉+ 〈∇X∗Y ∗, X∗〉
= 〈[X∗, Y ∗], X∗〉 = −〈[X,Y ]∗, X∗〉.

Hence,

(5) 〈∇X∗X∗, Y ∗〉|γ(t) = −Q([X,Y ], PtX) = Q(Y, [X,PtX])

= 〈(P−1
t [X,PtX])∗, Y ∗〉|γ(t)

by the skew-smmetry of adX and therefore

(∇X∗X∗|γ(t))
tan = (P−1

t [X,PtX])∗|γ(t).

Note that [X,PtX] is contained in n for all X ∈ n. Indeed, Q( . , Pt . ) is AdH -

invariant and hence adY is skew-symmetric with respect to this inner product for

every Y ∈ h. The claim follows from

Q([X,PtX], Y ) = −Q(PtX, [X,Y ]) = Q(adY X,PtX) = 0,

see [GZ].

Theorem 3.6. The tangential component of the tension field is given by

τ tan
|γ(t) =

(
P−1
r(t)

n∑
µ=1

[Eµ, Pr(t)Eµ]
)∗
|γ(r(t))

where E1, . . . , En ∈ n are such that E∗1|γ(t), . . . , E
∗
n|γ(t) form an orthonormal basis

of Tγ(t)(G · γ(t)).

Proof. By the previous discussion we have

τ tan
|γ(t) =

(
P−1
r(t)

n∑
µ=1

[Eµ, Pr(t)Eµ]
)∗
|γ(r(t))

−
(
P−1
t

n∑
µ=1

[Eµ, PtEµ]
)∗
|γ(r(t))

.

Each of the two summands does not depend on the choice of the orthonormal basis.

Since Pt is symmetric with respect to Q we can find a Q-orthonormal basis F1, . . . Fn
of eigenvectors of Pt for just this single time t. The F ∗µ|γ(t) then form an orthogonal

basis of T|γ(t)(G ·p). After rescaling, we get orthogonal eigenvectors of Eµ ∈ n of Pt,

such that E∗1|γ(t), . . . , E
∗
n|γ(t) form an orthonormal basis of Tγ(t)(G · γ(t)). Hence,

the second summand vanishes. �

The formula of Theorem 3.6 is appropriate when the somewhat artifical use of

the biinvariant metric Q on the acting group and the endomorphism Pr(t) might

be justified by representation theoretic reasons. We finally provide an alternative

formula for the tangential component of the tension field which avoids the objects

Q and Pr(t) and only uses the Lie bracket from the acting group. For this formula

we do not use formula (5) to evaluate the first term of equation (3), but rather stay

with formula (4). In Section 7 we will see situations where Theorem 3.6 is more

suitable and other situations where Theorem 3.7 is more suitable.
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Theorem 3.7. The tangential component of the tension field is given by

τ tan
|γ(t) = −

n∑
µ,ν=1

〈[Eµ, Fν ]∗, E∗µ〉|γ(r(t))F
∗
ν|γ(r(t)).

where E1, . . . , En ∈ n and F1, . . . , Fn ∈ n are such that E∗1|γ(t), . . . , E
∗
n|γ(t) form an

orthonormal basis of Tγ(t)(G·γ(t)) and F ∗1|γ(r(t)), . . . , F
∗
n|γ(r(t)) form an orthonormal

basis of Tγ(r(t))(G · γ(r(t))).

This is Theorem B from the introduction.

4. The normal components of the tension fields of the (k, r)-maps of

spheres

In this section we compute the tension fields of the (k, r)-maps for the (g,m0,m1)-

actions on Sn+1.

For any (g,m0,m1)-action we consider an arbitrary fixed normal geodesic γ as

in Section 2. In the extended group diagram we have the 2g = |W | non-principal

isotropy groupsK0, . . . ,K2g−1 at the positions γ(iπg ) with Lie algebras k0, . . . , k2g−1.

Note that Ki+g = Kg by the linearity of the action. Let us denote the quotients ki/h

by mi. Each mi induces the mi-dimensional vector space m∗i of action fields that

vanish at γ(iπg ). These action fields are Jacobi fields along any geodesic, in partic-

ular, along our fixed normal geodesic γ. Since they vanish at γ(iπg ) they are of the

form sin(t− iπg ) · v(t) where v is parallel along γ. The covariant derivative ∇γ̇(t)X
∗

of any such action field X∗ is cos(t − iπg ) · v(t) and hence m∗i|γ(t) is an eigenspace

of the shape operator S|γ(t) to the eigenvalue − cot(t − iπg ) for any regular time

t 6= π
gZ. Since S|γ(t) is symmetric with respect to the induced Riemannian metric

on the orbit G · γ(t) the m∗0|γ(t), . . . ,m
∗
g−1|γ(t) are pairwise orthogonal. Note that

necessarily mi+g = mi. Just from counting dimensions it follows that the mi span

g/h. Hence, the Lie algebras k0, . . . , kg−1 span g. This is a general property of the

isotropy groups of cohomogeneity one action on spaces of positive curvature called

linear primitivity in [GWZ]. Each m∗i|γ(t) is also an eigenspace of the endomorphism

J
r(t)
t defined in the previous section to the eigenvalue sin(r(t) − iπg )/ sin(t − iπg ).

Hence, (J
r(t)
t )∗ = J

r(t)
t .

Theorem 4.1. For a (g,m)-action on Smg+1 the normal component of the tension

field of a (k, r)-map is given by

2 sin2 gt · τnor
|γ(t) = 2 sin2 gt · r̈(t) +mg sin 2gt · ṙ(t)

−mg
(
(g − 1) sin 2(r(t)− t) + sin 2(r(t) + (g − 1)t)

)
.

Proof. Let t 6= π
gZ be any regular time. Theorem A yields

τnor
|γ(t) = r̈(t) +m

g−1∑
i=0

cot(t− iπg )ṙ(t)− m
2

g−1∑
i=0

sin 2(r(t)− iπg )

sin2(t− iπg )
.
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The invariant sums can be evaluated with the standard cotangent identity g cot gt =∑g−1
i=0 cot(t− iπg ) and Lemma 8.2. �

Theorem 4.2. For a (g,m0,m1)-action on Sn+1 with n = m0+m1

2 g the normal

component of the tension field of a (k, r)-map is given by

4 sin2 gt · τnor
|γ(t) = 4 sin2 gt · r̈(t) +

(
g(m0 +m1) sin 2gt+ 2g(m0 −m1) sin gt

)
ṙ(t)

− g(g − 2) sin 2(r(t)− t)
(
m0 +m1 + (m0 −m1) cos gt

)
− 2g sin

(
2(r(t)− t) + gt

)(
(m0 +m1) cos gt+m0 −m1

)
.

Proof. For odd g we have m0 = m1 = m. In this case the claimed formula can be

seen to be equivalent to the formula of Theorem 4.1. If g is even, Theorem A yields

τnor
|γ(t) = r̈(t) +

g−1∑
i=0

mi cot(t− iπg )ṙ(t)− 1

2

g−1∑
i=0

mi

sin 2(r(t)− iπg )

sin2(t− iπg )
.

We set h := g
2 . Using the standard cotangent identity we obtain

g−1∑
i=0

mi cot(t− iπg ) =

h−1∑
`=0

m0 cot(t− `πh ) +

h−1∑
`=0

m1 cot(t− π
g − `

π
h )

= h(m0 cotht−m1 tanht) = g
2

(
(m0 +m1) cot gt+ (m0 −m1) 1

sin gt

)
.

Furthermore, from Lemma 8.2 we obtain

g−1∑
i=0

mi

sin(2r − i 2π
g )

sin2(t− iπg )
=

h−1∑
`=0

m0

sin(2r − ` 2π
h )

sin2(t− 2`πg )
+

h−1∑
`=0

m1

sin(2r − 2π
g − `

2π
h )

sin2(t− π
g − `

π
h )

= 1
2g(g − 2) sin 2(r − t)

(
(m0 +m1) + (m0 −m1) cos gt

)
sin−2 gt

+ g sin(2(r − t) + gt)
(
(m0 +m1) cos gt+m0 −m1

)
sin−2 gt. �

Theorem E from the introduction follows immediately from Theorem 4.2.

5. The normal components of the tension fields of the (k, r)-maps of

orthogonal groups

In this section we compute the tension fields of the reparametrized (k, r)-maps

g · γ̃(2t) 7→ g · γ̃(2r(t)) for the (g,m0,m1)-actions on SO(n + 2) with the metric
1
2 traceXtY . Note that the reparametrization here is done in a way so that the

tension field expression fits systematically to the tension field expression for the

actions on spheres. We determine the extended group diagrams of these actions

and investigate the interplay between the action and the parallel transport along

the normal geodesic. The approach is similar to that in the previous section but the

concrete procedure is more complicated since the Jacobi operator along the normal

geodesics has two eigenvalues instead of one.

We first determine the extended group diagrams. By conjugating G by a suitable

element of SO(n+ 2) we can assume that γ(t) =
(

cos t
sin t

0

)
is a normal geodesic such
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that γ(0) is contained in the singular orbit N0. This normal geodesic γ can be lifted

horizontally to the normal geodesic

γ̃(t) =
(

cos t − sin t 0
sin t cos t 0

0 0 1ln

)
,

for the lifted action on SO(n+ 2).

The principal isotropy group H of the action G × Sn+1 → Sn+1 along γ is

a subgroup of SO(n) =
(

1
1
∗

)
⊂ SO(n + 2). In particular, all elements of H

commute with γ̃(t) for all t ∈ R.

Denote by Gγ(t) the isotropy groups of the original action along the normal

geodesic γ and by G̃γ̃(t) the isotropy groups of the lifted action along the normal

geodesic γ̃.

Lemma 5.1. The isotropy groups G̃γ̃(t) of the lifted action satisfy

G̃γ̃(t) =
{(
A, γ̃(t)−1Aγ̃(t)

) ∣∣ A ∈ Gγ(t)

}
.

In particular, each G̃γ̃(t) is isomorphic to the isotropy group Gγ(t) of the original

action for every t ∈ R.

Proof. γ̃(t) = Aγ̃(t)
(

1
B−1

)
holds if and only ifA ∈ Gγ(t) and ( 1

B ) = γ̃(t)−1Aγ̃(t).

�

Corollary 5.2. The principal isotropy group H̃ along γ̃ is the diagonal group ∆H =

{(h, h) |h ∈ H} where H is the principal isotropy group along γ.

The extended group diagram of any (g,m0,m1)-action on SO(n+ 2) hence con-

tains the 2g groups K̃i = G̃γ̃(iπg ) with Lie algebras k̃i. We denote the quotients

k̃i/h̃i by m̃i. The goal of the next considerations is in particular to show that the

corresponding spaces m̃∗i of action fields are the eigenspaces of the shape operator

S̃ of the principal orbits to the eigenvalues − 1
2 cot t−ti2 where ti = iπg .

The parallel transport along γ̃ from time 0 to any other time t is given by

multiplying an element of the Lie algebra so(n+ 2) by γ̃(t/2) simultaneously from

the left and the right. In the language of symmetric spaces this isometry is called a

transvection. We now split the normal bundle of the geodesic γ̃ in SO(n+ 2) into

two orthogonal parallel distributions. The first distribution contains the action

fields X∗ with X ∈ {0} × so(n):

so(n)∗|γ̃(t) = γ̃(t) · so(n) = γ̃(t/2) · so(n) · γ̃(t/2) = so(n).(6)

The second distribution is given by the parallel translates V|γ̃(t) = γ̃(t/2) · V|γ̃(0) ·
γ̃(t/2) of

V|γ̃(0) =
{( 0 0 −xt

0 0 −yt
x y 0

) ∣∣∣ x, y ∈ Rn
}
.

Lemma 5.3. The normal Jacobi operator R ˙̃γ(t) along γ̃ has only two eigenspaces,

namely, so(n)∗|γ̃(t) and V|γ̃(t). The corresponding eigenvalues are 0 and 1/4, respec-

tively.
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Proof. Because parallel transport is induced by isometries, it suffices to verify the

statement at t = 0. The Jacobi operator at time 0 is given by − 1
4 ad2

˙̃γ(0)
by standard

results on the curvature tensor of compact Lie groups. It is straightforward to

verify that V|γ̃(0) and so(n)∗|γ̃(0) are eigenspaces of ad2
˙̃γ(0)

to the eigenvalues −1 and

0, respectively. �

In order to keep the notation brief we denote the parallel translates of a vector

u(t0) ∈ so(n)∗|γ̃(t0) along γ̃ simply by u(t) and the parallel translates of a vector

v ∈ V|γ̃(t0) along γ̃ simply by v(t).

Corollary 5.4. Let t0 ∈ R be an arbitrary time. The Jacobi field Y along γ̃(t)

with initial data Y (t0) = u(t0) + v(t0) and ∇dtY (t0) = u′(t0) + v′(t0) is given by

Y (t) = u(t) + (t− t0)u′(t) + v(t) cos
t− t0

2
+ 2v′(t) sin

t− t0
2

.

Proof. The vector field Y given in the formula solves the Jacobi field equation
∇2

dt2Y (t) +R ˙̃γ(t)Y (t) = 0 and has the required inital values. �

Corollary 5.4 shows in particular that every parallel Jacobi field is an action field.

Moreover, for the restriction of action fields X∗ to the normal geodesic γ̃ the linear

term on the right hand side of the formula in Corollary 5.4 has to vanish. Indeed,

we have X∗|γ̃(t) = X∗|γ̃(t+2π) because of the periodicity of the normal geodesic γ̃.

Lemma 5.5. Any action field X∗ with X ∈ m̃i is an eigenfield of the Jacobi

operator to the eigenvalue 1/4, i.e., m̃∗i ⊂ V . For regular times t 6∈ Z · πg the vector

X∗|γ̃(t) is an eigenvector of the shape operator S̃|γ̃(t) of the principal orbit G̃ · γ̃(t) to

the eigenvalue − 1
2 cot t−ti2 with ti = iπg .

Proof. The action field X∗ vanishes at γ(ti). Hence, along γ̃ it is of the form

X∗|γ̃(t) = 2v′(t) sin
t− ti

2

for some v′ ∈ V|γ̃(ti). This shows that X∗|γ̃(t) is an eigenvector of the Jacobi operator

to the eigenvalue 1
4 . Moreover, we have

S̃|γ̃(t)X
∗
|γ̃(t) = −∇ ˙̃γ(t)X

∗ = −v′(t) cos
t− ti

2
. �

Corollary 5.6. We have V = ⊕2g−1
i=0 m̃∗i where the sum is orthogonal.

Proof. Both spaces have the same dimension 2n and the right space is a subspace

of the left one. The m̃∗i are mutually orthogonal since they are eigenspaces of the

shape operator to distinct eigenvalues. �

Remark 5.7. Usually there does not exist any biinvariant metric on G̃ = G×SO(n+

1) such that the orthogonal complements of h̃ in k̃i (which will by abuse of notation

later also denoted by m̃i) are mutually orthogonal within the Lie algebra g̃.

Note once again that for the (g,m0,m1)-actions on SO(n+ 2) in this section we

use the reparametrization γ(2t) 7→ γ̃(2r(t)) of the (k, r)-maps. Thus the formula of

Theorem 3.1 for the normal component of the tension field becomes

2 τnor
|γ̃(2t) = r̈(t)− 2ṙ(t) trace S̃|γ̃(2t) + 2 trace (J

2r(t)
2t )∗(Π

2r(t)
2t )−1S̃|γ̃(2r(t))Π

2r(t)
2t J

2r(t)
2t .
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Lemma 5.8. Each m̃∗i|γ̃(2t) is an eigenspace of the endomorphism J
2r(t)
2t to the

eigenvalue sin(r(t)− ti
2 )/ sin(t− ti

2 ). In particular, (J
2r(t)
2t )∗ = J

2r(t)
2t .

We now have gathered all the information to compute the normal component of

the tension field.

Theorem 5.9. For a (g,m)-action on SO(mg + 2) the normal component of the

tension field τ of the reparametrized (k, r)-map g · γ̃(2t) 7→ g · γ̃(2r(t)) is given by

4 sin2 2gt · τnor
|γ̃(2t) = 2 sin2 2gt · r̈(t) + 2mg sin 4gt · ṙ(t)

− 2mg
(
(2g − 1) sin 2(r(t)− t) + sin 2(r(t) + (2g − 1)t)

)
.

Proof. Let t 6= Zπ
g be any regular time. Evaluating the above formula yields

2 τnor
|γ̃(2t) = r̈(t) +m

2g−1∑
i=0

cot(t− i π2g )ṙ(t)− m

2

2g−1∑
i=0

sin 2(r(t)− i π2g )

sin2(t− i π2g )
.

The invariant sums can be evaluated with the standard cotangent identity 2g cot 2gt =∑2g−1
i=0 cot(t− i π2g ) and Lemma 8.2. �

Theorem 5.10. For a (g,m0,m1)-action on SO(n+ 2), n = gm0+m1

2 the normal

component of the tension field of the reparametrized (k, r)-map g·γ̃(2t) 7→ g·γ̃(2r(t))

is given by

8 sin2 2gt ·τnor
|γ(t) = 4 sin2 2gt · r̈(t)+

(
2g(m0 +m1) sin 4gt+4g(m0−m1) sin 2gt

)
ṙ(t)

− 2g(2g − 2) sin 2(r − t)
(
m0 +m1 + (m0 −m1) cos 2gt

)
− 4g sin(2(r − t) + 2gt)

(
(m0 +m1) cos 2gt+m0 −m1

)
.

Proof. Analogous to the proof of Theorem 4.2. �

Theorem F from the introduction follows immediately from Theorem 5.10.

6. Linear solutions of the (g,m0,m1, k)-boundary value problems

In Sections 4 and 5 we computed the normal component of the tension field of

the (k, r)-maps for any (g,m0,m1)-action on a sphere Sn+1 and for any (g,m0,m1)-

action on an orthogonal group SO(n + 2) where n = m0+m1

2 g. This normal

component vanishes if r solves the (g,m0,m1, k)-boundary value problem or the

(2g,m0,m1, k)-boundary value problem, respectively. Here, we determine when

the linear function r(t) = kt is a solution of these boundary value problems and

thus prove Lemma G from the introduction.

Lemma 6.1. For m0 6= m1 the linear solution r(t) = kt with k = jg + 1, j ∈ Z,

is a solution of the (g,m0,m1, k)-boundary value problem if and only if k = 1 or

g = 2 and k = −1.
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Proof. The if-part is straightforward. In order to prove the only if-part we plug

r(t) = kt into the ODE of the (g,m0,m1, k)-boundary value problem and evaluate

at t = π
2g . After straightforward algebraic manipulations we obtain the equation

k = sin 2j+1
2 π, i.e., k = ±1. �

Lemma 6.2. For m0 = m1 =: m the linear solution r(t) = kt with k = jg + 1,

j ∈ Z, is a solution of the (g,m0,m1)-BVP if and only if j = 0 or j = −1, i.e.,

k = 1 or k = 1− g.

Proof. Plugging r(t) = kt into the ODE (1) yields

k sin 2gt = (g − 1) sin 2(k − 1)t+ sin 2(k − 1 + g)t.

It is straightforward to verify that this condition vanishes for k = 1 and k = 1− g.

For general k we evaluate the equation at t0 = π
4g and obtain

k = (g − 1) sin 2(k − 1)t0 + sin 2(k − 1 + g)t0.

Hence |k| ≤ g − 1 + 1 = g. This implies j = 0 or j = −1. �

The two lemmas above together are equivalent to Lemma G from the introduc-

tion.

7. The tangential components of the tension fields

In this section we prove Theorem H from the introduction, i.e., we show that

the tangential component of the tension field of any (k, r)-map for any (g,m0,m1)-

action on Sn+1 and on SO(n+ 2) vanishes except possibly for

(g,m0,m1) ∈ {(4, 2, 2`+ 1), (4, 4, 4`+ 3), (4, 4, 5), (4, 6, 9)}.

We pursue two different strategies in the proof.

The first strategy is to employ Schur’s lemma and finally apply Theorem 3.6.

This strategy works for the (g,m0,m1)-actions on Sn+1 and SO(n + 2) where the

mi in the decomposition

g = h⊕m0 ⊕m1 ⊕ . . .⊕mg−1

are inequivalent irreducible H-modules and where the H-module h does not contain

any irreducible submodules equivalent to some of the mi, i.e., it works for g ≤ 3, for

(g,m) = (4, 2) and for (g,m) = (6, 2). Note that in this section we define mi as the

orthogonal complement of h in ki with respect to the biinvariant metric 1
2 traceXtY

on G ⊂ SO(n+ 2), whereas previously we used the quotient definition mi = ki/h.

The second, more general strategy is to determine the fixed point set of H or H̃,

respectively, and to employ the action of the Weyl group. This strategy works even

without using the action of the Weyl group for g ≤ 3 if one employs all possible

(even discrete) isometries that leave the foliation of the sphere invariant. In each of

these cases the fixed point set of the principal isotropy group on the sphere Sn+1 is

just the unparametrized normal geodesic. In the cases where discrete isometries are

available, i.e., for g = 1, g = 2 and (g,m) = (3, 2) the action has to be lifted to an

action on O(n+ 2) rather than on SO(n+ 2). This is no problem since the foliation
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of SO(n + 2) by the orbits of an unextended (g,m0,m1)-action can be obtained

from the foliation of O(n + 2) by the orbits of the extended (g,m0,m1)-action by

intersecting the orbits with SO(n+ 2). The fixed point set of the principal isotropy

group of the lifted action then consists of finitely many disjoint copies of normal

geodesics, for example 224 disjoint copies for g = 3, m = 8. Since we know by the

first strategy that the tangential components of the tension fields of the (k, r)-maps

for the (g,m0,m1)-actions with g ≤ 3 vanish, we do not provide any details about

the computations of the fixed point sets in these cases. We rather work the second

approach out in detail for (g,m0,m1) = (4,m0, 1) and for (g,m) = (6, 1), since the

first strategy does not work in these cases.

The tangential components of the tension fields of the (k, r)-maps for the re-

maining (g,m0,m1)-actions on Sn+1 and SO(n+ 2) with

(g,m0,m1) ∈ {(4, 2, 2`+ 1), (4, 4, 4`+ 3), (4, 4, 5), (4, 6, 9)}

could be computed in an analogous way. We have avoided the lengthy computations

and leave the question open whether the tangential components of the tension fields

of all (k, r)-maps vanish in these cases. By Lemma G from the introduction there are

no linear solutions r(t) = kt to the (g,m0,m1, k)-boundary value problem except

for k = 1 in these cases anyway.

7.1. Using Schur’s Lemma. The goal of this subsection is to establish the fol-

lowing result.

Theorem 7.1. Let G × Sn+1 → Sn+1 be a (g,m0,m1)-action such that the mi in

the decomposition

g = h⊕m0 ⊕m1 ⊕ . . .⊕mg−1(7)

are inequivalent irreducible H-modules and such that the H-module h does not con-

tain any irreducible submodules equivalent to some of the mi. Then the tangential

component of the tension field of any (k, r)-map for the (g,m0,m1)-action on Sn+1

and on SO(n+ 2) vanishes.

Before we turn to the proof of this theorem we show for which triples (g,m0,m1)

the hypothesis holds.

Lemma 7.2. The hypothesis of Theorem 7.1 holds for g ≤ 3 and for (g,m0,m1) ∈
{(4, 2, 2), (6, 2, 2)}.

Proof. For the (1,m)-action on Sm+1 the principal orbit is SO(m+ 1)/SO(m) and

the Lie algebra so(m+ 1) decomposes as an SO(m)-module into the adjoint repre-

sentation of SO(m) and the irreducible standard representation on Rm.

Similarly, the principal orbit of the (2,m0,m1)-action is

SO(m0 + 1)× SO(m1 + 1)/SO(m0)× SO(m1)

and the Lie algebra so(m0 + 1)⊕ so(m1 + 1) decomposes as an SO(m0)× SO(m1)-

module into the adjoint representations of SO(m0) and SO(m1) and the irreducible

standard representations of SO(m0) and SO(m1).
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For g = 3 the principal orbits are diffeomorphic to the manifolds of flags in the

projective planes RP2, CP2, HP2, and OP2, i.e., diffeomorphic to

SO(3)/Z2 × Z2, SU(3)/T 2, Sp(3)/Sp(1)3, and F4/Spin(8).

It is well-known that the isotropy representation of each of these spaces splits into

three inequivalent m-dimensional H-modules all of which are inequivalent to the

submodules of h. These decompositions of g given by the isotropy representation

are precisely the decompositions (7) of g by Schur’s Lemma.

The adjoint actions of the compact Lie groups Sp(2) and G2 provide the (4, 2)-

action on S9 and the (6, 2)-action on S13. In each case decomposition (7) is the root

space decomposition of the Lie group, which clearly has the desired property. �

The proof of Theorem 7.1 is simple for the actions on the spheres. Indeed, by

Schur’s Lemma, the H-equivariant endomorphism Pt is diagonal for any regular

time t 6∈ π
gZ. Hence, the vanishing of the tangential component follows from Theo-

rem 3.6 by choosing an orthonormal basis compatible with the decomposition (7).

The proof of Theorem 7.1 for the lifted actions is given in the rest of this subjec-

tion. We first need to establish some more facts about the actions on the spheres.

As before, let G × Sn+1 → Sn+1 be a (g,m0,m1)-action with normal geodesic

γ(t) =
(

cos t
sin t

0

)
. The non-regular isotropy groups Ki appear at the points γ(ti)

with ti = iπg . The principal isotropy group H along γ is constant and equal to

the isotropy groups Ki|γ̇(ti) of the actions of Ki on the normal spaces to the orbits

G ·γ(ti) at γ(ti). The orbit Ki · γ̇(ti) is a linear and hence totally geodesic subsphere

Smii of Sn+1. We endow G ⊂ SO(n + 2) with the biinvariant metric 1
2 traceXtY .

The orthogonal complements mi of the Lie algebra h of H in the Liealgebras ki of

Ki are irreducible H-modules by assumption. Hence, there exists up to a constant

factor just one homogeneous metric on Ki/H. The map Ki → Smii , k 7→ k · γ̇(ti)

is up to a constant factor a Riemannian submersion from Ki with the biinvariant

metric inherited from G to Smii with the standard metric inherited from Sn+1. Let

ei,1, . . . , ei,mi denote an orthonormal basis of Tγ̇(ti)S
mi
i and Ei,1, . . . , Ei,mi denote

their horizontal lifts to mi at the unit element 1l.

Lemma 7.3. The curves exp sEi,µ · γ̇(ti) are all great circles in Smii .

Proof. The horizontal lifts of the great circles γ̇(ti) cos s+ei,µ sin s through the unit

element 1l of Ki are horizontal geodesics in Ki and hence 1-parameter subgroups of

Ki. The Ei,1, . . . , Ei,mi are the initial vectors of these 1-parameter subgroups. �

Corollary 7.4. As an element of so(n+ 2) each Ei,µ ⊂ mi is of the form

Ei,µ =

(
0 0 vt sin ti
0 0 −vt cos ti

−v sin ti v cos ti Y

)

with Y v = 0. In particular, Ei,µ commutes with its projection to so(n) =
(

0 0 0
0 0 0
0 0 ∗

)
.
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Proof. We have

exp sEi,µ · γ(ti) = γ(ti),

exp sEi,µ · γ̇(ti) = γ̇(ti) cos s+ ei,µ sin s,

exp sEi,µ · ei,µ = −γ̇(ti) sin s+ ei,µ cos s.

Hence,

exp sEi,µ =
(

cos ti − sin ti 0
sin ti cos ti 0

0 0 A

)( 1 0 0 0
0 cos s − sin s 0
0 sin s cos s 0
0 0 0 ∗

)(
cos ti sin ti 0
− sin ti cos ti 0

0 0 A−1

)
where A ∈ SO(n) is any matrix whose first column is the projection of ei,µ ⊂ Smii ⊂
Sn+1 ⊂ Rn+2 to the last n components (the first two are 0). Differentiating with

respect to s and evaluating at s = 0 yields the claimed statement. �

We can now turn to the lifted (g,m0,m1)-action

G× SO(n+ 1)× SO(n+ 2)→ SO(n+ 2), (A,B) · C = ACB−1.

We endow SO(n+ 2) with the biinvariant metric 1
2 traceXtY as before. The group

G̃ = G× SO(n+ 1) is considered to be the Riemannian product of G ⊂ SO(n+ 2)

with 1
2 traceXtY and SO(n + 1) with 1

2 traceXtY . Note that in this section m̃i
is defined to be the orthogonal complement of h̃ in k̃i whereas it was previously

defined to be the quotient k̃i/h̃.

Our goal is to construct an orthogonal decomposition

g̃ = h̃⊕ ã1 ⊕ ã2 ⊕ . . .⊕ ãn ⊕ h̃± ⊕ q̃(8)

of the Lie algebra of G̃ = G×SO(n+ 1) such that for each regular time t 6∈ π
gZ the

sum

ã∗1|γ̃(t) ⊕ ã∗2|γ̃(t) ⊕ . . .⊕ ã∗n|γ̃(t) ⊕ h̃∗±|γ̃(t) ⊕ q̃∗|γ̃(t)(9)

is orthogonal, each ãµ is a P̃t-invariant abelian subalgebra of g̃, and h∗± and q̃ are

eigenspaces of P̃t. Theorem 3.7 will then imply that the tangential components of

the tension fields of all (k, r)-maps vanish.

We use the canonical identification H → H̃, h 7→ (h, h) and introduce several

H-equivariant maps. First, for any i ∈ {0, . . . , g − 1} the map

ι : mi → m̃i, X 7→
(
X, γ̃(ti)

−1Xγ(ti)
)
,

where ti = iπg , is H-equivariant since all elements of H commute with γ̃(t) for all

t ∈ R. For the same reason the maps

σ : m̃i → m̃i+g, (X, X̂) 7→
(
X,
(−1l2 0

0 1ln

)
X̂
(−1l2 0

0 1ln

))
and

π : m̃i → {0} × so(n), (X, X̂) 7→
(

0, 1
2

(
X̂ +

(−1l2 0
0 1ln

)
X̂
(−1l2 0

0 1ln

)))
.

are H-equivariant. Note that π is just the projection of X to its so(n)-part blown

up a little for formal reasons. We denote the image of π by p̃i. Obviously, we have

π ◦ σ = π, i.e., the projections of m̃i and m̃i+g are the same. In the following we

assume that each p̃i contains a non-zero element and is thus isomorphic to m̃i by
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Schur’s lemma. It is obvious how to modify the following arguments if some of the

p̃i = {0}.
Next, we set h̃± = {(X,−X) | X ∈ h}. Note that for X ∈ h,

(X,−X)− (X,X) = (0,−2X).

Hence, (X,−X)∗|γ̃(t) = (0,−2X)∗|γ̃(t) and h̃∗±|γ̃(t) = ({0} × h)∗|γ̃(t).

Finally, we define the space q̃ to be the orthogonal component of

p̃0 ⊕ . . .⊕ p̃g−1 ⊕ {0} × h

in {0} × so(n).

Lemma 7.5. For regular times t 6∈ π
gZ, the decomposition

g̃∗|γ̃(t) = m̃∗0|γ̃(t) ⊕ . . . m̃
∗
2g−1|γ̃(t) ⊕ p̃∗0|γ̃(t) ⊕ . . . p̃

∗
g−1|γ̃(t) ⊕ h̃∗±|γ̃(t) ⊕ q̃∗|γ̃(t)

is orthogonal.

Proof. The orthogonality of the decomposition

g̃∗|γ̃(t) = m̃∗0|γ̃(t) ⊕ . . .⊕ m̃∗2g−1|γ̃(t) ⊕ so(n)∗|γ̃(t)

was established in Section 5. Since the H-module h does not contain any H-

submodules equivalent to any of the mi, the H-module h̃∗±|γ̃(t) is perpendicular

to

m̃∗0|γ̃(t) ⊕ . . .⊕ m̃∗2g−1|γ̃(t) ⊕ p̃∗0|γ̃(t) ⊕ . . . p̃
∗
g−1|γ̃(t).

Finally, q̃∗|γ̃(t) is perpendicular to all other summands by construction, since so(n)→
so(n)∗|γ(t) is an isometry for all times t ∈ R. �

Now consider the elements

Ẽi,µ = ι(Ei,µ) ∈ m̃i, σ(Ẽi,µ) ∈ m̃i+g, and π(Ẽi,µ) ∈ p̃i.

for all i ∈ {0, . . . , g − 1} and µ ∈ {1, . . . ,mi}.

Lemma 7.6. The set of all Ẽ∗i,µ|γ̃(t), σ(Ẽi,µ|γ̃(t))
∗, and π(Ẽi,µ|γ̃(t))

∗ is an orthogonal

basis of

m̃∗0|γ̃(t) ⊕ . . . m̃
∗
2g−1|γ̃(t) ⊕ p̃∗0|γ̃(t) ⊕ . . . p̃

∗
g−1|γ̃(t)

for any regular time t 6∈ π
gZ.

Proof. Each mi is irreducible. Therefore, the H-equivariant isomorphisms ι : mi →
m̃i, σ : m̃i → m̃i+g, π : m̃i → pi, m̃i → m̃∗i|γ̃(t), and p̃i → p̃∗i|γ̃(t) identify the inner

products on all these spaces up to scalar factors and hence preserve perpendicularity.

�

Note that the decomposition

g̃ = h̃⊕ m̃0 ⊕ m̃1 ⊕ . . .⊕ m̃g−1

⊕ m̃g ⊕ m̃g+1 ⊕ . . .⊕ m̃2g−1(10)

⊕ p̃0 ⊕ p̃1 ⊕ . . .⊕ p̃g−1 ⊕ h̃± ⊕ q̃

itself is not necessarily orthogonal.
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Lemma 7.7. The columns in the decomposition (10) are mutually perpendicular.

Proof. For each i ∈ {0, . . . , g−1} the summands m̃i, m̃i+g and p̃i in the decomposi-

tion (10) are equivalent H-modules. They are inequivalent to any other m̃j , m̃j+g,

p̃j . Since h does not contain any H-invariant subspaces equivalent to one of the mi,

the space h̃± is perpendicular to the m̃i, m̃i+g and p̃i. Finally, q̃ is perpendicular

to all of the other spaces by its definition. �

Now set Ẽi,µ = ι(Ei,µ) and

ãi,µ = span{Ẽi,µ, σ(Ẽi,µ), π(Ẽi,µ)}.

Lemma 7.8. The sum
⊕g−1

i=0

⊕mi
µ=1 ãi,µ is orthogonal.

Proof. For any i 6= j, any ãi,µ is perpendicular to any ãj,ν by Lemma 7.7. We now

consider the case i = j and µ 6= ν. By Corollary 7.4, we have

Ei,µ =

(
0 0 vt sin ti
0 0 −vt cos ti

−v sin ti v cos ti Y

)
and Ei,ν =

(
0 0 wt sin ti
0 0 −wt cos ti

−w sin ti w cos ti Z

)
for some Y and v with Y v = 0 and some Z and w with Zw = 0. Now, we have

Ẽi,µ =
(
Ei,µ,

(
0 0 0
0 0 −vt
0 v Y

))
, σ(Ẽi,µ) =

(
Ei,µ,

(
0 0 0
0 0 vt

0 −v Y

))
, π(Ẽi,µ) =

(
0,
(

0 0 0
0 0 0
0 0 Y

))
and

Ẽi,ν =
(
Ei,ν ,

(
0 0 0
0 0 −wt

0 w Z

))
, σ(Ẽi,ν) =

(
Ei,ν ,

(
0 0 0
0 0 wt

0 −w Z

))
, π(Ẽi,ν) =

(
0,
(

0 0 0
0 0 0
0 0 Z

))
.

As noted earlier, the H-equivariant isomorphisms ι, σ, and π preserve perpendicu-

larity. Hence, Y and Z are perpendicular. But then v and w are perpendicular as

well. It is now immediate from the formulas above that ãi,µ and ãi,ν are perpen-

dicular. �

Lemma 7.9. Each ãi,µ is an abelian subalgebra of g̃.

Proof. This is an immediate consequence of Corollary 7.4. �

Lemma 7.10. For any regular time t, each ãi,µ is P̃t-invariant and h̃± and q̃ are

eigenspaces of P̃t.

Proof. Let Q̃ denote the biinvariant metric on G̃ = G × SO(n + 1) chosen at the

beginning of this section, i.e., the product metric of 1
2 traceXtY on G ⊂ SO(n+ 2)

with 1
2 traceXtY on SO(n+1). The h̃±, and q̃ and all the ãi,µ are mutually orthog-

onal and their respective action spaces at any regular time are mutally orthogonal.

Hence, it follows from the equation

Q̃(P̃tX,Y ) = 〈X∗|γ̃(t), Y
∗
|γ̃(t)〉

that the h̃±, q̃ and each of the ãi,µ is P̃t-invariant. Since {0} × so(n) → so(n)∗|γ̃(t)

is an isometry for all regular times, it follows that P̃t is the identity on q̃ and that

h̃± is an eigenspace to the eigenvalue 2 of P̃t. �

Theorem 7.1 now follows from Theorem 3.7.
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7.2. The case (g,m0,m1) = (4,m0, 1). Let Mm0+2,2 denote the space of real

(m0 + 2)× 2 matrices with the norm |X|2 = traceXtX. We consider the action

O(m0 + 2)×O(2)×Mm0+2,2 →Mm0+2,2,
(
(A,B), X

)
7→ AXB−1.

This action induces a (4,m0, 1)-action on the unit sphere in Mm0+2,2. A normal

geodesic for this action is

γ(t) =
(

cos t 0
0 sin t
0 0

)
where each zero in the last row is 0 ∈ Rm0 . The principal isotropy group along γ is

H =
{(( ε1

ε2
C

)
, ( ε1 ε2 )

) ∣∣∣ ε1, ε2 = ±1, C ∈ O(m0)
}
.

Non-principal isotropy groups along γ appear at the multiples of π
4 :

t = 0 mod π : K0 =
{(( ε1

A′
)
, ( ε1 ε2 )

) ∣∣∣ ε1, ε2 = ±1, A′ ∈ O(m0 + 1)
}
,

t = π
4 mod π : K1 =

{(
(B C ) , B

) ∣∣B ∈ O(2), C ∈ O(m0)
}
,

t = π
2 mod π : K2 =

{(( ∗ ∗
ε2
∗ ∗

)
, ( ε1 ε2 )

) ∣∣∣ ε1, ε2 = ±1
}
,

t = 3π
4 mod π : K3 =

{(
( SBS C ) , B

) ∣∣B ∈ O(2), C ∈ O(m0), S =
(

1
−1

)}
.

Via the above action O(m0+2)×O(2) naturally becomes a subgroup of O(Mm0+2,2).

From now on we identify the orthogonal group O(Mm0+2,2) with O(2m0 + 4) by

using the basis(
1 0
0 0
0 0

)
,
(

0 0
0 1
0 0

)
,
(

0 0
1 0
0 0

)
,
(

0 1
0 0
0 0

)
,
(

0 0
0 0
0 b1

)
, . . . ,

( 0 0
0 0
0 bm0

)
,
(

0 0
0 0
b1 0

)
, . . . ,

( 0 0
0 0
bm0

0

)
of Mm0+2,2 where b1, . . . , bm0

denotes the standard basis of Rm0 . It is straightfor-

ward to compute that the homomorphism

Θ : O(m0 + 2)×O(2)→ O(2m0 + 4)

maps the elements of the principal isotropy group H as follows:(( ε1
ε2
C

)
, ( ε1 ε2 )

)
7→

(
1l2

ε1ε21l2
ε2C

ε1C

)
.(11)

The following statement is now evident.

Lemma 7.11. The fixed point set (S2m0+3)H just consists of the unparametrized

normal geodesic γ(R).

Corollary 7.12. The tangential part of the tension field of any (k, r)-map vanishes

for the O(m0 + 2)×O(2)-action on S2m0+3.

The O(m0+2)×O(2)-action on S2m0+3 lifts to the O(m0+2)×O(2)×O(2m0+3)-

action on O(2m0 + 4) given by

(A,B,C) ·D = Θ(A,B)DC−1.
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Note that we use the metric 〈X,Y 〉 = 1
2 traceXtY on O(2m0 + 4). A normal

geodesic is

γ̃(t) =

(
cos t − sin t 0
sin t cos t 0

0 0 1l2m0+2

)
.

with principal isotropy group H̃ = ∆H.

Lemma 7.13. The fixed point set of H̃ in the tangent space Tγ̃(t)G̃·γ̃(t) is generated

by F̃ ∗|γ̃(t) along where

F̃ =

(
0 −1
1 0

0m0
0m0

)
∈ so(2m0 + 2) ⊂ so(2m0 + 4).

Note that F̃ ∗ is a parallel vector field along γ̃.

Proof. Using the fact that the center of O(m0) is ±1l it is straightforward to verify

that the fixed point set of H̃ in O(2m0 + 4) consist of elements of the form( ∗2
∗2
±1lm0

±1lm0

)
.

The tangent space to this fixed point set at γ̃(t) is spanned by ˙̃γ(t) and F̃ ∗|γ̃(t). �

The Weyl group of the O(m0 + 2)×O(2)-action on S2m0+3 is generated by

σ0 =
((

1
−1l

)
, 1l
)

and σ1 =
((

0 −1
1 0

1l

)
,
(

0 −1
1 0

))
.

In order to obtain formulas for the two involutions σ̃0 and σ̃1 that generate the

Weyl group of the action on O(2m0 + 4), we note that

Θ(σ0) =

( 1
−1
−1

1
−1l

)
and Θ(σ1) =

 0 1
1 0

0 −1
−1 0

0 −1l
1l 0

 .

For convenience, we denote Θ(σ0) and Θ(σ1) again by σ0 and σ1. The composition

ρ = σ1 · σ0 =

 0 −1
1 0

0 −1
1 0

0 −1l
1l 0


is a primitive rotation of order 4 in the dihedral Weyl group D4 of the O(m0 +

2) × O(2)-action on S2m0+3. Now we have σ̃0 = (σ0, σ0) and σ̃1 = (σ1, σ̂1) where

σ̂1 = γ̃(−π4 )σ1γ̃(π4 ), and, hence,

ρ̃ = (ρ, ρ̂), where ρ̂ = σ̂1 · σ0 =

( 1l2
0 −1
1 0

0 −1l
1l 0

)
is a primitive rotation of order 4 in the dihedral Weyl group D4 of the O(m0 + 2)×
O(2)×O(2m0 + 3)-action on O(2m0 + 4). The following statement is now evident.

Lemma 7.14. The vector F̃ is invariant under the Weyl group rotation, i.e.,

ρ̂F̃ ρ̂−1 = F̃ .
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The Lie algebra of G = O(m0 + 2)×O(2) splits orthogonally as

g = h⊕m0 ⊕m1 ⊕m2 ⊕m3

where

h = so(m0)× {0}, m0 =
{((

0 0 0
0 0 −ut

0 u 0

)
, 0
)
| u ∈ Rm0

}
,

m1 = R ·
((

0 −1 0
1 0 0
0 0 0

)
,
(

0 −1
1 0

))
, m2 = ρm0ρ

−1, m3 = ρm1ρ
−1.

The principal isotropy group H acts by multiplication by ε1ε2 on m1 ⊕ m3, on m0

by multiplication by ε2C on Rm0 , and on m2 by multiplication by ε1C on Rm0 .

Under the derivative of the homomorphism Θ at (1l, 1l) the generators of m0 and

m1 are mapped as follows:

ξ0(u) := dΘ|(1l,1l)

((
0 0 0
0 0 −ut

0 u 0

)
, 0
)

=

 0 0
−ut 0

0 −ut

0 0
0 u 0 0
0 0 u 0

 ,

ξ1 := dΘ|(1l,1l)

((
0 −1 0
1 0 0
0 0 0

)
,
(

0 −1
1 0

))
=

 0 0 −1 −1
0 0 1 1
1 −1 0 0
1 −1 0 0

0 1l
−1l 0

 .

We further need

ξ̂1 := γ̃(−π4 )ξ1γ̃(π4 ) =


0 0 0 0
0 0

√
2
√

2

0 −
√

2 0 0

0 −
√

2 0 0
0 1l
−1l 0

 .

Now, m̃0 is generated by the (ξ0(u), ξ0(u)) and m̃1 is generated by (ξ1, ξ̂1). The

other m̃i are given by

m̃2` = ρ̃`m̃0ρ̃
−` and m̃2`+1 = ρ̃`m̃1ρ̃

−`.

Theorem 7.15. The tangential component of the tension field of any (k, r)-map

vanishes for the O(m0 + 2)×O(2)×O(2m0 + 3)-action on O(2m0 + 4).

Proof. Let N = dim O(2m0 + 4) − 1. We take N vectors Ẽ1, . . . , ẼN compatible

with the sum

m̃0 ⊕ . . .⊕ m̃7 ⊕ so(2m0 + 2)

such that the Ẽ∗1 , . . . , Ẽ
∗
N are orthonormal at γ̃(t) and such that ẼN = F̃ . By

Lemma 3.5 and Theorem 3.7 we have

τ tan
|γ(t) = −

N∑
µ=1

〈[Ẽµ, F̃ ]∗, Ẽ∗µ〉|γ(r(t))F̃
∗
|γ(r(t)).

It is now straightforward to compute that

[ξ0(u), F̃ ] =

 0 0
0 0
0 0
0 ut

0 0 0 0
0 0 0 −u

 ∈ so(2m0 + 2) ⊂ so(2m0 + 4).
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By the invariance of F̃ and so(2m0 + 2) under the Weyl group rotation we get

[m̃2`, F̃ ] ⊂ so(2m0 + 2).

Another straightforward computation shows

[ξ̂1, F̃ ] = 1
2 (ρ̂ξ̂1ρ̂

−1 − ρ̂3ξ̂1ρ̂
−3).

Hence,

[m̃2`+1, F̃ ] ⊂ m̃2`+3 ⊕ m̃2`+7.

It follows that

〈[Ẽµ, F̃ ]∗, Ẽ∗µ〉|γ(r(t)) = 0

if Ẽµ is contained in some m̃i. The same is true for Ẽµ in 0× so(2m0 + 2). Indeed,

[Ẽµ, F̃ ] is perpendicular to Ẽµ in so(2m0 + 2) since adF̃ is skew-symmetric, and

so(2m0 + 2) → so(2m0 + 2)∗γ̃(r(t)) is an isometry. All in all, we have shown that

τ tan = 0. �

7.3. The case (g,m) = (6, 1). Let H = C⊕ jC denote the algebra of quaternions,

Sp(1) the group of unit quaternions, and Sp(2) the group of quaternionic 2 × 2-

matrices A with ĀtA = 1l. We consider the homomorphism

ϑ : Sp(1)→ Sp(2), a+ jb 7→
(

ā3+jb̄3
√

3(āb2+ja2b̄)√
3(āb̄2+jā2b̄) a(|a|2−2|b|2)+jb(|b|2−2|a|2)

)
and the action of Sp(1)× Sp(1)3 on S7 ⊂ H2

(q1, q2) · u = ϑ(q1)uq̄2.

This is the up to equivalence unique (6, 1)-action on S7. Note that the ineffective

kernel of this action is {±(1, 1)}.
A normal geodesic for this action is

γ(t) = ( cos t
sin t ) .

The principal isotropy along γ is

H = {±(1, 1),±(i, i),±(j, j),±(k, k)}.

Non-principal isotropy groups along γ appear at the multiples of π
6 :

t = 0 mod π : K0 = {(eit, e−3it)} ∪ {j(eit, e−3it)},

t = π
6 mod π : K1 = {(ejt, ejt)} ∪ {k(ejt, ejt)},

t = π
3 mod π : K2 = {(ekt, e−3kt)} ∪ {i(ekt, e−3kt)},

t = π
2 mod π : K3 = {(eit, eit)} ∪ {j(eit, eit)},

t = 2π
3 mod π : K4 = {(ejt, e3jt)} ∪ {k(ejt, e−3jt)},

t = 5π
6 mod π : K5 = {(ekt, ekt)} ∪ {i(ekt, ekt)}.

Via the above action Sp(1)× Sp(1) becomes a subgroup of SO(H2). From now on

we use the basis

( 1
0 ) , ( 0

1 ) , ( i0 ) , ( 0
i ) ,
(
j
0

)
,
(

0
j

)
,
(−k

0

)
,
(

0
−k
)
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of H2 to identify SO(H2) with SO(8). The homomorphism

Θ : Sp(1)× Sp(1)→ SO(8)

maps the elements of the principal isotropy group H as follows:

± (1, 1) 7→ 1l8, ±(i, i) 7→
(

1l4
−1l4

)
,

± (j, j) 7→

(
1l2
−1l2

1l2
−1l2

)
,±(k, k) 7→

(
1l2
−1l2

−1l2
1l2

)
.

The following statement is now evident.

Lemma 7.16. The fixed point set (S7)H just consists of the unparametrized normal

geodesic γ(R).

Corollary 7.17. The tangential part of the tension field of any (k, r)-map vanishes

for the Sp(1)× Sp(1)-action on S7 vanishes.

The Sp(1)×Sp(1)-action on S7 lifts to the Sp(1)×Sp(1)×SO(7)-action on SO(8)

given by

(q1, q2, B) · C = Θ(q1, q2)CB−1.

Note that we use the metric 〈X,Y 〉 = 1
2 traceXtY on SO(8). A normal geodesic is

γ̃(t) =
(

cos t − sin t 0
sin t cos t 0

0 0 1l6

)
with principal isotropy group H̃ = ∆H.

Lemma 7.18. The fixed point set of H̃ in the tangent space Tγ̃(t)G̃·γ̃(t) is generated

by the three vectors F̃ ∗1|γ̃(t), F̃
∗
2|γ̃(t), F̃

∗
3|γ̃(t) where

F̃1 :=

(
0
J

0
0

)
, F̃2 :=

(
0

0
J

0

)
, F̃3 :=

(
0

0
0
J

)
∈ so(6) ⊂ so(8)

with J =
(

0 −1
1 0

)
.

Note that F̃ ∗1 , F̃ ∗2 , and F̃ ∗3 are orthonormal parallel vector fields along γ̃.

Proof. The fixed point set of H̃ in SO(8) can easily be seen to consist of elements

of the form ( ∗2
∗2
∗2
∗2

)
.

The tangent space to this fixed point set at γ̃(t) is spanned by ˙̃γ(t) =

(
J

0
0

0

)
,

F̃ ∗1|γ̃(t), F̃
∗
2|γ̃(t), and F̃ ∗3|γ̃(t). �

The Weyl group of the Sp(1)× Sp(1)-action on S7 is generated by

σ0 = (eiπ/4, e−i3π/4) and σ1 = (ejπ/4, ejπ/4).
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In order to obtain formulas for the two involutions σ̃0 and σ̃1 that generate the

Weyl group of the action on SO(8), we note that

Θ(σ0) =

(
S 0 0 0
0 S 0 0
0 0 0 S
0 0 −S 0

)
and Θ(σ1) =

(
RS 0 0 0
0 0 0 −RS
0 0 RS 0
0 RS 0 0

)
where S =

(
1 0
0 −1

)
and R is the matrix for a counter-clockwise rotation by an angle

of π/3. For convenience, we denote Θ(σ0) and Θ(σ1) again by σ0 and σ1. The

composition

ρ = σ1 · σ0 =

(
R 0 0 0
0 0 R 0
0 0 0 R
0 R 0 0

)
is a primitive rotation of order 6 in the dihedral Weyl group D6 of the Sp(1) ×
Sp(1)-action on S7. Now we have σ̃0 = (σ0, σ0) and σ̃1 = (σ1, σ̂1) where σ̂1 =

γ̃(−π6 )σ1γ̃(π6 ), and, hence,

ρ̃ = (ρ, ρ̂), where ρ̂ = σ̂1 · σ0 =

(
1l 0 0 0
0 0 R 0
0 0 0 R
0 R 0 0

)
is a primitive rotation of order 6 in the dihedral Weyl group D6 of the Sp(1) ×
Sp(1)× SO(7)-action on SO(8). The following statement can be easily verified.

Lemma 7.19. The abelian Lie subalgebra f̃ of so(6) generated by F̃1, F̃2 and F̃2 is

invariant under the Weyl group rotation ρ̃. More precisely,

ρ̂F̃1ρ̂
−1 = F̃3, ρ̂F̃2ρ̂

−1 = F̃1, ρ̂F̃3ρ̂
−1 = F̃2.

Since H is finite, the Lie algebra of G = Sp(1)× Sp(1) splits orthogonally as

g = m0 ⊕m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5

and we have mi = ki for all i. Hence,

m0 = R · (i,−3i), m1 = R · (j, j), m2 = R · (k,−3k),

m3 = R · (i, i), m4 = R · (j,−3j), m5 = R · (k, k).

The principal isotropy group H acts by conjugation on m. The elements ±(i, i) act

trivially on m0 ⊕ m3 and by − id on the other mi, ±(j, j) act trivially on m1 ⊕ m4

and by − id on the other mi, and ±(k, k) act trivially on m2 ⊕ m5 and by − id on

the other mi.

Under the derivative of the homomorphism Θ : Sp(1)× Sp(1)→ SO(8) at (1, 1)

the generators (i,−3i) of m0 and (j, j) of m1 are mapped to

ξ0 := dΘ|(1,1)(i,−3i) =


0 0
0 −4

0 0
0 4

−6 0
0 −2

6 0
0 2
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and

ξ1 := dΘ|(1,1)(j, j) =


1 −

√
3

−
√

3 3

−1 −
√

3

−
√

3 1

−1
√

3√
3 −3

1
√

3√
3 −1

 .

We further need

ξ̂1 := γ̃(−π6 )ξ1γ̃(π6 ) =


0 0
−2 2

√
3

−1 −
√

3

−
√

3 1
0 2
0 −2

√
3

1
√

3√
3 −1

 .

Now, the Lie algebra k̃0 = m̃0 of K̃0 is generated by (ξ0, ξ0) and the Lie algebra

k̃1 = m̃1 of K̃1 is generated by (ξ1, ξ̂1). The Lie algebras k̃i = m̃i of the other

singular isotropy groups are given by

m̃2` = ρ̃`m̃0ρ̃
−` and m̃2`+1 = ρ̃`m̃1ρ̃

−`.

Theorem 7.20. The tangential component of the tension field of any (k, r)-map

vanishes for the Sp(1)× Sp(1)× SO(7)-action on SO(8).

Proof. We first note that dim SO(8) − 1 = 27. We take 27 vectors Ẽ1, . . . , Ẽ27

compatible with the sum

m̃0 ⊕ . . .⊕ m̃11 ⊕ so(6)

such that Ẽ∗1 , . . . , Ẽ
∗
27 are orthonormal at γ̃(t) and such that Ẽ25 = F̃1, Ẽ26 = F̃2,

Ẽ27 = F̃3. By Theorem 3.7 and Lemma 3.5 we have

τ tan
|γ(t) = −

3∑
ν=1

27∑
µ=1

〈[Ẽµ, F̃ν ]∗, Ẽ∗µ〉|γ(r(t))F̃
∗
ν|γ(r(t)).

It is now straightforward to compute that

[ξ0, F̃1] = 1
2 (ρ̂ξ1ρ̂

−1 − ρ̂4ξ1ρ̂
−4)

and that [ξ0, F̃2] and [ξ0, F̃3] are contained in so(6). Hence, [m̃0, f̃] ⊂ m̃3⊕m̃9⊕so(6).

Since f̃ and s̃o(6) are both invariant under conjugation by ρ̃ this implies

[m̃2`, f̃] ⊂ m̃2`+3 ⊕ m̃2`+9 ⊕ so(6).

Similarly,

[ξ̂1, F̃2] = 1
2 (ρ̂2ξ0ρ̂

−2 − ρ̂5ξ0ρ̂
−5)

and [ξ̂, F̃1] and [ξ̂1, F̃3] are contained in so(6). Hence,

[m̃2`+1, f̃] ⊂ m̃2`+4 ⊕ m̃2`+10 ⊕ so(6).

It follows that

〈[Ẽµ, F̃ν ]∗, Ẽ∗µ〉|γ(r(t)) = 0
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if Ẽµ is contained in some m̃i. The same is true for Ẽµ in 0×so(6). Indeed, [Ẽµ, F̃ν ] is

perpendicular to Ẽµ in so(6) since adF̃ν is skew-symmetric, and so(6)→ so(6)∗γ̃(r(t))

is an isometry. All in all, we have shown that τ tan = 0. �

8. A trigonometric identity

The following identity and its derivative are used to evaluate the tension fields

of the (k, r)-maps for the (g,m)- and (g,m0,m1)-actions on Sn+1 and SO(n+ 2).

Lemma 8.1. For every non-zero integer g and all r, t ∈ R we have

g−1∑
i=0

sin2(r − iπg )

sin2(t− iπg )
sin2 gt = g

(
(g − 1) sin2(r − t) + sin2(r + (g − 1)t)

)
.

Proof. Substituting ρ = r − t the identity above transforms into the equivalent

identity

g−1∑
i=0

sin2(ρ+ t− iπg )

sin2(t− iπg )
sin2 gt = g

(
(g − 1) sin2 ρ+ sin2(ρ+ gt)

)
.(12)

Notice that both sides of this equation are functions of the form c + A cos 2ρ +

B sin 2ρ. Hence, the goal is to show that the coefficients c, A, and B are the same

on both sides.

We first transform the right-hand side of the equation. Expanding sin2 ρ to
1
2 (1 − cos 2ρ) and sin2(ρ + gt) analogously and applying the addition formulas for

the cosine function yields

g
(
(g − 1) sin2 ρ+ sin2(ρ+ gt)

)
=
g2

2
− g

2
(g − 2 sin2 gt) cos 2ρ− g

2
(sin 2gt) sin 2ρ.

On the left-hand side we similarly obtain

g−1∑
i=0

sin2(ρ+ t− iπg )

sin2(t− iπg )
sin2 gt

=
1

2

g−1∑
i=0

sin2 gt

sin2(t− iπg )
− 1

2

g−1∑
i=0

sin2 gt

sin2(t− iπg )
cos 2(t− iπg ) cos 2ρ

− 1

2

g−1∑
i=0

sin2 gt

sin2(t− iπg )
sin 2(t− iπg ) sin 2ρ.

In order to see that the coefficients are the same on both sides, we use the

standard cotangent identity

g cot gt =

g−1∑
i=0

cot(t− iπg )(13)

Differentiating this identity on both sides yields

g2 =

g−1∑
i=0

sin2 gt

sin2(t− iπg )
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which shows that the constant terms on both sides of (12) are the same. Now, the

coefficients of cos 2ρ in (12) are the same since

g(g − 2 sin2 gt) =

g−1∑
i=0

sin2 gt

sin2(t− iπg )
− 2

g−1∑
i=0

sin2 gt

sin2(t− iπg )
sin2(t− iπg )

=

g−1∑
i=0

sin2 gt

sin2(t− iπg )
cos 2(t− iπg ).

Finally, multiplication of the standard cotangent identity by 2 sin gt shows that the

coefficients of sin 2ρ in (12) are the same. �

Lemma 8.2. For every nonzero integer g and all r, t ∈ R we have

g−1∑
i=0

sin 2(r − iπg )

sin2(t− iπg )
sin2(gt) = g

(
(g − 1) sin 2(r − t) + sin 2(r + (g − 1)t)

)
.

Proof. Differentiation of the identity of Lemma 8.1 with respect to r. �
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