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EVERY FINITE COMPLEX HAS THE HOMOLOGY OF A DUALITY GROUP

Jean-Claude HAUSMANN
INTRODUCTION

A group G belongs to the class D(n) if, by definition:

a) There exists a G-module D and a class eiEHn(G;D)

such that the cap product with e :
i
H"(G;B) —> H__,(G;B®, D)

is an isomorphism for all i and all G-module B.

b) The Eilenberg space BG=K(G,1) is homotopy equivalent

to a finite complex of dimension n .

Part a) of the above definition is the classsical definition
of a duality group, given by Bieri and Eckmann [Bel]. There
is no known example of a group satisfying a) but not b), but

it is not known that a) implies b).
Denote by D the union of all the classes D(n) , for all n.

The classical list of examples of groups in D (fundamental
group of aspherical manifolds, free groups, cohomology dimen-
sion 2 groups with one end, arithmetic groups, etc, see

[Bn, VII 10]) was recently enriched by new examples: braid

groups [Sq], mapping class [Hr] . This suggests that the
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class D is larger than previously expected and inspired to

the author the main result of this paper, Theorem A below.

The statement of Theorem A requires two definitions. A map
f:—>Y is called acyclic if its theoretical fibre is an
acyclic space, or, equivalently, if the homomorphism

£, : Hy(X;B) ——>H,(Y;B) induces an isomorphism for any
ﬂ1(X)-module B (see [HH] for a survey about acyclic maps).

A group P is called locally perfect if any finitely generated

subgroup of P is contained in a finitely generated perfect
subgroup of P . Acyclic maps f with kerﬂ1f locally
perfect enjoy interesting geometric properties (see, for in-

stance [HV]).

Theorem A. Let X be a finite complex. Then, there is a
group GED and an acyclic map BG —>X. Moreover,

ker (G —->1H(X)) is locally perfect.

In particular, the fact that a group G is in D implies
nothing on, for instance, its integral homology, except being

finitely generated.

Theorem A has well known predecessors: given a complex X,

D. Kan and W. Thurston [KT] have first shown the existence of
an acyclic map BG ——>X, for some (very large) group G.

If X is finite, G can be taken so that BG is a finite
complex, as shown by G. Baumslag, E. Dyer and A. Heller [BDHI
A simple proof of these fact given by C.R.F. Maunder [Ma]

makes possible to have dimBG =dimX . All these constructions



enjoy strong functoriality properties.

In contrast, although it uses the principle of [Mal], our con-
struction of the group G of Theorem A is not functorial. We
strongly suspect that there is no such functorial construc-
tion, at least respecting the free products with amalgamation.

Also, the following problem remains open:

Problem. Let X be a finite complex. What is the minimal
integer r(X) such that there is a group GED(r(X)) and an

acyclic map BG —>X.

The construction given here to prove Theorem A is, on this
respect, not very efficient and just gives the inequality
r(X) £ 10m(X)-7, where m(X) is the minimal number of sim-
plexes of positive dimension of a polyedron homotopy equi-
valent to X (see Remark’(3.3)). For instance: 1==r(S1) < 23,

So far, there is no counter-example to the possible conjec-

ture that r(X) is equal to the homotopy dimension of X.

On the other hand, given a finite complex X, there are.
groups G ED(r) with acyclic maps BG —>X for arbitrarely

large r's (see Remark (3.4)).



1. PRELIMINARY RESULTS

The first three lemmas of this section consist of elementary
properties of the classes D(n) . Lemma (1.4) is a criterium
to recognize when a homomorphism between free amalgamated pro-
ducts is injective. These results are used in § 3 for the proof

of Theorem A.

(1.1) Lemma. Let A be a subgroup of the groups B and C. Sup-

pose that B and C are in D(n) and A is in D(n-1). Then, the

amalgamated product B*AC is in D(n) .

Proof: Condition a) of the definition of D(n) is fullfilled
by [BE2, Theorem 3.2]. Condition b) comes from the fact that
the space B(B*AC) is the union over BA of BB and BC [Bn,

Theorem 7.3].

(1.2) Lemma. Let GED(m) and HED(n) . Then G xH € D{mn).

Proof: Condition a) is classical (see [BE1, Theorem 3.5]).

~

Condition b) is obvious, since B(GxH) = BG xBH.

(1.3) Lemma. Let G be a one-relator group G==<ava2“..ﬁJr>

Suppose that:

1) G is not cyclic
2) r is not a proper power

3) G is not a non-trivial free product.



Then, GED(2) .

Proof: Condition 2) together with [DV, Theorem 2.1] gives
that the 2~complex associated with the given presentation of

G is homotopy equivalent to BG . This guarantees Condition
b) of the defintion of D(2), and implies that G is of coho-
mology dimension 2. By [BE%1, Theorem 5.2], G is then a free
product of duality groups of dimension 1 and 2. But Condition
1) and 3) then implies that G is a duality group of dimen-

sion 2 and thus satisfies Condition a) for n=2.

For our last lemma, let us consider a homomorphism between

the following diagrams of groups and subgroups

] 1
|{CcAc A1 £ ' <« A' A1
N N
B B!

which therefore induces homomorphisms

and

= * OV, v = Al %
A B > D Al %,

(1.4) Lemma Suppose that flA1 and fIB 1is injective.

£f : D B!

Suppose also that C' N f(A1) c'' n £(B) = £(C). Then :

a) £ : D1 —— Di is injective and

£(D)

b) D' n £(D,)



Proof : Recall the results about the unique writings for ele-
ments of a free amalgamated product G = E*HF . Choosing sets of
representatives E and F for the right cosets HNE and H-F,
which 1 as the representative of H, then any element g of G
can be uniquely written as g = he,f,...e f; with h € H, e, € E

1
and e; # 1 if i>1,fisf‘ and £, #1 if i <k.

In our situation, the corresponding sets of representatives ii

and B' for C'~A} and C'\B' can be, because of the condition

c' n £(a =C'n £(B) = £(C) , chosen of the form

1)

L B' =B || 8"

where
A = set of representatives for C~NA
N - 1 n ] n
AllT= " C\A1
B= " C~B

Using the unicity of the writing with such A1 and B' , it

is easy to deduce Conditions a) and Db). o



2. SOME ACYCLIC GROUPS IN D.

This section is devoted to the proof of the following propo-

sition:

(2.1) Proposition. For 22, there is a group QrEID(r)

such that:

a) H*(BQr;Z) (the integers Z are endowed with the tri-

vial G-action). We say that 9 is an acyclic group.

b) & xZ is a subgroup of Qr+1

Proof: Define a group R by the presentation:

R =<z,t [tzt-1 = 22> .
The group R is not a non-trivial free product. Indeed, as
R/IR,R] is infinite cyclic, one of the free summand should be
a non-trivial perfect group. But R is solvable, being the
semi-direct product of Z with Z[1/2]. Hence, by Lemma

(1.3), ReED(2) .

Let Ri (i = 1,2,3,4) be copies of R , with generators

ti and z; . Form the free amalgamated products:
S =R, * R

T = R

By Lemma (2.1), the groups S and T are in D(2) . The

free group F =<u,v> admits monomorphisms : F —> S and

Is



jT : F——> T as follows:
Jglu) = £y jT(u) = 24
igv) = z, Jp(v) = t,

Define 92 = S*FT. As Fe€ED(1) , the group 92 is in D(2)

by Lemma (1.7). One checks by Mayer-Vietoris sequences that
92 is acyclic. (The reader may have recognize in 92 the

group invented by Higman [Hi]).
The group:

A = <a,b,c,d | [a,b][c,d]‘d—1 = 1>
is not a non-trivial free product. Indeed, the relator
[a,b][c,d]d—1 is the product of the disjoint minimal word
[a,b] amd[c,d]d-1. The conclusion then follows from [Sh, Theo-

rem 1 and 2]. Therefore, AE€D(2) , by Lemma (1.2).

Let 1 # wEin . Define

B =A% 92/{e = w}
c, =B x 0%/{b = w}
C, =B * 92/{a = w}



One has:
a) B,Ca and Cb are groups in D(2)
b) H1(B) = Z ® Z, generated by a and b
H1(Ca)= Z, generated by a
H1(Cb)= Z , generated by b |
c) HZ(B) = Hz(ca) = Hy(Cy) =0 .
Thus, Ca and Cb are homology circles in D(2) . They can

be embedded in homology circles Da, D, €D(3) by forming the

b

push-out diagram

Lu> X <V ———> Qz X <y>
! !
<u> X C >
a Da

where, in the left vertical arrow, v 1is sent to a. The
same construction is used for Db . The inclusions Qar”">25
and Cb}‘—>Db are homology isomorphisms. Consider the two com-
posed inclusions B>—> C  »—> D and B>—> C >»—> D, .

Define 93 by the push-out diagram

U <
v

The properties of 93 are the following:
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1) @> € p(3), by Lemma (1.1)

2) 93 is acyclic (use Mayer-Vietoris sequence)

3) One has 72 x sz———> Da —_—— 93 .

Suppose now by induction that Q" is defined for

25isn-123 . Define % by the push-out diagram

2 n-1

<w> x o°° > <W> X D

02 SZn—2 - Qb

It is easily checked that this sequence of ot enjoys all

the properties of Proposition (2.1).
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3. PROOF OF THEOREM A.

For X a polyedron, we denote by S(X) the category whose
objects are the subpolyedron of X and whose morphisme& are in-
clusions. We denote by Iy the number of simplexes of X of

dimension 2 1.

For each integer r 20 , we consider the following category
C(r): an object of C(r) is a polydron U such that each
connected component Ui of U has the homotopy type of
Bw1(Ui) and ﬂ1(Ui) is in D{(r) . We shall write UE€C(r)
to say that U is an object of C(r) . A morphism of C/(r)
between U and V is an inclusion of U as a subpolyedron
of V such that the induced homomorphism from n1(U,u) to

n1(V,u) is injective for all ue€U.

Theorem A is a direct consequence of the following propo-

sition:

(3.1) PROPOSITION. Let X be a polyedron, then there exists

an integer r and

a) a covariant functor L : S{X) ——> C(r)

b) for each connected subpolyedron Y of X , there
is an acyclic map BY : L(Y) —> Y. The group
ker(ﬂ1(L(Y) —_— ﬂ1(Y)) is locally perfect. More-
over, if Yc¥' is an inclusion of connected subpo-

lyedra of X, the following diagram



-12-

L(Y) c L(Y")
By By'
v v
Y [ Y'!

is commutative.

¢) a covariant functor M : S(X) ——> C(xr) such that:
c1) For any subpolydron Y of X,M(Y) is an
acyclic space (i.e. H,(M(Y);Z) = 0 for =+ 2 1).

c2) there is a natural transformation of functors
I, —> M (i.e., there are inclusions L(Y)< M(Y)
in M or C(r) and, when YcY', the followine

diagram

L(Y) = L(Y')
N N

M(Y) < M(Y'")

is commutative.

c3) For each supolyedra Yc¥Y' of X , one has,

for any y€L(Y):

m, (M(Y),y) N T AL(YY),y) = o (LX) ,y)

Proof: The proof is by induction on mX . The induction start
with the case m, = 0 (i.e. X 1is discrete), where we set
L(Y) = ¥, B, = id and M(y) = ¢cY, the cone over Y .

Y Y
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The induction step consists of the following: Suppose that
(r,L,By,M) as above is constructed for a poyedron X . We
then construct (E,i,gY,ﬁ) for a polyedron X = XU e, where
e 1is a simplex of dimension 2 1. This will be done in se-

veral steps.

Step 1. For Y a subpolyedron of X, define

.
L(Y) x BRS if Y e X .
Lo(y) = o
[L(Y NnX) x BQ1 U 5 [M(3e) « B2>1;
L(3e) x BQ
\ otherwise,
-To simplify the notation we set
[ _ 3 o _ 2
L1(e) = M(d3e) x BQ and L1(8e) = L(3e) x BQ™ .

We can thus write, if Y < X:

3 N o
L1(Y) = L{(Y NnX) xBR UL1(3e) L1(e) .

It follows from the results of §1 that L1 is a covariant
functor from S(X) to C{rx+3) . If Y is a connected sub-
polyedron of X, the acyclic map B; : L1(Y) —> Y -is de-

fined as the composition:

lLBz

> Y (Z connected component
of YnX)

L(YNX) xB3 —> L{YNX)

which can be extended to the part L1(g) since e is
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contractible. The gréup ker ﬁ13% is normally generated by

ker 1.8, | copies of o and ﬂ1(M(8e)). It is therefore

locally perfect. The functor L, then satisfies to conditions
a) and b). At this stage, the functor M1 will be defined only
on S(X) by M1(Y)=M(Y)XBQ3 for YeX.
Step 2 One defined a space ﬁz(e) as follows : .
M,e) = [Tyee) xBa®) U 2 2 (Ty(e) Ba’)
2 3 L1(Bek.BQ

It follows from § 1 that ,ﬁz(eEjC(r+5). By the Mayer-Vietoris
sequence, the space ﬁz(e) is acyclic.
To keep some cohergnce in the notation, write :

L,(Y) = L1(y) % Bo? , for YC X, L,(Y) € C(r+5)

M2(Y) 2, for vye X, M2(Y) € C(xr+5)

M1(Y) x BQ
> 2
se) = L1(8e) x BT € C(r+4)

L,(e) = L1(2) « B2 ¢ C(r+5).

The inclusion Lz(g)c:ﬁz(e) induced a monomorphism
° 1%

On the other hand define a monomorphism
Iy ﬁ1(M2(ae))—~—————>ﬂ1(ﬁ2(e))

by sending (x,v)€ﬂ1(M1(ae))XQ2=ﬁ1(M2(3e)) to (1,a)(x,v)(1,£1)

where (x,v) is the image of (x,v) under the identification

1, (M, (5e))x@°=1, (Ly(e)) —25 1, (M, (e)) and (1,a)

ﬂ1(£1(3e))x9 with aeQB an element commuting with those of

9%:93 (such an element a exists, since szZcQ3 by Proposition

(2.1)). This property of a implies that jL and jy coincide on

ﬂ1(L2(ae)), and then produce a homomorphism j

™ (K) —— ﬁ1(£’42(e)), where K is the space



-15~-

K = Mz(Be) U . . 1
Lz(ce)

,(e).

Since a commutes with the elements of 92 in 93 , one checks

using the unicity of the reduced writing in free amalgamated
products, that J 1is injective. The monomorphism Jj can be reali-
zed by an inclusion of K as a subpolyedron of a polyedron Mz(e)
having the same homotopy type as ﬁz(e). This inclusion is then

a morphism of C(r+5).

Step 3 Define, for each subpolyedron Y of X

MZ(Y) x BQ3 r 1f YcX

My (Y) =

M2(YnX) x B93U 5 Mz(e)XBQ3, otherwise

Mz(ae) x BQ
where the inclusion of Mz(de) into Mz(e) is the one
defined in Step 2, via the space K. The space MB(Y) contains L3(Y)
= L2(Y) X Bﬂz. This is obvious when Y&« X. When Y contains the

simplex e, one has

2 . . ° 2
L,(Y) = L, (Y X)xBQ y> L, (e) xBQ
3( ) 2( ) ULz(ae)xBQZ 2( )
and therefore there is an inclusion L3(Y)<: M3(Y) inducing the

obvious inclusion L2(YnX)XB92c.M2(YnX)XBQ3 » and the inclusion

[+]
Lz(e)C'Mz(e) defined in Step 2. One check easily that

[~n1 (Mz(de) XQZ] N 111 (Lz(;) ) xsz?‘

- - 2

= ﬂ1(che))XQ .

On the other hand , one has (ﬂ (M, (3e)) x22 Jo(r, (L (YI\X))XQZ‘)=
. ! 1772 172

ﬂ1(L2(8e))XQ2 , by Condition c3). By Lemma (1.4), this implies

that the inclusion L3(Y)cr M3(Y) induces a monomorphism on the

fundamental groups. Also, if YcY' are subpolydra of X , one

has a commutative diagram:
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Ly(Y) = Lg(¥')
n n
My (Y) < My (Y')

The inclusion of the L,'s is a morphism of C(r+7) and the inclusi

3
of the M3's is a morphism of C(r+8). By Part b) of Lemma (1.4),
one deduces that Condition c¢3) is verified for (M3,L3) . But we
need at last adaption in order to have a L(Y) and a M(Y) in the
same class C(I).

Step 4 For Y a subpolyedron of X , define L(Y) = L3(Y)XB93
and define M(Y) by the push-out diagram

2

L,(¥) x B® < L(Y)
n n
M3(Y) x 392 c M(Y)

It follows from § 1 that the inclusion L(Y) < M(Y)is a morphism
of C(r+10). Set r = r + 10 . Condition c1) is checked by Mayer-
Vietoris sequence. If Y <« Y' are subpolyedra of X , there is

a commutative diagram of inclusions as in c2). The following

2

i}

5,05 (1)) x0®1 A 19, (B3 (D) xa”] = 1, (L3(¥) %

is obvious and the following

il

2 \ 2 2
[111(M3(Y))><§2 ]n[ﬂ1(L3(Y )) %71 171(L3(Y))><9

comes from Condition <¢3) for (M3,L3) which was established
in step 3. Therefore, using Part a) of Lemma (1.4), one deduces
that the inclusion M(Y) < M(Y') 4is a morphism of C(r) . Part

b) of Lemma (1.4) permits us to check Condition c3) for (M,TL).
Observe that L(Y) = L1(Y)XB92xB92XB93 » and therefore there is
a projection i(Y)~——>L1(Y) . The composition of this projec-

. 1
t i .
ion with By  for y connected, gives the required acyclic

map BY : L(Y)——>Y . Therefore, (f;i,EY.ﬁ) is constructed

for X , which acheaves the proof of o .
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REMARKS

{3.2) The principle of the proof of Proposition (3.1) is essen-
tially the same as in [Mal]l but a much stronger control of the
successive amalgamation is necessary in order to stay in the

classes C(r) .

(3.3) The proof of Proposition (3.1) gives a (presumably very
weak) majoration of the integer r(X) defined in a problem

stated in the introduction. Suppose that X is a polyedron such

that ny = m(X) , the minimal number of simplexes of positive
dimension of any poledron in the homotopy type of X . Write
X(O) =X, cX, ... €X = X , where Xi = X Ue , with

0 1 r (X)
e a simplex of positive dimension. Then, the spaces L(Xi) of

i-1

the proof of (3.1) are in C(10i) . Observe that for L(Xm(x)),
we only need the first step, since there is no need of the space
M(X) . Therefore, the proof of (3.1) produces a group G .¢ D(r)
with an acyclic map BG——>X with r = 10(m(X)-1) + 3 = 10m(X)-7.

This gives the inequality r{X)<10m(X) - 7.

(3.4) For connected CW-complex X , let P(X) be the subset

of integers r such that there exists G, € D(xr) with anracyclic
map BG——>X . One has

(3.4.1) P(pt) = {0} U [2,o] , by Lemma (2.1) and the fact

that D(1) is the class of finitely generated free groups
therefore contains no acyclic group).

(3.4.2) 1If {r,r+1} < P(X) and Gr < GrX ;, then [r,o[ < P(X).

1
This comes the last argument of the proof of Proposition (2.1).
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(3.4.3) P(S1) = [1,o[ by (3.3.2) and the proof of Proposi-

tion (2.1)

Problem : If X # pt, is P(X) = [r(X),»[ ?
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