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EVERY FINITE COMPLEX HAS THE HOMOLOGY OF A DUALITY GROUP 

Jean-Claude HAUSMANN 

INTRODUCTION 

A group G belongs to the class ~(n) if, by definition: 

a) There exists a G-module D and a class 

such that the Cdp product with e 

Hi (G,·B) > H (G B on D) -- . i W z n-~ 

eEH (GiD) 
n 

is an isomorphism for all i and all G-module B. 

b) The Eilenberg space BG = K (G, 1) is homotopy equivalent 

to a finite complex of dimensi.of); ·n. 

Part a) of the above definition is the classsical definition 

of a duality group, given by Bieri and Eckmann [Be1]. There 

is no known example of a group satisfying a) .but not b), but 

it is not known that a) implies b). 

Denote by D the union of all the classes ~(n), for all n. 

The classical list of examples of groups in ~ (fundamental 

group of aspherical manifolds, free groups, cohomology dimen-

sion 2 groups with one end, arithmetic groups, etc, see 

[Bn, VII 10]) was recently enriched by new examples: braid 

groups [Sq], mapping class [Hr] . This suggests that the 



class D is larger than previously expected and inspired to 

the author the main result of this paper, Theorem A below. 

The statement of Theorem A requires two definitions. A map 

f : ---i> Y is called acyclic if its theoretical fibre is an 

acyclic space, or, equivalently, if the homomorphism 

f*: H*(XjB) ---;>H*(YiB) induces an isomorphism for any 

n1 (X)-module B (see [HH] for a survey about acyclic maps). 

A group P is called locally perfect if any finitely generated 

subgroup of P is contained in a finitely generated perfect 

subgroup of P. Acyclic maps f with kerTI1f locally 

perfect enjoy interesting geometric properties (see, for in

stance [HV]). 

Theorem A. Let X be a finite complex. Then, there is a 

group GElD> and an acyclic map BG -->X. Moreover, 

ker(G ---~ TI1 (X)) is locally perfect. 

In particular, the fact that a group G is in lD> implies 

nothing on, for instance, its integral homology, except being 

finitely generated. 

Theorem A has well known predecessors: given a complex X, 

D. Ran and W. Thurston [RT] have first shown the existence of 

an acyclic map BG --->X, for some (very large) group G. 

If X is finite, G can be taken so that BG is a finite 

complex, as shown by G. Baumslag, E. Dyer and A. Heller [BDH] 

A simple proof of these fact given by C.R.F. Maunder [Ma] 

makes possible to have dimBG = dimX. All these construction~ 
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enjoy strong functoriality properties. 

In contrast, although it uses the principle of [Mal, our con

struction of the group G of Theorem A is not functorial. We 

strongly suspect that there is no such functorial construc

tion, at least respecting the free products with amalgamation. 

Also, the following problem remains open: 

Problem. Let X be a finite complex. What is the minimal 

integer r (X) such that there is a group G ED» (r (X) ) and an 

acyclic map BG --;;:. X • 

The construction given here to prove Theorem A is, on this 

respect, not very efficient and just gives the inequality 

r(X) ~ 10m(X)-7, where m(X) is the minimal number of sim

plexes of positive dimension of a polyedron homotopy equi

valent to X (see Remark (3.3». For instance: 1 = r(s1) :i 23. 

So far, there is no counter-example to the possible conjec

ture that r(X) is equal to the homotopy dimension of X. 

On the other hand, given a finite complex X, there are, 

groups G E II) (r) with acyclic maps BG --~ X for arbi trarely 

large rls (see Remark (3.4». 
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1. PRELIMINARY RESULTS 

The first three lemmas of this section consist of elementary 

properties of the classes D(n). Lemma (1.4) is a criterium 

to recognize when a homomorphism between free amalgamated pro

ducts is injective. These results are used in § 3 for the proof 

of Theorem A. 

(1.1) Lemma. Let A be a subgroup of the groups Band C. Sup

pose that Band C are in D(n) and A is in D(n-i). Then, the 

amalgamated product B*AC is in D(n). 

Proof: Condition a) of the definition of D"(n) is fullfilled 

by [BE2, Theorem 3.2]. Condition b) comes from the fact that 

the space B(B*AC) is the union over BA of BB and BC [Bn, 

Theorem 7.3]. 

o 

(1.2) Lemma. Let G € D(m} and HE D(n} . Then G x H E D (m+n) . 

Proof: Condition a) is classical (see [BE1, Theorem 3.5]). 

Condition b) is obvious, since B (GxH) ~ BG x BH • 

o 

(1 .3) Lemma. Let G be a one-relator group G = <a1 ,a2' .•. ~ Ir > 

Suppose that: 

1) G is not cyclic 

2) r is not a proper power 

3) G is not a non-trivial free product. 
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Then, G E D ( 2) • 

Proof: Condition 2) together with [DV, Theorem 2.1] gives 

that the 2-complex associated with the given presentation of 

G is homotopy equivalent to BG. This guarantees Condition 

b) of the defintion of D(2), and implies that G is of coho-

mology dimension 2. By [BE1, Theorem 5.2], G is then a free 

product of duality groups of dimension 1 and 2. But Condition 

1) and 3) then implies that G is a duality group of dimen-

sion 2 and thus satisfies Condition a) for n = 2 . 

[J 

For our last lemma, let us consider a homomorphism between 

the following diagrams of groups and subgroups 

~ I CA' C A1] 
B' 

which therefore induces homomorphisms 

f D = A * B >- D' = At * B' 
C C' 

and 

f . D1 = A1 * C B >- D' = AI * B' . 1 1 C' 

(1 .4) Lemma Suppose that flA1 and fiB is injective. 

Suppose also that C' n f (A
1

) = c' n f(B) = f (C) • Then 

a) f : D1 >- D' 1 is injective and 

b) D' n f (D
1

) = f (D) 
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Proof Recall the results about the unique writings for ele-

ments of a free amalgamated product G = E*HF • Choosing sets of 

representatives E and F for the right cosets H'E and H'F, 

which 1 as the representative of H, then any element g of G 

can be uniquely written as g = he 1f 1 ···ek f k with h E ·.H, e. E E 
~ 

and e. 
~ 

~ 1 if i > 1 , f. 
~ 

E: F and f. 
~ 

1 1 if i -< k. 

In our situation, the corresponding sets of representatives A' 1 

and for C"A' 
1 

and C"B' can be, because of the condition 

c' n f(A ) = c' n f(B) = f(C) , chosen of the form 1 

A1 = A _" T _, I ~1 , B' = B _'_I ~, 

where 

A = set of representatives for C'A 

A _II T = " n " n 

B = " 

Using the unicity of the writing with such A1 and B' , it 

is easy to deduce Conditions a) and b) • c 
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2. SOME ACYCLIC GROUPS IN D. 

This section is devoted to the proof of the following propo-

sition: 

(2.1) Proposition. For r~2, 

such that: 

there is a group nr ED (r) 

r a) H*(Bn iZ) (the integers ~ are endowed with the tri-

vial G-action). We say that r,f is an acyclic group. 

b) rf x ~ is a subgroup of nr+1 

Proof: Define a group R by the presentation: 

R = <z,t I tzt-1 = 2 z > • 

The group R is not a non-trivial free product. Indeed, as 

R/[R,R] is infinite cyclic, one of the free summand should be 

a non-trivial perfect group. But R is solvable, being the 

semi-direct product of Z wi"th Z [ 1 /2] • Hence, by Lemma 

(1.3), RElI)(2) • 

Let R. (i = 1,2,3,4) be copies of R, with generators 
~ 

t. and z .• 
~ ~ 

Form the free amalgamated products: 

S = R1 * (z 1 = t
2

) R2 

T = R * R 3 (t3 = z 4) 4 

By Lemma (2.1), the groups Sand T are in D(2). The 

free group F =<u,v> admits monomorphisms js: F ---> Sand 
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jT F ---> T as follows: 

Define n2 = S*FT. As F ED(1) , the group n2 is in D(2) 

by Lemma (1.1). One checks by Mayer-Vietoris sequences that 

g2 is acyclic. (The reader may have recognize in n2 the 

group invented by Higman [Hi]). 

The group: 

I 
. -1 

A = <a,b,c,d [a,b][c,d]d = 1> 

is not a non-trivial free product. Indeed, the relator 

(a,b][c,d]d- 1 is the product of the disjoint minimal word 

[a,b] and [c,d]d- 1 . The conclusion then follows from [Sh, Theo-

rem 1 and 2]. Therefore, A E D (2), by Lemma (1. 2) . 

Let 1 ;f w E n2 • Define 

2 
B = A * n I{e = w} 

C = B * n2/{b = w} a 
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One has: 

a) B,C and 
a 

Cb are groups in D (2) 

b) H1 (B) == z E9 Z, generated by a and b 

H1 (Ca ) == Z, generated by a 

H1 (Cb )== z , generated by b 

c) H2 (B) = H2 (Ca ) = H (C ) :;; 0 . 2 b 

Thus, Ca and Cb are homology circles in D(2) • They can 

be embedded in homology circles Da , Db E D (3) by forming the 

push-out diagram 

<u> x <v> ---> n 2 x <v> 

-r v r 
<u> x Ca )--> Da 

where, in the left vertical arrow, v is sent to a. The 

same construction is used for The inclusions C >-->D a a 

and ~ >--> ~ are homology isomorphisms. Consider the two com

posed inclusions B >---> Ca }--> Da and B >---> Cb >-> Db • 

Define n3 by the push-out diagram 

----> D 

I r 
Db ----> n3 

B 

The properties of n3 are the following: 
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1 ) n3 E D(3), by Lenuna (1 • 1 ) 

2) n3 is acyclic (use Mayer-Vietoris sequence) 

3) One has Z x n2 >--> D a 
__ > n3 . 

Suppose now by induction that ni is defined for 

2 ~ i ~ n-1 ~ 3. Define nn by the push-out diagram 

<w> x nn-2 > <w> x,. Q n-1 

I I 
n 2 ~ n-2 nn n > 

It is easily checked that this sequence of ni enjoys all 

the properties of Proposition (2.1). 

o 
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3. PROOF OF THEOREM A. 

For X a polyedron, we denote by SeX) the category whose 

objects are the subpolyedron of X and whose morphisms are in

clusions. We denote by mx the number of simplexes of X of 

dimens ion ~ 1 • 

For each integer r;;;;; 0 I we consider the following category 

C(r): an object of C(r) is a polydron U such that each 

connected component Ui of U has the homotopy type of 

B7f 1 (Ui ) and 7f 1 (Ui ) is in D (r). We shall write U € C (r) 

to say that U is an object of C(r). A morphism of C(r) 

between U and V is an inclusion of U aa a subpolyedron 

of V such that the induced homomorphism from 7f 1 (U,u) to 

7f 1 (V, u) is injective for all u E U • 

Theorem A is a direct consequence of the following propo

sition: 

(3.1) PROPOSITION. Let X be a polyedron, then there exists 

an integer rand 

a) a covariant functor L: SeX) ---> C(r) 

b) for each connected subpolyedron Y of X, there 

is an acyclic map By: L (Y) --> Y. The group 

ker(TI 1 (L(Y) ---> 7f1 (Y» is locally perfect. More

over, if Y c Y' is an inclusion of connected subpo

lyedra of X 1 the following diagram 
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L(Y) c: L (Y') 

Y c: 

is commutative. 

c) a covariant functor M: S(X) ---> C(r) such that: 

c1) For any subpolydron Y of X,M(Y) is an 

acyclic space (i.e. H*(M(Y) ;Z) = 0 for * ~ 1). 

c2) there is a natural transformation of functors 

L --> M (i. e. I there are inclusions L(Y) c: M(Y) 

in M or C (r) and, when Y c: Y " the followin~ 

diagram 

L(Y) c: L{Y') 

n n 

M(Y) c: M(Y') 

is commutative. 

c3) For each supolyedra Y c: Y I of X, one has, 

f or any y € L (Y) : 

Proof: The proof is by induction on m • 
X 

The induction start 

with the case mX = 0 (i.e. X is discrete), where we set 

L(Y) = Y, By = idy and M(Y) = cY, the cone over Y • 
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The induction step consists of the following: Suppose that 

(r,L,Sy,M) as above is constructed for a poyedron X. We 

then construct (r,E,Sy,M) for a polyedron X::: XU e, where 

e is a simplex of dimension ~ 1. This will be done in se-

veral steps. 

Step 1. For Y a subpolyedron of X, define 

if y c: X • 

[L(Y n X) x Bn
3

] U [M(de) x Bn 3 ] i 
L (de) x Bn

2 

otherwise, 

,To simplify the notation we set 

and £1 (de) ::: L (ae) x BQ
2 

• 

We can thus write, if Y c: X: 

3 ..... 0 
::: L (Y n X) x BQ U

L 
(ae) L1 (e) 

1 

It follows from the results of §1 that L1 is a covariant 

functor from SeX) to C(r+3} If 

polyedron of X , the acyclic map 

fined as ·the composition: 

L (Y n X) x B 3 -> L (Y n X) ---> Y 

which can be extended to the part 

Y is a connected sub-

(31 
y L1 (Y) --> Y ·is de-

(Z connected component 

of Y n X) 

since e is 
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contractible. The group ker ~1Bi is normally generated by 

ker ~1By , copies of 0 3 and ~1 (M(ae». It is therefore 

locally perfect. The functor L1 then satisfies to condition~ 

a) and b). At this stage, the functor M1 will be defined only 

3 on SeX) by M1 (Y)=M(Y)xBn for YcX. 

SteE 2 One defined a space M2 (e) as follows: 

M ( e) = ("~ "1: (a e) x B n 3 ) U .... 2 (L 1 (~) x Bn 
2 

) 
2 L (ae~Bn 

1 

V" 
It follows from § 1 that _M2 (e)f C(r+5). By the Mayer-Vietoris 

v 

sequence, the space M2 (e) is acyclic. 

To keep some coherence in the notation, write : 

L2 (Y) = L1 (y) x Bn 2 for YC X, L2 (Y) E C (r+5) 

M2 (Y) M1 (Y) Bn 2 , for Y C X, M2 (Y) € C (r+5) 
= x 

L2 (a e) = L1 (ae) x Bn 2 E C(r+4) 

0 0 

Bn
2 

E L2 (e) = L1 (e) x C (r+5) . 

o "" The inclusion L2 (e)a M2 (e) induced a monomorphism 

On the other hand define a monomorphism 

by sending 
2 ~ 

(x,v)€~1(M1(ae»xn =~1(M2(de» to (1,a){x,v)(1,a) 

where (x,v) is the image of (x,v) under the identification 

~ 1 (M
1 

(ae) ) xn2=~ 1 (L
2 
(~) ) _-..::J:.-..' t......,}) ~ 1 (M2 (e) ) and (1 ,a) E 

.... 3 3 
~1(L1(ae»xn with aEn an element commuting with those of 

n 2c0 3 (such an element a exists, since n 2xzcn 3 by proposition 

(2.1». This property of a implies that jL and jM coincide on 

~1(L2(ae», and then produce a homomorphism j 

1f 1 (K) -----7> ~ 1 (M.
2 

(e) ) I where K is the space 
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o 
K = M2 (d e) U A. L2 (e) . 

L
2

(ae) 

Since a commutes with the elements of Q2 in Q3 , one checks 

using the unicity of the reduced writing in free amalgamated 

products, that j is injective. The monomorphism j can be reali-

zed by an inclusion of K as a subpolyedron of a polyedron M2 (e) 
v 

having the same homotopy type as M2 (e). This inclusion is then 

a morphism of C(r+5) • 

Step 3 Define, for each subpolyedron Y of X 

3 M2 (Y) x BQ , if Y c X 

where the inclusion o.f M2 (cre) into .M2 (e) is the one 

defined in Step 2, via the space K. The space M3(Y) contains L3(Y) 

= L2 (Y} x Bn 2 . This is obvious when yex. When Y contains the 

simplex e, one has 

2 0 2 
L3(Y) = L2 (Y X)xBn U~ ( 2 L2 (e)xBn 

L2 de)xBQ 
and therefore there is an inclusion L3 (Y) C M3 (y) inducing the 

obvious inclusion L2(YnX)XBn2~ M2(Y~X)xBn3 , and the inclusion 
o 

L2 (e)C M2 (e) defined in Step 2. One check easily that 

2 0 2 A 2 [ 1f 1 (!~2 (a e) x n ] (l err 1 (L 2 (e) ) x n = ~ 1 (L 2 a e) ) x n . 

On the other hand , one has (1f 1 (M2 (de) ) xn 2 ) n( ~ 1 (L2 (y f\ X) ) xn 2 ) = 

.... 2 
~1 (L2 (ae»x n , by condition c3). By Lemma (1.4), this implies 

that the inclusion L3 (Y) c. M3 (Y) induces a monomorphism on the 

fundamental groups. Also, if Y c Y I are subpolydra of X ,one 

has a commutative diagram: 
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L3(Y) c: L3 (Y') 

n n 
M3 (y) c: M3 (Y') 

The inclusion of the L31S is a morphism of C(r+7) and the inclusi 

of the M IS 
3 is a morphism of C(r+8). By Part b) of Lemma (1.4), 

one deduces that Condition c3) is verified for (M3 ,L3 ) . But we 

need at last adaption in order to have a L(Y) and a M(Y) in the 

same class C(r). 

step 4 
- 3 

For Y a subpolyedron of X , define L(Y) = L3 (y)xBn 

and define M(Y) by the push-out diagram 

2 -L2 (Y) x Bn c: L(Y) 

n n 
2 -M3(Y) x Bn c: M(Y) 

It follows from § 1 that the inclusion L(Y) c: M(Y)is a morphism 

of C(r+10). Set r = r + 10 . Condition c1) is checked by Mayer-

Vietoris sequence. If Y c: Y' are subpolyedra of X , there is 

a commutative diagram of inclusions as in c2). The following 

is obvious and the following 

[~1 (M3 (y»xn2 ] f) [~1 (L3 (Y'»X n2 ] = ~1 (L 3 (y»xn
2 

comes from Condition c3) for (M3 ,L3 ) which was established 

in step 3. Therefore, using Part a) of Lemma (1.4), one deduces 

that the inclusion M(Y) c: M(Y') is a morphism of C(r) . Part 

b) of Lemma (1.4) permits us to check Condition c3) for (M,L). 

- 223 Observe that L(Y) = L
1

(y)xBn xBn xBn , and therefore there is 

a projection L(Y}~L1(Y) • The composition of this projec

tion with By1 
f for y connected, gives the required acyclic 

map By L(y)-->y. Therefore, (r,I:,By,M) is constructed 

for X • which acheaves the proof of 0 
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REMARKS 

(3.2) The principle of the proof of Proposition (3.1) is essen

tially the same as in [Mal but a much stronger control of the 

successive amalgamation is necessary in order to stay in the 

classes C (r) 

(3.3) The proof of Proposition (3.1) gives a (presumably very 

weak) majoration of the integer r(X) defined in a problem 

stated in the introduction. Suppose that X is a polyedron such 

that nX = m(X) , the minimal number of simplexes of positive 

dimension of any poledron in the homotopy type of X . Write 

X (0) = X 0 c X1 
c ... c Xr (X) = X , where X. 

1 = x. 1 U e , with 
1-

e a simplex of positive dimension. Then, the spaces L (X.) of 
1 

the proof of (3.1) are in C(10i) • Observe that for L(Xm(X»' 

we only need the first step, since there is no need of the space 

M (X) • Therefore, the proof of (3. 1) produces a group G.f D(r) 

with an acyclic map BG---->X with r = 10(m(X)-1) + 3 = 10m(X)-7. 

This gives the inequality r(X)~10m(X) - 7. 

(3.4) For connected CW-complex X , let P(X) be the subset 

of integers r such that there exists Gr E D(r) with an acyclic 

map BG--->X • One has 

(3.4.1) P(pt) = {O} U [2,00 [ , by Lemma (2.1) and the fact 

that D(1) is the class of finitely generated free groups 

therefore contains no acyclic group) • 

(3.4.2) If {r,r+1} c p(X) and Gr C Gr X1 ' then [r,oo[ c P(X). 

This comes the last argument of the proof of Proposition (2.1). 
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(3.4.3) p(S1) = [1,oo[ by (3.3.2) and the proof of Proposi

tion (2.1) 

Problem If X I pt, is P(X) = [r(X) ,oo[ ? 
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