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Abstract

For Riemannian submersions, we establish some estimates for the spectrum of
the total space in terms of the spectrum of the base space and the geometry of the
fibers. In particular, for Riemannian submersions of complete manifolds with closed
fibers of bounded mean curvature, we show that the spectrum of the base space is
discrete if and only if the spectrum of the total space is discrete.

1 Introduction

The spectrum of the Laplacian on a Riemannian manifold is an isometric invariant whose
relation with the geometry of the manifold is not comprehended completely. In particular,
its behavior under maps between Riemannian manifolds, which respect the geometry of
the manifolds to some extent, remains largely unclear. In this paper, we study the behavior
of the spectrum under Riemannian submersions.

The notion of Riemannian submersion was introduced in the sixties as a tool to study
the geometry of a manifold in terms of the geometry of simpler components, namely, the
base space and the fibers. Similarly to other geometric quantities, it is natural to describe
the spectrum of the total space in terms of the geometry and the spectrum of the base
space and the fibers. Of course, the term geometry of the fibers refers both to the intrinsic
and the extrinsic geometry of the fibers as submanifolds of the total space. There are
various results on the spectrum of closed total spaces, in case the submersion has totally
geodesic, or minimal fibers, or fibers of basic mean curvature (cf. for instance [4] and the
references therein). Our results focus mostly on the non-compact case, which is in general
more complicated and less understood.

To set the stage, let p : M2 → M1 be a Riemannian submersion and denote by
Fx := p−1(x) the fiber over x ∈ M1. In the first part of the paper, we establish a lower
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bound for the bottom of the spectrum of the total space, under the assumption that
the (unnormalized) mean curvature H of the fibers is bounded in a specific way. In
particular, we extend the recent result of [5] about Riemannian submersions. According
to [5, Theorem 1.1], if M1 is the m-dimensional hyperbolic space Hm, and the mean
curvature vector field of the fibers is bounded by ‖H‖ ≤ C ≤ m− 1, then the bottom of
the spectrum of the Laplacian on M2 satisfies

λ0(M2) ≥
(m− 1− C)2

4
.

It should be noticed that m − 1 = 2
√
λ0(Hm). This result is extended in [5, Theorem

5.1] to the case where the base manifold is Hadamard with sectional curvature bounded
from above by a negative constant, or the base manifold is a warped product of some
special form. In its general version, in the assumption and the conclusion of the above
formulation, m − 1 is replaced by a certain lower bound for 2

√
λ0(M1). Our first result

generalizes this estimate in various directions, and provides some information in the case
where the equality holds and λ0(M1) is an isolated point of the spectrum of the Laplacian
on M1.

Theorem 1.1. Let p : M2 → M1 be a Riemannian submersion, such that the mean cur-
vature of the fibers satisfies ‖H‖ ≤ C ≤ 2

√
λ0(M1). Then

λ0(M2) ≥ (
√
λ0(M1)− C/2)2 + inf

x∈M1

λ0(Fx).

If, in addition, the equality holds and λ0(M1) /∈ σess(M1), then λ0(Fx) is almost everywhere
equal to its infimum.

It should be emphasized that, in this theorem, there are no assumptions on the
geometry or the topology of the base space. In particular, Theorem 1.1 gives a quite
natural (and sharper than [5, Theorem 5.1]) estimate for submersions over negatively
curved symmetric spaces, and yields an analogous lower bound if the base manifold is a
complete, negatively curved, locally symmetric space. Moreover, the manifolds involved in
Theorem 1.1 do not have to be complete, which in the sequel allows us to derive a similar
estimate involving the bottoms of the essential spectra, by exploiting the Decomposition
Principle.

Conceptually, it seems interesting that the last term in the estimate of Theorem 1.1
shows up, while in [5] the intrinsic geometry of the fibers does not play any role. For
example, equality in the estimate of Theorem 1.1 holds if M2 is the Riemannian product
M1 × F for any Riemannian manifold F . For the aforementioned reason, equality in the
estimate of [5, Theorem 1] holds for M2 = Hk×F only for Riemannian manifolds F with
λ0(F ) = 0.

In general, it is quite important to establish lower bounds for the bottom of the
spectrum, or even deduce whether it is zero or not. It follows from Theorem 1.1 that
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if p : M2 → M1 is a Riemannian submersion with minimal fibers, M1 is closed, and
λ0(M2) = 0, then the bottom of the spectrum of almost any fiber is zero, since the
spectrum of the Laplacian on M1 is discrete. As Example 3.3 shows, in this case, the
bottom of the spectrum of some fibers may be positive. In principle, in order to deduce
that the bottom of the spectrum is positive, one needs information on the global geometry
of the underlying manifold. However, in the above setting, we obtain that λ0(M2) > 0 if
λ0(Fx) > 0 for any x in a set of positive measure.

In the second part of the paper, we consider Riemannian submersions p : M2 → M1

of complete manifolds with closed fibers. Such submersions under further constraints, are
studied in [2]. According to [2, Theorem 1], if the fibers are minimal, then the spectra and
the essential spectra of the Laplacians satisfy σ(M1) ⊂ σ(M2) and σess(M1) ⊂ σess(M2).
In this paper, we extend this result in a natural way. Instead of comparing the spectra
of the Laplacians, we compare the spectrum of a Schrödinger operator on M1, whose
potential is determined by the volume of the fibers, with the spectrum of the Laplacian
on M2. To be more precise, let V (x) be the volume of the fiber over x ∈M1, and consider
the Schrödinger operator

S := ∆− ∆
√
V√
V

on M1. The potential of this operator measures the deviation of
√
V from being harmonic.

In particular, if the submersion has minimal fibers (or more generally, fibers of constant
volume), then S coincides with the Laplacian on M1.

In the case where M2 is closed and the submersion has fibers of basic mean curvature,
Bordoni [3] considered the restriction ∆c of the Laplacian acting on lifted functions and
the restriction ∆0 of the Laplacian acting on functions whose average is zero on any
fiber. In [3, Theorem 1.6], he showed that σ(M2) = σ(∆c) ∪ σ(∆0). In this situation, the
spectrum of S coincides with the spectrum of ∆c. It should be noticed that expressing
the latter one as the spectrum of a Schrödinger operator on the base manifold allows us
to relate it more easily to the spectrum of the Laplacian on the base manifold.

For submersions of complete manifolds with closed fibers, we compare the bottoms of
the (essential) spectra of S and of the Laplacian on the total space. If the submersion has
fibers of basic mean curvature, we prove that the (essential) spectrum of S is contained
in the (essential, respectively) spectrum of the Laplacian on M2. This is formulated in
the following generalization of [2, Theorem 1].

Theorem 1.2. Let p : M2 → M1 be a Riemannian submersion of complete manifolds,
with closed fibers. Then λ0(M2) ≤ λ0(S) and λess0 (M2) ≤ λess0 (S). If, in addition, the
fibers have basic mean curvature, then σ(S) ⊂ σ(M2) and σess(S) ⊂ σess(M2).

Finally, we consider the problem of discreteness of spectra under Riemannian sub-
mersions. A Riemannian manifold M has discrete spectrum if the essential spectrum of
the Laplacian on M is empty. Although there are many results establishing connections
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between the geometry of M and the discreteness of the spectrum of M (cf. for example
[2] and the references provided there), their relation is not comprehended completely.

In our context, there are examples of Riemannian submersions p : M2 → M1 of
complete manifolds with closed fibers, such that M1 has discrete spectrum and M2 does
not have discrete spectrum, or M1 does not have discrete spectrum and M2 has discrete
spectrum (cf. [2, Subsection 4.2]). In [2], it is proved that if p has minimal fibers, then
M1 has discrete spectrum if and only if M2 has discrete spectrum. As an application of
Theorems 1.1 and 1.2, we extend this equivalence under the weaker assumption that the
fibers have bounded mean curvature.

Corollary 1.3. Let p : M2 → M1 be a Riemannian submersion of complete manifolds,
with closed fibers of bounded mean curvature. Then M1 has discrete spectrum if and only
if M2 has discrete spectrum.

The paper is organized as follows: In Section 2, we give some preliminaries involving
the spectrum of Schrödinger operators, and recall some basic facts on Riemannian sub-
mersions. In Section 3, we study Riemannian submersions with fibers of bounded mean
curvature and establish Theorem 1.1. In Section 4, we consider Riemannian submersions
with closed fibers and prove Theorem 1.2 and Corollary 1.3.

Acknowledgements. I would like to thank Werner Ballmann and Dorothee Schüth
for their helpful comments and remarks. I am also grateful to the Max Planck Institute
for Mathematics in Bonn for its support and hospitality.

2 Preliminaries

Throughout this paper manifolds are assumed to be connected and without boundary,
unless otherwise stated. For a possibly non-connected Riemannian manifold M , we denote
by ∆ the non-negative definite Laplacian on M . A Schrödinger operator on M is an
operator of the form S = ∆ + V , with V ∈ C∞(M), such that

〈Sf, f〉L2(M) ≥ c‖f‖2L2(M) (1)

for some c ∈ R and any f ∈ C∞c (M). Then the operator

S : C∞c (M) ⊂ L2(M)→ L2(M) (2)

is densely defined, symmetric and bounded from below. Therefore, it admits Friedrichs
extension. We denote the spectrum and the essential spectrum of its Friedrichs extension
by σ(S) and σess(S), respectively, and their bottoms (that is, their minimums) by λ0(S)
and λess0 (S), respectively. In case of the Laplacian (that is, V = 0) these sets and quantities
are denoted by σ(M), σess(M) and λ0(M), λess0 (M), respectively. The spectrum of S is
called discrete if σess(S) is empty. In this case, we have by definition that λess0 (S) = +∞.
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For a non-zero, compactly supported, Lipschitz function f on M , the Rayleigh quo-
tient of f with respect to S is defined by

RS(f) :=

∫
M

(‖ grad f‖2 + V f 2)∫
M
f 2

.

The Rayleigh quotient of f with respect to the Laplacian is denoted by R(f). The next
characterization for the bottom of the spectrum of a Schrödinger operator follows from
Rayleigh’s Theorem and the fact that the Friedrichs extension of an operator preserves
its lower bound (cf. for instance [13, Subsection 2.1] and the references therein).

Proposition 2.1. Let S be a Schrödinger operator on a Riemannian manifold M . Then
the bottom of the spectrum of S is given by

λ0(S) = inf
f
RS(f),

where the infimum is taken over all f ∈ C∞c (M) r {0}, or over all f ∈ Lipc(M) r {0}.

Proposition 2.2. Let S be a Schrödinger operator on a Riemannian manifold M . Then
for any sequence (fn)n∈N ⊂ C∞c (M) r {0}, with supp fn pairwise disjoint, we have that

λess0 (S) ≤ lim inf
n
RS(fn).

Proof: If the right hand side is infinite, there is nothing to prove. If it is finite, we denote
it by λ, and after passing to a subsequence, if necessary, we may assume that RS(fn)→ λ.
For any ε > 0, there exists n0 ∈ N such that RS(fn) < λ+ ε for any n ≥ n0. Consider the
infinite dimensional space Hε spanned by {fn : n ≥ n0}. Any element g ∈ Hε r {0} is of
the form g =

∑n0+k
n=n0

anfn for some k ∈ N and an ∈ R, n0 ≤ n ≤ n0 + k. The assumption
that the supports of fn are pairwise disjoint yields that

RS(g) =

∑n0+k
n=n0

a2n
∫
M

(‖ grad fn‖2 + V f 2
n)∑n0+k

n=n0
a2n
∫
M
f 2
n

≤ max
n0≤n≤n0+k

RS(fn) < λ+ ε.

Since ε > 0 is arbitrary, we conclude from [7, Proposition 2.1] that λess0 (S) ≤ λ.

Let ϕ be a positive, smooth function on M such that Sϕ = λϕ for some λ ∈ R.
Denote by L2

ϕ(M) the L2-space of M with respect to the measure ϕ2d Vol, where d Vol
stands for the volume element of M induced from its Riemannian metric. It is immediate
to verify that the map µϕ : L2

ϕ(M) → L2(M), given by µϕ(u) = ϕu, is an isometric
isomorphism. The renormalization of S with respect to ϕ is defined by

Sϕ := µ−1ϕ ◦ (S(F ) − λ) ◦ µϕ, with D(Sϕ) := µ−1ϕ (D(S(F ))),
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where S(F ) is the Friedrichs extension of S considered as in (2), and D(·) denotes the
domain of the operator. More details on the renormalization of Schrödinger operators
may be found in [14, Section 7]. Given f ∈ C∞c (M), it is straightforward to compute

Sϕf = ∆f − 2

ϕ
〈gradϕ, grad f〉, (3)

which shows that Sϕ is a weighted Laplacian on M . The Rayleigh quotient of a non-zero
f ∈ C∞c (M) with respect to Sϕ is given by

RSϕ(f) :=
〈Sϕf, f〉L2

ϕ(M)

‖f‖2L2
ϕ(M)

=

∫
M
‖ grad f‖2ϕ2∫
M
f 2ϕ2

.

Lemma 2.3. For any f ∈ C∞c (M) r {0} and C ∈ R, we have that:
(i) RSϕ(f) = RS(ϕf)− λ,
(ii) ‖(Sϕ − C)f‖L2

ϕ(M) = ‖(S − λ− C)(ϕf)‖L2(M).

Proof: Both statements follow easily from the definition of Sϕ and the fact that µϕ is an
isometric isomorphism.

We now consider Schrödinger operators on complete Riemannian manifolds. Accord-
ing to the next proposition, a Schrödinger operator on a complete Riemannian manifold
is essentially self-adjoint; that is, the Friedrichs extension of S coincides with the closure
of S considered as in (2). This allows us to characterize the spectrum of the operator in
terms of compactly supported smooth functions.

Proposition 2.4. Let S be a Schrödinger operator on a complete Riemannian manifold
M . Then S is essentially self-adjoint.

Proof: By virtue of [10, Theorem 1] and (1), we have that there exists λ ∈ R and a
positive ϕ ∈ C∞(M) such that Sϕ = λϕ. Denote by Sϕ the renormalization of S with
respect to ϕ. Then [11, Theorem 2.2] implies that the operator

Sϕ : C∞c (M) ⊂ L2
ϕ(M)→ L2

ϕ(M)

is essentially self-adjoint, M being complete. Taking into account that this operator
corresponds to S − λ (considered as in (2)) under the isometric isomorphism µϕ, we
derive that S is essentially self-adjoint.

Let S be a Schrödinger operator on a complete Riemannian manifold M . For λ ∈ R,
a sequence (fn)n∈N ⊂ C∞c (M) r {0} is called characteristic sequence for S and λ, if

‖(S − λ)fn‖L2(M)

‖fn‖L2(M)

→ 0, as n→ +∞.

The next propositions follow from the Decomposition Principle [8] and the fact that the
spectrum of a self-adjoint operator consists of approximate eigenvalues of the operator.
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Proposition 2.5. Let S be a Schrödinger operator on a complete Riemannian manifold
M , and consider λ ∈ R. Then:
(i) λ ∈ σ(S) if and only there exists a characteristic sequence for S and λ,

(ii) λ ∈ σess(S) if and only if there exists a characteristic sequence (fn)n∈N for S and λ,
with supp fn pairwise disjoint.

Proposition 2.6 ([2, Proposition 3.2]). Let S be a Schrödinger operator on a complete
Riemannian manifold M , and (Kn)n∈N an exhausting sequence of M consisting of compact
subsets of M . Then the bottom of the essential spectrum of S is given by

λess0 (S) = lim
n
λ0(S,M rKn),

where λ0(S,M rKn) is the bottom of the spectrum of S on M rKn. In particular, the
spectrum of S is discrete if and only if the right hand side limit is infinite.

The following property of the bottom of the essential spectrum is an immediate
consequence of Propositions 2.1 and 2.6.

Corollary 2.7. Let S be a Schrödinger operator on a complete Riemannian manifold
M . Then there exists (fn)n∈N ⊂ C∞c (M) r {0}, with supp fn pairwise disjoint, such that
RS(fn)→ λess0 (S).

2.1 Riemannian submersions

Let M1, M2 be Riemannian manifolds with dim(M2) > dim(M1). A surjective, smooth
map p : M2 →M1 is called a submersion if its differential is surjective at any point y ∈M2.
For any x ∈ M1, the fiber Fx := p−1(x) over x is a possibly non-connected submanifold
of M2. The kernel of p∗y is called the vertical space at y, and is denoted by (TyM2)

v.
Evidently, the vertical space at y is the tangent space of the fiber Fp(y). The horizontal
space (TyM2)

h at y is defined as the orthogonal complement of the vertical space at y. The
submersion p is called Riemannian submersion if the restriction p∗y : (TyM2)

h → Tp(y)M1

is an isometry for any y ∈ M2. For more details on Riemannian submersions, see for
example [9].

Let p : M2 → M1 be a Riemannian submersion. A vector field Y on M2 is called
horizontal (vertical) if Y (y) belongs to the horizontal (vertical, respectively) space at
y for any y ∈ M2. It is clear that any vector field Y on M2 is written uniquely as
Y = Y h+Y v, with Y h horizontal and Y v vertical. Any vector field X on M1 has a unique
horizontal lift on M2, which is denoted by X̃; that is, X̃ is horizontal and p∗X̃ = X. A
vector field Y on M2 is called basic if Y = X̃ for some vector field X on M1.

We denote by H the (unnormalized) mean curvature of the fibers, which is defined
by

H(y) :=
k∑
i=1

α(ei, ei),
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where α(·, ·) is the second fundamental form of Fp(y), and {ei}ki=1 is an orthonormal
basis of (TyM2)

v. The Riemannian submersion p has minimal fibers, fibers of basic mean
curvature, or fibers of bounded mean curvature if H = 0, H is basic, or ‖H‖ is bounded,
respectively.

Given a function f : M1 → R, the function f̃ := f ◦ p is called the lift of f on M2.
The next lemma provides a simple expression for the gradient and the Laplacian of a
lifted smooth function on M2.

Lemma 2.8. Let p : M2 →M1 be a Riemannian submersion. Consider f ∈ C∞(M1) and
its lift f̃ on M2. Then we have that:

(i) grad f̃ = g̃rad f ,

(ii) ∆f̃ = ∆̃f + 〈g̃rad f,H〉.

Proof: Both statements follow from straightforward computations, which may be found
for instance in [2, Subsection 2.2].

Recall that the fibers of a Riemannian submersion are submanifolds of the total space.
This allows us to consider the spectrum of a fiber, with respect to the Riemannian metric
inherited by the ambient space. In particular, we regard the bottom of the spectrum of
the fiber as a function on the base space. According to the next lemma, this function
is upper semi-continuous, while Example 3.3 demonstrates that it does not have to be
continuous, even if the fibers are minimal.

Lemma 2.9. Let p : M2 → M1 be a Riemannian submersion. Then the function λ0(Fx)
is upper semi-continuous with respect to x ∈M1.

Proof: Let C > 0 and x ∈M1 such that λ0(Fx) < C. We know from Proposition 2.1 that
there exists f ∈ C∞c (Fx) r {0} such that R(f) < C. Observe that f can be extended to
an f ∈ C∞c (M2), and there exists an open neighborhood U of x such that f is non-zero on
Fy for any y ∈ U . Then R(f |Fy) depends continuously on y ∈ U , which shows that there
exists an open neighborhood U ′ of x such that R(f |Fy) < C for any y ∈ U ′. Applying
Proposition 2.1 to the Riemannian manifold Fy gives that λ0(Fy) < C for any y ∈ U ′, as
we wished.

3 Submersions with fibers of bounded mean curva-

ture

The aim of this section is to prove Theorem 1.1. Let p : M2 → M1 be a Riemannian
submersion of possibly non-complete Riemannian manifolds. As in [2,3], for f ∈ C∞c (M2),
its average fav on M1 is defined by

fav(x) :=

∫
Fx

f.
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It is worth to mention that in the published version of [2] there is a typo in this definition,
which was meant to be as above, and is in this way in the arXiv version of [2]. Using
the first variational formula (similarly to [2, Lemma 2.2] and [3, Formula (1.2)]), we have
that fav ∈ C∞c (M1) and its gradient is related to the gradient of f by

〈grad fav(x), X〉 =

∫
Fx

〈grad f − fH, X̃〉 (4)

for any x ∈M1 and X ∈ TxM1, where X̃ is the horizontal lift of X on Fx. The pushdown
of f on M1 is given by

g(x) :=
√

(f 2)av(x) =

(∫
Fx

f 2

)1/2

.

This quantity was used by Bordoni to establish spectral estimates for submersions with
minimal fibers, and M2 closed (cf. [4, Section 3] and the references provided there). In
the context of Riemannian coverings, a similar quantity was introduced in [1] to derive a
spectral estimate, and was used further in [13] to study coverings preserving the bottom
of the spectrum.

Lemma 3.1. Consider f ∈ C∞c (M2) and its pushdown g on M1. Then for any x ∈ M1

with g(x) > 0, the gradient of g satisfies

‖ grad g(x)‖2 ≤
∫
Fx

∥∥(grad f)h − f H
2

∥∥2.
In particular, g is Lipschitz, and its gradient vanishes at almost any point where g is zero.

Proof: Given x ∈ M1 such that g(x) > 0, it is evident that g is differentiable at x.
Consider an orthonormal basis {ei}mi=1 of TxM1, and denote by ẽi the horizontal lift of ei
on Fx, 1 ≤ i ≤ m. Using (4), we obtain that

〈grad g(x), ei〉2 =
1

4g(x)2

(∫
Fx

〈grad f 2 − f 2H, ẽi〉
)2

=
1

g2(x)

(∫
Fx

f
〈

grad f − f H
2
, ẽi
〉)2

≤ 1

g2(x)

(∫
Fx

f 2

)(∫
Fx

〈
grad f − f H

2
, ẽi
〉2)

=

∫
Fx

〈
grad f − f H

2
, ẽi
〉2
,

which proves the asserted inequality, because {ẽi}mi=1 spans the horizontal space at each
point of Fx. Bearing in mind that g is continuous, and on the set where g is positive we
have that g is differentiable with bounded gradient, it is easy to see that g is Lipschitz.
The proof is completed by Rademacher’s Theorem and the fact that g is non-negative.
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Proposition 3.2. Let p : M2 → M1 be a Riemannian submersion, such that the mean
curvature of the fibers satisfies ‖H‖ ≤ C ≤ 2

√
λ0(M1). Consider f ∈ C∞c (M2), with

‖f‖L2(M2) = 1, and its pushdown g ∈ Lipc(M1). Then the Rayleigh quotients of f and g
are related by

R(f) ≥ (
√
R(g)− C/2)2 +

∫
M1

λ0(Fx)g
2(x)dx.

Proof: The assumption that ‖f‖L2(M2) = 1 yields that ‖g‖L2(M1) = 1. Lemma 3.1,
together with the fact that ‖H‖ ≤ C and ‖f‖L2(M2) = 1, gives the estimate

R(g) ≤
∫
M2

∥∥(grad f)h − f H
2

∥∥2
≤

∫
M2

‖(grad f)h‖2 + C

∫
M2

|f |‖(grad f)h‖+
C2

4

≤
∫
M2

‖(grad f)h‖2 + C

(∫
M2

‖(grad f)h‖2
)1/2

+
C2

4
.

In view of Proposition 2.1, we have that C/2 ≤
√
λ0(M1) ≤

√
R(g), which shows that∫

M2

‖(grad f)h‖2 ≥ (
√
R(g)− C/2)2. (5)

Recall that at any point of M2, the tangent space of M2 splits as the orthogonal sum
of the horizontal and the vertical space. Since ‖f‖L2(M2) = 1, we deduce that∫

M2

‖(grad f)h‖2 =

∫
M2

‖ grad f‖2 −
∫
M2

‖(grad f)v‖2

= R(f)−
∫
M1

∫
Fx

‖ grad(f |Fx)‖2dx

≤ R(f)−
∫
M1

λ0(Fx)

∫
Fx

f 2dx

= R(f)−
∫
M1

λ0(Fx)g
2(x)dx, (6)

where we applied Proposition 2.1 to the fibers. The conclusion is now a consequence of
(5) and (6).

Proof of Theorem 1.1: Given x ∈ M1, set Λ(x) := λ0(Fx). From Proposition 2.1, we
obtain that for any ε > 0, there exists f ∈ C∞c (M2), with ‖f‖L2(M2) = 1, such that
R(f) < λ0(M2) + ε. Let g ∈ Lipc(M1) be the pushdown of f . Propositions 2.1, 3.2, and
the fact that ‖g‖L2(M1) = 1, imply that

λ0(M2) + ε > (
√
R(g)− C/2)2 +

∫
M1

Λg2 ≥ (
√
λ0(M1)− C/2)2 + inf

M1

Λ,
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which proves the first assertion, because ε > 0 is arbitrary.
Suppose now that the equality holds and that λ0(M1) /∈ σess(M1). By virtue of

Proposition 2.1, we readily see that there exists (fn)n∈N ⊂ C∞c (M2), with ‖fn‖L2(M2) = 1,
such that

R(fn)→ λ0(M2) = (
√
λ0(M1)− C/2)2 + inf

M1

Λ.

Consider the sequence (gn)n∈N ⊂ Lipc(M1) consisting of the pushdowns of fn. It follows
from Proposition 3.2 that for any ε > 0 there exists n0 ∈ N such that

ε > (
√
R(gn)− C/2)2 − (

√
λ0(M1)− C/2)2 +

∫
M1

(Λ− inf
M1

Λ)g2n (7)

for any n ≥ n0. Notice that the last term is non-negative, and Proposition 2.1 gives the
estimate

√
R(gn) ≥

√
λ0(M1) ≥ C/2. Thus, (7) yields that R(gn)→ λ0(M1). According

to [13, Propositions 3.5 and 3.7], after passing to a subsequence, if necessary, we may
assume that gn → ϕ in L2(M1) for some positive ϕ ∈ C∞(M1) with ∆ϕ = λ0(M1)ϕ.

By Lemma 2.9, we know that for any c > 0 the set

Ac := {x ∈M1 : Λ(x) ≥ inf
M1

Λ + c}

is closed, and in particular, measurable. For any n ≥ n0, we conclude from (7) that

ε ≥
∫
M1

(Λ− inf
M1

Λ)g2n ≥
∫
Ac

(Λ− inf
M1

Λ)g2n ≥ c

∫
Ac

g2n → c

∫
Ac

ϕ2, as n→ +∞.

Then Ac is of measure zero for any c > 0, since ϕ is positive in M1 and ε > 0 is arbitrary.
Hence, λ0(Fx) is equal to its infimum for almost any x ∈M1.

The next example shows that in the second statement of Theorem 1.1, in general, we
do not have that λ0(Fx) = 0 for any x ∈ M1, even if the base manifold is closed and the
fibers are minimal.

Example 3.3. Let (M, g0) be an m-dimensional, non-compact, complete Riemannian
manifold with m ≥ 2 and λ0(M, g0) > 0. Fix a diverging sequence (xn)n∈N ⊂ M and
rn > 0 such that the closed balls C(xn, 3rn) are disjoint and the exponential map restricted
to the corresponding open ball exp: B(0, 3rn) ⊂ TxnM → M is injective for any n ∈ N.
Consider the compactly supported, Lipschitz functions

fn(y) =


1 if d(y, xn) < rn,
2− d(y, xn)/rn if rn ≤ d(y, xn) ≤ 2rn,
0 if d(y, xn) > 2rn.

It is clear that grad fn vanishes almost everywhere outside B(xn, 2rn) r C(xn, rn). The
restriction of grad fn in B(xn, 2rn) r C(xn, rn) can be extended to a nowhere vanishing,
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smooth vector field Xn in B(xn, 3rn)rC(xn, rn/2) (for instance, −r−1n grad d(·, xn) is such
an extension).

For n ∈ N, consider a positive ϕn ∈ C∞(M), with ϕn(y) = 1 if d(y, xn) < 3rn/4 or
d(y, xn) > 5rn/2, and ϕn(y) = r2n/ncn if rn < d(y, xn) < 2rn, where

cn := max

{
1,

VolB(xn, 2rn)

VolB(xn, rn)
− 1

}
.

Let χn : [−1/2, 1/2] → [0, 1] be an even, smooth function with χn(0) = 0 and χn(t) =
1 for |t| ≥ tn := min{1, r2n}/4ncn. For each non-zero −1/2 ≤ t ≤ 1/2, define the
Riemannian metric gt on M , which coincides with the original metric g0 outside the
union of B(xn, 3rn) r C(xn, rn/2) with n ∈ N, and in any B(xn, 3rn) r C(xn, rn/2) is
given by

gt(Y, Z) =


(1− χn(t) + χn(t)ϕn)−1g0(Xn, Xn) if Y = Z = Xn,
0 if Z = Xn and g0(Y,Xn) = 0,
(1− χn(t) + χn(t)ϕn)1/(m−1)g0(Y, Z) if g0(Y,Xn) = g0(Z,Xn) = 0.

for any tangent vectors Y, Z. It is elementary to compute

‖gradgtfn‖
2
gt = r−2n (1− χn(t) + χn(t)r2n/ncn) in B(xn, 2rn) r C(xn, rn). (8)

From the fact that the volume element of gt coincides with the volume element of g0, we
derive that the Rayleigh quotient of fn with respect to the Laplacian corresponding to gt
satisfies

Rgt(fn) =

∫
B(xn,2rn)rC(xn,rn)

‖gradgtfn‖2gt∫
B(xn,2rn)

f 2
n

≤ cnr
−2
n (1− χn(t) + χn(t)r2n/ncn), (9)

where we used that fn = 1 in B(xn, rn). For t 6= 0, there exists n0 ∈ N such that χn(t) = 1
for any n ≥ n0. In view of Proposition 2.1, taking the limit as n→ +∞ in (9) gives that
λ0(M, gt) = 0 for any t 6= 0.

Let q : R → S1 = R/Z be the usual Riemannian covering. Consider the product
manifold M × S1 endowed with the Riemannian metric g(x, y) = gt(x) × gS1(y), for
x ∈ p−1(q(t)) for some −1/2 ≤ t ≤ 1/2, and y ∈ S1. Then the projection to the second
factor p : M × S1 → S1 is a Riemannian submersion. Since the volume element of gt is
independent from t, it is not hard to see that the fibers of p are minimal.

It remains to show that λ0(M ×S1, g) = 0. To this end, consider hn ∈ Lipc(M ×S1)
defined by hn(x, y) := fn(x). Similarly to (9), using that χn is even, 0 ≤ χn ≤ 1, and
χn(t) = 1 for |t| ≥ tn, we obtain that

R(hn)

∫ 1/2

−1/2

∫
M
‖gradgtfn‖2gtdt∫ 1/2

−1/2

∫
M
f 2
ndt

≤ 2cnr
−2
n

∫ 1/2

0

(1− χn(t) + χn(t)r2n/ncn)dt→ 0,

as n → +∞. We conclude from Proposition 2.1 that λ0(M × S1, g) = 0, while we have
that λ0(Fq(0)) > 0, and λ0(Fy) = 0 for any y ∈ S1 r {q(0)}.
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We now discuss some straightforward applications of Theorem 1.1.

Corollary 3.4. Let p : M2 → M1 be a Riemannian submersion, where M1 is an m-
dimensional Hadamard manifold of sectional curvature K ≤ −a2 for some a > 0. If the
mean curvature of the fibers satisfies ‖H‖ ≤ C ≤ (m− 1)a, then

λ0(M2) ≥
((m− 1)a− C)2

4
+ inf

x∈M1

λ0(Fx).

Proof: According to McKean’s Theorem [12], the bottom of the spectrum of M1 is
bounded by

λ0(M1) ≥
(m− 1)2a2

4
.

The asserted inequality is a consequence of Theorem 1.1.

It is worth to point out that a similar estimate (without the last term) may be derived
from [5, Theorem 5.1]. However, Theorem 1.1 yields a sharper estimate than [5, Theorem
5.1] for submersions over negatively curved symmetric spaces.

It is well known that an m-dimensional negatively curved symmetric space, after
rescaling its metric, is isometric to KHm, where K is the algebra of real, complex, quater-
nionic, or Cayley numbers. In the latter case, we have that m = 2. The sectional curvature
of KHm is bounded by −4 ≤ K ≤ −1, the exponential growth of KHm is given by

µ(KHm) = m+ d− 2, where d := dimRK,

and the bottom of the spectrum satisfies λ0(KHm) = µ(KHm)2/4.

Corollary 3.5. Let p : M2 → KHm be a Riemannian submersion with fibers of bounded
mean curvature ‖H‖ ≤ C ≤ m+ d− 2. Then

λ0(M2) ≥ (m+ d− 2− C/2)2 + inf
x∈M1

λ0(Fx).

Proof: It follows immediately from Theorem 1.1.

A wider class of examples where Theorem 1.1 is applicable consists of submersions
over complete, negatively curved, locally symmetric spaces. Any such space, after rescal-
ing its Riemannian metric, is isometric to a regular quotient M = KHm/Γ, where Γ is a
discrete group. According to the formulas of Sullivan [15] and Corlette [6], the bottom of
the spectrum of M is given by

λ0(M) =

{
λ0(KHm) if µ(Γ) ≤ µ(KHm)/2,
µ(Γ)(µ(KHm)− µ(Γ)) if µ(Γ) ≥ µ(KHm)/2,

where µ(Γ) is the exponential growth of Γ. Theorem 1.1 can be applied to submersions
over such a manifold M in the apparent way.
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4 Submersions with closed fibers

Throughout this section we consider a Riemannian submersion p : M2 →M1 of complete
manifolds with closed fibers. We denote by V (x) the volume of the fiber Fx over x ∈M1,
by H the mean curvature vector field of the fibers, and by X the smooth vector field on
M1 defined by

X(x) :=
1

V (x)

∫
Fx

p∗H

for any x ∈M1.

Fix an open, bounded domain U of M1, and let f ∈ C∞c (M2) with f = 1 in Fy for
any y ∈ U . Then fav = V in U , and (4) shows that gradV = −V X in U . It follows from
the fact that U is arbitrary that gradV = −V X in M1. It is immediate to verify that

−∆
√
V√
V

=
1

4
‖X‖2 − 1

2
divX.

Let S be the Schrödinger operator on M1 defined by

S := ∆− ∆
√
V√
V

= ∆ +
1

4
‖X‖2 − 1

2
divX.

Observe that S
√
V = 0, which allows us to consider the renormalization S√V of S with

respect to
√
V .

Proof of Theorem 1.2: Let f ∈ C∞c (M1) r {0} and f̃ its lift on M2. By Lemmas 2.3 and
2.8, we deduce that

R(f̃) =

∫
M2
‖ grad f̃‖2∫
M2
f̃ 2

=

∫
M1
‖ grad f‖2V∫
M1
f 2V

= RS√
V

(f) = RS(f
√
V ). (10)

This, together with Proposition 2.1, proves that λ0(M2) ≤ λ0(S). We know from Corollary
2.7 that there exists (fn)n∈N ⊂ C∞c (M1) r {0}, with supp fn pairwise disjoint, such that
RS(fn)→ λess0 (S). Then the lifts g̃n of gn := fn/

√
V , also have pairwise disjoint supports.

Taking into account Proposition 2.2 and (10), it is easy to see that

λess0 (M2) ≤ lim inf
n
R(g̃n) = lim inf

n
RS(fn) = λess0 (S),

which establishes the first assertion.

Suppose now that the submersion has fibers of basic mean curvature. Consider
λ ∈ R, f ∈ C∞c (M1)r {0}, and f̃ its lift on M2. Using Lemma 2.8, formula (3), and that
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gradV = −V p∗H, we compute

‖(∆− λ)f̃‖2L2(M2)
=

∫
M2

(∆̃f + 〈g̃rad f,H〉 − λf̃)2

=

∫
M1

(∆f + 〈grad f, p∗H〉 − λf)2V

=

∫
M1

(
∆f − 2√

V
〈grad f, grad

√
V 〉 − λf

)2

V

= ‖(S√V − λ)f‖2L2√
V
(M1)

.

In view of Lemma 2.3, this implies that

‖(∆− λ)f̃‖2L2(M2)

‖f̃‖2L2(M2)

=
‖(S√V − λ)f‖2

L2√
V
(M1)

‖f‖2
L2√

V
(M1)

=
‖(S − λ)(f

√
V )‖2L2(M1)

‖f
√
V ‖2L2(M1)

. (11)

From Proposition 2.5, we obtain that for any λ ∈ σess(S), there exists a characteristic
sequence (fn)n∈N ⊂ C∞c (M1) for S and λ, with supp fn pairwise disjoint. Then (11)
yields that the sequence (g̃n)n∈N ⊂ C∞c (M2), consisting of the lifts of gn := fn/

√
V , is

a characteristic sequence for ∆ and λ, with supp g̃n pairwise disjoint. We conclude from
Proposition 2.5 that λ ∈ σess(M2). The proof of σ(S) ⊂ σ(M2) is similar.

Corollary 4.1. Let p : M2 → M1 be a Riemannian submersion of complete manifolds,
with closed fibers of bounded mean curvature ‖H‖ ≤ C. Then

λ0(M2) ≤ (
√
λ0(M1) + C/2)2 and λess0 (M2) ≤ (

√
λess0 (M1) + C/2)2.

Proof: Let X be the vector field and S the Schrödinger operator defined in the beginning
of this section. Notice that ‖X‖ ≤ C. Given f ∈ C∞c (M1), with ‖f‖L2(M1) = 1, we have
that

RS(f) = R(f) +
1

4

∫
M1

‖X‖2f 2 − 1

2

∫
M

f 2 divX

≤ R(f) +
C2

4
+

1

2

∫
M

|〈grad f 2, X〉|

≤ R(f) +
C2

4
+ C

∫
M

|f |‖ grad f‖

≤ (
√
R(f) + C/2)2, (12)

where we used the divergence formula and the Cauchy-Schwarz inequality. By virtue of
Proposition 2.1, estimate (12) shows that λ0(S) ≤ (

√
λ0(M1)+C/2)2. The first statement

is now a consequence of Theorem 1.2.
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According to Corollary 2.7, there exists (fn)n∈N ⊂ C∞c (M1), with supp fn pairwise
disjoint, ‖fn‖L2(M1) = 1, and R(fn) → λess0 (M1). Bearing in mind Proposition 2.2 and
(12), it is straightforward to verify that

λess0 (S) ≤ lim inf
n
RS(fn) ≤ (

√
λess0 (M1) + C/2)2.

The proof is completed by Theorem 1.2.

Proof of Corollary 1.3: Let C be the supremum of the norm of the mean curvature of
the fibers. It follows from Corollary 4.1 that if the spectrum M1 is not discrete, then the
spectrum of M2 is not discrete.

Conversely, suppose that M1 has discrete spectrum, and let (Kn)n∈N be an exhausting
sequence of M1 consisting of compact subsets of M1. From Proposition 2.6, we readily see
that (λ0(M1rKn))n∈N is an increasing sequence that diverges. In particular, there exists
n0 ∈ N such that C ≤ 2

√
λ0(M1 rKn) for any n ≥ n0. Applying Theorem 1.1 to the

restriction of p : M2 r p−1(Kn) → M1 rKn over any connected component of M1 rKn

gives that
λ0(M2 r p−1(Kn)) ≥ (

√
λ0(M1 rKn)− C/2)2 (13)

for any n ≥ n0. Observe that (p−1(Kn))n∈N is an exhausting sequence of M2 consisting
of compact subsets of M2, because p has closed fibers. In view of Proposition 2.6, taking
the limit as n→ +∞ in (13), we derive that M2 has discrete spectrum.

Finally, we present some basic examples where our results can be applied. We assume
that the manifolds involved in these examples are complete.

Examples 4.2. (i) The warped product M2 = M1 ×ψ F is the product manifold en-
dowed with the Riemannian metric gN × ψ2gF , where ψ ∈ C∞(M1) is positive. The
projection to the first factor p : M2 →M1 is a Riemannian submersion with fibers of
basic mean curvature

H = −k grad(ln ψ̃),

where k = dim(F ). Suppose that F is closed, and consider the Schrödinger operator

S := ∆− ∆ψk/2

ψk/2

on M1. Taking into account Theorem 1.2, we deduce that σ(S) ⊂ σ(M2) and
σess(S) ⊂ σess(M2). If, in addition, grad(lnψ) is bounded, then Corollary 1.3 im-
plies that σess(M1) = ∅ if and only if σess(M2) = ∅. It is worth to point out that
surfaces of revolution are warped products of the form R×ψ S1.

(ii) A wider class of Riemannian submersions than warped products, consists of Clairaut
submersions, which were introduced by Bishop motivated by a result of Clairaut on
surfaces of revolution. A Riemannian submersion p : M2 → M1 is called Clairaut
submersion if there exists a positive f ∈ C∞(M2), such that for any geodesic c
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on M2, the function (f ◦ c) sin θ is constant, where θ(t) is the angle between c′(t)
and (Tc(t)M2)

h. Bishop showed that a Riemannian submersion p : M2 → M1 with
connected fibers, is a Clairaut submersion if and only if the fibers are totally umbilical
with mean curvature

H = −k grad(ln ψ̃)

for some positive ψ ∈ C∞(M1), where k is the dimension of the fiber (cf. for instance
[9, Theorem 1.7]). It is immediate to obtain statements for Clairaut submersions
with closed and connected fibers, analogous to the ones we established for warped
products.

(iii) Let G be a compact and connected Lie group acting smoothly and freely via isome-
tries on a Riemannian manifold M , with dim(M) > dim(G). Then the projection
p : M → M/G is a Riemannian submersion with closed fibers of basic mean curva-
ture.
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