
A NOTE ON FUNCTIONAL EQUATIONS

OF POLYLOGARITHMS

Zdzislaw Wojtkowiak

Max-Planck-Institut
für Mathematik
Gottfried-elaren-Straße 26
D-5300 Bonn 3

Federal Republic of Germany

MPI/90-22





A NOTE ON FUNCTIONAL EQUATIONS

OF POLYLOGARITHMS

Zdzislaw Wojtkowiak

o. Introduction

The function log z satisfies the functional equation

log x + log y = log(xy) .

z

The dilogarithm Li2(z):= ; -logp-z)dz satisfies the following functional equation

o

(see [1]).

;
z Li -1(z)

Let U8 set Li1(z) : -log(1-z) and Lin(z):= nz dz . It was expected that functions

o
Lin(z) will satisfy functional equations similar to functional equations of log z and

Li2(z) . In fact variOUB functional equationB of functions Lin(z) for n ~ 5 were found.

The basic reference is Lewin's book (see [5]).

Our aim ia to find some new functional equations satisfied by these functions.

Definition 0.1. If f: p 1(() ----+ p 1([) is a rational map then the divisor
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r

r1(1) = 1: rk · ck ,where rk E Z and Ck E ( , is the inverse image on (: of 1 taken with

k=l

multiplicities.

Now we shall formulate our main results.

n n. 1
Theorem A. Let f(z) = Q l](z-ai) I/A(z_b.)mj be a. map from P (G:) to

1=1 J=l J
r

p1«() . Let r 1(1) = 1: rk · ck . We have the following fonnula:

k=1

[ [
z-a.] ] [x-a. ] x~k z-a.]

}: ni · rk Li2 c -~. - Li2 c ~. + log a.-e log x-a~ +
'k k 1 k 1 1 k 1
1 ,

[ [
z-a.] [x-a. ] x-b . z-a.]

-}: ni ·mj Li2 b.-~. - Li2 b.~. + log a.-6. log x-a~ +
.. J 1 J 1 1 J 1
1 , J

[
Z-b~ [ Z-b.,] 1 2 [ Z-b~ 2- \ m. · m. , log --l log --.-L - 1'f \ m . log --l .

l J J x=o: x=o:I ~ l J x=o:
j<j' J j

The following summation convention is used in Theorem A and it will be used through the

whole paper.
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n I m-l m m

}: =}: }:, }: - }: }: 'l=l and SO on.

i, k i=l k=l j<j' j =1 j' = j +1 j j=l

We shall show that from the functional equation in Theorem A we can get all OI

almost all functional equations of the dilogarithm chOO8ing suitably the function f(z) .

We have the similar formula for the trilogarithm Li3(z). In the introduction we

state only the special case when the function f(z) is a polynomial function.

rn.
Theorem B. Let f(z) = a Tl (z-ai ) 1 and let r 1(1) = l rk -ck . We have the

1=1 k=1

following formula

[ [
z-a. Ck-al"J [x-a1· ck--a../J' L' 1 L' 1-n -n -r 1 --- - 1 ---l: i i k 3 z-a. I ck-a. 3 x-a. I ck-a.

'<' I k 1 1 1 11 1 ,

. [X-ai ck-ai I J [z-ai x-ai 'J 1 [ai I-ai x--ek J 2 [z-ai x-ai I J ]
-LI --- log ----- -~og --- log -----2 x-a·, ck-a· z-a'l x-a· 2- x-a" ck-a. Z-a·1 x-a.1 1 1 1 1 1 1 1

[ [
z-a. J [x-a. J [x-a. J'L' 1 L' 1 L' 1- n· -n· r 1 -- - 1 -- - 1 --

i I ~i ,k I I k 3 ck-ai 3 ck~ 2 ck-aj

1 rck-x J 2 [z-a'J ]
- ,; log Lc

k
-a

j
log x-a~ +

[
z-a'J_ log __1 +
x-a.

1

[ [
z-a. J [x-a. J [x-a. J [z-a. x-a"JI L' 1 L' 1 L' 1 1 1 1+ n. -n. - r 1 -- - 1 -- - 1 -- 0 ----- +1: 1 1 k 3 z-a., 3 X-a'1 2 x-a., g z-a., x-a..<., k 1 1 1 1 1

1 1 I
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1 [ai -ai '] 2 [z-ai x-a i '] J-"" log log -_. .
~ x-a. z-a· , x-a .

1 I I

We can observe that Li2(f(z)) we expressed as a sum of Li2(g(z)), s , where g(z)

are functions of degree one, logarithmic tenns and constants. The same holds for

Li3(f(z)) . This ia not a general phenomena as we shall see in the next theorem.

Definition 0.2. Let U8 assume that ni i=l,... ,n; mj j=l,,,.,m are positive

n n·
integers. Let f(z) = an (z-ai) I/nm(z_b.)mj be a rational function written in an

1=1 J=1 J
n m

irreducible form. We set deg f:= max [l ni' l mjJ and we call this number the degree

i=1 j=l

of f.

Theorem (. Let f(z) be a rational function of degree k greater than 1. Let us

assume that f(z) is not a k-th power. Let n be a natural number greater than 3. Then

the function Ln(f(z)) cannot be expressed as a sum of :I: Ln(fi(z)) with deg fj = 1 ,

constants and products of :I: Lij(g(z)) with j < n and grational.

Theorem ( follows immediately from Proposition 2.8 and Proposition 2.4 which we

shall prove in section 2.

The functions Lin(z) are special cases of ehen iterated integrals. We reca11 their

definition. Let wl' ... ,wn be one-forms on a manifold M, let x and z be two points of

M and let 7(t), t E [0,1] be a sIDooth path from x to z. Then we define by a

recursive formula
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z. () J-dz dz dzIt is clear that Lln z = z-1' z'oo, 'z .
o

We have the following results.

Theorem D. Let a1, a2, a3, a4 be tour different points in (:.

z

a) The functien N(z) = J dza , ~, daz can be expressed by classical
z- 1 z -J; z- 3

x

pelylogarithms.

z

b) Let L(z) = J...!!!..., ...!!!...,...!!!..., -adz . There is no polynomial p(s,t1'Oo.,tr ) such
z-a1 z~ z-a3 z 4

x

that p(L(z),Li (f1(z)),oo.,Li (f (z))) = 0 where Li (z) are classical polylogarithmsn1 nr r nk

and fi(z) are rational functions. (see Propositions 2.10 and 2.12 in section 2.)

This note is an extended version of our preprint I1A note on functional equation of the

dilogarithm" CRM (Bellaterra) October 1984. We would like to thank very much P.

Deligne for bis comments on our manuscript nnder the same iitle, where he reinterpreted

Dur results in terms af Lie algebras of fundamental groups. He also showed us the

connection !rom section 1 in the special case of (\{O,1} . We acknowledge the influence of

the Iecture of D. Zagier (Bann, April 1989). We acknowledge the influence of the paper of

L.J. Rogers (see [6]), H.F. Sandham (see [7]) and R.F. Coleman (see [3]). We would

like to thank very much J.L. Loday and eh. Soule who told us about functional equations

of polyIogarithms.

The principal tools in our investigations are two observations.
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1. Functions cf the type of polylogarithms are horizontal sections of the canonical

unipotent connection on pl(()\{ap... ,an} .

2. The functional equations of functions of the type of polylogarithms are

consequences of relations between maps induced by regular functions from pl([)\several

points to pl(()\several points on Lie algebras cf fundamental groups.

We illustrate the second principal with few examples.

Example 1. The maps {(x) = x and g(x) = 1-x from X = p1(()\{O,l,m} into

itself induce opposite maps on r 2
7r1(X,x)/r3

wo1(X,x) , therefore we have a functional

equation

l.d.t. = lower degree terms.

2Example 2. The maps f(x) = x , g(x) = x and h(x) = -x from

X = p1(()\{O,1,-l,m} to pl(()\{O,l,m} satisfies

on r 2
wo1(X,x)/r3r 1(X,x) , therefore there is a functional equation

Example 3. Let f1(x) = x, i2(x) = r=x' f3(x) = X~l' f4(x) = ~ be maps from
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x = pl(()\{O,l,CD} into itself. In

[
3 4 3 4 ]Hom r if1(X,x)/r "'l(X,x); r "'l(X,x)/r if1(X,x) + [V[U,V]] , where U

around °and V ia a loop around 1 we have

Hence there a.re functional equations

and

ia a loop

1Example 4. Let X = P (()\{O,l,CD}, f(x) = x and g(x) = l/x. Let U be a loop

around °and let V be a loop around 1. On the quotient r n if1(X,x)/rn+ 1"'1(X,x)+L,

where L ia a aubgroup of rnr1(X,x) generated by all these commutators which contain

V at least twice, we have

Therefore we have a functional equation

All these examples follow easily !rom the following theorem:
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Theorem E. Let X = p1(()\{al""'&r,m} and Y = pl(()\{O,l,m} . Let U

(resp. V ) be a loop around 0 (resp. 1 ) in Y . Let f1, ... ,fN : X ---+ Y be regular maps

from X to Y and let nl' ... ,nN be integers. There is a functional equation

if and only if

in the Z-module Hom(rnIf1(X,x)/rn+lrl(X,x), rnrt (Y,y)/rn+1r1(Y,y)+L) I where L

is a subgroup of r n
7r1(Y,y)/rn+ 1r 1(Y,y) generated by all eommutators whieh eontain V

at least twice and fi* is the map induced by fj on fundamental groups.

This theorem will follow from Theorem 2.1, Proposition 2.4 and Lemma 2.7 !rom

section 2.

1. The universal unipotent connection on pl(()\several points and functional equations.

1Let X = P (()\{al' ... ,an,[I)} . Let H = H1(X) = ZX1 + Z~ + ... + ZXn where xi

is the c1ass of a loop around ai . Let ([ [H]] = (: [[x1"",xn]] be an algebra of formal

power series in non---commutative variables xl' ... ,xn . Let I be an augmentation ideal.

Then C [[H]] /In ia a finite dimensional vector space over (:, 80 it has the standard,

complex topology, C [ [H]] = 1im C [ [H] ] /In and we equipped C [ [H]] wi th the
+--n

topology of the inverse limit.

Let Z (X) be a Lie algebra of Lie elements in C [[H]] . This is a free Lie algebra
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on H. Let L(X) be a completion of $ (X) with respect to the lower central series of

$ (X) . We equipped L(X) with a group law given by the Baker-Hausdorff fonnula and

we denote this new group by r(X). The group ",X) ia a topological group. The topology

is induced from C [[H(X)]] . This topology coincides with the topology of the inverse

limit given by r(X) = 1im r(X)/rnr(X) ,where (rn",X))n>2 is the lower central series
t---- -n

and r(X)/rnr(X) is a complex Lie group.

*Let C [[H(X)]] be a group of invertible elements in C [[H(X)]] . This is also a

topological group, an inverse limit of finite dimensional Lie groups.

The map

*exp : ,,",X)~ C[ [H(X)] ]

2
given by w~ eW = 1 + TI + n+ ... is a continous homomorphisID of topological

groups. In fact this map is a monomorphism wh08e image is a closed subgroup of

*C [[H(X)]] .

The Lie algebra of r(X) is L(X) . We shall consider L(X) as a Lie subalgebra of

*the Lie algebra of C [ [H] ] . The tangent vector at 0 E r(X) given by t~ t ·xi we

denote therefore by xi . The tangent vector at 1 E (: [[H]] given by t -----+ l+t· xi we

denote also by x. .
1

We consider on X two one-forms "'X and "'X with values in the Lie algebra of

*7r{X) and C [ [H] ] .

We set

and
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* *( Lie C [[H]] is the Lie algebra of C [[H]] ).

*The monomorphism exp: %(X) --+ C [[H]] map8 Wx into Wx and in the

sequel we shall denote both forms by ""X'

The principal fibre bundles

x )( r(X) ------+ X

and

x )( C[ [H]] ------+ X

we equipped with the connections given by the one-fonn Wx (see [4]).

Let us set w· = - z-adz i = 1,... ,n . Let 7 be a path hom x to z. Let UB define the
1 .

1

following functions of z .

A (f l ,···, fk)(Z) := f w , W ,..• ,41
X f k f k- I f i

7

Theorem 1.1. The application

X 3 z ------+ (z,l+~ A (fl, ... ,fk)(z)x ,... ,X )L x f l fk

*is horizontal with respect to the connection Wx on X)( 4: [[HI (X)]] .

The proof of tbis resu1t is a straightford calculation of horizontal liftings.
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Let X = pl(()\{xl', .. ,xn,m} and Y = P1(()\{Yl""'Ym'CD} . Let

n n. m
f(z) = an (z-ai) I/n (Z-b.)ID be a rational function. Let us assume that f restriets

1=1 J=l J

to a regular map f: X --t Y , The map f* : BI(X) --t BI(Y) induces homomorphisms

of groups

and

* *In the sequel G(X) is ([ [BI(X)]] or r{X) and G(Y) ia ([ [BI(Y)]] or r{Y),

Proposition 1.2. The map (f,f)(f*) of principal fibre bundles

X)(G(X) ----t. Y)(G(Y)

(1)1 (2)1
fX------+I Y

is such that

Thia ia the direct verification.

The staightford conaequence of the theOrem ia the following result.
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Corollary 1.3. The map (f,fxf*) of the principal fibre bundles maps horizontal

sections of the first bundle into horizontal sections along f of the second bundle.

Let i be a path in X. We shall denote by (z,tX(x,z; i)) or shortly by (z,lX(z))

the value at z of the horizontal section of the bundle X )( G(X) ---+ X along the path i

with the initial condition .lX(x,xJi) = (x,O) il G(X) = r(X) , and tX(x~,i) = (x,l) if

*G(X) = ([ [Hl (X)]] . Corollary 2.2 implies that we have an equality

The group G(Y) is an affine group. Let Alg(G(Y)) be an algebra of polynomial,

camplex valued funetons on G(Y).

Theorem 1.4 (General funetional equation). Let fl, ... ,fn : X ---+ Y be regular

funetions. Let '61"'" ~ be elements of Alg{G(Y)) and let p{tl, ... ,t ) be an . n

polynomial in variables tl' ... ,tn .

i) Let G() = 71'( ) . There is a funetional equation

if and only if

(2)

*ii)Let G()=([[Hl {)]] .If
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then there is a functional equation

Proof. Let us aBsu.me that we have (2). Corollary 1.3 implies that

~.(f.*(tX(z)))= ~.(f.y({(z)) .
1 1 1

Replacing ~i(fi*(tX(z)) by ~i(ty(f(z)) in the {ormula (2) we get the functional

equation (1).

Let us assu.me that we have a functional equation (1). The set of values lx(x,x,?,),

for all closed loops ?" is Zariski dense in r(X). The vanishing of the regular function (2)

on the Zariski dense set implies that this regular function is zero.

Corollary 1.5. Let fl' ... ,fn : X ----+ Y be regular functions. Let ~1"'" t4'n be

elements of Alg( ~Y)) and let '1"'" 'm be elements of AIg( 'K(X)) . Let

p(sl'.",sm,tl'".,tn) be apolynomial in sl'".,sm' tl'".,tn . Let ?' be a path in X !rom

x to z.

There is a functonal equation

if and only if

Proo{. First we replace Y by Y' such that the inclusion i: X ----+ Y' i(z) = z is
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regular. Let B I be a base of .:t (Y ') which extends BOrne base B of .:t (Y) . We

extend ~i to ~ i E Alg( 'K(Y I )) in such a way that for any bEB I, t:ß i (b) = 0 .

Then we have an equality

where f.• : 'K(X) ---i r(y / ) . The corollary now follow8 from Theorem 1.4.
I

We finish this section with an easy lemma about the monodromy of the function

tX(z) . We recall that we have a natural identification

rnr(X)/rn+1r(X) ~ (rn'Kl(X,x)/rn+llfl(X,x)) ~ (.

Lemma 1.6. Let ~ E (rnJ"(X)/rn+1r(X))* . The monodromy of the function

~ (lX(z)) on rnlfl(X,x)/rn+lrl(X,x) is given by (-2n)n ~.

Proof. The monodromy of tX(z) around ai is given by

tX(z) ---i tX(z) + (-2ri)xi + terms of degree ~ 2 . This implies the lemma.

2. General functional equation of polylogarithms.

Let X = pl(()\{xl'... ,xn,m} and let Y = pl(()\{O,l,m} . .:t(X) and .:t(Y)

are free Lie algebras on H1(X) and H1(Y) respectively. Let U, V be a base of H1(Y)

given by loops in clock-wise direction around points 0 and 1 respectively. For a free Lie

algebra L, let us set L' = [L,L] and L II = [L I ,L '] . Let Ln be the vector space of

degree n elements in L/L" . In .t{Y) we fix a base given by elementary basic elements.

This base determines a base of .:t(Y)n' Let us set eO:= U, e1 := V, ~:= [U,V] ,
.. *

en := [U,en_ 1] . Let en (resp. en ) be the linear form on ~Y) (resp. .2'(Y)n) dual
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Theorem 2.1 (General functional equation of polylogarithms). Let

fl'i2, ... ,fk : X ----i Y be regular functions and let nl'~,... ,nk be integers. Let

G( ) = ~ ) .There is a functional equation

~ ~

(3) nt en(t y (f1(z);f1(x),f1(i)) + ... + nken(ty{fk(z);fk(x),fk( i)) = Q

if and only if

(4)

*in ($(X)n) .

(fi* are maps fi* restricted to $(X)n)'

Proof. Let UB notice that the formula (4) is equivalent to the equality

(4 ' )
~ ~ ~

n l (enofl .) + n2(enof2*) + ... + nk(enofk·) = Q

*in ($'(X)) . Theorem 1.4 implies that (3) and (4 ' ) are equivalent.

Definition 2.2 (Higher Rogers functions). Let i be a path from x to z in

y = P1(G:)\{Q,l,m} . We set

~

.z'n(ZjX,i) := en(f.y(zjX,i))

and
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(Ir the integration path 1 is obvious we shall write .t'n(z) instead of .z'n(ZjX,1).)

We point out that functions .t'n(z) are in some sense higher analogs of the Rogers

z

fwcti n Hz) =-;f t m-) Ill~zJ dz . The Rogers fwction L(z) satisfies fwctional
o

equations which usually have less lower degree terms than the analogons equations for

z

Li (z) = ; ~ m )dz . For example for the Rogen function we have

o

L(z) + L(l--2) = L(l)

while for the classical dilogarithm we have

We shall see later that in general the functions .t' (z) satisfy furictional equations withn

lesslower degree terms than analogous functional equations for classical polylogarithms

Lin(z) . We also have the following proposition which justifies the name "higher Rogers

functions".

Proposition 2.3. We have

z

J'p) =;; p-°gP-) + 11~zJdz
o
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and

The next proposition gives the relation between higher Rogers functions ~n(z) and

classical polylogarithms Lin(z) .

Proposition 2.4. i) The difference ~n(z) - Lin(z) can be expressed as a SUID of

products of lower degree polylogarithms Lik(z) for k < n and log z .

ii) The difference $ (z) - Li (z) can be expressed as a sum of products of lowern n

degree functions $k(z) for k < n and log z and log(l-z) .

*Proof. It follows from Theorem 1.1 applied to ([ [H1(Y)]] = ([ [U,V]] that the

coefficient at UnV of the horiwntal section starting from 0 is equal to Lin(z) . The

homomorphism exp: r(Y) --+ ([ [U,V]] maps horizontal sections into horizontal

sections. Comparing coefficients at UnV for exp(ty{z)) (t.y{z) is the horizontal

section in 1r{Y)) and for the horizontalsection in ([ [U,V]] we get the part ii). The

point i) follows then easily by induction.

We shall consider the question whether ~n(f(z)) can be expressed aB a Bum of

~ (f.(z)) ,where deg f. < deg fand perhaps terms of lower degree and constants.
nIl

n n. m m.
Proposition 2.5. Let f(z) = all (z-ai) 1/11 (z-b.) J be a rational function in

l=i J=i J

irreducible form. The function $2(f(z)) can be expressed as a sum of $2(fj (z)) where

deg fj = 1 , products of logarithms and constants.
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r

Proof. The divisor r1(1) on 4: is equal to l rk · ck . The functon f defines a

k=l

regular map

z-a. z-a. z-h .
Let f..(z) = b 1, e:.k(z) = __1 , h..(z) = ---..L i = l, ... ,n j j = l, ... ,mj k = l, ... ,r .

IJ j-ai ""'l ck-ai IJ ~

One checks that

n m n r m r

f. = - 1: 1: ni · mj(fij)* + 1: 1: ni •rk(gih)* - 1: 1: ni •rk(hij)*
i=l j=l i=l k=l j=l k=l

on ~(X)2'

The proposition now follows directly from Theorem 2.

Proposition 2.6. Let f(z) be a rational function. Then $3(f(z)) can be expressed as

a sum of 2 3(fi(z)), where deg fi = 1 , constants and products of dilogarithms and

logarithms.

We shall omit the proof which is similar to the proof of Proposition 2.4. However in

the next section we give an explicit formual for Li3(f(z)).

To simplify notations we set $l(z):= log(l-z) and $O(z):= log(z) .

The symbols fi(z), gj(z), hk(z) will denote rational functions on pl(().

Lemma 2.7. Let us assume that we have a functional equation
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N

\ n. $ (f.(z)) + l.d.t. = 0L 1 n 1

i=1

where l.d.t. is a sum oI constants and products oI .t'k(gj(Z)) with k < n .

Then we have

1 N 1 -1
x=p (()\{ U C {O,1,m}UUg. {O,1,m} Um} .

. 1 1 . J
1= J

N

Proof. The formula l ni .t'n(fi(z)) + l.d.t. is understood in the following way. For

i=1

each function .t'k(hi(z)) wbich appealS in it we choose a path 1h !rom 0 to h(z) and

we calculate the value .t'k(h(z)) along tbis path. The equality (*) means that there is a

choice of paths r = (1h) such that the left hand side vanishes.

Let us observe that then for auy family of paths ~ = (oh) there is l.d.t. which

depends on tJ. such that the leIt hand aide with this new ~ vanishes.

We choose a path 1 !rom x to z in X. Then we can rewrite the equation (*) in

the form

N

\ n· $ (f.(z)jf.(x),f.(1)) + l.d.t. = 0 .L 1 n 1 1 1

i=l
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It follows from Theorem 1.4 that

N

\' n.~ of.• + p(;k02. *;k<n) = 0 0l 1 n 1 ""lk
i=1

N
* *Mter restriction to $(X)n we get l nienofi* = 0 in ($(X)n) .

i=1

Proposition 2.8. Let f(z) be a rational function of degree k > 1 . Let us &Bsume that

f(z) js not a k-th power. Let n be a natural number greater than 3. Then the function

$n(f(z» cannot be expressed aB a SUID of :I: .tn(fj(z» with deg fi = 1 , constants and

products of :I: $j(g(z» with i < n and grational.

Proaf. It follows !rom Introduction, Example 4 that we can assume

n n. m m.
f(z) = °n (z-ai) l/n (z-b.) J and a1 f ~ 0 Let c E ( be such that f(c) = 1

1=1 1=1 J

with the multiplicity r. We consider f aB a regular map

f: X = P1(()\{r1(O) Ur 1(m) Um} ---i Y = pl(()\{O,I,m} . We choose a base of

BI(X) given by loaps araund missing points except m. Let Ai be a loop Mound ai ' and

let ( be a loop Mound c. Let °2 := [A2,(]) on = [Al'0n_l] and

ß3 = [A2 [A2,(]], ßn = [Al'ßn- 1] . We have f.(on) = n~-2. ~·r °en ,

f.(ßn) = n~-3. n~. r· en . The only degree one mapa which involve an and ßn are

z-a1 c~ z~ c-&1
g(z) = -a- • -ca and h(z) = -- • c-a.... 0 For these maps we have g.(o ) = --e ,

z-2 -1 ~1 ~ n n

g*(ßn) = en + sc) h.(on) = (-I)n-2en + sc·) h.(ßn) = (-I)n-3en + sc ,where sc is a

linear combination of basic elements all different !rom e . Now it ia cIear that anyn
N. \'.

relation of the form enoft + L qienofjt = 0 with qi E ~ is impossible. Therefore Lemma

i
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2.7 implies the proposition.

1 *Lemma 2.9. Let X = P (()\{al'... ,an,CD} . Let G(X) be r(X) OI ([ [BI(X)]]

and let ~ E Alg(G(X)/r3G(X)) . Then ~ (tX(Z;X,7)) ca.n be expressed by

dilogarithms, logarithms and constants.

z

Proofhe uegu f;:. :5 can ea.sily b expressedi oy dilogarithm logarithms

x

and constants.

Proposition 2.10. Let a, b, c be three different points in (. The function

z

N(z) = f -dz-az, ~, dz cau be expressed by classical polylogarithms Li .
Z-u z-e n

x

Proof. We set X = p 1(()\{a,b,c,CD} and Y = p 1(()\{O,l,CD} . In degree 3

:t (X) has the following base given by elementary basic elements a1 = ((BA)A),

~ = ((CA)A), a3 = ((BA)B), a4 = ((CA)B), a5 = ((CB)C), a6 = ((BA)C),

a7 = ((CA)C) . Let ar i = 1, ... ,7 be dual linear forms. Let f1(z) = :=b' ~(z) = ~=b'

() a-z () a-z c-bfg z = c-z' f4 z = a-b • c-z be maps from X to Y . Then we have

on r 3r(X)/r4r(X) . This implies that in AIg( 'K(X)) we have an equality

where P ia a polynomial in functions on r(X)/r3r(X) . Corollary 1.5, Proposition 2.4
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*and Lemma 2.3 imply that a6(iX(z;X,i)) can be expressed by c1assieal polylogarithms.

One shows using the method of the proof of Proposition 2.4 that the funetion N(z) ean be

*expressed by &6(iX(z;X,i)) and c1assical polylogarithms.

*Corollary 2.11. Let G(X) be r(X) or «: [ [H1(X)] ] . Let

~ E Alg(G(x)/r4G(X))) . Then ~ (iX(z;X,i)) ean be expressed by c1assieal

polylogarithms.

Proof. This folloW8 from the formulas 1.5.2 and 1.6.2 in [2] and Proposition 2.9.

Proposition 2.12. Let ai' i = 1,2,3,4 be four different points in (. Let

z() f dz dz dz dz . 1 ·al ( ) h hL z = --a' z-an.' -a' -a . There 18 no po ynODll P s,t1,.. ·,t 8ue t at
z 1 --~ z 3 z 4 r

x

p(L(z), Li (f1(z)), .."Li (f (z))) = 0 where Li (z) are classical polylogarithms andn1 nr r nk

f.(z) are rational funetions on p1(() .
1

Proof. The function p(z) = p(L(z), Li (f1(z)), ... ) is a multivalued funetion onn1

X = pl(()\{al'~,a3,an Ufinite set of points} . The monodromy of L(z) on one of the

commutators a = [[a. ,a. ], [a. ,a. ]] with all ik different is equal to ±(-2'ri)4 . The
11 12 13 14

monodromy of Li (fk(z)) on a is trivial. This follows from the equalitynk

A A

~ n(l.y{fk(z);fk(x),fk( i)) = ~ nofk*(f-X(z;x,1))

and from Lemma 1.6. Hence the monodromy of p(z) on a is non-trivial. Therefore

p(z) 4= 0 .
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3. Functional equations of low degree polylogarithm

In tbis section we write down functional equations for dilogarithm, trilogarithm and

fourth-order polylogarithm. We shaß get them in the similar way we showed Theorem 2.1.

*However we ahall work with the group G() = ([ [H1( )]] instead of r(). This has an

advantage to deal with more familiar functions. On the other aide we do not have the

*analog of Theorem 2.1 for a: [[BI( )]] . This is due to the fact that coefficients of ly(z)

at different monomials can be related (for example coefficients at UV and VU are

obviously related). Therefore we shall prove (calculate) any analog of Theorem 2.1 in every

special case we consider.

3.1. Functional equations of dilogarithm.

First we show how forms of functional equations known before can be deduced from

our general form from Theorem A.

Example 1. Let f(z) = zn and x = 0 . Then we have

Li2(zn) = n l Li2( ,kz)

k=l

where ,= e27ri / n .

Example 2. Let f(z) = (y-I}(z-I) and x = 0 . Then we have
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Example 3. Let f(z) = (l;!~ and x = 0 . Then we get

n n· m m·
Proof of Theorem A. Let f(z) = an (z-ai) Itn (z-b.) J and let

1=1 J=l J

r1(1) = l rkck · Let X = p
1
(()\{al'".,an,bl'".,bm'Cl'·"'Crlco} and

k=l
1 *Y = P (()\{O,l,co} . We set G(X) =([ [Al'".,An,Bl'".,BmICl""'Cr]] and

G(Y) = ([ [U,V]] . Let ~ be a regular function on G(Y) equal to a coefficient at

UV . For any regular g: X ---+ Y we have

(*)

We are looking for degree one map8 f. : X ---+ Y such that
1

~ of*-linear combination of ~ ofi*

will vanish or at least will be possible to calculate easily.

We have

f* (Ai · Ck) = ni · rkUV , f. (Bj -Ck) = -mj - rkUV ,

f*(A.· B.) =-n.· m.UV , f.(B.- B.,) =m.-m., UV .
1 J 1 J J J J J
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We need maps of degree one g : X --+ Y which induce the same maps on these products.

Here there are three families of such maps

z-a.
Ir..(z) =~, (2..)*(A.B.) = uv
u:lJ u !-a! u:lJ 1 J

J 1

z-b.
hjk(z) = -----.:..L I (hjk).(B .Ck) = -UVCk=Dj J

We have

cpof* = \ n· -rk ~ o(f·k)* - \ ID· -rk '6 o(h..). - \ n. -m· '6 o(lr..)* + \ ""l 1 1 l 1 IJ l 1 J UJ.J l JJ
i,k j,k i,j jj'

where 'jjl is a coefficient at Bj -Bjl . From this formula applied to t X(ZjX, 7) , the

equalit; (*) andht b@cla J?> ?O\ +J?: =5 =J:4 ·J:5 we get

1 [Z-b~ [Z-b"J-Ir \' m. -m./log ----.J. log~
L. l J J ~ x=E>:7

. ·1 JJ,J

where w=ii, ~. Theorem A follows immediately !rom this equation.
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Example 4.

We shall indicate how the Newman functional equation

if x+y+z = xyz + 2 can be get by our method.

W 'd fi f () z(z+x-2) f _() z+x-2 f ( ) f ( )e consl er ve maps 1 z = x z -1 '"""2 z = x z-1' 3 z =xz, 4 z = z,

fS(z) = X(~~:12) from p1(()\{O,1,1/x,2-x,m} to p1([)\{O,1,m} . Aplying the method

from the proof of the theorem we get an equation

Li2(xy) + Li2(yz) + Li2(zx) - 2Li2(z) - 2Li2(y) +

+ 2Li2(x-2) - Li2(x(2-x)) + logarithmic terms = 0 .

After applying Theorem A to Li2(x(2-x)) we get the Newman functional equation.

3.2. Functional equation of trilogarithm.

We shall give only formulas. The proof ia similar to the proof of Theorem A and we

shall antit it.

n n. m m.
Theorem 3.2.1. Let f(z) = aTl (z-ai) I/TI (z-b.) J and let

1=1 3=i J

1 1(1) = 1: rkck . We have the following fonnula:

k=l
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[ . [Z-ai ck~'] . [X-aj ck-aj ,]n. •n. , •r -LI -_. + LI -_. +1: . 1 1 k 3 z-a. I ck-a. 3 x-a. I <1t-a.
'<' , k 1 1 1 11 1 ,

[
z-aj Ck-aj , ]

-Cor -_. +
z-a., ck-a·

1 1

. [z-aj ] ,[X~ ] [Z~ x-aj ] ]LI -- - LI -- + Cor -- -- +3 z-ai , 3 x-ai , z~, 'x-ai'

G
-a, ck-b ' x-a, ck-b .]

-Cor 1 •~ 1 •~ +z-b. ck-a, ' x b. ck-a,
J 1 J 1

[Z-an [x-a!l [z-a. x-a!l
Li3 z ;) - Li3 x-tj + Co z-'6~' x-'6~ +

[
z-a. ] [x-a, ] [z-a, x-a.]

L' 1 L' 1 eIlI -- - 1 -- + or -- -- +3 ck-ai 3 ck-ai ck~ 1 ck-ai

[
z-b '-1 [X-b '-1 [Z-b. x-b '-1]

Li3 c
k
-fly - Li3 c

k
-Gy + Cor c +

[ [
Z-b' ck-b.,] [X-h, ck-b,']

m · m , · r -Li · + Li • +. 1: j j k 3- - ced: 3- - ck-'6~
J<J ',k
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rz
-b.J [X-b. J [z-b. x-b. JJLi - Li + Cor +3 z-~! 3 x-b), =},~

[ [Z-b'-1 [X-b'-1 [z-b. x-b'-1 ]
.LDyillj'L Li3 cL-ly -Li3 F y + Gor C ;, cL-ly +
J,J )

[ [
z-a. b .-a. ,J [x-a. b .-a. I J

L· 1 1 L' I In ·n I·m - I -_. + I -_. +1: i i j 3 z-a., It:f- 3 X-a" ~
i< i I ,k 1 J 1 I J I

[z-a. b·-a· , x-a· b.-a. ,J
C l It:f- 1 It:f-- or-- o

--" +z-a. , .-a.' x-a. , .-a.
I J I I J I

[z-a. J [x-a. J [z-a. x-a. J]L· 1 L' I C 1 1+ I -- - I -- + or -- -- +3 z-ai , 3 x-aj , z-aj I 'x-aj ,

[ [Z-b. a.-b"J [X-b. a.-b"J
L· I L' Im ·m ,·n I • - 1 • +1: j j i 3 z-b~, ~ 3 X-';, U.< . I • J I J J 1 J

J J ,I

[Z-b. aj-b" x-b. Rj-b"J
Cer --l"~ -----L"~ +z=o:I ~ 'x:=o:I ~

J I J J 1 J

[Z-b. J [X-b. J [Z-b. x-b. JJLi - Li + Cer +3 zbj, 3 x-bj, _ w 'x-bj,
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1 z-a. z-b. z-b.,
1: -mj -mj , -ni ~ log x-a~ log x-~ log x-';, +

... , 1 J J
1,J ,J

1 z-b. z-b., z-b."
\ -m. -m., -m." -7! log ----.llog ----.L... - log~ ,L J J J 0 ~ x=o:t ~

• ., '11 J J JJ,J ,J

where Cor(a,b) =-Li2(b)log [liJ -ilog(I-b)log2 [li] .(The summation convention:

n m r n-l n r

1: = 1: ): l' l = l ~ ~.)
i,j,k i=l j=l k=l i<i' ,k i=l i' =i+l k=l

We omit the proof of this theorem because it is the same as the proof of Theorem A.

I shall indicate two more fonnulas.

Theorem 3.2.2.

= \ n. -n., -r [Li [z-ai - z-ai , J_Li [x-ai - x-ai , J +
L 1 1 k 3 ck-a· ck-a·, 3 ck-a· ck-a·,

i< i ' ,k 1 1 1 1

[ [
z-a. ] [x-a. J [z-a. x-a. JJl (2ni -N) -ni -rk Li3 c ~. - Li3 c ~. + Cor c ~. ' c ~. +

'k k 1 k 1 k 1 k 1
1 ,
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n n.
where cI"",ck"",cr are roots of an (z-ai) 1 -1 = 0 with the multiplicities

1=1
n

N=l
i=1

n..
1

The Corollary below is the special case of Theorem B. We write it down to have the

implicit fonnula in the simplest case.

Corollary 3.2.3. Let a,b E( and a +b . We have a fonnula:

[ J [J [ c~ [J. z-b . z-a . z-a 2 . z-b
+ 2L13 cl-b - 2L13 c

2
-a - L13 z-b • c

2
a + 2L13 c

2
-b +
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L" [z-aJ 2L" [a-b J 2L" [a-b J2 13 z=o - 13 Cl-b - 13~ +

[a-eIJ 2 [z-bJ [a-e2J 2 [z-bJ-log "t>=el log a b - log '6=C2 log a-b +

2L" [a-b JI z-b 2L' [a-b JI [z-bJ
- 12 cl-ti og ä=6 - 12 c

2
-b og a=o '

3.3" The fourth-order polylogarithm.

Theorem 3.3.1. We have the formula

2Li4[- 1 2(z-a)(z-b)J + Li4[ok {Z-fi) J=
(b-a) z-

1

-lLi4<~d + 2Li4 [::t - 8 4k + 4 J :i, ~, ~, ~
z-b
a-b

2 4- ir<log(z-b)-log(a-b))

where cl' c2 are roots of the equation
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1--2 (z-a)(z-b) -1 = 0 .
(b-a)

Let U8 notice that tms functional equation has less quadratic terms then the

Kummer's functional equation of the fourth-order polylogarithm (see [5]).
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