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A NOTE ON FUNCTIONAL EQUATIONS
OF POLYLOGARITHMS

Zdzistaw Wojtkowiak

0. Introduction

The function log z satisfies the functional equation

log x + log y = log(xy) -

zZ
The dilogarithm Liy(z) := Jﬂéli)dz satisfies the following functional equation
0

Li2(1§i.,[y_7) = Lip(y%) + Li2(1f—y) — Liy(x) — Liy(y) — log(1—x)log(1-y)

(see [1]).
L (2)

Let us set Lil(z) : —log(1—z) and Li (z):= —, —dz . It was expected that functions
0

Li (z) will satisfy functional equations similar to functional equations of log z and

Liy(z) . In fact various functional equations of functions Li (z) for n <5 were found.
The basic reference is Lewin’s book (see [5]).

Our aim is to find some new functional equations satisfied by these functions.

Definition 0.1. If f: PY(€) — P1(€) is a rational map then the divisor
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I

f 1(1) = 2 I, "¢, where 1, €7 and ¢, € C, is the inverse image on C of 1 taken with
k=1

multiplicities.

Now we shall formulate our main results.

n n,
Theorem A. Let f(z) = a T [(z-3;) 1/_[__Tm (z-b )mj be a map from Pl(d:) to
1=1 J:l ? j

I
PI(C) . Let f-l(l) = E 1, " ¢ - We have the following formula:
k=1

z—b. z—b., z—b~2
_2 m, - m;, [logx—_Bﬂ [logi—_F;ﬂ —%?m? [logiqﬂ .

i<i’

The following summation convention is used in Theorem A and it will be used through the

whole paper.



-3-

B

and so on.

m
)
=i !

+1

e
} ]

I~

We shall show that from the functional equation in Theorem A we can get all or
almost all functional equations of the dilogarithm choosing suitably the function f(z) .
We have the similar formula for the trilogarithm Li3(z) . In the introduction we

state only the special case when the function f(z) is a polynomial function.

I

n.
Theorem B. Let f(z) = a T T (z—9;) ! and let f-l(l) = 2 I, "¢ - We have the
1=1

k=1
following formula

n n n.

Liga T (z—a.i)ni) ~Lig(aT_] -3, iy =

1= 1=

p . z_ai Ck—ai / . X—ai Ck_ai 4
2 i B T [L13 [z—a-; ¢ ] —Lig [x—a- /¢ 8 ]
i<i’ )k ! ! ' !

X3, Cp—a./ z—a.  X—a./ a./-a, X—C z—a. X2/
—Lig [x—a1 7 ck—a.l ]103 [z—al 7 = ]“ %103 [xia. e -:. ] log” [z-al T ]]
i Yk i i i i k “i i i

, . Z—ai . X—ai . x—a.i Z—ai
- ,Z m; 0, T [L‘3 [ck—a.i] — Liy [ck-ai] — Ly [ck—ai] " log [—] +
i’k

1 KXY, 2078
— 5 log Ek _ai] log ["Tai]] +

. et X8 e 2—8, X
+ 2 n,'n 'rk[LlIi[z—a-;] _Ll3[x—a-;] _Ll2[x—a.;]1°g[ . ] +
i<i’ k ! ! !



1 a-i—a-il 2 z—ai x-ail
—zlog[ X—a; ]log [ﬂ—ai/ x-a.i]]

We can observe that Li,(f(z)) we expressed as a sum of Liz(g(z))’ 8 , where g(z)
are functions of degree one, logarithmic terms and constants. The same holds for

Li3(f(z)) . This is not a general phenomena as we shall see in the next theorem.

Definition 0.2. Let us assume that n, i=1,...,n;mj j=1,...,m are positive
n

.
integers. Let {(z) = a (z—;) = (z—b.)mj be a rational function written in an
1 J

J=

|
=1

B

n
irreducible form. We set deg f := ma.x[ z n,, 2 mj] and we call this number the degree
i=1 j=1

of f.

Theorem €. Let f(z) be a rational function of degree k greater than 1. Let us
assume that f(z) is not a k—th power. Let n be a natural number greater than 3. Then
the function L (f(z)) cannot be expressed as a sum of # L (f,(z)) with degf, =1,

constants and products of * Lij(g(z)) with j<n and g rational.

Theorem € follows immediately from Proposition 2.8 and Proposition 2.4 which we
shall prove in section 2.

The functions Li (z) are special cases of Chen iterated integrals. We recall their
definition. Let WY el be one—forms on a manifold M, let x and z be two points of
M and let 7{t), t € [0,1] be a smooth path from x to z.Then we define by a

recursive formula



X,7 X7 X7
Z
. . _[dz dz dz
It is clear that Lln(Z) =\ =Dz g
0

We have the following results.

Theorem D. Let a1, 3y, 8g, By be four different pointsin € .

z

a) The function N(z) = [ 92 dz dz

J z-al’ z-a2' z—a3

can be expressed by classical

polylogarithms.
z

b) Let E(z) = zﬂgl, zgz, zﬂga, zE:4'There is 0o polynomial p(s,ty,...,t,) such
X

that p(L(z),Li_ (f;(2)),....Li, (f(2))) =0 where Li (z) are classical polylogarithms
1 r k

and fi(z) are rational functions. (see Propositions 2.10 and 2.12 in section 2.)

This note is an extended version of our preprint "A note on functional equation of the
dilogarithm" CRM (Bellaterra) October 1984. We would like to thank very much P.
Deligne for his comments on our manuscript under the same title, where he reinterpreted
our results in terms of Lie algebras of fundamental groups. He also showed us the
connection from section 1 in the special case of C\{0,1} . We acknowledge the influence of
the lecture of D. Zagier (Bonn, April 1989). We acknowledge the influence of the paper of
L.J. Rogers (see [6]), H.F. Sandham (see [7]) and R.F. Coleman (see [3]). We would
like to thank very much J.L. Loday and Ch. Soulé who told us about functional equations
of polylogarithms.

The principal tools in our investigations are two observations.



1. Functions of the type of polylogarithms are horizontal sections of the canonical
unipotent connection on PI(C)\{al,...,an} .

2. The functional equations of functions of the type of polylogarithms are
consequences of relations between maps induced by regular functions from Pl(C)\several

points to PI(C)\severa.l points on Lie algebras of fundamental groups.

We illustrate the second principal with few examples.

Example 1. The maps f(x) =x and g(x) =1-x from X = PI(C)\{O,I,m} into
itself induce opposite maps on 1‘271'1()(,::)/I‘3 7,(X,x) , therefore we have a functional
equation

Liz(x) - Li2(1-—x) =1d.t. .

l.d.t. = lower degree terms.

Example 2. The maps f(x) = x2, g(x) = x and h(x) = —x from
X = PLO\{0,1,-1,0} to PL(€)\{0,1,0} satisfies

fe — 28 —2hy =0
on I'? a'l(x,x)/I‘sxl(X,x) , therefore there is a functional equation
Lig(x?) - 2 Liy(x) = 2 Lig(~x) = Ld.t. .
Example 3. Let fl(x) =X, f2(x) =

1 1
= Ia(x) = x_ff’ f4(x) = £ be maps from



X = PY(€)\{0,1,0} into itself. In
Hom [I‘3:rl(X,x) /I‘41rl(X,x); I‘3z'1(X,x)/I‘4tl(X,x) + [V [U,V]]] , where U is a loop

around 0 and V isaloop around 1 we have
Hence there are functional equations
. "
Lig(x) = Li,(2) + 1.d.t.
and
. | .
Lig(x) + Lig(1=) + Lig(;5y) = 1dt. .

Example 4. Let X = PI(C)\{O,l,m}, f(x) = x and g(x) =1/x.Let U be aloop
around 0 andlet V be aloop around 1. On the quotient I‘nrl(X,x) /I‘n+1x1(X,x)+L ,
where L is a subgroup of I‘nzrl(X,x) generated by all these commutators which contain
V at least twice, we have

f* = (—l)n—lg* .
Therefore we have a functional equation

Li (z) = (-1)"7'Li_(1/2) + Ldt. .

All these examples follow easily from the following theorem:
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Theorem E. Let X = PY(€)\{a,...a 0} and Y =PY(C)\{0,1,0} . Let U
(resp. V) be a loop around 0 (resp.1)in Y . Let fl’""fN : X — Y be regular maps

from X to Y and let 0,0y be integers. There is a functional equation
n,Li (f;(2)) + ... + nyLi (fy(2)) +1.dt. =0
if and only if

in the Z—module Hom(anl(X,x)/Pn+1rl(X,x), Pnrl(Y,y)/Pn+lrl(Y,y)+L) , where L
is a subgroup of I‘narl(Y,y) /I‘n+11rl(Y,y) generated by all commutators which contain V
at least twice and fi* is the map induced by fi on fundamental groups.

This theorem will follow from Theorem 2.1, Proposition 2.4 and Lemma 2.7 from

section 2.

1. The universal unipotent connection on Pl(d:)\severa.l points and functional equations.

1
Let X =P (C)\{a,,...a 0} . Let H=H (X)=2Zx; + Zxy + ... + Zx where x;
is the class of a loop around a, . Let € [[H]] =C[ [xl,...,xn]] be an algebra of formal
power series in non—commutative variables XpeenXp - Let I be an augmentation ideal.
Then C[[H]]/I" is a finite dimensional vector space over €, so it has the standard,

complex topology, C[[H]] = 1im C[[H]]/I" and we equipped C[[H]] with the
—_—
n

topology of the inverse limit.

Let #(X) be a Lie algebra of Lie elements in C[[H]] . This is a free Lie algebra



s

on H.Let L(X) bea completion of . (X) with respect to the lower central series of
Z (X) . We equipped L(X) with a group law given by the Baker—Hausdorff formula and
we denote this new group by «(X) . The group #(X) is a topological group. The topology
is induced from C[[H(X)]] . This topology coincides with the topology of the inverse
limit given by #(X) = lim x(X)/I"x(X), where (I"#(X))_y, i the lower central series

— 2
and (X)/T"x(X) is a complex Lie group.

Let C[[H(X)]] " bea group of invertible elements in C[[H(X)]] . This is also a
topological group, an inverse limit of finite dimensional Lie groups.

The map
exp : 1(X) — C[[H(X)]]"

givenby w —ie" =1+ % + ;'zv'_r + ... i8 a continous homomorphism of topological
groups. In fact this map is a monomorphism whose image is a closed subgroup of
CLIEX)] .

The Lie algebra of #{(X) is L(X) . We shall consider L(X) as a Lie subalgebra of
the Lie algebra of C[[H]] *  The tangent vector at 0 € x(X) given by t — t "X, we
denote therefore by x, . The tangent vector at 1€ C[[H]] given by t — 1+t-x, we
denote also by X; .

We consider on X two one—forms wy and 'EX with values in the Lie algebra of
#(X) and C[[H]] .

We set

_ dz dz 1
wX"EQxl-*- ...+z_an9anﬂ (X) ® L(X)

and



(Lie C[[H]]" is the Lie algebra of C[[H]] ).

The monomorphism exp : x(X) — C[[H] ] i maps wy into wy andin the
sequel we shall denote both forms by wy -

The principal fibre bundles

XxxX)— X
and
XxC[[H]] —X

we equipped with the connections given by the one—form wy (see [4]).
Let us set w; = —% i=1,.,n.Let 7 beapathirom x to z.Let us define the
1
following functions of z .

y @

A (€g,€)(z) = J wek ek—l’m'wel :
7

Theorem 1.1. The application

X3z—— (z,l-i-z A( el,...,ek)(z)xel,...,xek)

*
is horizontal with respect to the connection wy on X x € [[H,(X)]] .
The proof of this result is a straightford calculation of horizontal liftings.
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Let X = PO\ {x},...x,@} and Y = PHO\{ypm¥ 0} - Let
n n, m
fz)=aT [ (z—a) /T | (z—bj)m be a rational function. Let us assume that f restricts
1=1 =1

toaregularmap f: X — Y. The map fy: H,(X) — H,(Y) induces homomorphisms
of groups

£y C[[H;(X)]]T — C[[E,(M]]
and
£y 7(X) — 2(Y) .
In the sequel G(X) is €[[H,(X)]]" or #(X) aad G(Y) is C[[H;(V)]1" or x(¥).

Proposition 1.2. The map (f,fxfy) of principal fibre bundles

Ixf,
XxG(X) ———— YxG(Y)

(1)1 (2)1

X f y Y

is such that
(id @ fy)oy = (f ®id)wy -

This is the direct verification.

The staightford consequence of the theorem is the following result.
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Corollary 1.3. The map (f,fxfy) of the principal fibre bundles maps horizontal
sections of the first bundle into horizontal sections along f of the second bundle.

Let 7 beapathin X . We shall denote by (z,£y(x,z;7)) or shortly by (z,£4(z))
the value at z of the horizontal section of the bundle X x G(X) — X along the path 7
with the initial condition £y(x,x,7) = (x,0) if G(X) = x(X), and Ex(x,x,'y) = (x,1) if
G(X) = ¢[[H,(X)]] v Corollary 2.2 implies that we have an equality |

fely (zix,7) = Ly(f(2)if(x),1(7)) -

The group G(Y) is an affine group. Let Alg(G(Y)) be an algebra of polynomial,

complex valued functons on G(Y) .

Theorem 1.4 (General functional equation). Let f,fy : X—Y be regular
functions. Let € ,,..., ¥ be elements of Alg(G(Y)) and let p(t,,...,t ) bea
polynomial in variables t,,...,t .

i) Let G() = #( ) . There is a functional equation

(1) p( €1 (Ly(f; )ik ()5, (1)),-s € (&L (2):E (x)E (7)) = 0
if and only if
(2) p( € 0f 4, € 0f ) =0 .

ii) Let G() = C[[H,()]]" .1

p( VIOf*,..., gnOf*) =0
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then there is a functional equation

B 6 (Ly(fy(a)),s € (LylE @) =0 .

Proof. Let us assume that we have (2). Corollary 1.3 implies that

€,(Eu(Lx(2) = #(Ly(f(2)) .

Replacing  #,(f.«(24(2)) by ,(Ly(f(z)) in the formula (2) we get the functional
equation (1).

Let us assume that we have a functional equation (1). The set of values l’,x(x,x,'y) ,
for all closed loops 7 , is Zariski dense in #(X) . The vanishing of the regular function (2)
on the Zariski dense set implies that this regular function is zero.

Corollary 1.5. Let fl,...,fn : X — Y be regular functions. Let €,,..., €_ be

1 n

elements of Alg(x(Y)) and let ¢,,...,9 be elements of Alg(x(X)). Let
P(81s-8ptyr-ty) bed polynomialin 8y,..,8 , t;,...,t . Let 7 beapathin X from
x to z.

There is a functonal equation
p(#1(Lx(2:%,7)) ¥ (L (2%,7)), € (Ly(f; (2):f;(x),5(M),-) = O
if and only if
p(gél,...,;ém, 6’10{1*,..., ﬁ’nofn*) =0 .

Proof. First wereplace Y by Y’ such that the inclusion i : X — Y’ i(z) =z is
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regular. Let B’ be abaseof .Z(Y’) which extends some base B of Z(Y).We
extend ¢; to ¥ € Alg(n(Y')) in such a way that forany b€B’, #{(b)=0.
Then we have an equality

P($pbyy € ]0f ey Lol 4) =0

where f,4 : 7{X) — #(Y") . The corollary now follows from Theorem 1.4.
We finish this section with an easy lemma about the monodromy of the function

2y(z) . We recall that we have a natural identification
1 1
I a(X)/T" 2(X) & (07, (X0) /T (X x)) @ €.

n potl * .
Lemma 1.6. Let ¢ € (I'" x(X)/ x(X)) . The monodromy of the function
¢ (L4(2)) on T™r (Xx)/T" x (X ,x) is given by (—2xi)" #.

Proof. The monodromy of &y(z) around a, is given by

Ly (z) — Ly(z) + (—27i)x; + terms of degree 2 2 . This implies the lemma.

2. General functional equation of polylogarithms.

Let X = PY{O\{x;,...x 0} andlet Y =P O\{0,L,0} . #(X) and £(Y)
are free Lie algebras on Hl(X) and HI(Y) respectively. Let U, V be a base of HI(Y)
given by loops in clock—wise direction around points 0 and 1 respectively. For a free Lie
algebra L,letusset L’ = [L,L] and L" = [L’,L”] . Let L be the vector space of
degree n elementsin L/L".In AY) we fix a base given by elementary basic elements.
This base determines a base of Z(Y) n- Let us set ey = U, e :=V, e := [UV],
e = [Ue ;] .Let ;an (resp. e; ) be the linear form on  (Y) (resp. Z(Y)_) dual
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to e_ .
Theorem 2.1 (General functional equation of polylogarithms). Let

fl,{2,...,fk : X — Y be regular functions and let LIS DYORS be integers. Let
G( ) = «( ) . There is a functional equation

B ey EEGEAM) + o + Ly EM) = 0
if and only if

4) n,(e, of ) + Dofe, ofys) + ... + my (e, 0f 4) = 0

in (AX),)"

(f;+ aremaps f, restricted to H(X) ).
Proof. Let us notice that the formula (4) is equivalent to the equality
4”) n,(e of +) + ny(e ofps) + ... + n (e of 4) =0
*
in ( AX)) . Theorem 1.4 implies that (3) and (4”) are equivalent.

Definition 2.2 (Higher Rogers functions). Let 7 be a path from x to z in
Y = PY{C)\{0,1,0} . We set

£, (zx,7) = én(ﬂY(Z;xrr))

and
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< (z7) = £ (50,7) .

(If the integration path 7 is obvious we shall write . (z) instead of % (z;x,7).)

We point out that functions . (z) are in some sense higher analogs of the Rogers

z
function L(z) = — %J [1059_2) : I?Ezz] dz . The Rogers function L(z) satisfies functional
0
equations which usually have less lower degree terms than the analogous equations for
zZ
Lio(z) = Jﬂglildz . For example for the Rogers function we have
0
L{z) + L(1-z) = L(1)
while for the classical dilogarithm we have
Lig(z) + Lig(1-2) = 7°/6 — log z log(1-2) .
We shall see later that in general the functions .7 (z) satisfy functional equations with
less lower degree terms than analogous functional equations for classical polylogarithms
Li_(z) . We also have the following proposition which justifies the name "higher Rogers

functions".

Proposition 2.3. We have
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and

Zy(z) = 2

O N

1 1 1,1 1
[[—1-2 log z log(1-z) + 3 .32(2)] 7 T 1ylog™z ﬁ] dz .
The next proposition gives the relation between higher Rogers functions .!n(z) and
classical polylogarithms Li_(z) .

Proposition 2.4. i) The difference .# (z) —Li (z) can be expressed as a sum of
products of lower degree polylogarithms Lik(z) for k <n and logz.
ii) The difference .# (z) —Li_(z) can be expressed as a sum of products of lower

degree functions £ (z) for k <n and logz and log(1-z) .

Proof. It follows from Theorem 1.1 applied to C[[H,(Y)]] Yo [[U,V]] that the
coefficient at UV of the horizontal section starting from 0 is equal to Li q(2) - The
homomorphism exp : #(Y) — €[ [U,V]] maps horizontal sections into horizontal
sections. Comparing coefficients at U™V for exp(y(z)) (£y(z) is the horizontal
section in #(Y) ) and for the horizontal sectionin C[[U,V]] we get the part ii). The

point i) follows then easily by induction.

We shall consider the question whether .7 (f(z)) can be expressed as a sum of

<, ({;(z)) , where deg f; < deg{ and perhaps terms of lower degree and constants.

n n. m m,
Proposition 2.5. Let f(z) = a ] ! (z—a.) l/| ] (z=b,) J be a rational function in
1 = J
J-.-..

1=

irreducible form. The function Z5(f(z)) can be expressed as a sum of #o(f.(z)) where

deg fi = 1, products of logarithms and constants.
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r
Proof. The divisor 1(1) on C is equal to 2 1, ¢ - The functon f defines a
k=1
regular map

£:X = PHO\{8},8 5 b i€y} — Y = PHON{0, 1,0} .

Z""a.i Z-ai Z—b : i .
Let fij(z) = P—a glk(z) = -é-l-‘:a:, hij(z) = q_ﬁ—. 1= 1,...,]'1 y J= 1,...,m; k= 1,...,1’ .
J 1 1 J

One checks that

n I m T

n m
== YomEdet ) Y onengpde= ) Y o)
i=1j=1 i=1 k=1 j=1 k=1

on % (X),.

The proposition now follows directly from Theorem 2.

Proposition 2.6. Let {(z) be a rational function. Then #,(f(z)) can be expressed as
asumof Zy(f(z)), where degf, =1, constants and products of dilogarithms and
logarithms.

We shall omit the proof which is similar to the proof of Proposition 2.4. However in

the next section we give an explicit formual for Li3(f(z)) .

To simplify notations we set .#;(z) :=log(1—z) and .7(z) := log(z) .
The symbols £;(z), gj(z), h,(z) will denote rational functions on Pl(C) .

Lemma 2.7. Let us assume that we have a functional equation
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N
(*) Y n 2 (£(2) + 1dt. =0
i=1

where 1.d.t. is a sum of constants and products of .7, (g j(z)) with k<n.

Then we have
* *
n,(e of ) + ... + ny(e ofs) =0

in (AX)) where

o1 N 3 1
X=PHOVU £{010} UUgHOLa} U} |
1= J

N
Proof. The formula z n, £ (f(z)) + 1.d.t. is understood in the following way. For

i=1
each function .7 (h;(z)) which appears in it we choose a path 93 from 0 to h(z) and
we calculate the value .7} (h(z)) along this path. The equality (*) means that thereis a
choice of paths T' = (7, ) such that the left hand side vanishes.
Let us observe that then for any family of paths A = (6h) there is 1.d.t. which
depends on A such that the left hand side with this new A vanishes.
We choose a path 7 from x to z in X . Then we can rewrite the equation (*) in

the form

L 7 (G (@) (7)) +1dt. =0

2
_P

1
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It follows from Theorem 1.4 that

2 nien°fi* + p(ekogik*;k<n) = 0 .

N

* *

After restriction to  Z(X)_~we get z ne ofy =0 in ( AX)))
i=1

Proposition 2.8. Let f(z) be a rational function of degree k > 1. Let us assume that
f(z) is not a k—th power. Let n be a natural number greater than 3. Then the function
< (f(z)) cannot be expressed as a sum of + .7 (f(z)) with degf; =1, constants and

products of * #(g(z)) with i <n and g rational.

Proof. It follows from Introduction, Example 4 that we can assume

n 1. m m.

f(z) = a T (z-a) 1/| | (z——bj) J and aliaz.Let ¢ € € besuchthat f(c)=1

1=1 1=1
with the multiplicity r. We consider { as a regular map
£:X = PHON\{(0) Uf (o) Uo} — Y = PLE)\{0,1,0} . We choose a base of
Hl(X) given by loops around missing points except o . Let A, be a loop around a, , and
let € bealooparound ¢.Let a,:= [A2,€], a, = [Al’an 1] and
By = [A,[A9C]], B, = [A{.B,_;] - Wehave fu(a )= n n2 ree

(8 = nn_3 -ng -r-e_ . The only degree one maps which involve a and ﬁn are

z-a; o8y -2, c-a
1 -1

8(2) = 7=, " t=a, 20d B(2) =3 c—a2
2 1 1

g«(B,) = e, + 8¢, hy(a ) = (-1 )n_ze + 8¢, hy(B) = (—1)11"343n + sc , where sc isa

. For these maps we have g*(a ) = -

linear combination of basic elements all different from e, - Now it is clear that any
N

*x
relation of the form enof* + 2 qlenofl* =0 with q € Q is impossible. Therefore Lemma

i
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2.7 implies the proposition.

Lemma 2.9. Let X = PX(€)\{a;,...8 0} . Let G(X) be x(X) or C[[H,(X)]]"
andlet ¥ € Alg(G(X)/I‘sG(X)) . Then ¢ (tx(z;x,'y)) can be expressed by
dilogarithms, logarithms anrd constants.

Proof. The integral _E can easily be expressed by dilogarithms, logarithms
x
and constants.

Proposition 2.10. Let a, b, ¢ be three different points in € . The function
¥4

_[dz dz dz
N@) = | 7% 2% 2=<
X

can be expressed by classical polylogarithms Lin .

Proof. Weset X = PI(C)\{a,b,c,m} and Y= PI(C)\{O,I,m} . In degree 3
£ (X) has the following base given by elementary basic elements a, = ((BA)A),

4" ((CAJA), ay = ((BA)B), 3, = ((CA)B), a = ((CBC), a5 = ((BA)C),
= ((CA)C) Let 3* i=1,.,7 be dual linear forms. Let f,(z) = a.—z = L) ==¢ ¢z

3(z) c—z’ f4(z) = ;—% lz) be maps from X to Y . Then we have

* *x ¥ * % X ¥ * %k
ag = fl(e3) + f2(e3) + f3(e3) —f4(e 4)
on T3x(X)/I*x(X) . This implies that in Alg(x(X)) we have an equality
* * ~ * - x * ~
ag =1;(ez) + I5(eg) + f5(eg) —4(eq) + P

where P is a polynomial in functions on r(X)/I‘31r(X) . Corollary 1.5, Proposition 2.4
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*
and Lemma 2.3 imply that as(ﬂ.x(z;x,7)) can be expressed by classical polylogarithms.
One shows using the method of the proof of Proposition 2.4 that the function N(z) can be
expressed by a;(f.x(z;x,'y)) and classical polylogarithms.

Corollary 2.11. Let G(X) be #(X) or C[[H,(X)]] . Let
€ € Alg(G(X)/I‘4G(X))) . Then ¢ (£y(zx,7)) can be expressed by classical
polylogarithms.

Proof. This follows from the formulas 1.5.2 and 1.6.2 in [2] and Proposition 2.9.

Proposition 2.12. Let a,, i=1,2,34 be four different points in € . Let

z
L(z) = dz dz dz dz

xz—.‘.i.l’ z—a.2’ z—a.3’ z—a4

p(k(z), Lij (f;(z)),...Li_ (f(z))) =0 where Li_ (z) are classical polylogarithms and
1 I k

. There is no polynomial P(s,tl,...,tr) such that

f(z) are rational functions on PI(C) .

Proof. The function p(z) = p(L(z), Li_ (f(2)),...) is a multivalued function on
1

X= PI(C)\{al,a.Z,aS,an U finite set of points} . The monodromy of %(z) on one of the

4

commutators a = [[a, ,a, ], [a; ,a; ]] withall i different is equal to %(—2#i)" . The
27 "3y

monodromy of Li_ (f,(z)) on a is trivial. This follows from the equality
k

¢ (Lylf )5 (1) = € of(Lx(zx,7))

and from Lemma 1.6. Hence the monodromy of p(z) on a is non—trivial. Therefore

p(z) 0.
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3. Functional equations of low degree polylogarithm
|

In this section we write down functional equations for dilogarithm, trilogarithm and
fourth—order polylogarithm. We shall get them in the similar way we showed Theorem 2.1.
However we shall work with the group G() = C[[H,()]] * instead of #{ ) . This has an
advantage to deal with more familiar functions. On the other side we do not have the
analog of Theorem 2.1 for C[[H,()]] * - This is due to the fact that coefficients of £/(z)
at different monomials can be related (for example coefficients at UV and VU are
obviously related). Therefore we shall prove (calculate) any analog of Theorem 2.1 in every

special case we consider.
3.1. Functional equations of dilogarithm.

First we show how forms of functional equations known before can be deduced from

our general form from Theorem A.

n

Example 1. Let f(z) =2z  and x = 0. Then we have

Liyz") =0 ¥ Liy(¢¥2)
k=1

where ( = ezﬂ'i/]1 .

Example 2. Let f(z) = (y—_fﬁz—_n and x = 0. Then we have
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Li2[ 1 ] = Li, [ﬁ—y] ~ Li [l}'ﬁ] + Li [%] — Liy(z) —log [1;—1] log(1-2)
—%1032(1—z) .

Example 3. Let {(z) = G—ZHE and x = 0. Then we get

1 [05202] = Litoe) - i [yE100) + Lig ] ~1ige) +

— log(1~y)log(z—1) — 5 log?(1-2) .

n n. m m.

i
Proof of Theorem A. Let f(z) = a (z—a,) /T 1 (z—bj) J and let

1 1
(1) = ) nec, . Let X=P(C\{ap,.a by, €p,ennc 0} and

k=1

1 *
Y =P (O\{0,,w} . Weset G(X)=C[[A,...,A By, B ,Cy,-,C 1] and
G(Y)=C[[U,V]] . Let ¢ be a regular function on G(Y) equal to a coefficient at

UV . For any regular g: X — Y we have

€ (8+lx(zx,7)) = € (Ly(g(z):8(x)).8(7)) -

We are looking for degree one maps fi : X—Y such that

¥ of,—linear combination of ¢ ofi,.

will vanish or at least will be possible to calculate easily.

We have

f*(Ai 'Ck) = ni 'rkUv ) f*(Bj'Ck) = —mj'rkUV )
f*(Ai-Bj) = —ni-ijV , f,..(Bj-Bj/) = mj-mj:UV .
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We need maps of degree one g: X —— Y which induce the same maps on these products.

Here there are three families of such maps
28,
fik(z) = _ck_a'i ) (fiﬁ)*(AiCk) =UV
glJ(Z) s (Ei(AB) =TV

z-b .
hjk(z) = ck—_[],—j: (hjk)*(BjCk) =-UV .
We have

cpof*=2n rkifo zm rkﬁ‘f‘o 13 En ‘m, v'o(gll)*+2 ¢ y
i,k ik i, i’

where p&iir is a coefficient at B.-B., . From this formula applied to R, (z-x 7) , the

equality (*) and the formula gfb’ (zlia —a’ J i z_E we get
f(z) () g j(2) b; (2)
w—an IkJ w—znl m.j J( w—zmj % J w+

(x) i,k fik(x) i,) gijx) ik hij(X)

dz

where w= ——1-, . Theorem A follows immediately from this equation.
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Example 4.
We shall indicate how the Newman functional equation
2Lig(x) + 2Lig(y) + 2Lig(z) = Lig(xy) + Lig(yz) + Lig(zx)
if x+y+z =xyz + 2 can be get by our method.
: -2 -2
We consider five maps {,(z) = ﬂ?’Tfl—)-, fo(2) = ;'*'Tfl—, f3(z) = xz, {,(z) = 3,

f(z) = X22X2) grom PYO\{0,L,1/x,2-x,0} to PY(C)\{0,L,0} . Aplying the method

from the proof of the theorem we get an equation

Liy(xy) + Liy(yz) + Lig(zx) — 2Liy(2) — 2Li,(y) +
+ 2Li,y(x—2) — Liy(x(2—x)) + logarithmic terms = 0 .

After applying Theorem A to Lin(x(2—x)) we get the Newman functional equation.
3.2. Functional equation of trilogarithm.

We shall give only formulas. The proof is similar to the proof of Theorem A and we

shall omit it.

n n. m m.
Theorem 3.2.1. Let f(z) = a 2—a.) ! z—b.) J andlet
@ =aT_G-2) /T (=)

f_ 1(1) = 2 1, - We have the following formula:
k=1

Li3(f(z)) - Li3(f(x)) =



. z—ai Ck-—ﬂ.i I . x-ai Ck—ai 4
L mymen [—L13 [z—a-/ o ] + Lig [x—a-; o ] +
i<i / ’k 1 1 1 1
Z—a. Cy—a. /s
k i
—Cor[ . ] +
Z“"'ail Ck-ai
(Y e -8, X—3
Ll3 [z—a.i;] -LIS [x—a ] + Cor [z—a.- ’x—a.i/]] +
. z-ai . x_a _ai x_a
2 ni‘“i"rk[h3[m] "Ll3[c —a] +C°r[z ' C —a]] +
. k 4 k Cx k
i,i%k
Z—a. C.—b X—a. —b.
i ko j i & j
2 D, -m, Ik[—Ll [_b_z = ]-I-Ll [x—B- = a.]
.5 j i
i,j.k

z—3 X~ z—3; X—8;
[—F [—FJ] + Cor [—b' 55
.9 X8y 28, X3,
Lig [ck—a] —Li [ck-a] +C [ck-aﬂl ! ck-al]
z—b . x-b, z—b. x-b,
Lig [ck_ —Lig [ﬁ] + Cor [C—g—, o J]] +
z—b,  ¢,—b., x—b., ¢
- i.Xx i i X
2 S e L rk[ Li [z—b.,- ¢, —b. ] + Lig [x—b-/ ck—b ] +



=1

mm/r Ll
2 o

hi’k

/ . x_ai bj_ai/

Y bj—ai
2 n;*n;/ cm, [—Ll3 [z_ai’ . =
i<i’ )k J
—a. b.—-a. —a. b.—a.
—Cor[z LI ‘,,x S T
. Z—ai . X—a
+ Lig [z—ai;] —Lig [x a,

2 mm/n[Ll[

j<j’i

1]+

Jvoal B

l] L [x-a ] c [z-a.l x-al ]]
1 + Cor , +

F ~ale) Ol

z—b. a.—b., x—b. a.—b.,

1

=
al bJ]i,x—E- ai—lb)jl] +
i T T U Wt

b. z—b x—b.
x_BL— j’] + Cor[z__ ; = j']] +
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2 m, mJ: n[Ll3[ )] Lx —_é]]+Cor ;—bé—,;;b-g;]]-{-

i’ i T
z-a, bj z—be
2 —mJ m;/ le-logx = logx JIng b_] +
1,3,
z— b z—b ./ z—b."
2 -—mJ m;y - m"Glogbelogxb log—_—_b-]"
i 53"

where Cor(a,b) = —Liy(b)log [%] - % log(l—b)log2 [%] . (The summation convention:

n—1 n

=33 3.3 =3 3 3

i,jk i=1j=1k=1 i<i’k i=1 i’=i+1 k=1

We omit the proof of this theorem because it is the same as the proof of Theorem A.

I shall indicate two more formulas.

Theorem 3.2.2.

n n.

Lig(a U (2-a,) ') — Lig(a ]jlr (x—a.i)ni) =

z [L [Z—ai z—a.i ’ ] Li [x-ai x—ai / ]
= n.°n.,*r 1 . — Ll * +

Z—a . Z2-a. v X-a. X—-a./s

1 1 1
Cor [ . , .

[Ty  (x—8, z-a; X8,
Z (2ni_N) Tk [1'13 {ck-a.] — Lig [ck-a ] + Cor [ck—a ' €8 ]] +
ik ! '
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N TR o T
2 s B LA [L'S [z—ai/ ' ck—a"l/] —Liy [x—aiz ) ck—ai/] +

i<ik

, s 1) .
z—ai / Ck—ai 7 Z al / Ck—al 7/

L ymem [Ll3 [a- /—ck] —Lig [a. /-ck] + Cor [a. 7=y ' B; /—ck]]
i#i ’,k 1 1 1 1

. z_ai B x_a'i Hi x_ai
+ z —ni-nil'rk[Ll3[z_ai,] _Ll3[x—ail] +COI[Hi’ ,x—-ai’]]

i<i’ )k
n n,
where ¢j,...,Cy,...,C, are roots of a ] (z—ai) —1 =0 with the multiplicities
1=1
n

 STTR STE and N = 2 n, .
i=1

The Corollary below is the special case of Theorem B. We write it down to have the

implicit formula in the simplest case.

Corollary 3.2.3. Let a,b € € and a #b. We have a formula:

Lig((a—2)(b—z)) = 2Li, [%] - Li, [:_:% . Zi_::] +

. [z-b . [z—a . [z—a ©2 . [z-b
b atig ] iy (2] g[8+ ) 4 anig [28y) +
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2Li [ﬁ] — 2L, [%] 2Li, [2735] +

—log [a—ci] log [:_g] —log [TT;] log [%] +

a b z—b a- b z—b
where (a—z)(b—z)-1 = (z—¢;)(z—,) .
3.3. The fourth—order polylogarithm.

Theorem 3.3.1. We have the formula

Liy [~ L a-a)(e-b)) + Liy [ 2 2] -

(b-a)

. [z—a "1‘ L™

-

6Li, g;fa] + 3Li, [_Blb ] + 3Li, [—52E ] — 3Li, [—Egj_’ ] +
n 1
. [z—a . [z—a —dz dz dz dz
—3Li, [?;] + 2L, [z_—E] —8Li, [m] +4 I =1z '2°z
z—b
ab

— 2 {log(z-b)log(a-b))*

where Cs Co are roots of the equation
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_(;152 (2-8)(z—b) —1=0 .

Let us notice that this functional equation has less quadratic terms then the

Kummer’s functional equation of the fourth—order polylogarithm (see [5]).

i wN

o
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