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1 Introduction

Let A � P
n be a closed analytic subset of pure codimension q. We denote by

~q = n�
h
n
q

i
+1 and q̂ = n�

h
n�1
q

i
(here [x] stands for the integer part of the

real number x. Therefore q̂ = ~q if qjn and q̂ = ~q � 1 if q 6 jn. It follows from
M. Peternell's results [16] that Pn n A is q-complete with corners and from
Diederich and Fornaess approximation theorem [7] that PnnA is ~q-complete in
the sense of Andreotti-Grauert [1]. In particular for every coherent analytic
sheaf F 2 Coh(Pn n A) the cohomology groups H i(Pn n A;F) are trivial for
i � ~q.

In this paper we will improve this result, in cohomological setting, for
Zariski open subsets of Pn by replacing ~q with q̂. However we will do this only
for coherent algebraic sheaves F 2 Coh(Pn). The integer q̂ was introduced by
K. Matsumoto [13] in the study of cohomologic convexity of some open sets in
complex manifolds which are �nite intersection of q-complete open sets. The
integer ~q was introduced by Diederich and Fornaess [7] in connection with the
results of G. Faltings [9]. Moreover the vanishing of cohomology spaces will
be replaced by their �nite-dimensionality. Finite dimensionality conditions
for cohomology spaces were considered in some cases in algebraic context
by R. Hartshorne [10], A. Ogus [14] and have as analytic correspondent the
notion of q-convex space [1].

More precisely, we prove:

Theorem 1. Let A � P
n be a closed analytic subset of pure codimension q.

Then dimCH
i(Pn n A;F) <1 for every F 2 Coh(Pn) and every i � q̂.
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This result is optimal, as Proposition 3 shows and represents an improve-
ment on the previously known results when q 6 jn (hence q̂ = ~q � 1). It is
not known if, under the assumptions of Theorem 1, Pn nA is q̂-convex in the
sense of Andreotti-Grauert or if at least dimCH

i(Pn n A;F) < 1 for every
F 2 Coh(Pn n A) if i � q̂ (i.e. if Pn n A is cohomologically q̂-convex).

For small codimension, that is for dimA � n
2
, using Peternell's compari-

son theorem ([18]) between algebraic and analytic cohomology spaces Hn�2

(the density of the algebraic cohomology in the the analytic one), and the
results of C. Hunecke and G. Lyubeznik [11] regarding the algebraic coho-
mology we deduce the following theorem:

Theorem 2. Let A � P
n be an irreducible closed analytic subset of codimen-

sion q where q satis�es n � 1 � 2q. Then for every F 2 Coh(Pn) we have,
for analytic cohomology spaces, Hn�2(Pn n A;F) = 0.

Cohomology in top degree (i.e. Hn(X;F) for a n-dimensional com-
plex space X) is essentially described, in the algebraic case, in Hartshorne-
Lichtenbaum Theorem [10] (see also G. Chiriacescu [5]) and in analytic con-
text by the results of Y.-T. Siu [20] and T. Ohsawa [15].

2 Results

We recall �rst a few notions from the theory of analytic q-convexity, theory
initiated by Andreotti and Grauert [1].

A complex space X is called q-convex if there exists ' : X ! R a smooth
exhaustion function which is strictly q-convex outside a compact set K. If
one could choose K to be the empty set then X is called q-complete. For
example if A � P

n is a q-codimensional closed complex submanifold then
P
n n A is q-convex ([3]) and 2q � 1-complete ([17]). In general Pn n A is not

q-complete. However if A is a complete intersection then PnnA is q-complete.
For q-convex spaces Andreotti and Grauert [1] have proved the following

result which is fundamental for �nite dimensionality of cohomology spaces:
if X is a q-convex complex space then it is cohomologically q-convex, i.e.
dimCH

i(X;F) <1 for every coherent analytic sheaf F 2 Coh(X) and every
integer i � q. For q-complete complex spaces they proved a similar theorem
(a vanishing theorem), replacing �nite dimensionality with the vanishing of
cohomology spaces.
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A continuous function ' : X ! R is called q-convex with corners (see
[16], [7]) if locally it is equal to the maximum of a �nite set of smooth q-
convex functions. Analogously to the notions of q-convex and q-complete
spaces one can de�ne q-convex with corners and q-complete with corners
spaces. For example, it was proved in [16] that the complement of a closed
analytic subset of Pn of pure codimension q is q-complete with corners. A
fundamental result in the theory of q-convexity with corners is Diederich
and Fornaess approximation theorem [7], [8]. According to this theorem q-
convex functions with corners can be approximated by ~q-convex functions

where ~q = n�
h
n
q

i
+ 1 and n is the dimension of X, the complex space that

the function is de�ned on. As a direct consequence of this theorem one gets
that for every closed analytic subset A of Pn (possibly with singularities)
of pure codimension q, its complement Pn n A is ~q-complete. In particular
it follows from [1] that H i(Pn n A;F) = 0 for every coherent analytic sheaf
F 2 Coh(Pn n A) and every i � ~q.

In [13] K. Matsumoto has studied the vanishing of cohomology groups
for i � q̂ for those open subsets U of a non-compact complex manifold X

that are �nite intersection of q-complete open sets. She proved that in this
setting the cohomology groups H i(U;F) vanish for every F 2 Coh(X) and

every i � q̂ = n�
h
n�1
q

i
.

In what follows we would like to study the �nite dimensionality of co-
homology spaces in this range, i � q̂, for Zariski open subsets U � P

n,
U = P

n n A where A is a pure q-codimensional analytic subset.
To prove Theorem 1 we will need some preliminary results. Following

[2] and [19] a linear map between two C-vector spaces f : E ! F is called
�-injective if its kernel is �nite dimensional, f is called �-surjective if its
cokernel is �nite dimensional and �-bijective if it is both �-injective and
�-surjective. If M is a topological space, F is a sheaf of C-vector spaces on
M and D = (D1; D2; : : : ; Dt) is a �nite (ordered) tuple of open subsets of M
we denote by �j(D;F) : Hj(D1 \ � � � \ Dt;F) ! Hj+t�1(D1 [ � � � [ Dt;F)
the following composition of boundary maps in corresponding Mayer-Vietoris
sequences:

Hj(D1 \ � � � \Dt;F)! Hj+1

 
t�1\
s=1

Ds [Dt;F

!
!
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Hj+2

 
t�2\
r=1

(Ds [Dt [Dt�1);F

!
! � � � ! Hj+t�1(D1 [ � � � [Dt;F)

The proof of the following lemma is identical to that of Proposition 1 in
[13].

Lemma 1. Let p 2 N be �xed. In the above setting, we assume that for every
k with 1 � k � t � 1 for every i1; : : : ; ik 2 f1; : : : ; tg and every j � p the
cohomology groups Hj(Di1 \ � � � \Dik ;F) are �nite dimensional. Then:
1) �j(D;F) : Hj(D1 \ � � � \Dt;F)! Hj+t�1(D1 [ � � � [Dt;F) is �-bijective
for every j � p

2) �p�1(D;F) : Hp�1(D1 \ � � � \ Dt;F) ! Hp+t�2(D1 [ � � � [ Dt;F) is �-
surjective.

Assume now that X is a compact irreducible complex space of dimension
n, F 2 Coh(X) and D1; : : : ; Dt are open q-complete subsets of X.

Lemma 2. In the above setting the cohomology spaces Hj(D1 \ � � � \Dt;F)
are �nite dimensional for every j � q̂.

The proof of this lemma is identical to that of Lemma 2 of [13] using
Lemma 1 above and the fact that for a compact complex space its cohomology
groups with values in a coherent analytic sheaf are �nite dimensional, see [4].
Note that in Lemma 2 if D1 [ � � � [Dt 6= X (hence it is not compact) then
Hj(D1 \ � � � \ Dt;F) = 0 for j � q̂ (one uses here a theorem of Y.-T. Siu,
[20], that states that Hn(D1 [ � � � [Dt;F) = 0).

The following result will play a crucial role in the proof of Theorem 1. It
is due to M. Peternell, [18].

Lemma 3. Let A � P
n be a closed analytic subset of pure codimension q.

Then there exist:
1) An irreducible algebraic variety X, dim(X) = n, together with a �nite
surjective holomorphic mapping � : X ! P

n

2) Closed analytic subsets A1; : : : ; Ar of X
3) Ample line bundles L1; : : : ; Lr on X and, for each Li, q holomorphic sec-
tions si1 ; : : : ; siq 2 �(X;Li) such that:

a) ��1(A) = A1 [ � � � [ Ar

b) Ai = fsi1 = � � � = siq = 0g for i = 1; : : : ; r.
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Remarks: i) With the notations of Lemma 3, it follows that each X nAi is
q-complete as a union of q Stein open subsets
ii) r = deg(A) and if A is connected then ��1(A) is connected as well, however
we will not need these facts.

Now we are ready to prove:

Theorem 1. Let A � P
n be a closed analytic subset of pure codimension q.

Then dimCH
i(Pn n A;F) <1 for every F 2 Coh(Pn) and every i � q̂.

Proof. We apply Lemma 3 and we �nd an irreducible projective variety
X together with a �nite surjective holomorphic map � : X ! P

n sat-
isfying the conditions of that lemma. Because � is �nite and surjective
it follows that in order to prove the theorem it is enough to show that
for every coherent analytic sheaf G 2 Coh(X) and every i � q̂ we have
that dimH i(X n ��1(A);G) < 1. However ��1(A) = [��1(Ai) and hence
X n ��1(A) is a �nite intersection of q-complete domains. The �nite dimen-
sionality of H i(X n ��1(A);G) follows now from Lemma 2.

Remarks: 1) Let A � C
n be a closed analytic subset of pure codimension

q and let x0 2 A be an arbitrary point. Then there exists a small open
neighborhood U of x0 such that, by a convenient choice of the coordinate
system, the restriction of the canonical projection � : Cn ! C

n�q induces a
�nite map U \ A ! V where V is an open subset of Cn�q. Using the same
argument as in the proof of Lemma 3 (see [18]) one deduces that there exists
an irreducible complex space X, dim(X) = n, and a �nite and surjective
holomorphic map � : X ! U such that X n ��1(A) is a �nite intersection
of q-complete open subsets of X (each of them is the union of q open Stein
subsets). We deduce that H i(U nA;F) = 0 for every F 2 Coh(U) and every
i � q̂. It would be interesting to know if one has this vanishing result for
every F 2 Coh(U n A) or, more generally, if U n A is q̂-complete.
2) If A � C

n is a closed algebraic subvariety of pure codimension q then
we can choose the coordinate system in Cn such that the restriction to A of
the standard projection � : Cn ! C

n�q is �nite and surjective. The above
discussion shows that H i(Cn n A;F) = 0 for every F 2 Coh(Cn) and every
i � q̂. Hence we have just proved:

Theorem 10. Let A � C
n be a closed algebraic subvariety of pure codimen-

sion q. Then H i(Cn n A;F) = 0 for every F 2 Coh(Cn) and every i � q̂.
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We will move now to the second main result of this paper. If X is a
complex algebraic variety then there is a complex space, Xan, associated
to X in a natural way and to each coherent (algebraic) sheaf F one can
associate a coherent analytic sheaf Fan on Xan together with a canonical
map �q : Hq(X;F) ! Hq(Xan;Fan), called comparison map. The main
theorem of [18] is the following:

Proposition 1. Let X be a Zariski open subset of Pn, F a coherent sheaf
on X and � : Hn�2(X;F) ! Hn�2(Xan;Fan) := T the comparison map.
Then the image of � is dense in T with respect to the canonical topology of
T . Hence � is surjective if T is �nite dimensional.

We will recall now the following important result due to Hunecke and
Lyubeznik ([11], Theorem 5.1) for algebraic cohomology of Pn nA when A is
irreducible.

Proposition 2. Let A � P
n be an irreducible closed analytic subset of codi-

mension q and F 2 Coh(Pn). Then we have, for the algebraic cohomology

spaces, H i(Pn n A;F) = 0 for every i � n�
h
n�1
q

i
.

We can now prove:

Theorem 2. Let A � P
n be an irreducible closed analytic subset of codimen-

sion q where q satis�es n � 1 � 2q. Then for every F 2 Coh(Pn) we have,
for analytic cohomology spaces, Hn�2(Pn n A;F) = 0.

Proof. From Theorem 1 it follows that Hn�2(PnnA;F) is a �nite dimensional

vector space since n�
h
n�1
q

i
� n� 2. In particular its topology is separated

(the topology of uniform convergence on compacts). It follows from Propo-
sition 1 that the canonical comparison map in degree n � 2, between the
algebraic and analytic cohomology, is surjective. As A is irreducible, Propo-
sition 2 implies that the algebraic cohomology spaces in degree n� 2 vanish.
We deduce that for the analytic cohomology Hn�2(Pn n A;F) = 0 as well
and the proof of the theorem is complete.

Remark: The vanishing of the cohomology spaces Hn�1(Pn n A;F) is
studied in detail in [6], where A is a closed analytic subset of Pn of positive
dimension and F 2 Coh(Pn n A).

We will show now the optimality of q̂ for every n and q. That means that
for every n and q we will give an example of a closed analytic subset A of Pn
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of pure codimension q and such that H q̂�1(Pn nA;F) is in�nite dimensional
for some F 2 Coh(Pn).

Proposition 3. Suppose that n; q 2 N with n � 1 and 0 � q � n; Let

p =
h
n�1
q

i
and let A1; : : : ; Ap+1 be p+1 closed analytic subsets of Pn of pure

codimension q such that A1 \ � � � \ Ap+1 = fxg where x is some point in Pn

and let A = A1 [ � � � [ Ap+1. Then H q̂�1(Pn n A;O) is in�nite dimensional
where O stands for the sheaf of germs of holomorphic functions on Pn.

Proof. For i = 1; : : : ; p + 1 let Di = P
n n Ai. Hence we have to show that

Hn�p�1(\p+1
i=1Di;O) is in�nite dimensional.

Step 1) We will prove by induction on k = 1; : : : ; p + 1 that for every
J � fk + 1; : : : ; p + 1g and every s � n � p + k � 1 the cohomology space

Hs
�
(D1 [ � � � [Dk) \

T
j2J Dj;O

�
is �nite dimensional.

For k = 1 we have to show that Hn�p
�T

j2J[f1gDj;O
�
is �nite dimen-

sional. However
T

j2J[f1gDj = P
n n
S

j2J[f1gAj and as
S

j2J[f1gAj is an
analytic subset of Pn of pure codimension q the statement follows from The-
orem 1.

We assume now that the statement is true for k and we prove it for k+1.
So let s � n� p+ k and J � fk+2; : : : ; p+1g. We note (D1 [ � � � [Dk+1)\T

j2J Dj =
h
(D1 [ � � � [Dk) \

T
j2J Dj

i
[
hT

j2J[fk+1gDj

i
and we write the

Mayer-Vietoris sequence. We get that the sequence:

Hs�1

0
@(D1 [ � � � [Dk) \

\
j2J[fk+1g

Dj;O

1
A! Hs

 
(D1 [ � � � [Dk+1) \

\
j2J

Dj;O

!

! Hs

 
(D1 [ � � � [Dk) \

\
j2J

Dj;O

!
�Hs

0
@ \

j2J[fk+1g

Dj

1
A

is exact. As s� 1 � n� p+ k� 1 and s � n� p+ k� 1, it follows from the

induction hypothesis that both Hs�1
�
(D1 [ � � � [Dk) \

T
j2J[fk+1gDj;O

�
and Hs

�
(D1 [ � � � [Dk) \

T
j2J Dj;O

�
are �nite dimensional. On the other

hand, as before, Theorem 1 implies that Hs
�T

j2J[fk+1gDj

�
is �nite dimen-

sional as well. We deduce that Hs
�
(D1 [ � � � [Dk+1) \

T
j2J Dj;O

�
is �nite
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dimensional and the proof by induction is complete.
Step 2) We will prove by descending induction on k = p + 1; p; : : : ; 1 that

Hn�p+k�2
�
(
Sk

j=1Dj) \ (
Tp+1

j=k+1Dj);O
�
is in�nite dimensional.

For k = p + 1 we get Hn�1([p+1
j=1Dj;O) = Hn�1(Pn n fxg;O) which is

in�nite dimensional.
We assume now that the statement is true for k + 1 and we will prove it

for k. Using the identity

(
k+1[
j=1

Dj) \ (

p+1\
j=k+2

Dj) =

"
(

k[
j=1

Dj) \ (

p+1\
j=k+2

Dj)

#
[ (

p+1\
j=k+1

Dj)

we write the following Mayer-Vietoris sequence:

Hn�p+k�2

 
(

k[
j=1

Dj) \ (

p+1\
j=k+1

Dj);O

!
! Hn�p+k�1

 
(
k+1[
j=1

Dj) \ (

p+1\
j=k+2

Dj);O

!

! Hn�p+k�1

 
(

k[
j=1

Dj) \ (

p+1\
j=k+2

Dj);O

!
�Hn�p+k�1(

p+1\
j=k+1

Dj;O)

It follows from Step 1) that Hn�p+k�1
�
(
Sk

j=1Dj) \ (
Tp+1

j=k+2Dj);O
�
is �-

nite dimensional and from Theorem 1 that Hn�p+k�1(
Tp+1

j=k+1Dj;O) is �-
nite dimensional. At the same time, according to our induction hypoth-

esis, Hn�p+k�1
�
(
Sk+1

j=1 Dj) \ (
Tp+1

j=k+2Dj);O
�

is in�nite dimensional. All

these imply that Hn�p+k�2
�
(
Sk

j=1Dj) \ (
Tp+1

j=k+1Dj);O
�
is in�nite dimen-

sional and the induction is complete. For k = 1 we obtain exactly that
Hn�p�1(\p+1

i=1Di;O) is in�nite dimensional.

Remark: As we mentioned before it follows from [7] that a �nite in-
tersection of q-complete open subsets of a complex manifold is ~q-complete.
Matsumoto [13] raised the question of the optimality of ~q for every q and ev-
ery n. If M is a compact complex manifold of dimension n and X is a closed
complex subvariety ofM such thatM nX is (n�p)-complete for some integer
p, 0 � p � n�1 then Hj(M nX;C) vanish for j � 2n�p and then using a du-
ality argument it follows easily that the morphism Hj(M;C) �! Hj(X;C)
induced by the inclusion X ,!M is an isomorphism for every 0 � j � p� 1
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and a monomorphism for j = p. We setM = P
n and in Pn we consider

h
n
q

i
+1

linear subspaces of codimension q such that their intersection is empty. Let
A be the union of this linear spaces. It follows from Theorem 10.9 of [12]
that the topological condition mention above fails, hence Pn nA is not ~q � 1
complete. It turns out that the failure of this topological condition can be
veri�ed in an elementary fashion, without involving �etale cohomology, using
an argument similar to the one used in the proof of Proposition 3.
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