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1. INTRODUCTION

The theorem of Novikov [18], that the rational Pontrjagill classes of a smooth
manifold are invariant under homeomorphisrns, was alandmark in the development
of the topology of manifolds. The geometrie techniques introduced by Novikov were
built upon by Kirby and Siebcnmanll [17] in thcir study of topologieal manifolds.
At the same time the problem was posed by Singer [26] of developing an analytical
proof of Novikov's original theorem.

The first such analytic proof was given by Sullivan and Teleman [29, 28, 30],
building on <leep geometrie restllts of Sullivan [27] whieh showed the existence and
uniq ueness of Lipschitz structures on high-dimensional manifolds. (It is now known
that this result is false in dimension 4 - see [9].) However, the geometrie techniques
needed to prove Sullivan 's theorem are at least as powerful as those in Novikov's
original proofl . For this reason, the Sullivan-Teleman argument (and the variants
of it that have recently appeared) dü not achieve the objeetive of l'eplacing the
geometry in Novikov's prüof by analysis.

In an unpublished but widely cireulated preprint [31], one of 1IS (S.W.) suggested
that this objective might be achieved by the employment of techniques from coarse
geometry. A key part in the proposed proof is played by a certain homotopy
invarianee property of the 'coarse analytie signature' of a cornplete Riemannian
manifold. We will explain in sectiOll 2 bclow what the coarse analytic signaturc
is, in what sense it is conjeetured to be homotopy invariant, and how Novikov's
theorem should follow from the conjectured homotopy invariance. In seetion 3 we
will prove the homotopy invarianee modulo 2-torsion in the case that the controt
space is a cone Oll a finite polyhedron. This suffices for the proof of the Novikov
theorem. In section 4 we will show how the argument of the precedillg section ean
be improved to obtain the homotopy invariance 'on the nose'.

Although the coarse signatlll'c is an index in a C· -algebra, our proof is not a direct
generalizatioll of thc standard proof of the homotopy invariauee of sigllatllres over
C·-algebras, as presented for example in [16]. (The assertion to the contrary in (31]
is, unfortunately, Hot correct as it stands.) The problem is this: in thc absence of

1See the discllssion on page 666 of [7].
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any underlying uniformity such as might be provided by a group action, it becomes
impossible to prove that the hOlllotopies eonnecting two different signatures are rep­
resented by bounded operators on some Hilbert space. We eircumvent this problem
by comparing two theories, a 'bounded operator' theory and an 'unbounded' theory,
by means of a Mayer-Vietoris argument. Homotopy invariance can be proved in the
'unbounded' theory, hut sinee the two theories are isomorphic, it must hold in the
'bounded' theory as weil. A sOlIlcwhat similar argument was lIsed by the first author
in a different context [20].

Our 'unbollIlded' theory is jllst boundedly2 controlled L-theory as defined in
[22, 23], and to keep this paper to a reasonable length we will freely appeal to the
resnlts of this theory. Wc do not claim, thcrefore, that this paper gives a 'pllrcly
analytic' proof of Novikov's theoremj indeed, if one is prepared, as we are, to appeal
to the homological properties of controlled L-theory, then one can prove Novikov's
theorem quite directly and independently of any analysis (see [23], for example).
Our point is l'ather the following. Conjectnre 2.2 is a natural analogue of theorems
about the homotopy inval'iance of appropriate kinds of symmetrie signatures in
other contexts. But those theorems have simple general proofs, whereas in our case
the proof is inclil'eet alld dcpends strongly on the hypothesis that the control space
possesses appl'opriate geometrie pl'operties, of the kind which ean also be used to
show thc injectivity of the assembly map (compare [4]). Moreover, although 2.2
is a conjecture about C"-algebras, it appears to be necessary to leave the world of
C"-algebl'as in order to prove it. It lIlay be that conjecture 2.2 is in fact false
for more general eontrol spaces )(, and, if this were so, then it would suggest
the existcnce of sorne new kind of obstrnction to makillg geometrically bounded
problems analytieally boullded also.

It is possible that the special case of conjecture 2.2 that is proved in this paper
might be approachable by other, more direct, analytic methods, such as a modifica­
tioll of the almost flat hUlldle theor)' of [6, 15]; but it seems that similar questions
about gailling appropriate a.nalytic eontrol would have to be addl'essed.

2. THE COARSE SIGNATURE

Let ..:'< be a proper metric space. We refer to [24, 14, 13] for the constructioll of
the C"-algebra C" (.IX") of locally compact finite propagation operators a.nd of the
assembly map Jl: IC(X) ~ [(.. (C" (X)). Wo reeall that the groups J(.. (C" (."Y)) are
functorial under COOI'se m(Jps, tltat is, proper maps f such that the distance between
f(x) and f(x ' ) is bounded by a function of the distance between x and Xl. Such
ma.ps need not be continuotls; but on thc subcategory of continuotls coarse maps the
groups fr.•: .. (.,,'<) a.re fUllctorial also, and assemhly becomes a natural transformation.

If ."Y is a proper mctric space, a (smooth) 1JUJ.nifold ove7' X is simply a manifold 3

M equipped with a. control map c: 1'1 ~ Xj C mHst be proper but it need not be

2Not.ice t.hat t.here are two seIlses in which the ward 'bounded' is llsed ill this paper; we
may distingllish t,hem as geometriwlly boullfled ami annlytically bounded.

3 All manifolds will be assumed t.o be oriented.
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eontinuous. It is elcmentary that allY such manifold M ean be eqnipped with a

eomplete Riemannian metrie such that the control map c becomes a eoarse map,
and that any two such Riemannian metrics ean be conneeted by a path of such
metl'ics.

(2.1) DEFINITION: Let (/\1, c) be a 11w71ifold otJer ~'(. The eoarse analytic signature
01 M over .X is defi71ed us folIows: equip M 11Jith a Riema71llia71 metnc such timt
c becomes a course nwpJ let DM denote the signature operator on M. According to
[24] this operutor JUlS a 'coan:;e index' lnd (DM) E Je (C· (M) L which is in fact the
image of the J{ -homology dass 01 D 1l1uJer the asse71lbly map IL. We define

It is implicit in this defi nition that. c'" (Ind DM) is independent of the choice of
Riemannian metric on M. This may be proved by thc following development of the
theory of [13]. Recall that in that papel' the assembly map 11, was defined to be the
cOlluecting map in the six-terlll J(-theory exact sequence arising from an extension
of C'" -algebl'as

0--7 C"'(.X') --7 D·U() --7 D·(X)/C"'(X) --7 0,

whel'e D'" (.X) is the C'" -algebra. of psetulolocal finite propagation operators. Using
Pashcke's dllality theol'y [19], it was shown that the J<-theory ofthe quotient algebra
D·(~,()/C·(.X) was isomorphie to the I<-homology of X. Now let us generalize the

whole set-up to the case of a lIlanifold Iv! over J''( 1 which we write (1). We elefine

algebl'as C· (r) and D'" (r) to be the (colllpletions of) the algebras of locally

compact anel pseudolocal operators, respectively, on M, that have finite propagation
when measul'ed ill J''(. Then it is not hard to see on the one ha.lld that the !(-theory

of C'" (Y) is canollica.lly isomorphie to the [{- theory of C· (~'(), and on the other

hand that the [(-holllology of D' (1) / C' (r) is eanonieally isomorphie to the

J{-homology of M. Thus we obtaill an assembly ma.p J.L: J\'",(M) --7 J(.(C"'(J''())
which is independent of any choice of Riemanniall metric on M; alld naturality of
the constrnetion shows that Il(DM ) coincides with thc coarse signattll'e as defined
above for any choice of metric.

The nSllal nations of algebraic topology ma.y be formulated in the category of
manifolds over ~'(. In particulal' we have the concepts of ooundedly contrvlled map,
botmdedly cont7'olled homotopy, and boundedly controlled homotopy equivalence. A
map
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is thus boundedly contl'olled if <p is continuotls , and cl is at most a uniformly
bounded dist.ance from C2 • <po Similarly a boundedly controlled hornotopy is a
boundedly controlled map

where ]J is projection Oll the first factor. Notice this means that c2(H(m X I))
has unifol'mly bounded diameter. The notion of Cl. bOllndedly controlled homotopy
equivalence now follows in an obvious manner.

The following is the homotopy inval'iance property that we wish to llse:

(2.2) CONJECTURE: 1/ two STnooth mo.ni/olds M and M' ove,.)( w'e hornotopy
efjuivalcl1t by a bomuledly contr'olled ()rient(lti07L~pr'eser'Ving hOTnotopy equilmlence,
thell thei,. coal'se flllalytic signa tu res agr'ec:

We lIlake a few commellts Oll thc difficllity ill proving this along the !ines of the
analytic proof in [16]. Olle wants to coustruct chain homotopies which intertwine
the L2-de Rham complexes of M aJl(1 A1' (01' some simplicial L2-complexes con­
stl'ucted frorn an approximation proccdure). Because we are working in the world
of C" -algebras, everything haB to be a bounded operator on appropriate L2-spaces.
This means that one needs suitable estimates on the derivatives of thc maps and
homotopies involved, and such estimatcs do not seem alltomatically to be available
unless one works in a 'bounded geometry' context. This would be appropriate
for a. proof of the bi-Lipschitz homeomorphism invariance of the Pontrjagin dasses
(Teleman 's theorem), but not, it seems, of the topologica.l invariance.

We will now show that conjecture 2.2 implies Novikov's theorem. In fact, we will
show a little more, namely that the conjecture illlplies that the ,J{-homology dass
of the signature operator of a smooth manifold is invariant Hllder homeomorphism.
This is also the condusioll of Telemall 's proof which uses Lipschitz approximation.
To simplify the later proofs a little, we work away from the prime 2.

(2.3) PRO POS IT ION: Suppasc that COl1jeetUT'C 2.2 is true modulo 2- torsion Jor
contral spflces ..-Y which (H'e concs on finite polyhedra. Then, i/ N und N' aT'C

home0l1Wr7Jhic C0171]JUet smooth maniJolds, the !{ -homology sigllutures oJ N and
N' ure equal iu IC.(N) <8 Z[~].

(2.4) COROLLARY: In the situation abOfJC, thc r'ational Pontrjagin classes 0/ M
and M' agr·ee.

PROOF: By the Atiyah-Singer index theorem [1], the hOlllology Cherll character
of the sigllatHl'e dass is the Poincare dual of the L-dass; the rational Pontrjagin
dasses can be recovered from this. 0
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PROOF: (OF THE PROPOSITION): We begin by considering manifolds M and
M' which are smoothly N X Rand N' X R respectively. We equip M with a warpcd
product metric of the forlll

d{l + (1 + et)-"l!lijdxidxi .

The exact form of the metric is not especially important, provided that it has one
cylinder-like alld one cone-like end, so that N+ (that is, N with a disjoint point
added) is a natural Higson corona of M. Let ",Y = M considered as a metric space.
Then M is obviollSly bOllndedly controlIed over X (via the identity map!). We llse
the homeomorphism between N alld N' to regard M' as boundedly controlled over
X as weIl. A simple smoothillg argument shows that M anc! M' are boundedly
cOlltrolledly (sllloothly) hOlllotopy eqllivalent over X"; thlls by the cOlljectllre their
coarse analytic signatures agree.

We now identify the coarse analytic signatllre of M with the ordinary [{-homology
signature of N. To do this recall from [24, 13] that there is a natural map defined
by Paschke dllality

b: fC(C'·(M)) --+ [("-I(N+) = [(,,-dN),

with the property that b(lnd D), for any Dirac-type operator D on M, is equal
to fJ[D] , where fJ: fC(M) -t F":"-I(f\l) is the boundary map in f{-homology. (In
fact, b is an isolllorphism for cOIlc-like spaces such as M, but this fact will not be
needed here.) On the other hand, it is a standard l'esult in f{-homology that 'the
bounelary of Dirac is Dirac' [12, 32], and it follows that fJ(DM ) is simply the dass
of the signatllre operator DN of Ar.

By a similar argument we may identify the coarse analytic signature of M'
with the ordinary J(-homology signatllre of N', pnlled back to f(" (N) via the
homeomorphism N' -t N. The desired result therefore follows from the equaJity of
these two signatures. 0

REMARIC With a little more effort, this argument might be made to work with
the hypothesis that N and N' are E-controlled homotopy equivalent fol' all E, rather
than homeomorphic. Of course olle knows [rom the fr-approximation theorem [5]
that N a.lld N' a.re in fact. homeomorphic nuder this hypothesis, but the point is
that one ca.n avoid appealing to this geometrie result.

In the next section we will need to know that the eoarse analytic signature is
bordism invariant. In other words, we will reqllire

(2.5) PROPOSITION: SU]JfJose tlwt N is an",Y -bounded ma11ifold which is the bOti11d­
(J,111 0 f a11 )( - bou11ded l1W 11ifo/d-with- bowul(J,1'y M. Then Signx (N) = O.

PROOF: Let c: M --+ ",Y be the eontrol map for M. Construct two ",Y X IR:.-bounded
manifolds MI ami M'}. as folIows: MI =N X R, anel M 2 =M UN N X IR+, with the
control ma.p that sends At[ to .X X {O}. One has a natural isomorphism [14] between
K .. (C'''C.Y)) and 1(.+I(C"(X· X R)), and lIndel' this isomorphism the X"-bounded
signature of N can be identified with the .X X R-bounded signature of Mt. But,
since MI alld M:, agree ove!' R+, the )( X R-hollnded signatllres of MI and M 2 are
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eqllal (eornpare [11]). Finally, the .Y X R-bollnded signatllre of M2 is zero, because
it faetors through the groll p ]('" (C'" (...'( X R+)), whieh is zero by an Eilen berg swindle
as in [14]. 0

3. PROOF OF HOMOTOPY INVARIANCE

We begin by reealling the definition of the Lh-grollps of an additive eategory with
involution[22]. Given an additive eategory U an involution on U is a eontravariant
funetot' * : il --T U, sending U to U'", and a natural equivalenee ** ~ 1. One of
the defining properties of an additive eategory is that the Horn-sets are abelian
gl'OUpS, that is Z-modules. All the categories that we will consider will have the
property that the Hom-sets are in fact modules ovcr the ring Z[i, tL and we will
make this assumpt.ion from now on. This yields two simplifications in L-theoI'Y: the
existence of i = A makes L-theory 2-pcriodie, since dimensions n a.nd n + 2 get
identified through sealing by i, and the existencc of t removes the diffel'enee between
quadratic and symmetrie L-theory. We therefore get the following deseription of
L-theol'y. In degree 0 an element is given as an isomorphism 'P : A --T A'" satisfying
'P = 'P'". Elements of the form B ffi n'" ~ B'" ffi B, with the obvioliS isomorphism, are
considcred trivial, and L~ is the G rothendieck eonstruetion detcrmining whether a
selfadjoint isoIllorphism is cOlljngate to a trivial isomorphism. In the definition of L~
the condition rp = rp. is replaeed by rp = -cp. but in the presenee of i these groups
beeome seale equivalent. In odd degl'ees the groups are givcn as automorphisms of
trivial forms.

REMARI<: SlIppose the additive category il is the category of finitely generated
projective mael nies over a C·-aJgebra A anel thc involution is given by the identity
on objects and the *-operatioll on morphisms. One defines the projeetive L-groups
L~(A) to equal LZ(U) for this eategory U. In this situation, the availability of
thc Speetral Theorem for C·-algebras allows olle to separate out thc positive and
nega.tive eigenspaces of a nondegencrate qtladratic form and thus to assign a. signa.­
ttlre in K.(A) (a formal differeHce of projectiolls) to any element of L~(A). This
construction goes back to Gelfand ami Mischenko [10]; the exposition in Rosenberg
[25] is cOllched in langllage silllilar to ours, and also incltldes a proof that one obtains
in this way an iS01H01phism L~(A) ---7 K.(A).

REMARK: Notice that we are using projective modules in the above statement, so
one calls the corres ponding L-group LP (A) . In genera.l LP of an a.dditive category
with involutioll is just L" of the idempotcnt eompletion of the eategol'Y. '1'0 simplify
these iss11es we will work modulo 2-torsion, so from now on when we write L(A)
without npper index we shall mean L h (A) es> Z[tL noting that by the Ranicki­
Rothenberg exact sequences tensoring with Z[~] removes the dcpendeney on thc
upper decoratioll. Ta ret.a.in the above mcntioned isomorphism we obviously have
to tensor [(-theory with Zß] as weIl.

We 1l0W reeall the (geometrieally) bounded additive categories defined in [21].
Let X be ametrie space, a.nd R a ring with anti-involution. This turns the category
of left R-modules into an additive eategory with involutioll, since the Hsual dual of
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a left R-modtlle is a l'ight R-module, hut by means of the anti-involution this may
be tllrned into a left R-modl1le.

The reader should keep in Illind the model case in which ...Y is the infinite open
cone O(I() on a complex I( ~ sn C R n +1 and R = C. The category c.rx (R) is
defined as folIows:

(3.1) DEFINITION: An object A of'!x (R) is a colleetion of finitely generated based
free right R-modules Ax , one f01' each x E ...Y, such that Jor each ball C c X oJ finite
radius, oHly finitely many A x , ;,: E C, are nonzero. A morphism <.p : A ---7 B is a
collection 0f morphisms <.p~ : Ax ---7 Dy such tlwt there exists k = k (<.p) such tha t
<.p; = 0 !or d(x, y) > k.

The c07lt]JOsition 0] <.p : A ---7 B (l7ul 'tP : B ---7 C is given by ('IjJ 0 <.p)~ = L:zEx 'IjJ~ <.p~.

Note that ('IjJ 0 cp) satisfies Ihe local finiteness and boll7ldedness conditions whenever
'1/) and <.p do.

(3.2) DEFINITION: Tlte dual 0] an ouject A of c.rx (R) is tlte object A· witlt (A ·)x =
A; = 11O1nR(A x , R) for each x E )(. A; is nat1lTnlly a left R-mOflllle, which we
conve1·t to a dgltt R-mOfl1lle by means 0/ the anti-involution. If <.p : A ---7 B is
amorphism, then cp. : B· ---7 A· (lnd (<.p.): = h 0 <.p~, wherc h : Bx ---7 Rand
<.p~ : Ay ---7 Ex' <.p. is bouwled wheneve1' cp iso Again, <.p. is natw'ally a left module
h011W17W1']Jhislll wltich i1ultu:es (l IWnW1H017Jhism of right modules n· ---7 A· via the
a11 ti- iTlvolu tio n.

If we choose a cOlllltablc set E c ...Y sllch that for some k the union of k-balls
eentered at points of E covers )(, then it is easy to see that the eategories i[E(R)
and i[x (R) are isomorphie.

It is convenient to as8UlIle that such a ehoice has been made onee and fol' all.
Then we may think of thc objects of Q':x(C) as based eomplex vector spaces with
basis a sllbset of E X N satisfyillg eertain finiteness conditions. Any based eomplex
vector space has a natural inner prodllct, and thcrefore a norm, and we define a
mOl'phislll in c.rx(C) to be mwlytically bounded if it becomes a bounded operator
when its domain ami range are equippecl with these natural e2 norms.

(3.3) DEFINITION: The categ01'y i[~~r(C) Iws the same objects as c.rx(C), but
the nW11Jhis1Hs have to satisJy the Jurthe1' restrietion that they define mwlytically
bowllled openlt01'S 071 {2 (E X N)

Jt is appal'ellt that thel'c is a elose eonneetion betwecn the eategol'Y Q:~o·(C) and
the C"-algebra. C· (...Y). Jn fact, the way we have arrallgecl things any object A
in the eategol'Y Q:~t· (C) eall be thonght of as a projection in C· (...Y) defined by the
genel'ating set for A and henee as a projective C· (...Y)-.module, and an cndomorphism
of A l'espeets the C" (...Y)-mod nIe stl'ucture. Sinee the involutioll on ,!~o. (C) is given
by cl uality, it cOl'l'esponds to the *-opel'atioll on C· (...Y). Henee we get a map

L.(c.r~O(C)) ---7 L.(C·(...y)) = J<. (C· (...Y)).

Similarly the forgetflll funetor Q':~o. (C) ---7 Q':x (C) induees a map

L.(Q':~O(C)) ---7 L.(Q':x(C)).
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Notice that whcllever we have a manifold (1) bounded over a metric space x, we

lIlay triallgulate 111 in a bounded fashion so the cellular chain complex of M can be
thought of as a chain complex in etx (Z) alld, more relevantly, the chain complex with
complex coefficients can be thonght of as a chain complex in etx (C). Poincare duality
thus givcs rise to a self-dual map and henee an element in ax [M] E Lo(Q:x(C)), the
bounded symmetrie signature of the manifold. The bounded symmetrie signature
is an invariant Hllder bOllnded homotopy equivalenee, since a bounded homotopy
equivalenee givcs rise to a ehain homotopy eqllivalence in the eategory etO(K)(C)
and the L-groups by thcir definition are ehain homotopy invariant [22].

As mentioned above wc get maps

(3.4) T H EO RE M : [n CflSC ./Y =0 (!(), the OpCH tone on Cl jiH ite c01nplex, the maps

a and ß m-e iso711orphis7Hs. fl,101'eov€1', (-,a-1(SignO(K) M) = aO(K)[M]

PROOF: Let:F be any of thc [nnetors

[( H [(.C·(O([()), [( H L.(et~(i<)(C)), [( H L.(~(K)(C)).

Then :F is a red nced gcncralized homology theory on the eategory of finite com­
plexes. 111 case :F(!() = [eC· (O( [()) 01' :F(l\:) = L. (etO(K) (C)) th is is proved in
[14] and [22] l'espectively. In the case :F([() = L. (~~(i<)(C)) the pl'oof needs the
extensiolls to Ranicki's rcsults pl'ovided in [4] bllt goes along cxactly the same lines,
noting that the l'estricting the morphisms to the ones defining analytically bounded
operators does not prevent Eilenberg swindles4, and thus the basic Karoubi filtration
tcchnique goes thl'ough. Moreovcr, a a.nd ß are isomorphism~ for ]<.' =0 and hence
for all finite complexes. This proves the first statement.

To prove the second statement note that if M has a bOllnded triangulation of
bOllnded geometl'Y (meaning that thc number of simplices meeting a given vertex
is uniformly bounded), then tlle natural representative of aO(K)[M] is in fact an
analytically boullded operator (since Poincare duality is given by sending a cell to
its dual cell combined with appropriate subdivision maps). Moreover, by the de
Rham theorem in the bounded geometry eategory [8], this bounded operator passes
lInder (\' to thc dass of the sigllature operator in 1(. (C· (0([<.')) (see [16]' theorem
5.1). In case M is not of bounded geometry wc need to notice that both aO(K)[M]
and Signo(K)[M] are O([()-bordism invariants, the latter by proposition 2.5, and

that any manifold ( AI ) is O(1()-bordant to a bounded geometry manifold. ToO(K)
see this hüter statement make M --+ 0([<.') transverse to a level t· [( C O(l(), and
let V be the inverse image of (~ t) . ]{, W the inverse image of (~ t) . !(. We then
get a bOl'dism from M to H1 u ulrV X [0,00) by !vI X J u V X [0,00) and thc map p
extends to a proper map from the bOl'dism to CJ(1() by sending (m, t) E M' X 1 to

4The key point. is timt t.he operat.or norlll of an orthogonal direct SUffi is t.he supremum

of t.he operat.or norms of its constit.llents. See [14] for t.he details of an Eilellberg swindle in
the analyt.ic situat.ion.
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p(1n) and (v, s) E V x [0,00) to (s + u) . k where s . k = p(v). This is easily seen
to be a proper map, <Lud we da get a bOl'dism over CJ(/{") to a manifold of bounded
geometl'Y. D

REMARK: In the above arglllllent we needed to reduce the manifold M to bounded
geometry, anel to da this we used the fact that it is always possible to split M over an
open cone. If one could simila.rly redllce a. hOlllotopy equiva.lence bounded over an
open cone to a boundcd geometry homotopy eqllivalence, the proof of our theorem
would be considerably simplified. However, it a,ppears that the proof of such a l'esult
wOllld requil'e a lengthy excul'sion into bounded geometry surgery [2].

(3.5) COROLLARY: In the situation above SigIlO(K)(M) is an invariant modtllo
2-tol'sion 1l1ulcl' boundedly c01lt7'oiled homotopy equivalcnce.

As has a.lready beeil explained, this slIffices for a proof of Novikov's theorem.

4. ApPENDIX: 2-TORsrON

In the previolls section we worked modulo 2-torsion, for simplicity. Wo will 1l0W

justify the title of this paper by showing that it is not in fact necessal'Y to invert 2
in corollary 3.5. In this section we will therefore, of course, suspend the convention
made previolls1y that all L alld [( gl'OUPS are i1l1plicitly tensored with Z[~]. As in
the previous section, the integral bOllndedly controlled homotopy invaria.nce of the
coarse an a.ly tic signat1I re will follow fro III :

(4.1) THEORgM: Tlte !tlnclO1'S !( H L~(<t~(i<)(C)), I( H L~(Q:O(K)(C)), !( H

~ (C'" (0 (J())), anti I{ H Je (C· (0 (J() )) are isomorph ie homology theories.

PROOF: Recall that LP of au additive category is sirnply L h of the idempotent
completion of the category. We have a. forgetflll Illap

L~(<r~(K)(C)) --+ L~(crO(K)(C))

and the isolllül'phism

L~ (C· (CJ( [())) := J(. (C· (CJ( !()))

mentioned 1H tlle Relll(l.rk a.bove, does not depend on inverting 2. We get a map
from

LZ([~(K)(C)) --+ L~(C·(O(J()))

aB folIows: an object in cr~(i{) (C) lnay be considcl'cd a projectioll ill C· (O( I()) hence
a projective C· (O(J() )-mod nie, ami this produces the lIlap. When ICis ernpty the

bounded operator condition is vaCUOllS, LP(C) = Lh(C) since !'(o(C) = 0, so to finish
the prüof we need to show all these fllBctors (l.re homolagy theories. Since C is a
field we have [(-i(C) = 0 for i > 0 [3, Chap. XII]. Hence

L~·(crO(K)(C))= L:-OO(crO(K)(C))

is a homology theory. Ta prove L~ (Q:~(K)(C)) is also a homology theory we use the
excision reslllt [4, Theorem 4.1]. Combining this with [4, Lemma 4.17] we only need
to see that idempotellt completing allY of the categories Q:~(K)(C) does not change
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the vaille of L h i.e. that [(0 of the idcmpotent eompleted eategories is trivial. This
is the object of the next proposition. 0

(4.2) PROPOSITION: l·Vith tcrminolo!lY as above we have

!«()(l!~(iq(C)") = 0

JOI' K (l non-elnpty finite complex.

PROOF: Thc proof follows the methods iu [20] anel [21] quite closely, a.nd the
reader is sUPPo5ed to be familiar with these papers. Let L be a. finite eomplex,
J( = L Un Dn. Consider thc eategory II = l!~tK) (C) and the full subeategory

Q! = (!8(iq (C)O{L) with objects having support in a bounded neighborhood of O(L).
Q! is isomorphie to l!8(L) (C), ami U is 2l-filtel'cd in the sense of Karotl bi, so following
[21], we get aH exaet seqllellce

but U/Q! is isomorphie to

l!~(D") (C) 1(!~(sn-1) (C)

whieh has the same K-theory as (fRu
,; (C). So by induetioll over the eells in !(, it

suffiees to prove that

n>l

allel

!(O(l!R~-l (C)") = 0 n > 1

but following the argulIlents in [20] it is easy to see these groups are equal. Now
consider the ring C[t l , t l 1

, ••• ,t~;, t;I]. The eategory

l!R~(C[tI,tlI,... ,tk,t;I])

with geollletl'ieally botlnded IIlorphisllls, iuducing analytieally bounded operators
on the Hilbert spaee where thc t j powers are also lIsed as basis has a sllbeategory

(('b.o. ,t 1,··· ,tl< (C[t t- I t t-I])""R" '1'·1 , ... , k, k

where the morphisms are reqllil'ed to Ilse uniformly bounded powers of the tj's.
Turning f.j-powers into a grading prodllees a funetor

(4. -1) (('b.U.,t1) ... ,tl (C[t ,-1 , t-I])------l..
~R" 1'·1 , ... , 'k, k ---,

(('b.u.,/1, ... ,ti_1,t;+1, ... ,tl< (C[t t- 1 t. t. t t- 1])""Rn 1'1 '''·,I-I,I+I,· .. ,k,k .

We claim this is a split epimorphislll Oll !{1' Consider the automorphisrn ßt; which
is multiplieatioll by t j on the upper half of IRn +I and the identity on the lower half.
Here tipper anel lower refers to the eool'dinate introdlleed when the tj-powers were
tllrned into a grading. The splitting is given by seneling an automorphislll 0' to the
eOIllIllutator [0', ßtJ alld restrieting to a banel. Since both thc bounded operator and
the bOl1l1ded t-power eonditiolls are responsive to the Eilenberg swindle arguments
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used in [20] the argument. carries over to this present situation. Fl'om this it follows
there is a mOllomorphislll

But the boullded t-power cOlldition is vacuous, when the metric space is a. point,
and the uniformity given by the Zn-action renders the boullded operator condition
vacuous too. Since the inclllsion maps given by the commutator with ßt; commute
up to sign we find that the image of [(1 (r.rR~) is contained in

l\'-i(C) C !(1(C[t 1 , t1
1, .. , ,tn , t~l])

which is 0 since C is a fidd and we are done. 0
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