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1. INTRODUCTION

The theorem of Novikov [18], that the rational Pontrjagin classes of a smooth
madunifold are invariant under homeomorphisins, was a landmark in the development
of the topology of manifolds. The geometric techniques introduced by Novikov were
built upon by Kirby and Siebenmann [17] in their study of topological manifolds.
At the same time the problem was posed by Singer [26] of developing an analytical
proof of Novikov’s original theorem.

The first such analytic proof was given by Sullivan and Teleman [29, 28, 30],
building on deep geometric results of Sullivan [27] which showed the existence and
uniqueness of Lipschitz structures on high-dimensional manifolds. (It is now known
that this result is false in dimension 4 — see [9].) However, the geometric techniques
needed to prove Sullivan’s theorem are at least as powerful as those in Novikov’s
original proof'. For this reason, the Sullivan-Teleman argument (and the variants
of it that have recently appeared) do not achieve the objective of replacing the
geometry in Novikov’s proof by analysis.

In an unpublished but widely circulated preprint [31], one of us (S.W.) suggested
that this objective might be achieved by the employment of techniques from coarse
geometry. A key part in the proposed proof is played by a certain homotopy
invariance property of the ‘coarse analytic signature’ of a complete Riemannian
manifold. We will explain in section 2 below what the coarse analytic signature
is, in what sense it is conjectured to be homotopy invariant, and how Novikov’'s
theorem should follow from the conjectured homotopy invariance. In section 3 we
will prove the hometopy invariance modulo 2-torsion in the case that the control
space is a cone on a finite polyhedron. This suffices for the proof of the Novikov
theorem. In section 4 we will show how the argument of the preceding section can
be improved to obtain the homotopy invariance ‘on the nose’.

Although the coarse signature is an index in a C*-algebra, our proof is not a direct
generalization of the standard proof of the homotopy invariance of signatures over
C"-algebras, as presented for example in [16]. (The assertion to the contrary in {31]
is, unfortunately, not correct as it stands.} The problem is this: in the absence of

!See the discussion on page 666 of [7].
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any underlying uniformity such as might be provided by a group action, it becomes
impossible to prove that the homotopies connecting two different signatures are rep-
resented by bounded operators on some Hilbert space. We circumvent this problem
by comparing two theories, a ‘bounded operator’ theory and an ‘unbounded’ theory,
by means of a Mayer-Vietoris argument. Homotopy invariance can be proved in the
‘unbounded’ theory, but since the two theories are isomorphic, it must hold in the
‘bounded’ theory as well. A somewhat similar argument was used by the first author
in a different context [20].

Our ‘unbounded’ theory is just boundedly? controlled L-theory as defined in
[22, 23], and to keep this paper to a reasonable length we will freely appeal to the
results of this theory. We do not clain, therefore, that this paper gives a ‘purely
analytic’ proof of Novikov’s theorem; indeed, if one is prepared, as we are, to appeal
to the homological properties of controlled L-theory, then one can prove Novikov’s
theorem quite directly and independently of any analysis (see [23], for example).
Our point is rather the following. Conjecture 2.2 is a natural analogue of theorems
about the homotopy invariance of appropriate kinds of symmetric signatures in
other contexts. But those theorems have simple general proofs, whereas in our case
the proof is indirect and depends strongly on the hypothesis that the control space
possesses appropriate geometric properties, of the kind which can also be used to
show the injectivity of the asseinbly map (compare {4]). Moreover, although 2.2
is a conjecture about C*-algebras, it appears to be necessary to leave the world of
C™-algebras in order to prove it. It inay be that conjecture 2.2 is in fact false
for more general control spaces X, and, if this were so, then it would suggest
the existence of some new kind of ol)structlon to rnakmg geometrically bounded
problems analytically bounded also.

It is possible that the special case of conjecture 2.2 that is proved in this paper
might be approachable by other, more direct, analytic methods, such as a modifica-
tion of the almost flat bundle theory of [6, 15]; but it seems that similar questions
about gaining appropriate analytic control would have to be addressed.

2. THE COARSE SIGNATURE -

Let X be a proper metric space. We refer to [24, 14, 13] for the construction of
the C"-algebra C*(X) of locally compact finite propagation operators and of the
assembly map p: K.(X) = K.(C*(X)). We recall that the groups K,(C*(X)) are
functorial under coarse maps, that is, proper maps f such that the distance between
f(z) and f(z'} is bounded by a function of the distance between z and z’. Such
maps need not be continuous; but on the subcategory of continuous coarse maps the
groups K ,(X) are functorial also, and assembly becomes a natural transformation.

If X is a proper metric space, a (smooth) manifold over X is simply a manifold?®
M equipped with a control map ¢: M — X; ¢ must be proper but it need not be

ZNotice that there are two senses in which the word ‘bounded’ is used in this paper; we
may distinguish them as geometrically bounded and analytically bounded.
3All manifolds will be assumed to be oriented.
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continuous. It is elementary that any such manifold M can be equipped with a
complete Riemannian metric such that the control map ¢ hecomes a coarse map,
and that any two such Riemannian metrics can be connected by a path of such
metrics.

(2.1) DerFINITION: Let (M, c) be ¢ manifold over X . The coarse analytic signature
of M over X is defined as follows: equip M with a Riemannian metric such that
¢ becomes a coarse map, let Dy denote the signature operator on M. According to
(24] this operator has ¢ ‘coarse index’ Ind(Dy) € K. (C*(M)), which is in fact the
image of the K-homology cluss of D under the assembly map . We define

Sign x (M) = c.(Ind Dyy) € K, (C*(X)).

It is implicit in this definition that c,{Ind Dy} is independent of the choice of
Riemannian metric on M. This may be proved by the following development of the
theory of [13]. Recall that in that paper the assembly map i was defined to be the
connecting map in the six-termn K-theory exact sequence arising from an extension
of C*-algebras

0o C*(X) = D*(X) = D*(X)/C*(X) = 0,

where D*(X) is the C"-algebra of pseudolocal finite propagation operators. Using
Pashcke’s duality theory [19], it was shown that the K-theory of the quotient algebra
D*(X)/C*(X) was isomorphic to the K-homology of X. Now let us generalize the
whole set-up to the case of a inanifold M over X, which we write ('}: ) We define

algebras C* (‘;f) and D* (if) to be the {completions of) the algebras of locally
compact and pseudolocal operators, respectively, on M, that have finite propagation
when measured in X. Then it is not hard to see on the one haund that the K-theory
of C* (:l:) is canonically isomorphic to the K-theory of C*(X), and on the other

hand that the K-homology of D* (}!) /C' (i:l:) is canonically isomorphic to the

K-homology of M. Thus we obtain an assembly map pu: K.(M) = K.(C” (X))
which is independent of any choice of Riemannian metric on M; and naturality of
the construction shows that ji(Dys) coincides with the coarse signature as defined
above for any choice of metric.

The usual notions of algebraic topology may be formulated in the category of
manifolds over X. In particular we have the concepts of boundedly controlled map,
boundedly controlled homotopy, and boundedly controlled homotopy equivalence. A
map
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is thus boundedly controlled if ¢ is continuous, and ¢; is at most a uniformly
bounded distance from ey - . Similarly a boundedly controlled homotopy is a
boundedly controlled map

M, x 1 H M,

crp /

X

where p is projection on the first factor. Notice this means that ¢,(H(m x 1))
has uniformly bounded diameter, The notion of a boundedly controlled homotopy
equivalence now follows in an obvious manner.

The following is the homotopy invariance property that we wish to use:

(2.2) CONJECTURE: If two smooth manifolds M and M’ over X are homotopy
equivalent by a boundedly controlled orientation-preserving homotopy equivalence,
then their coarse analytic signatures agree:

Sign x (M) = Sign x (M') € K.(C*(X)).

We mnake a few comments on the difficulty in proving this along the lines of the
analytic proof in [16]. Oune wants to construct chain homotopies which intertwine
the L*-de Rham complexes of M and M’ (or some simplicial L*-complexes con-
structed from an approximation procedure). Because we are working in the world
of C"-algebras, everything has to be a bounded operator on appropriate L2-spaces.
This means that one needs suitable estimates on the derivatives of the maps and
homotopies involved, and such estimates do not seem automatically to he available
unless one works in a ‘bounded geotnetry’ context. This would be appropriate
for a proof of the bi-Lipschitz homeomorphism invariance of the Pontrjagin classes
(Teleman’s theorem}, but not, it seems, of the topological invariance.

We will now show that conjecture 2.2 implies Novikov’s theorem. In fact, we will
show a little more, namely that the conjecture implies that the K-homology class
of the signature operator of a smooth manifold is invariant under homeomorphism.
This is also the conclusion of Teleman’s proof which uses Lipschitz approximation.
To simplify the later proofs a little, we work away from the prime 2.

(2.3) ProposiTION:  Suppose that Conjecture 2.2 is true modulo 2-torsion for
control spaces X which are cones on finite polyhedra. Then, if N and N' are
homeomorphic compact smooth manifolds, the K-homology signatures of N and

N’ are equal in K. (N) ® Z[3].

(2.4) CorOLLARY: In the situation above, the rational Pontrjagin classes of M
and M' agree.

Proor: By the Atiyah-Singer index theorem [1], the homology Chern character
of the signature class is the Poincaré dual of the L-class; the rational Pontrjagin
classes can be recovered from this. O
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ProoF: (oF THE PrROPOSITION): We begin by considering maaifolds M and
M’ which are smoothly N X R and N’ x R respectively. We equip M with a warped
product metric of the form

dt* + (1 + ')~ 2gy;dz’ da?.

The exact form of the metric is not especially important, provided that it has one
cylinder-like and one cone-like end, so that N* (that is, N with a disjoint point
added) is a natural Higson corona of M. Let X = M considered as a metric space.
Then M is obviously boundedly controlled over X (via the identity map!). We use
the homeomorphism between N and N’ to regard M’ as boundedly controlled over
X as well. A simple smoothing argument shows that M and M’ are boundedly
controlledly (smoothly) homotopy equivalent over X; thus by the conjecture their
coarse analytic signatures agree.

We now identify the coarse analytic signature of M with the ordinary K -homology
signature of N. To do this recall from [24, 13] that there is a natural map defined
by Paschke duality

b: K. (C*(M)) = K._;(N*) = K._(N),

with the property that b{Ind D), for any Dirac-type operator D on M, is equal
to d[D], where 9: K.(M)} — K,_;(N) is the boundary map in K-homology. (In
fact, b is an isomorphism for cone-like spaces such as M, but this fact will not be
needed here.) On the other hand, it is a standard result in K-homology that ‘the
boundary of Dirac is Dirac’ [12, 32], aund it follows that @#(Dys) is simply the class
of the signature operator Dy of N.

By a similar argument we may identify the coarse analytic signature of M’
with the ordinary K-homology signature of N’, pulled back to K,(N) via the
homeomorphism N’ — N. The desired result therefore follows from the equality of
these two signatures. 0O

REMARK: With a little more effort, this argument might be made to work with
the hypothesis that N and N’ are e-controlled homotopy equivalent for all ¢, rather
than homeomorphic. Of course one knows froin the a-approximation theorem [5]
that N and N’ are in fact homeomorphic under this hypothesis, but the point is
that one can avoid appealing to this geometric result.

In the next section we will need to know that the coarse analytic signature is
bordism invariant. In other words, we will require

(2.5) PROPOSITION: Suppose that N is an X -bounded manifold which is the bound-
ary of an X -bounded manifold-with-boundary M. Then Sign, (N) = 0.

ProoF: Let ¢: M — X be the control map for M. Construct two X x R-bounded
manifolds M, and M, as follows: M; = N xR, and M, = M Uy N X R, with the
control map that sends M to X x {0}. One has a natural isomorphism [14] between
K. (C*(X)) and K, (C*(X x R)), and under this isomorphisin the X-bounded
signature of N can be identified with the X X R-bounded siguature of M,. But,
since M, and M, agree over RY, the X x R-bounded signatures of M, and M, are
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equal (compare [11]). Finally, the X x R-bounded signature of M, is zero, because
it factors through the group K, (C*(X xR*)), which is zero by an Eilenberg swindle
asin [14]. O

3. PROOF OF HOMOTOPY INVARIANCE

We begin by recalling the definition of the L*-groups of an additive category with
involution[22]. Given an additive category U an involution on Y is a contravariant
functor * : 4 — i, sending U to U*, and a natural equivalence #x* = 1. One of
the defining properties of an additive category is that the Hom-sets are abelian
groups, that is Z-modules. All the categories that we will consider will have the
property that the Hom-sets are in fact modules over the ring Z[3, %], and we will
make this assninption from now on. This yields two simplifications in L-theory: the
existence of i = /=1 makes L-theory 2-periodic, since dimensions = and n + 2 get
identified through scaling by 7, and the existence of :f,- removes the difference between
quadratic and symmetric L-theory. We therefore get the following description of
L-theory. In degree 0 an element is given as an isomorphism ¢ : A — A* satisfying
w = ¢". Elements of the form B@ B* = B* @ B, with the obvious isomorphism, are
considered trivial, and L} is the Grothendieck construction determining whether a
selfadjoint isomorphism is conjugate to a trivial isomorphism. In the definition of L}
the condition ¢ = ¢" is replaced by ¢ = —¢* but in the presence of i these groups
become scale equivalent. In odd degrees the groups are given as automorphisms of
trivial forms.

REMARK: Suppose the additive category U is the category of finitely generated
projective modules over a C*-algebra A and the involution is given by the identity
on objects and the x-operation on morphisms. One defines the projective L-groups
L?(A) to equal L*(4) for this category . In this situation, the availability of
the Spectral Theoremn for C”-algebras allows one to separate out the positive and
negative eigenspaces of a nondegenerate quadratic form and thus to assign a signa-
ture in K.(A) (a formal difference of projections) to any element of L¥(A). This
construction goes back to Gelfand and Mischenko {10]; the exposition in Rosenberg
[25] is couched in language similar to ours, and also includes a proof that one obtains
in this way an isomorphism L¥(A} = K,(A).

REMARK: Notice that we are using projective modules in the above statement, so
one calls the corresponding L-group LP{A} . In general L? of an additive category
with involution is just L* of the idempotent completion of the category. To simplify
these issues we will work modulo 2-torsion, so from now on when we write L(A)
without upper index we shall mean L*(A) ® Z[1], noting that by the Ranicki-
Rothenberg exact sequences tensoring with Z[2] removes the dependency on the
upper decoration. To retain the above mentioned isomorphism we obviously have
to tensor K-theory with Z[2] as well.

We now recall the (geometrically) bounded additive categories defined in [21].
Let X be a metric space, and K a ring with anti-involution. This turns the category
of left R-modules into an additive category with involution, since the usual dual of
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a left R-module is a right R-module, but by means of the anti-involution this may
be turned into a left R-module. :

The reader should keep in mind the model case in which X is the infinite open
cone O(K) on a complex K C §* ¢ R*' and R = C. The category Cx(R) is
defined as follows:

(3.1) DEFINITION: Anobject A of €x (R) is a collection of finitely generated based
free right R-modules A, one for each x € X, such that for each ball C' C X of finite
radius, only finitely many A,, © € C, are nonzero. A morphism ¢ : A = B is a
collection of morphisms ¢ : A, — B, such that there exists k = k(yp) such that
vy = 0 for d(z,y) > k.

The composition of p : A — B and 4 : B = C is given by (Yo@)y = 2. cx ¥Vy¥5-
Note that (3 o @) satisfies the local finiteness and boundedness conditions whenever
¥ and ¢ do.

(3.2) DEFINITION: The dual of an object A of €x(R) is the object A* with (A%}, =
A, = Homp(A:, R) for cach z € X. A} is naturally a left R-module, which we
converi to a right R-module by means of the anti-involution, If o : A — B is
a morphism, then ¢* . B* = A* and (¢*); = ho !, where h : B, - R and
¥ 1 Ay = B,. ¢ is bounded whenever ¢ is. Again, ¢" is naturally a left module
homomorphism which induces a homomorphism of right modules B* — A* via the

anti-tnvolution.

If we choose a countable set E C X such that for some & the union of k-halls
centered at points of E covers X, then it is easy to see that the categories €g(R)
and Cx (1) are isomorphic.

[t is convenient to assuine that such a choice has been made once and for all.
Then we may think of the objects of €x(C) as hased complex vector spaces with
basis a subset of F x N satisfying certain finiteness conditions. Any based complex
vector space has a natural inner product, and therefore a norm, and we define a
morphisin in €x(C) to be analytically bounded if it becomes a bounded operator
when its domain and range are equipped with these natural €2 norms.

(3.3) DerINITION:  The category €%°(C) has the same objects as Cx(C), but
the morphisms have to satisfy the further restriction that they define analytically
bounded operators on €(E x N)

It is apparent that there is a close connection between the category €% (C) and
the C*-algebra C*(X). In fact, the way we have arranged things any object A
in the category €% (C) can be thought of as a projection in C*(X) defined by the
generating set for A and hence as a projective C* (X )-module, and an endomorphism
of A respects the C*(X)-module structure. Since the involution on €4°-(C) is given
by duality, it corresponds to the *-operation on C*(X). Hence we get a map

L.(€5°(C)) = L.(C*(X)) = K.(C"(X)).
Similarly the forgetful functor €%°(C) = €x(C) induces a map
L(€5°(C)) — L.(Cx(C)).
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. . M .
Notice that whenever we have a manifold ( ] ) bounded over a metric space X, we

may triangulate M in a bounded fashion so the cellular chain complex of M can be
thought of as a chain complex in €x (Z) and, more relevantly, the chain complex with
complex coefficients can be thought of as a chain complex in € (C). Poincaré duality
thus gives rise to a self-dual map and hence an element in ox[M] € Ly(€x(C)), the
bounded symmetric signature of the manifold. The bounded symmetric signature
is an invariant under bounded homotopy equivalence, since a bounded homotopy
equivalence gives rise to a chain homotopy equivalence in the category Co(x)(C)
and the L-groups by their definition are chain homotopy invariant {22].
As mentioned above we get mnaps

K.C*(X) <= L.(¢4(C)) —*— L.(€x(C))

(3.4) THEOREM: In case X = Q(K), the open cone on a finite complez, the maps
o and B are isomorphisms. Morcover, foa~! (Signg )y M) = 0o(k)[M]

Proor: Let F be any of the functors
K~ K.CHO(K)), K L(€)(C)), K L.(Cow)(C)).

Then F is a reduced generalized homology theory on the category of finite com-
plexes. In case F(K) = K.C*(O(K)) or F(K) = L.(€o(x)(C)) this is proved in
[14] and [22] respectively. In the case F(K) = L.(€5{x)(C)) the proof needs the
extensions to Ranicki’s results provided in [4] but goes along exactly the same lines,
noting that the restricting the morphisms to the ones defining analytically bounded
operators does not prevent Eilenberg swindles*, and thus the basic Karoubi filtration
technique goes through. Morcover, & and 8 are isomorphisins for K = @ and hence
for all finite complexes. This proves the first statement.

To prove the second statement note that if M has a bounded triangulation of
bounded geometry (meaning that the number of simnplices meeting a given vertex
is uniformly bounded), then the natural representative of go(x)[M] is in fact an
analytically bounded operator (since Poincaré duality is given by sending a cell to
its dual cell combined with appropriate subdivision maps). Moreover, by the de
Rham theorem in the bounded geometry category [8], this bounded operator passes
under « to the class of the signature operator in K, (C*(O(K)) (see [16], theorem
5.1). In case M is not of bounded geometry we need to notice that both oo(k)[M]
and Signe x)[M] are O(K)-bordism invariants, the latter by proposition 2.5, and

M
that any manifold (O(lh_)) is O(K)-bordant to a bounded geometry manifold. To

see this latter statement make M — O(K) transverse to a level t- K C O(K), and
let V be the inverse imnage of (> ¢t) - I, W the inverse image of (< t) - K. We then
get a bordism from M to W U JW X [0,00) by M X TUV X [0,00) and the map p
extends to a proper map from the bordism to O(K) by sending (m,t) € M-X I to

“The key point is that the operator norm of an orthogonal direct sum is the supremum
of the operator norms of its constituents. See [14] for the details of an Eilenberg swindle in
the analytic sitnation.



ON THE CONTROLLED ANALYTIC SIGNATURE 9

p(m) and (v,s) € V x [0,00) to (s+ u) - k where s -k = p(v). This is easily seen
to be a proper map, and we do get a bordism over O(K) to a manifold of bounded
geometry. O

REMARK: lu the above argument we needed to reduce the manifold M to bounded
geometry, and to do this we used the fact that it is always possible to split M over an
open cone. If one could similarly reduce a homotopy equivalence bounded over an
open cone to a bounded geotnetry homotopy equivalence, the proof of our theorem
would be considerably simplified. However, it appears that the proof of such a result
would require a lengthy excursion into bounded geometry surgery [2].

(3.5) CoROLLARY: In the situation above Signg (M) is an invariant modulo
2-torsion under boundedly controlled homotopy equivalence.

As has already been explained, this suffices for a proof of Novikov’s theorem.

4. APPENDIX: 2-TORSION

In the previous section we worked inodulo 2-torsion, for simplicity. We will now
justify the title of this paper by showing that it is not in fact necessary to invert 2
in corollary 3.5. In this section we will therefore, of course, suspend the convention
made previously that all L and K groups are implicitly tensored with Z[%] As in
the previous section, the integral boundedly controlled homotopy invariance of the
coarse analytic signature will follow from:

(4.1) THEOREM:  The functors K = L2(€50%(C)), K = Li{(€o(x)(C)), K —
Lr(C*(O(K))), and K — K, (C*(O(K))) are isomorphic homology theories.

ProOF: Recall that L? of an additive category is simply L* of the idempotent
completion of the category. We have a forgetful map

L(€5{i)(€)) = L2 (Co(x)(C))
and the isoinorphism
LI(C*(O(K))) = K. (C*(O(K)))

mentioned in the Remark above, does not depend on inverting 2. We get a map
from

L(€5(x)(C)) = LC (O(K)))
as follows: an object in €%% (C) may be considered a projection in C* (O(K)) hence
a projective C*(O(K))-module, and this produces the map. When K .is empty the
bounded operator condition is vacuous, LP(C) = L*(C) since Ko(C) = 0, so to finish

the proof we need to show all these functors arc homology theories. Since C is a
field we have K_;(C) = 0 for i > 0 [3, Chap. XII]. Hence

L (Co)(C)) = L™ (Co ) (T))

is a homology theory. To prove L* (Q:%‘(’;,‘-)(C)) is also a homology theory we use the
excision result [4, Theorem 4.1]. Combining this with [4, Lemma 4.17} we only need
to see that idempotent completing any of the categories OZ'E,“(’R)(C) does not change
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the value of L" i.e. that K of the idempotent completed categories is trivial. This
is the object of the next proposition. O

(4.2) ProposiTioN: With terminology as above we have
Ko(€5{k)(C)") = 0
for K a non-empty finite complex.

Proor: The proof follows the methods in [20] and [21] quite closely, and the
reader is supposed to be familiar with these papers. Let L be a finite complex,
K = LU, D". Consider the category # = €%(C) and the full subcategory
A = €5k (C)ory with objects having support in a bounded neighborhood of O(L).
2 is isomorphic to €g%;,(C), and U is A-filtered in the sense of Karoubi, so following
[21], we get an exact sequence

G ) o K (/) = Ko(Ah) = Ko(Ut) —

but 4/ is isomorphic to
C5(om (C)/€oisn-1)(C)

which has the same K-theory as Q:RH(C). So by induction over the cells in K, it
suffices to prove that

K(Cg(C) =0 =a>1
and

Ku(o:i"{;—l((:)'\) =0 n>1

but following the arguments in [20] it is easy to see these groups are equal. Now
consider the ring C[ty,t7', ..., t,t5']). The category

i (Clty, 17+ sty (1Y)

with geometrically bounded morphisms, inducing analytically bounded operators
on the Hilbert space where the ¢; powers are also used as basis has a subcategory
b. - -
Ce M (Cl 1ty 1)
where the morphisms are required to use uniformly bounded powers of the ¢;’s.
Turning ¢;-powers into a grading produces a functor

(4.1) ettt (Clay gt nk,t,;l])—}
Q:;(‘L“' Bt B Ol T bt bty e b £ ).

We claim this is a split epimorphism on K;. Consider the automorphism g, which
is multiplication by #; on the upper half of R**' and the identity on the lower half.
Here upper and lower refers to the coordinate introduced when the ¢;-powers were
turned into a grading. The splitting is given by sending an automorphisim e to the
comnmutator [, ;] and restricting to a band. Since both the bounded operator and
the bounded ¢-power conditions are responsive to the Eilenberg swindle arguments
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used in [20] the argument carries over to this present situation. From this it follows
there is a monomorphisin

[(1 (@tﬁ:’i (C)) -3 ](l (Eflo"h'w e (C[tl, tl_l, ey tn, t;l])

But the bounded t-power condition is vacuous, when the ietric space is a point,
and the uniformity given by the Z"-action renders the bounded operator condition
vacuous too. Since the inclusion maps given by the commutator with f,, commute
up to sign we find that the image of 1(4@3{;) is contained in

K_i(C) C Ki(Clty, t7 -y tas 1)

n

which is 0 since C is a field and we are done. 0O
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