Yang-Mills connections
 on quaternionic Kähler quotients

Takashi Nitta

Department of Mathematics	Max-Planck-Institut für Mathematik
Faculty of Science	Gotffried-Claren-Straße 26
Osaka University	D-5300 Bonn 3
560 Toyonaka	
Osaka	Germany

Japan
on
quaternionic Kähler quotients

Takashi Nitta

The purpose of this note is to announce our recent results on quaternionic Kähler manifolds (see Salamon [8] for definition of quaternionic Kähler manifolds). Let (M, g) be a $4 n$-dimensional connected quaternionic Kähler manifold with scalar curvature s and let H be the skew field of quaternions ($\mathbf{H}=\mathbb{R}+\mathbb{R} i+\mathbb{R} j+\mathbb{R} k$). Furthermore, let ρ be an $S p(n) \cdot S p(1)$-module induced by adjoint representation of $S p(1)$. Then the vector bundle V corresponding to ρ is a subbundle in End(TM), whose rank is three. The Levi-Civita connection induces a metric connection on End(TM) naturally. The subbundle V is preserved by the connection, which is restricted to the connection on V, denoted by ∇. For each point in M , there are local frames I, J, K of V associated to $i, j, k \in \operatorname{sp}(1) \subset \mathbb{H}$ on a neighbourhood of the point. We denote by $\omega_{\alpha}(\alpha=I, J, K), 2$-forms $g(\alpha),(\alpha=I, J, K)$. Then $\Sigma_{\alpha=I, J, K}: \omega_{\alpha}{ }_{\alpha \alpha}$ defined locally can be globalized as a section on M to $\Lambda^{2} T^{*} M \otimes V_{i}$, which is denoted by $\Omega \in \Gamma\left(M, \Lambda^{2} T^{*} M \otimes V\right)(c f .[2])$.

Let G be a compact Lie group which acts on M preserving the quaternionic Kähler structure g, V. Let of be the Lie algebra of G.

Definition 1 (cf. [2], [5]) A section μ
to $g^{*} \otimes \mathrm{~V}$ is a moment mapping for the action of G on M if
(i) $\quad \nabla(\mu(x))={ }^{1} x^{*} \Omega$, where x is an element of of and X^{*} is the Killing vector field associated to X ,
(ii) μ is a G-equivariant mapping.

When the scalar curvature s of M is not zero and G is connected, the moment mapping exists uniquely (see [2] for the proof). By the condition (ii), the set $\mu^{-1}(0)$ is G-invariant. Suppose that $\mu^{-1}(0)$ is a nonempty: submanifold in M and that G acts on it freely. Then the quotient $N=\ddot{\mu}^{-1}(0) / G$ is a manifold and g, V are naturally pushed down to the metric $\overline{\mathrm{g}}$, the structure bundle $\overline{\mathrm{V}}$ on N . The reduction $(\mathrm{N}, \overline{\mathrm{g}}, \overline{\mathrm{V}})$ is a quaternionic Kähler manifold of dimension $4 \mathrm{~m}=4 \mathrm{n}-4 \mathrm{dim}(\mathrm{G})$ and it is called a quaternionic Kähler reduction (or hyperkähler reduction when $s=0$). Now we denote by

the principal bundle, which has a natural G-connection η as follows :
the horizontal space is the orthogonal complement to the fibre with respect to g.

On the other hand. the $\mathrm{Sp}(\mathrm{m}) \cdot \mathrm{Sp}(1)$-module $\wedge^{2}{ }_{[H} \mathrm{m}^{m}$ is a direct sum $N_{2}{ }^{\prime} \oplus \mathrm{N}_{2}{ }^{\prime \prime} \oplus \mathrm{L}_{2}$ of its irreducible submodules $N_{2}{ }^{\prime}, N_{2}{ }^{\prime \prime}, L_{2}$ where N_{2} (resp. L_{2}) is the submodule fixed by $\mathrm{Sp}(\mathrm{m})$ (resp. $\mathrm{Sp}(1)$) and for $m=1$, we have $N_{2}=\{0\}$. Hence the vector bundle $\Lambda^{2} T^{*} N$ is written as a direct sum $A_{2}^{\prime} \oplus A_{2} " \oplus B_{2}$ of its holonomy invariant subbundles in such a way that $A_{2}{ }^{\prime}, A_{2}{ }^{\prime \prime}, B_{2}$ correspond to $N_{2}{ }^{\prime}, N_{2}{ }^{\prime \prime}, L_{2}$, respectively.

Let $q: Q \longrightarrow N$ be a principal bundle whose fibre is a Lie group $k \quad(\mathbb{k}:=$ the Lie algebra).

Definition 2 (cf. [6]). A connection on q : $Q \longrightarrow N$ is called a B_{2}-connection if the corresponding curvature is
a κ-valued $\mathrm{q}^{*} \mathrm{~B}_{2}$-form.

Now we gbtain :

Theorem. The connection η is a B_{2}-connection.

Proof. The space $\mu^{-1}(0)$ is a submanifold in
M . We denote the second fundamental form by π. By definition the Levi-Civita connection ∇_{1} on $\mu^{-1}(0)$ is written as : for vector fields $x, y \in X\left(\mu^{-1}(0)\right)$

$$
\begin{equation*}
\nabla_{x}^{M} y=\nabla_{1 x} Y+\pi(x, y) \tag{1}
\end{equation*}
$$

where ∇^{M} is the Levi-Civita connection on (Mg). We denote by $\widetilde{\mathrm{s}}$ and x^{V}, the horizontal lift of $\mathrm{s} \in \mathcal{X}(\mathrm{N})$ and the vertical component of $x \in \mathcal{X}\left(\mu^{-1}(0)\right)$, i.e.

$$
\begin{aligned}
& \mu(\tilde{s})=0, \quad p_{k}(\widetilde{s})=s \\
& \mu\left(x-x^{v}\right)=0
\end{aligned}
$$

By o'Neill's formula (cf.[7]) for Riemannian submersion , if $s, w \in X(N)$,

$$
\begin{equation*}
\widetilde{\nabla}_{\nabla_{s}^{N}}^{w}=\nabla_{1 \widetilde{s}^{W}}-1 / 2[\tilde{s}, \widetilde{w}]^{v} \tag{2}
\end{equation*}
$$

where ∇^{N} is the Levi-Civita connection on N. Equations
(1) , (2) lead to

$$
\begin{equation*}
\widetilde{\nabla}_{N_{s}}^{W}=\nabla_{\widetilde{s}}^{M} \widetilde{W}-\pi(\widetilde{s}, \widetilde{w})-1 / 2[\tilde{s}, \widetilde{w}] v \tag{3}
\end{equation*}
$$

For any point in N, there exists a local neighbourhood U of it such that the quaternionic structure bundle on $I N$ is spanned by. I, J, K on U. When we exchange w to Iw,

$$
\begin{equation*}
\overparen{\nabla_{s}^{N} \mathrm{Iw}}=\nabla^{\mathrm{M}} \widetilde{\widetilde{s}^{\mathrm{I} w}}-\pi(\widetilde{\mathrm{s}}, \widetilde{\mathrm{I} w})-1 / 2[\widetilde{\mathrm{~s}}, \widetilde{\mathrm{I} w}]^{\mathrm{V}} \text {, on } \mathrm{U} \text {. } \tag{4}
\end{equation*}
$$

If we denote by $\overline{\mathrm{I}}, \overline{\mathrm{J}}, \overline{\mathrm{K}}$ the pullback of $\mathrm{I}, \mathrm{J}, \mathrm{K}$ to $T M$ on $\mu^{-1}(0)$, then

$$
\begin{equation*}
\widetilde{I w}=\bar{I} w \tag{5}
\end{equation*}
$$

Since M is a quaternionic Kähler manifold,

$$
\begin{equation*}
\nabla^{\mathrm{M}} \overline{\mathrm{I}}=\mathrm{a}_{12} \overline{\mathrm{~J}}+\mathrm{a}_{13} \overline{\mathrm{~K}}, \tag{6}
\end{equation*}
$$

where a_{12}, a_{13} are connection forms with respect to the local frame $\overline{\mathrm{I}}, \overline{\mathrm{J}}, \overline{\mathrm{K}}$. We obtain by (4) (5)

$$
\begin{align*}
& \overline{\mathrm{I}} \nabla^{\mathrm{N}} \widetilde{\mathbf{s}}^{\tilde{w}}+\overline{\mathrm{I}} \pi(\tilde{\mathrm{~s}}, \widetilde{\mathrm{w}})+1 / 2 I[\tilde{\mathrm{~s}}, \widetilde{w}]^{v}+\mathrm{a}_{12}(\widetilde{\mathrm{~s}}) \overline{\mathrm{J}} \tilde{w}+\mathrm{a}_{13}(\tilde{\mathrm{~s}}) \overline{\mathrm{K}} \tilde{w} \tag{7}\\
& =\widetilde{\nabla^{N}{ }_{s}{ }^{I w}+\pi(\widetilde{S}, \bar{I} \tilde{w})+1 / 2[\tilde{s}, \bar{I} \widetilde{w}]^{V} .}
\end{align*}
$$

The vertical component of (7) is

$$
(\overline{\mathrm{I}} \pi(\tilde{\mathrm{~s}}, \widetilde{\mathrm{w}}))^{\mathrm{V}}=1 / 2[\tilde{\mathrm{~s}}, \overline{\mathrm{I}} \tilde{\mathrm{w}}]^{\mathrm{V}} .
$$

Since π is summetric, we obtain :

$$
\begin{align*}
{[\widetilde{s}, \overline{\mathrm{I}} \widetilde{\mathrm{w}}]^{\mathrm{V}} } & =2(\overline{\mathrm{I}} \pi(\widetilde{\mathrm{~s}}, \widetilde{\mathrm{w}}))^{\mathrm{V}} \tag{8}\\
& =2(\overline{\mathrm{I}} \pi(\widetilde{\mathrm{w}}, \widetilde{\mathrm{~s}}))^{\mathrm{V}} \\
& =[\widetilde{\mathrm{w}}, \overline{\mathrm{I}} \widetilde{\mathrm{~s}}]^{\mathrm{V}} \\
& =-[\overline{\mathrm{I}} \widetilde{\mathrm{~s}}, \widetilde{\mathrm{w}}]^{\mathrm{V}}
\end{align*}
$$

The curvature of η is written as $R(\widetilde{s}, \widetilde{w})=-\eta\left([\widetilde{s}, \widetilde{w}]^{v}\right)$. By (8),

$$
\begin{aligned}
R(\widetilde{I s}, \widetilde{I w}) & =-\eta([\widetilde{I s}, \widetilde{I w}] \\
& v \\
& =-\eta(-[\widetilde{s}, \widetilde{I W}] \\
& =-\eta([\widetilde{s}, \widetilde{w}] \\
& =R(\widetilde{s}, \widetilde{w})
\end{aligned}
$$

By same argument, $R\left(\widetilde{I_{s}}, \widetilde{I W}\right)=R(\widetilde{J s}, \widetilde{J w})=R\left(\widetilde{K_{s}}, \widetilde{K w}\right)=R(\tilde{s}, \widetilde{w})$. Hence the connection η is a B_{2}-connection.

Examples. (i) Galicki and Lawson proved the reduction space $P^{n_{H} / / U(1)}$ is complex Grassmann manifold $G_{2, n-1}(\mathbb{C})$ (cf. [2]). The natural connection on $P \longrightarrow G_{2, n-1}(\mathbb{C})$ is a B_{2}-connection. Furthermore Galicki showed that the reduction space $P^{n_{H}} /$ SU(2) is real Grassmann manifold $\mathrm{G}_{4, \mathrm{n}-3}(\mathrm{R})$ (cf..[l]). It has also a B_{2}-connection.
(ii) The argument is local. When feduction space $\mu^{-1}(0) / G$ is not a smooth manifold but an orbifold, the connection is a B_{2}-connection over the orbifold. Galicki and Nitta constructed many quaternionic Kähler orbifolds as
quaternionic Kähler reduction spaces (cf. [3]). In these cases the connections are B_{2}-connections over the quaternionic Kähler orbifolds.

Remark. A corresponding result for the case of hyperkähler reductions was previously obtained by Gocho and Nakajima [4]. Our result is inspired by their result.

Acknowledgement. The author would like to thank Professors Pedersen and Nakajima for their encouragement. The work is done in my stay in Max-Planck-Institut für Mathematik in Bonn.
[1] K.Galicki: A generalization of the moment mapping construction for quaternionic Kähler manifolds. Commun. Math. Phys. 108, 117-138 (1987)
[2] K.Galicki and H.B.Lawson,Jr.: Quatenionic reduction and quaternionic orbifolds. Math. Ann. 282, 1-21 (1988)
[3] K.Galicki and T.Nitta: Non-zero scalar curvature generalizations of the ALE hyperkähler metrics. (to appear)
[4] T.Gocho and H.Nakajima: Einstein-Hermitian connections on hyperkähler quotients. (to appear)
[5] N.J.Hitchin, A.Karlhede, U.Lindström and M.Rocěk: Hyperkähler metrics and supersymmetry. Comm. Math. Phys. 108, 535-589 (1987)
[6] T.Nitta: Vector bundles over quaternionic Kähler manifolds. Tôhoku Math. J. 40, 425-440 (1988)
B. O'Neill: The fundamental equations of submersion. Michigan Math. J. 13, 459-469 (1966)
[8] S.Salamon: Quaternionic Kähler manifolds. Invent. Math. 67, 143-171 (1982)

