Yang-Mills connections on quaternionic Kähler quotients

Takashi Nitta

Department of Mathematics Faculty of Science Osaka University 560 Toyonaka Osaka

Japan

.

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

Yang-Mills connections

on

guaternionic Kähler quotients

Takashi Nitta

The purpose of this note is to announce our recent results on quaternionic Kähler manifolds (see Salamon [8] for definition of quaternionic Kähler manifolds). Let (M,g) be a 4n-dimensional connected quaternionic Kähler manifold with scalar curvature s and let H be the skew field of quaternions ($H = \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$). Furthermore, let ρ be an Sp(n) · Sp(1) - module induced by adjoint representation of Sp(1). Then the vector bundle V corresponding to ρ is a subbundle in End(TM), whose rank is three. The Levi-Civita connection induces a metric connection on End(TM) naturally. The subbundle V is preserved by the connection, which is restricted to the connection on V , denoted by ∇ . For each point in M , there are local frames I, J, K of V associated to i, j, k \in sp(1) C H on a neighbourhood of the point. We denote by ω_{α} ($\alpha = I, J, K$), 2-forms $g(\alpha,)$ ($\alpha = I, J, K$). Then $\sum_{\alpha=1,J,K} \omega_{\alpha} \otimes \alpha$ defined locally can be globalized as a section on M to $\bigwedge^2 T^* M \otimes V$, which is denoted by $\Omega \in \Gamma(M, \Lambda^2 T^*M \otimes V) \quad (cf.[2]).$

· 1 -

r.

Let G be a compact Lie group which acts on M preserving the quaternionic Kähler structure g, V. Let \mathcal{F} be the Lie algebra of G.

Definition 1 (cf. [2], [5]) A section μ to $\mathfrak{g}^* \otimes V$ is a moment mapping for the action of G on M if

(i) $\nabla(\mu(X)) = {}_{X*}\Omega$, where X is an element of \mathscr{T} and X* is the Killing vector field associated to X,

(ii) μ is a G-equivariant mapping.

When the scalar curvature s of M is not zero and G is connected, the moment mapping exists uniquely (see [2] for the proof). By the condition (ii), the set $\mu^{-1}(0)$ is G-invariant. Suppose that $\mu^{-1}(0)$ is a nonempty submanifold in M and that G acts on it freely. Then the quotient $N = \mu^{-1}(0)/G$ is a manifold and g, V are naturally pushed down to the metric \overline{g} , the structure bundle \overline{V} on N. The reduction $(N,\overline{g},\overline{V})$ is a quaternionic Kähler manifold of dimension $4m=4n-4\dim(G)$ and it is called a quaternionic Kähler reduction (or hyperkähler reduction when s = 0). Now we denote by

- 2 -

 $p: \mu^{-1}(0) \longrightarrow N$

the principal bundle, which has a natural G-connection η as follows :

the horizontal space is the orthogonal complement to the fibre with respect to g .

On the other hand. the $\operatorname{Sp}(m) \cdot \operatorname{Sp}(1)$ -module $\wedge^{2} \operatorname{H}^{m}$ is a direct sum $\operatorname{N}_{2}' \oplus \operatorname{N}_{2}'' \oplus \operatorname{L}_{2}$ of its irreducible submodules N_{2}' , N_{2}'' , L_{2} where N_{2}'' (resp. L_{2}) is the submodule fixed by $\operatorname{Sp}(m)$ (resp. $\operatorname{Sp}(1)$) and for m = 1, we have $\operatorname{N}_{2}'' = \{0\}$. Hence the vector bundle $\wedge^{2} \operatorname{T}^{*} \operatorname{N}$ is written as a direct sum $\operatorname{A}_{2}' \oplus \operatorname{A}_{2}'' \oplus \operatorname{B}_{2}$ of its holonomy invariant subbundles in such a way that $\operatorname{A}_{2}'', \operatorname{A}_{2}'', \operatorname{B}_{2}$ correspond to $\operatorname{N}_{2}', \operatorname{N}_{2}'', \operatorname{L}_{2}$, respectively.

Let $q : Q \longrightarrow N$ be a principal bundle whose fibre is a Lie group K ($\hat{R} :=$ the Lie algebra).

Definition 2 (cf. [6]). A connection on $q : Q \longrightarrow N$ is called a B₂-connection if the corresponding curvature is a \hat{k} -valued q^*B_2 -form.

Now we gbtain :

- 3 -

Theorem. The connection η is a B_2 -connection.

Proof. The space $\mu^{-1}(0)$ is a submanifold in M. We denote the second fundamental form by π . By definition the Levi-Civita connection ∇_1 on $\mu^{-1}(0)$ is written as : for vector fields x, y $\in \chi(\mu^{-1}(0))$

(1)
$$\nabla^{M}_{x}y = \nabla_{lx}y + \pi(x,y),$$

where ∇^{M} is the Levi-Civita connection on (M,g). We denote by \tilde{s} and x^{V} , the horizontal lift of $s \in \mathfrak{X}(N)$ and the vertical component of $x \in \mathfrak{X}(\mu^{-1}(0))$, i.e.

$$\mu(\vec{s}) = 0$$
, $p_{\star}(\vec{s}) = s$,
 $\mu(x - x^{V}) = 0$.

By O'Neill's formula (cf.[7]) for Riemannian submersion , if s , w $\in X(N)$,

(2)
$$\widetilde{\nabla^{N}_{s}} = \nabla_{1\widetilde{s}} \widetilde{\widetilde{w}} - 1/2 [\widetilde{s}, \widetilde{w}]^{V}$$
,

where ∇^{N} is the Levi-Civita connection on N . Equations (1) , (2) lead to

(3)
$$\widetilde{\nabla_{\mathbf{s}}^{N}} = \nabla_{\widetilde{\mathbf{s}}}^{M} \widetilde{\mathbf{w}} - \pi(\widetilde{\mathbf{s}}, \widetilde{\mathbf{w}}) - 1/2[\widetilde{\mathbf{s}}, \widetilde{\mathbf{w}}]^{V}$$

- 4 -

For any point in N, there exists a local neighbourhood U of it such that the quaternionic structure bundle on N is spanned by I, J, K on U. When we exchange w to Iw,

(4)
$$\widetilde{\nabla_{\mathbf{S}}^{N}}_{\mathbf{S}}^{\mathbf{I}}\mathbf{W} = \nabla_{\widetilde{\mathbf{S}}}^{\mathbf{M}}\widetilde{\mathbf{I}}\mathbf{W} - \pi(\widetilde{\mathbf{S}},\widetilde{\mathbf{I}}\mathbf{W}) - 1/2[\widetilde{\mathbf{S}},\widetilde{\mathbf{I}}\mathbf{W}]^{\mathbf{V}}$$
, on U.

If we denote by \overline{I} , \overline{J} , \overline{K} the pullback of I, J, K to TM on $\mu^{-1}(0)$, then

(5)
$$\widetilde{Iw} = \overline{Iw}$$

Since M is a quaternionic Kähler manifold,

(6)
$$\nabla^{M} \bar{I} = a_{12} \bar{J} + a_{13} \bar{K}$$
,

where a_{12} , a_{13} are connection forms with respect to the local frame \overline{I} , \overline{J} , \overline{K} . We obtain by (4), (5), (6),

(7)
$$\overline{I}\nabla^{N}_{\widetilde{S}}\widetilde{w} + \overline{I}\pi(\widetilde{s},\widetilde{w}) + 1/2I[\widetilde{s},\widetilde{w}]^{V} + a_{12}(\widetilde{s})\overline{J}\widetilde{w} + a_{13}(\widetilde{s})\overline{K}\widetilde{w}$$
$$= \underbrace{\nabla^{N}_{S}Iw}_{V} + \pi(\widetilde{s},\overline{I}\widetilde{w}) + 1/2[\widetilde{s},\overline{I}\widetilde{w}]^{V}.$$

The vertical component of (7) is

· .

.

$$(\overline{I}\pi(\widetilde{s},\widetilde{w}))^{V} = 1/2[\widetilde{s},\overline{I}\widetilde{w}]^{V}$$

Since π is summetric, we obtain :

(8)
$$[\widetilde{s}, \overline{I}\widetilde{w}]^{V} = 2(\overline{I}\pi(\widetilde{s}, \widetilde{w}))^{V}$$
$$= 2(\overline{I}\pi(\widetilde{w}, \widetilde{s}))^{V}$$
$$= [\widetilde{w}, \overline{I}\widetilde{s}]^{V}$$
$$= -[\widetilde{I}\widetilde{s}, \widetilde{w}]^{V}.$$

The curvature of η is written as $R(\tilde{s}, \tilde{w}) = -\eta([\tilde{s}, \tilde{w}]^V)$ By (8),

$$R(\widetilde{Is}, \widetilde{Iw}) = -\eta ([\widetilde{Is}, \widetilde{Iw}]^{V})$$
$$= -\eta (-[\widetilde{s}, \widetilde{IIw}]^{V})$$
$$= -\eta ([\widetilde{s}, \widetilde{w}]^{V})$$
$$= R(\widetilde{s}, \widetilde{w}) .$$

By same argument, $R(\widetilde{Is}, \widetilde{Iw}) = R(\widetilde{Js}, \widetilde{Jw}) = R(\widetilde{Ks}, \widetilde{Kw}) = R(\widetilde{s}, \widetilde{w})$. Hence the connection η is a B_2 -connection.

Examples. (i) Galicki and Lawson proved the reduction space $P^{n}H//U(1)$ is complex Grassmann manifold $G_{2,n-1}(\mathbb{C})$ (cf. [2]). The natural connection on $P \longrightarrow G_{2,n-1}(\mathbb{C})$ is a B_{2} -connection. Furthermore Galicki showed that the reduction space $P^{n}H//SU(2)$ is real Grassmann manifold $G_{4,n-3}(\mathbb{R})$ (cf. [1]). It has also a B_{2} -connection.

(ii) The argument is local. When \Re eduction space $\mu^{-1}(0)/G$ is not a smooth manifold but an orbifold, the connection is a B₂-connection over the orbifold. Galicki and Nitta constructed many quaternionic Kähler orbifolds as

quaternionic Kähler reduction spaces (cf. [3]). In these cases the connections are B_2 -connections over the quaternionic Kähler orbifolds.

Remark. A corresponding result for the case of hyperkähler reductions was previously obtained by Gocho and Nakajima [4]. Our result is inspired by their result.

Acknowledgement. The author would like to thank Professors Pedersen and Nakajima for their encouragement. The work is done in my stay in Max-Planck-Institut für Mathematik in Bonn.

References

- [1] K.Galicki: A generalization of the moment mapping construction for quaternionic Kähler manifolds. Commun. Math. Phys. 108, 117-138 (1987)
- [2] K.Galicki and H.B.Lawson, Jr.: Quatenionic reduction and quaternionic orbifolds. Math. Ann. 282, 1-21 (1988)
- [3] K.Galicki and T.Nitta: Non-zero scalar curvature generalizations of the ALE hyperkähler metrics.(to appear)
- [4] T.Gocho and H.Nakajima: Einstein-Hermitian connections on hyperkähler quotients. (to appear)
- [5] N.J.Hitchin, A.Karlhede, U.Lindström and M.Rocek:
 Hyperkähler metrics and supersymmetry. Comm.
 Math. Phys. 108, 535-589 (1987)
- [6] T.Nitta: Vector bundles over quaternionic Kähler manifolds. Tôhoku Math. J. 40, 425-440 (1988)
- [7] B.O'Neill: The fundamental equations of submersion.Michigan Math. J. 13, 459-469 (1966)
- [8] S.Salamon: Quaternionic Kähler manifolds. Invent. Math. 67, 143-171 (1982)

- 8 -