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MAPS BETWEEN p—~COMPLETIONS OF
THE CLARK—EWING SPACES X(W,p,n)

by

Zdzislaw Wojtkowiak

Abstract. Let Zp denote the ring of p—adic integers. Let W C GL(n,Z p) be a
finite group such that p does not divide the order of W. The group W acts on

K((zp)n,z). Let  X(W,pn),  be the p—completion of the space
K((Z p)11,2) ‘:’Y EW. We classified homotopy classes of maps between spaces
X(W,p,n)p.

0. INTRODUCTION

Let Zp denote the ring of p—adic integers. Let Yp denote the p—completion of
a space Y. '

Let T be a torus and let W C GL(arl(T)QZp) be a fintie group. The group W
acts on the space (BT)p. Let '

X(W,p,T) := ((BT), xyy EW),
where EW is a contractible space equipped with a free action of W.

The aim of this paper is to apply the program from [1] to study maps between
spaces X(W,p,T). The starting point was an attempt to generalize one result of
Hubbuck (see (8] Theorem 1.1.). The plan of work will follow closely that of [3]
and [13]. .
Ezample. Let G be a connected, compact Lie group, T 1ts
mazimal torus and W 1ts Feyl group. If p does not divide the
order of W then (BG')p % (BT xyy EW)p.

This example suggests the following defintion.



Definition. Let us set X =X(W,p,T). ¥e shall call T a mazimal
torus of X and W a Veyl groupof X.

The projection (BT)p x EW — (BT)p xwEW  induces a map
i:BT —X. Fe shall call i: BT — X a structuremap of X.

We point out that in {5] A. Clark and J. Ewing studied cohomology algebras of
spaces (BT)p xwEW. We warn the reader that our notation is different from
the notation used in {5]. The space X(W,p,T) is the p—completion of the Clark-
—Ewing space X(W,p,rank T).

Through the whole paper we shall assume that p is an odd prime. We need this
assumption to show Proposition 1.1. It is clear that this assumption is not essen-
tial, however we were not able to overcome technical difficulties for p = 2.

Now we shall state our main results.
Let us set X = X(W,p,T) and X’ = X(W’,p,T”).

THEOREN 1. Assume that p does not divide the orders of W and

W’. Then for anymap £: X — X’ there isamap 1: (BT)p—»(BT’)p
such that the diagram

(BT), ——— (BT')

commutes up to homotopy. ¥oreover we have:

a) if T’:(BT)p——»(BT’)p ts such that foi 1is homotopic to
i’ o1’ then there is w€ W’ suchthat wo 1’ is homotopic to 1,
b) for any wEW there is w € W’ such that Tow is homotopic

to w’ ol

The group W acts on rl(T) ®Zp, hence W acts on rl(T) ®R for any
Zp—module R.



DEFINITION 1. Let R be a Zp—algebra. Ve say that a homomor-
phism of R-modules

@: xl(T) ®R — Tl(T') ®R

i3 admissible if forany wE€W there is w' €W’ such that
gow=w oyp.

Ve say that two admissible maps ¢ and ¢ from m(T)@R to
7(T’)®R are equivalent if there is wE€W’' such that

wop=¢.

It i3 clear that the relation defined above is an equivalence relation on the set of
admissible maps from ,(T)®R to 7,(T’)®R. We shall denote by
AhomR(T,’I" ) the set of equivalence classes of admissible maps from =,(T) ® R
to 7,(T’) @R.

Let us notice that the map rl(T) induced by T from Theorem 1 on fundamen-
tal groups is admissible for R = Zp. This map is unique up to the action of W,

so any map f: X — X’ determines uniquely an equivalence class of xl('f) in
Ahom, (T,T’) which we shall denote by x(f).
p .

THEQREM 2. Let us assume that p does not divide the orders of
W and W’. Then the natural map

x: [X,X’] — Ahom, (T,T")
p
18 bijective.

For any space Y we set
B¥(Y,Q ) :=H*Y,Z )eq,
P p
where Qp is a field of p—adic numbers.

THEOREH 3. Let us assume that p does not divide the orders of
W and W’. Then the natural map



$:[X,X']|— Hom(H*(X’,Qp), H*(X,Qp))
18 injective.

We denote by KO(,R) the 0'P—term of complex K—theory with R—coefficients.
Let Op be the set of operations in KO( ,R). The functor KO( ,R) 1is equipped
with the natural augmentation KO( ,R) — R. Let Hom dR(KO(X’ ,R),KO(X,R))

be the set of R—algebra homomorphisms which commute with the action of Jp
and augmentations.

THEOREK 4. If p does not divides the order of W and W', then
the natural map

$: XX — Hom, (KX Z)K(X2,))

p
ts bijective.

We can formulate our results in a nice categorical way.

We shall define a category Z — Rep in the following way. Objects of the cate-
gory Zp—Rep are representa.txons p: W — GL(M) where M is a free, finitely
generated Zp—module, W is a finite group and p does not divide the order of
W. It remains to define morphisms in this category. If 6: W — GL(M) and
8’ : W/ — GL(M’) are two objects of Z —Rep, we say that a homo-
morphmm of Zp—modula f:-M— M’ is a.dnnssxble if for each w € W there is
w/ €W’ such that fow=w’ of We say that two admissible homo-
morphisms f and g from M to M’ are equivalent if thereis w € W’ such
that f = w’ o g. We shall denote by Ahom(#,8’) the set of equivalence classes
of admissible homomorphisms from M to M’. The set Ahom(#,6’) is the set
of morphisms from 6 to 6’ in the category Zp— Rep. The category Zp — Rep
~ is equipped with the product defined in the following way:

(W — GL(M)) @ (8’ W/ —GL(M’)) = 688’ : Wx W/ ——GL(M&M’).
The product of morphisms is defined in the obvious way.

We denote by Ht(p) the category whose objects are spaces X(W,p,T) such



that p does not divide the order of W. Morphisms in Ht(p) are homotopy
classes of maps. The category Ht(p) has products defined in the obvious way.

THEOREN 5. There 13 an equivalence of categories
R: Zp — Rep — Ht(p)
with products.

THEOREN 6. In Theorems 1,2,3 and 4 we can drop the assumption "p
does not divide the order of W/ " if X' = (BG)p, where G is a
connected, compact Lie group.

COROLLARYT. Let X =X(W,p,T) and let p be a prime not dividing
the order of W. Let us assume that the natural representation
of W on xl(T)QQp is irreducible. Then there is a finite num
ber of self-maps Il""'In of X such that forany {: X—X there

18 k forwhtch fo Ik is an ddams ¥®—map i.e. the map induced by

foIk on Hzi(X,Qp) is a multiplication by a. The number n 1is
smaller or equal to the number of elements of Aut(W)/Inn(W)
which preserve the natural representationof W on Jrl(T) ®Qp.

Ezamp le. (see also [3])

Let X=BSU(n)p. The Weyl group of SU(n) is E.. If n#6 then
Aut En=1nn2ll and for n=6 the outer automorphism does not
preserve the natural representation of Lg on rl(T)@Qp. This

implies that the self-maps of BSU(n)p are ddams ¢%—maps.

We point out that Corollary 7 can be view as a generalization of a result of
Hubbuck (see [8] Theorem 1.1.) The example is a special case of the result of
Hubbuck. However, it concerns maps between p—completed spaces BSU(n)p
while Hubbuck is dealing with classical spaces BG.

We would like to thank very much A. Zabrodsky who during the Barcelona con-
ference on algebraic topology 1986 shared with us his unpublished papers and
notes. We would like to express our gratitude to the referee for his patient rea-
dings of the manuscript, for his useful suggestions which allowed us to generalize
substantially our results, and for pointing out several misprints in the manus-



cript.

1. THE LANNES T FUNCTOR FOR SPACES X(W,p,T)

Let X = X(W,p,T). Let us assume that p does not divide the order of W. In
this section we shall compute the cohomology of the mapping space map(BV,X)
and its connected component ma.pf(BV,X) where V is an elementary abelian
p—group and f: BV — X is a map

It follows from [5] (see Proposition on p. 425) that

B¥(X,F,) = H*(BT,FP)W .

The map f:BV —X induces a map f : H*(x,Fp) — H*(BV,FP). Let us
notice that Im f* is contained in the kernel of the Bockstein homomorphism.
Hence it suffices to look at the polynomial part of H*(BV,FD) when extending
&t H*(BT,FP). It follows from ([2] Proposition 1.10 that there is
g* : H*(BT,Fp) — H*(BV,FP) such that * = g* oi* where

i* . H*(X,Fp)—’H*(BT,Fp) is the inclusion induced by a structure map
i:BT —X.

For a torus T, the solutions in T of tP =1 make up a subgroup T(1). The
map g* is induced by a homomorphism ¢: V — T(1). This follows from [9]
Theorem 0.4. Let A.:V ® T(l)* — Fp be an adjoint map of p. The group W

acts on Hom(V ® T(l)*,Fp) through its action on T(l)*. Let W, be the iso-
tropy subgroup of A ¢

PROPOSITION1.1. Let X =X(W,p,T). Let us assume that p does not
divide the order of W. Let V be an elementary abelian p—group
and let {: BV —X be anymap. Then we have an isomorphism

H*(map{BV,X);F.) = H*(BT,F )Wf
pf( t ' p - H p M

PROOF: For a vector space U over Fp let us denote by P(U) the polynomial



algebra on U, by A(U) the exterior algebra on U and by A(U) the symmetric
algebra on U divided by the ideal generated by all polynomials xP —x for

x € U. The polynomial xP —x splits completely over F_. Hence we have an iso-

morphism of Fp-a.lgebra.s AU)= @ *Fp. We point out that A(U) is
aeU

concentrated in degree zero.

Let us notice that we have the following natural identifications

H*(B'I‘,Fp) = P(T(1)*)
and

H*(BV,FP) = P(V¥) @ A(FIVH).

To simplify the notation let us set A := A(V® T(l)*) and

H:= H*(BT,FP) = P(T(1)™). It follows from Corollary 2 in [4] that for any un-

stable Ap—algebra. M and any Ap—a.lgebra. homomorphism

h:P((Z/p)") — M® H*(BZ/p,Fp) we have
y(t*) =m,®l+m_ v’
This implies that we have a natural isomorphisxﬁ
&, : Hom(H;M ® H*(BV)) # Hom (A ® H;M).
where Hom( ;) is in the category of unstable Ap—a.lgebras. If h(t*) =

* * X
m,®1+ ) m ®v then & (b)([v8t'|®1)= Y m vy
vkEV* vkEV*

*
and QM(h)(l @t )= m,,.
Hence it follows that
(%) Ty(H)=A®H.

If M= Fp then we have an isomorphism



b :Hom(H;H*(BV))zHom(AQH;Fp). The group W actson H and A
p

through its action on T(1)*. The isomorphism () and the fact that the functor
Ty(-) is exact implies that

(+%) Ty(BY) = (A B)Y

(see [4] Proposition 3).

Let 1" : H*(X,Fp)—»H*(BV,Fp) be the map induced by { on cohomology.
Let A: TV(H*(X,FP)) —F, be the adjoint map of *  and let
X: Ty (H) — Fp be the adjoint map of g* We recall that
gt HY(BTF ) — H*(BV,Fp) is such that f* = g% oi*. The restriction of ¥
to V& T(l)* is equal to A, where

Ap: VO T(l)* — Fp is an adjoint map of ¢: V — T(1).

It follows from‘[ﬁ] 2.3 Theorem and the equality (*%*) that

B (map(BV.X)F) = Ty(E*(XFy) @ Fp “(AGH)" @F .

Ty(E"(X,F))

¥ v¥eT(1) =VH_W/W’, asa W—set then A% © F [W/W’] as a W—mo-
w’ P

dule. This follows from the isomorphism A(U)= & *Fp mentioned at the be-
aeUu

ginning of the proof. For any W’ C W, Fp[W/W’]W % Fp. The maps X and
) induce X:A—F and ¥. AW -0 F, — F_. The algebra homomorphism
X is the identity on one's of Fp’s and it i3 zero on all others. We recall that the
isotropy subgroup of A, is W, The fact that X restricts to Ag on V®T(1)*

implies that X is the identity on Fp[W/Wf]W. Hence we have the following iso-
morphisms

W o~ W o L
@ @ ~ ViW, @ @ ~ .
(A®H) Ep (Fp[\ /W] @ H) Fp H o

P



2. MAPSFROM BPTO X

Let T be a torus. For a torus T the solutions in T of t? =1 makeupa
subgroup  T(n); let T(w)=UT(n). Let us set M=1rl(T)®Zp. Let

n
W C GLy (M) be a finite group. The action of W on M extends to the action

P
of W on M®Q . The lattice M in M ®Q is invariant therefore W acts also
on M@ Q/, . Observe that M @ Q/,; = T(w). From the action of W on T(a)
we can recover the original action of W on M if we take the induced action of

W on (H2(BT(m);Zp))* . Hence any finite subgroup of GL, (M) can be re-
P
alized as a subgroup of Aut(T(w)).

PROPUSITION 2.1. Let W be a finite subgroup of Aut(T(v)). Let
us assume that p does not divide the orderof W.If P isa f1-

nite p—group then any map f{: BP — (B(T(m)';W))p i3 induced by a
homomorphism ¢: P — T(a)XW .

We were informed that a similar result was also known to W. Dwyer. This propo-
sition is an analog of the theorem of Dwyer and Zabrodsky (see [7] 1.1. Theo-

em). The proof will follow closely the proof of the Dwyer and Zabrodsky theo-
rem contained in [14], which depends very much on [10].

Let us set G = T(a) X W .

LENHA22. Let V=1[p, let ¢:V— G be a homomorphism, let G0
be the centralizer of imp in G and let K V—bG be the map
induced by ¢ . Then the map

mapB%(BV,(BGO)p) — mapg ga(Bv’(BG)p)

18 a homotopy equivalence.

PROOF: It follows from Proposition 1.1 that

\'i
H (mapB (BV,(BG) ).F,) = P 0 where P ~ H¥(BT, F,) and
=G, T(w) is the 1sotropy subgroup of ¢: V — T(w) . In the same way we



get

V"
H*(mapB %(BV,(BGO) p),F p) =P U Hence the map considered by us is a ho-

motopy equivalence. a

LENNA 2.3. Let P be ap—group, let Z/p=V be a subgroup of the
center of P. Let ¢o:V— G be a homomorphism, let GO be the
centralizer of imp in G and let (pO:V—-&GO be the induced
homomorphism. Let

[BP,(BG) ] (Bv) = {t € [BP,(BG),] : {| gy ~ Be}

and let [BP,(BGO)p] (Bpy) be defined in an analogous way. Then
the inclusion map i:GO—-rG induces a brjection

(*) [BP,(BGy),1(Byy) — [BP,(BG),](By) .

P

PROOF: We have a fibration BV — BP — B(P/V) . Let

BV — EP/V — E(P/V) be the fibration induced by pulling back over
pr: E(P/V) — B(P/V). The group P/V acts on EP/V through maps homo-
topics to the identity and the space EP/V is a model for BV. It follows from
Lemma 2.2 that the map

mapp /V(E(P/V),mapB(PO(EP/V,(BGO)p)—&mapP/V(E(P/V),mapB(p(EP/V,
(8G),))

is a homotopy equivalence. There is a bijective correspondence between
P/V—maps E(P/V)——»ma.pB (EP/V,(BG) ) and maps
Y0 P

E(P/V) va EP/V— (BGO)p which composed with
E(P/V) x EP/V — E(P/V) x EP/V are homotopic to By,. The same bi-
P/V

jection holds if we replace ¥ by ¢ and GO by G. This implies that the in-
duced map on Ty is the map (*). This finishes the proof.
o

LEHNA 2.4. (see [15] 1.5. Lemma) Let ¢:L—K be a simplicial map.

Let V‘S(L,X) be the subspace of the space map.(L,X) of pointed
maps from L to X consisting of maps f{:L-—X such that



fl -l(k)N * for every k€K. Let map*(tp_l(k),X) be the path com-
©

ponent of the constant map in the space of pointed maps
ma.p.(tp_l(k),X). Let us assume that for every k€K, the space

map*(ga_l(k),)() 13 weakly homotopy equivalent to *. Then ¢ 1in-
duces a weak homotopy equivalence

<p* : map.(K,X) =5 V‘S(L,X) .

PROOF OF PROPOSITION 2.1: Let us assume that P = Z/p. It follows from
[2] Proposition 1.10 that . H*(BG,Fp) — H*(BP,Fp) factors through

H*(BT(cn),Fp). But any morphism H*(BT(m),Fp) — H*(BP,FP) is of the form
By (see [9] Theorem 0.4). Hence f is induced by a homomorphism.

Let us suppose that any map f: BP — (BQG) o is induced by a homomorphism if

the order of P is less or equal to pn—l .

Let the order of P beequal to p" andlet f: BP — (BG)p be a map. Let
V =Z/p be contained in the centerof P andlet i: V— P be the inclusion.

Assume that the composition

f

BV —BL_, Bp ' X

is null homotopic. We want to show that f is homotopic to f1 o Bpr where

pr: P— P/, is the natural homomorphism and f, : B(P/V) — X is a map.
First we show that the space of pointed maps homotopic to * map *(BV,X) is
weakly contractible. This space is p-ocal because BV and X are p—local. Let
mapconst(BV,X) be the connected component containing a constant map of
map (BV,X). It follows from Proposition 1.1 that

* * w
H (mapconst(Bv'x)’Fp) =H (BT(m),Fp) .

The last group is of course H*(X,Fp) . Hence the evaluation map
map const(BV'X)—'_' X is a weak homotopy equivalence and consequently the
space nap (BV,X) is weakly contractible. Lemma 2.4 implies that { is homo-



topic to f1 o Bpr . By the inductive assumption fl is induced by a homomor-
phism.

Let us suppose that foBi is induced by a homomorphism ¢:V—G and
@(V) #0. Let G, be the centralizer of ¢(V) in G .1t follows from Lemma 2.3
that up to homotopy there is a unique map fO :BP — (BGO) p such that

~ f
BP—O—;(BGO)p—-»(BG) is homotopic to  and f, restricted to BV is

induced by ¢. Let p:Gy— GO/ (V) be the natural projection. The compo-
sition

BV —BP —O_ (BGy), B, (BGy/eV)),

is null-homotopic hence (Bp) p® f, factors uniquely as

f
BP —B2L, B(P/V) —L— B(Gy/¢(V)) 5
This follows from the previous discussion.

One has the homotopy pullback

fo
BP » (B(Gy),
prr l(Bp)p
f
B(P/V) ——— (B(Gy/#(V))),

because (V) is contained in the center of G . By the inductive assumption f;
is induced by a homomorphism ¢, : P/V— GO/zp(V) . We have a pullback of

groups

4 .
P - L GO

bl

P/V —l Gy/e(V) .

After applying the functor (B )p we get a homotopy pullback



(By),

BP - (BGO)p

l Bpr l (Br),
B
Be/V) e (g, je(v),

The map f; is homotopic to (B ¢)p hence { is homotopic to (B p)p°(B ¢)p .
o

COROLLARY 2.5. Let T’ by any torus. Then any map
g: BT/ (o) — (BG)p is tnduced by a homomorphism a: T’ (w) — T(o).

PROOF. It follows from Proposition 2.1 that for any n the restriction of g to
BT'(n), g,:BT'(n)— (BG)p is induced by a homomorphism. Let
S,={6:T'(2)—G | (Bﬁ)p ~ g }. The restriction of B:T'(n) —G to
T'(n-1) maps S into S _,.Eachset S is non—empty and finite. This im-
plies that lim Sn is non—empty. Hence there is a homomorphism

n
a:T'() — G such that a induces g and factorizes through T(w).
' m]

3. PROOFS.
We start with the following lemma.

Lemma 3.1 Let X = X(W,p,T), let i: BT (0) — X be a structure map of X
and let w:BT(w) — BT(®w) be a map induced by w € W. Then the maps i
and iow are homotopic.

Proof. Let w:BT(a) x EW — BT(0) x EW be w on BT(®) and a trans-

lation by w! on EW. Observe that W isa covering transformation of the pro-
jection pr: BT(w) x EW — BT(w) x EW. The composition
w

BT(o) x EW 22— BT(0) x EW — (BT(w) x EW)p is homotopic to .
w A

Hence i and iow are homotopic. o

PROOF OF THEOREM 1.



It follows from Corollary 2.5 that foi is induced by a homomorphism

p: T(@) — T’ (n). Weset T = (qu)p. o
The proof of point a) is the same as the proof of Theorem 1.7 in [1]. Point b)
follows from a) and Lemma 3.1. o
PROOF OF THEOREM 3:

Let fg:X-—X’ be two maps such that H'(f,Q p):H*(g,Qp). Let
i: BTp — X be the map induced by a structure map i: BT — X. Corollary
2.5 implies that foi and goi are induced by two homomorphisms

9,9 : T(w) — T/ (o) X W’. We must show that ¢ and ¥ are conjugate.

For a finite group = let R(x) be its complex representation ring. Let

R(T(w)) := 1im R(T(n)) and R(T’(x) X W) :=1im R(T’ () X W’).

The Chern character ch:KO( ;Zp)-—v |.[Hzi( ;Qp) is injective for spaces
i

BT(w») and B(T’(w)X W’) = BT’(w) x EW. The group R(T(w)) is mapped
w

injectively into KO(BT(m);Zp). Hence we have
R(p) = R(¥) : R(T"(a) ¥ W) — R(T(a)).

For each subgroup S = Z/p" of T(w) the restrictions of ¢ and to § are con-
jugate by an element of W’ because S is cyclic. The fact that W’ is finite

implies that the restrictions of ¢ and to any subgroup Z/p® of T(w) are con-
jugate by some element of W’. Once more the fact that W’ is finite and the

set of subgroups of the form Z/p® in T(w) is uncountable if rank T > 1 im-

plies that ¢ and are conjugate by an element of W’. Hence foi and goi are

homotopic. It follows from [12] Theorem 1 that f and g are homotopic.
o

PROOF OF THEOREM 2:

We set x(f) = rl(T) where T is the map from Theorem 1. The injectivity of x

follows from Theorem 3. Next one observe that K (X’ Z) = K%(BT) 52"



Then the proof of surjectivity is the same as in Theorem 1.5 in [13]. It is a
standard application of Theorem 1 from [12]. o

PROOF OF THEOREM 4:
The fact that % is injective follows from Theorem 3 and the injectivity of Chern
character. The proof of surjectivity is the same as in Theorem 1.5 in {13]. 0

PROOF OF THEQOREM 5:
Theorem 5 i8 a direct consequence of Theorem 2. m]

PROOF OF THEOREM 6:

Let G be a connected, compact Lie group. Observe that any map
BT(o) — (BG)_, is induced by a homomorphism T(w) — G what is an imme-
diate consequence of [7] 1.1. Theorem. This was the crucial point to prove Theo-
rems 1,2,3 and 4 for X’ = X(W’,p,T/). The proofs of Theorems 1,2 and 3 for

X' = (BG)p are the same. Observe that KO((BG)p;Zp) = KO((BT)p;Zp)W.
Hence the proof of Theorem4 carry over to the case X' =(BG)p.

a

PROOF OF COROLLARY 7: If the natural representation of W on

7)(T) @ @, is irreducible then (1) 7o((BT),) — 7((BT),) is an isomor-
phism or a trivial map. The correspondence w — w’ from Theorem 7 point b)
is then an isomorphism. The rest is obvious. O

Whilst writing this paper we were partially supported by Centre de Recerca
Matematica, Bellaterra (Barcelona).
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