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MAPS BETWEEN p-COMPLETIONS OF

THE CLARK-EWING SPACES X(W,p~)

by

Zdzisf'aw Wojtkowiak

Abstract. Let Zp denote the ring of p-adic integers. Let W C GL(n,Zp) be a
finite group such thai p does not divide the order of W. The group W acts on

K((Zp)n,2). Let

K((Zp)n,2) ~ EW.

X(W,p,n)p.

X(W,p,n)p be the p-completion of the space

We classified homotopy classes of maps between spaces

o. INTRODUCTION

Let Zp denote the ring of p-adic integers. Let Yp denote the p-rompletion of

aspace Y.

Let T be a torus and let W C GL( J"1(T)~Z ) be a fintie group. The group W
p .

acts on the space (BT)p. Let

X(W,p,T) := ((BT) XwEW)p p

where EW is a contractible space equipped with a Iree action of W.

The aim of this paper is to apply the program from [1] to study map8 between

spaces X(W,p,T). The stariing point was an attempt to generalize one result of

Hubbuck (see [8] Theorem 1.1.). The plan of work will follow closely that of [3]
and [13].

Example. Let G be a connected, compact Lie group, T its

maximal torus and W its Veyl group. 11 p does not divide the

order 01 W then (BG)p ~ (BT X w EW)p'

This example suggests the following defintion.



Definition. Let us set X = X(W,p,T). Ye shall cal Z T a maximal

torus 0/ X and W a Yeyl gro'Up of X.

The proiection (BT)p )( EW -+ (BT)p )(W EW induces a map

i : BT -+ X. Ye shall cal Z i: BT -+ X a structure map 0/ X.

We point out that in [5] A. Clark and J. Ewing studied cohomology algebras of

spaces (BT)p )(WEW. We warn the reader that our notation is different !rom

the notation used in [5]. The space X(W,p,T) is the p-completion of the Clark­

-Ewing spa.ce X(W,p,rank T).

Through the whole paper we shall assume that p is an odd prime. We need this

assumption to show Proposition 1.1. It is clear that this assumption is not essen­

tial, however we were not able to overcome te~cal difficulties for p = 2.

Now we shall state our main results.

Let us set X = X(W,p,T) and X' = X(W/,P,T / ).

THEOIEJI 1. Assume that p does not divide the orders 0/ Wand

W / . Then for any map f: X -+ X' there is a map 1': (BT)p -+ (BT/)p

such that the diagram

fX -----+ X'

commutes up to homotopy. Jloreover we haue:

a) i/ 1' :(BT)p --+ (BT/)p is such that f 0 i tS homotopi c to

i I 0 l ' then there is w EW ' such that w 0 t, is homo topi c to 1,

b) for any w E W there is w' EW ' such that l' 0 w is homotopic

to w' 0 1.

The group W acts on 1:1(T) ~ Zp' hence W acts on 1f1(T) ~ R for any

Zp-module R.



DEFINITION 1. Let R be a Zp-algebra. Ve say that a homomor­

phism aiR-modules

is admissible if for any w EW there is w' EW' such that,
'P 0 w = w 0 'P.

fe so,'1/ that two admissible map3 '{J and 1 fram ~l(T)~R to
~l(T') 8 Rare equivalent if there is w EW' such that
w 0 'P = ,.

It is clear that the relation defined above is an equivalence relation on the set of

admissible maps !rom 1r1(T) ~ R to '1:1(T') ~ R. We shall denote by

AhomR(T,T') the set of equivalence classes of admissible maps !rom 1r1(T) ~ R

to '1:1(T') SR.

Let U8 notice that the map ~1(1) induceq by 1 from Theorem 1 on fundamen­

tal grOUp8 ia admissible for R = Zp' This map is unique up to the action of W',

so any map f: X --+ X' determines uniquely an equivalence dass of 1('1(1) in

AhomZ (T,T') which we shall denote by X(f).
P .

TBE01ElI 2. Let us assume that p does not divide the orders 0/
Wand W'. Then the natural map

x: [X,X'] --+ AhomZ (T,T')
p

is bijective.

Für any space Y we set

where ~p is a field cf p-adic numbers.

TBEOIEJl3. Let us assume that p does not divide the orders 0/
Wand W'. Then the natural map



is iniective.

We denote by KO( ,R) the Oth-term of complex K-theory with R-coefficents.

Let dR be the set of operations in KO( ,R). The functor KO( ,R) is equipped

with the natural augmentation KO( ,R)~ R. Let Hom d (KO(X' ,R),KO(X,R))
R

be the set of R-algebra homomorphisms which commute with the action of dR
and augmentations.

TDEOlE64. I/ p does not divides the order 0/ Wand W', then
the na tura l map

,,: [X,X']~ Hom" (KO(X' ,Z ),KO(X,Z ))Vz P P
P

is biiective.

We can formulate our results in a niee categorical way.

We shall define a category Z - Rep in the following way. Objects of the cate-
p -

gory Zp-Rep are representations p: W --+ GL(M) where M is a free, finitely

generated Zp-module, W ia a finite group and p does not divide the order of

W. It remains to define morphisms in tbis category. If (): W~ GL(M) and

()' : W' --+ GL(M') are two objects of Zp - Rep, we say that a homo­

morphism of Z -modules f: M --+ M! is admissible if for each w E W there is

w' EW' . su~h that f 0 W = w' 0 f. We say that two admissible homo­

morphisms f and g from M to M' are equivalent if there is w E W' such
that f = w' 0 g. We shall denote by Ahorn( (), (}') the set of equivalence classes

of admissible homomorphisms from M to M'. The set Ahorn( 9, 9') is the set

of morphisms from 9 to ()' in the category Zp- Rep. The category Zp - Rep

ia equipped with the product defined in the following way:

(8:W ---. GL(M)) EB (9' :W'--+GL(M')) = (}BO' : W x W' --+ GL{M EB M').

The product of morphisms is defined in the obvious way.

\Ve denote by Ht(p) the category whose objects are spaces X{W,p,T) such



that p does not divide the order of W. Morphisms in Ht(p) a.re homotopy

classes of map8. The category Ht(p) has products defined in the obvious way.

TBE01EX5. There is an equivalence 0/ categories

R: Zp - Rep --+ Ht(p)

wi th products.

TBE01EJ/6. In Theorems 1,2,3 and 4 we can drop the assumption T1 p

does not divide the order 0/ W l
11 i/ Xl =(BG)p' where G is a

connected, compact Lie group.

C010LLÄ1Y7. Let X = X(W,p,T) and let p be a prime not dividing

the order 0/ W. Let us assume that the natural representation

0/ W on 1l"l(T) 8 41p is irreducible. Then there is a finite nunr

ber 0/ sel/-maps I1,... ,In 0/ X such that for any f: X -+ X there

is k for whi ch folk is an Adams t/JQ-map i. e. the map i nduced by

folk on H2i(X,~p) is a multiplication by ai. The number n is

smaller or.equal to the number of elements of Aut(W)/Inn(W)

which preserve the natural representation 0/ W on if1(T) ~ ~p'

Examp le. (see also [3])
Le t X = BSU(n)p. The i'ey l group 0/ SU(n) 1.8 En" If n 4= athen

Aut En = Inn En and for n = 6 the outer automorphism does not

preserve the natural representation of Ea on 7r1(T) ~ 4lp ' This

imp lies that the se l/-maps 0/ BSU(n)p are Jdams t/JQ-maps.

We point out that Corollary 7 can be view as a generalization of a result of

Hubbuck (see [8] Theorem 1.1.) The example is a special case of the result of

Hubbuck. However, it concerns maps between JH:ompleted spaces BSU(n)p

while Hubbuck is dealing with classical spaces EG.

We would like to thank very much A. Zabrodsky who during the Barcelona con­

ference on algebraic topology 1986 shared with us his unpublished papers and

notes. We would like to express our gratitude to the referee for his patient rea­

dings of the manuscript, for his useful suggestions which allowed us to generalize

substantially our results, and for pointing out several misprints in the manus-



cript.

1. THE LANNES T FUNCTOR FOR SPACES X(W,p,T)

Let X = X(W,p,T). Let us aBsume thai p doeS not divide the order of W. In

tbis section we shall compute the cohomology of the mapping space map(BV,X)

and its connected component map~BV,X) where V is an elementary abelian

p-group and f: BV --+ X is a map

It follows from [5] (see Proposition on p. 425) that

The map f: BV --+ X induces a map r*: H*(X,Fp) --+ H*(BV,Fp). Let us

notice that Im r* is contained in the kernel of the Backstein homomorphism.

Hence it suffices tq look at the polynomial part of H*(BV,Fp) when extending

r* to H*(BT,Fp). U follows from [2] Proposition 1.10 that there is

* * * '"* * .*g : H (BT,Fp) --+ H (BV,Fp) such that 1 = gOI where

i* : H*(X,Fp) --+ H*(BT,Fp) is the indusion induced by a structure map
i: BT -+ X.

For a torus T, the solutions in T of tP = 1 make up a subgroup T(l). The

map g* ia induced by a homomorphism ",: V --+ T(l). This follows from [9]

Theorem 0.4. Let Ar: V ~ T(l)* --+ FP be an adjoint map of 'P. The group W

acts on Hom(V ~ T(l)* ,Fp) through its action on T(l)*. Let Wf be the iso­

tropy subgroup cf Af

P10POSITION 1.1. Let X = X(W,p,T). Let us assume that p does not

divide the order 0/ W. Let V be an eZementary abeZian p-group

and let f: BV --+ X be any map. Then we haue an isomorphism

* * WfH (map~BV,X)jFp) = H (BT,Fp) .

PROOF: For a vector space U over Fp let us denote by P(U) the polynomial .'



algebra on U, by A(U) the exterior algebra on U and by A(U) the symmetrie

algebra on U divided by the ideal generated by all polynomials xP - x for

x EU. The polynomial xP - x splita completely over Fp' Hence we have an iso­

morphiam of Fp-algebras A(U) = $ *Fp' We point out that A(U) ia
aEU

concentrated. in degree zero.

Let UB notice that we have the fellowing natural identifications

and

Te simplify the notation let us set A:= A(V ~ T(l)*) and

H := H*(BT,Fp) = P(T(l)*). It fellows from Corollary 2 in [4) that for any un­

stable Ap-algebra M and any Ap-algebra homomorphism

* *h : P((Z/p) )~ M ~ H (BZ/P,Fp) we have

This implies that we have a natural isomerphism

*t M : Hom(H;M ~ H (BV)) ~ Hem (A ~ H;M).

where Hom( ; ) is in the category ef unstable Ap-algebras. If h(t*) =

1: ID
V
* ~ v* then tM(h)([v ~ t*) ~ 1) = 1: mv*· v*(v)

v*EV* v*EV*

Rence it follows that

TV(H) =A~H.

If M = FP then we have an isomorphism



*t F : Hom(H;H (BV)) ~ Hom(A 11 H;F ). The group W acts on H and A
p P

through iis action on T(l)*. The isomorphiam (*) and the fact thai the functor

TV(-) ia enct im~lies thai

(see [4] Proposition 3).

..:tc *( *Let t· : g X,Fp) -.. H (BY,Fp) be the map induced by f on cohomology.

Let A : Ty(H*(X,Fp)) --+ FP be the adjoint map of f* and let

I: Ty (H) -.. FP be the adjoini map of g* We recall that

g* :g*(BT,Fp) ~ H*(BY,Fp) is such that f* = g* 0 i*. The restriction of I

to V 11 T(l)* ia equal to Ar where

Ar : V ~ T(l)* --+ FP ia an adjoint map of ",: V -.. T(l).

It follows from [6] 2.3 Theorem and the equality (**) thai

If V* 11 T(l) = I I W/W', aB a W-set then A ~ e F [W/W'] aB a W-mo-wr- W' p
dule. This follows from the isomorphism A(U) = e *F mentioned at the be-

aEU p

ginning ofthe proof. For any W' (W. Fp(W/W ']W := Fp. The maps X and

A induce 1: A --> FP and i: AW = lB FP --> Fp. The algebra homomorphism

i is the identity on one's of Fp's and it is zero on all others. We recall thai the

isotropy subgroup of Ar is Wt The fact thai A restricts to Af on V ~ T(l)*

implies that i is the identity on Fp(W/Wr1W. Hence we have the following iso­

morphisms



2. MAPS FROM BP TO X

n
Let T be a torus. For a torus T the solutions in T of tP = 1 make up a

subgroup T(n); let T(m) = UT(n). Let us set M = 7r1(T) ~ Z . Let
n P

W CGLZ (M) be a finite group. The action of W on M extends to the action
p

of W on M ~ «l . The lattice M in M ~ ~ is invariant therefore W acts also

on M 8 ~/M . Observe that M ~ ~/M = T(aJ). From the action of W on T(aJ)
we can recover the original action of W on M if we take the induced action of

W on (R2(BT(CIl)jZp))*' Rence any finite subgroup of GLZ (M) can be re-
p

alized as a subgroup of Aut(T(m)).

PROPOSITION 2.1. Let W be a finite subgroup 0/ Aut{T{m)). Let

us assume that p does not divide the order of W . I/ P is a fi-

nite p-group then any map f: BP ----. (B(T(m)~W))p is induced by a

homomorphism cp: P ----. T(CD)~W .

We were informed that a similar result was also known to W. Dwyer. This propo­

sition ia an analog of the theorem of Dwyer and Zabrodsky (see [7] 1.1. Theo­

rem). The proof will follow closely the pIOO! of the Dwyer and Zabrodsky theo­

rem contained in [14], which depends very much on [10].

Let us set G = T(CD) ~ W .

LEJlJfA 2.2. Let V = Z/p , Ze t cp: V --t G be a homomorphism, let GO

be the centralizer 0/ imcp in G and let CPO: V~ GO be the map

induced by cp. Then the map

maPBM (BV,(BGO) ) ---+ maPB (BV,(BG) )ro P tp P

is a homotopy equivalence.

PROOF: It follows from Proposition 1.1 that

* Wo *H {maPB (BV,(BG)p),Fp) ~ P where P R:: H (BT,Fp) and
Wo = Gor~(CIl) is the isotropy subgroup of cp: V -+ T(CIl) . In the same way we



get

W
R*(maPBli'o(BV,(BGo)p),Fp) = pO. Rence the map considered by us is a ho-

motopyequivalence. 0

LEJllIJ 2.3. Le t P be a p-group, let Z/p = V be a subgroup 01 the

center 01 P. Let rp: V ---+ G be a homomorphism, let GO be the

centraZizer of imcp in G and let 'PO:V---+GO be the induced

homomorphism. Let

and let [BP,(BGO)p] (B<PO) be defined in an analogous way. Then

the inclusion map i: GO ---+ Ginduces a bijection

PROOF: We have a fibration BV ---+ BP --+ B(PIV) . Let

BV ---+ EPIV --+ E(P IV) be the fibration induced by pulling back over

pr : E(P IV) -+ B(P IV) . The group PIV acts on EP IV through maps homo­

topics to the identity and the space EPIV is a model for BV. It follows !rom

Lemma 2.2 thai the map

mapp ly(E(P IV),map
Brpo(EPIV,(BGo)p)-+mapp ly(E(P IV),maPB<p(EPIV,

(BG)p))

is a homotopy equivalence. There is a bijective correspondence between

PIV-maps E(P IV) -+ maPB (EP IV,(BGo) ) and maps
~o p

E(PIV) x EPIV --+ (BGO)p which composed with
(P IV)

E(PIV) x EPIV --+ E(P IV) x EPIV are homotopic to B~O' The same bi-
(P/V)

jection holds if we replace ~O by ~ and GO by G. This implies that the in-

duced map on 1('0 is the map (*). This - finishes the praot.

o

LEJlJlÄ 2.4. (see [15] 1.5. Lemma) Le t cp: L --+ K be a s imp licial map.

Let vb(L,X) be the subspace 01 t.he space map.(L,X) of pointed

maps from L to X consisting 01 maps f: L--+X such that



f 1 N * for e1Jert/ k EK . Le t map*(rp-l(k),X) be the pa th conr
Icp- (k)

ponent of the constant map in the space 0/ pointed maps

map.(rp-l(k),X). Let u.s assume. that tor every k E K, the space

map*(rp-l(k),X) is weakly homotopy equ.ivalent to *. Then rp in­

duces a weak homotoPIl equi1Jalence

rp* : map.(K,X)~ \'Ö(L,X) .

PROOF OF PROPOSITION 2.1: Let us assume that P = Z/p . 1t fellows from

[2] Proposition 1.10 that r*: H*(BG,Fp) -+ H*(BP,Fp) factars through

H*(BT(CD),Fp). But any morphism H*(BT(CD),Fp) -+ a*(BP,Fp) ia ef the form
B~ (see [9] Theorem 0.4). Rence f ia induced by a homomorphism.

Let UB suppose that any map f: BP -+ (BG)p ia induced by a homamorphiam if

the order of P ia less or equal to pn-l .

Let the order of P be equal to pn and let f: BP -+ (BG)p be a map. Let

V = Z/p be contained in the ~enter of P and let i : V -+ P be the inclusion.

Assume that the composition

Bi fBV ----tl BP ---tl X

ia null homotopic. We want to show that f is homotopic to f1 0 Bpr where

pr : P -; P/ V ia the natural homomorphism and f1 : B(P/ V) -; X ia a map.

First we show that the space of POinted maps homotopic to * map*(BVJX) ia

weakly contractib1e. This space is ~ocal because BV and X are p-local. Let

maPconst(BV,X) be the connected component containing a constant map of
map (BV,X). 1t follows from Proposition 1.1 that

The last group is of course H*(X,Fp) . Hence the evaluation map

maPconst(BV,X).-.t X ia a weak homotopy equivalence and consequently the
space nap*(BV,X) is weakly contractible. Lemma 2.4 implies that f is homo-



topic to f1 0 Bpr 0 By the inductive assumption f1 is induced by a homomor­

phism.

Let us suppose that foBi is induced by a homomorphism r.p: V~ G and

r.p(V) *O. Let GO be the centra.lizer of r.p(V) in G 0 It follows from Lemma 2.3

that up to homotopy there is a unique map fa: BP~ (BGO)p such that

, f.
BP 0 I (BGO)p --+ (BG)p ia homotopic to f and fO restricted to BV is

induced by <po Let p: GO~ Go/cp(V) be the natural projection. The camper

sition

fO (Bp)
BV --+ BP ------tl (BGo)p P

is null-homotopic hence (Bp)p 0 fO factors uniquely as

HP
B fIpr I B(PIV) ----+1 B(Golcp(V))p .

This follows from the previous discussiono

Ooe has the homotopy pullback

because CP(V) ia contained in the center of GO . Ey the inductive assumption fI
is induced. by a homomorphism 'PI: PIV~ GO/CP(V) . We have a pullback of

groups

After applying the functar (B)p we get a homotopy pullback



The map Co is homotopic to (B;)p hence f is homotopic to (Bp)po(B16)p'
CJ

COIOLLA I Y 2.5. Le t T' by any tons. Then any map

g : BT' (m) --+ (BG)p is induced by a homomorphism a: T' (m) ---+ T(m).

PROOF. It follows !rom Proposition 2.1 that for any n the restrietion of g to

BT ' (n), ~: BT~ (n) -+ (BG)p is induced by a homomorphism. Let

Sn = {ß : T' (n) --+ G I (Bß)p N ~}. The restriction of ß: T' (n) --+ G to

T' (n-1) maps Sinto S l' Each set S is non-empty and finite. This im-n . n- n
plies that 1im S is non-empty. Hence there is a homomorphism

~ 1':
n

a : T' (m) -+ G such that a induces g and factorizes through T(ID).
CJ

3. PROOFS.

We start with the following lemma.

Lemma 3.1 Let X = X(W,p,T), let i: BT (co) --+ X be a structure map of X

and let w: BT(m) --+ BT(m) be a map induced by w EW. Then the maps i

and iow are homotopic.

Prooj. Let w: BT(m) x EW -+ BT(m) x E\V be w on BT(m) and a trans­

lation by w-1 on EW. Observe that ; is a covering transformation of the pro­

jection pr: BT(m) )( EW --+ BT(m) x EW. The composition
W

BT(m) x EW pr t BT(m) x EW -+ (BT( ID) )( EW) is homotopic to i.
W W P

Hence i and iow are homotopic. CJ

PROOF OF THEOREM 1:



1t follows !rom Corollary 2.5 that {ci ia induced by a homomorphism

'{J : T(m) --+ T I (aJ). We set l' = (B ~)p. o

The proof of point a) is the same as ihe prcof of Theorem 1.7 in [1]. Point b)

follows from a) and Lemma 3.1. 0

PROOF OF THEOREM 3:

1**Let f,g : X --+ X be two maps such that H (f,~p) =H (g,~p)' Let

i : BT --+ X be the map induced by a structure map i: BT~ X. Corollaryp
2.5 implies thai {oi and goi are induced by two homomorphisms

~,t : T(CD) ---+ TI (CD) ~ W l
• We must show that ~ and 'Ir are conjugate.

For a finite group ~ let R( 11") be its complex representation ring. Let

R(T(m)):= lim R(T(n)) and R(T/(m) ~ W) := lLm R(T/(n) ~ W / ).
n n

o 2'
The ehern character eh: K ( iZp) --+ fTH l( ;~p) is injective for spaces

1

BT(oo) and B(T ' (00) ~ W / ) = BT ' (m) )( EW. The group R(T(CD)) ia mapped
W

injectively into KO(BT( lD);Zp)' Rence we have .

R( ~) = R( t) : R(T I(aJ) ~ WI) ~ R(T(CD)).

For ea.ch subgroup S = Z/pn of T(m) the restrictions of rp and to S are con­

jugate by an element of W I because S is cyclic. The fact that W I is finite

implies that the restrictions of rp and to any subgroup Z/prrJ of T(rrJ) are con­

jugate by some element of W / . Once more the fact that W I is finite and the

set of subgroups cf the form Z/prrJ in T(rrJ) is uncountable if rank T > 1 im­

plies that ~ and are conjugate by an element of \V I . Hence foi and goi are

hcmotopic. 1t follows from [12] Theorem 1 that f and g are homotopic.

Cl

PROOF OF THEOREM 2:

We set X(f) = Il'1(1') wh~re 1 ia the map from Theorem 1. The injectivity of X

follows from Theorem 3. Next one observe that KO(X I ;Zp) = KO((BT I )p;Zp)W.



Then the prcof of surjectivity ia the same as in Theorem 1.5 in [13]. It is a

standard applica.tion of Theorem 1 from [12]. CJ

PROOF OF THEOREM 4:

The fact that f/J is injective follows from Theorem 3 and the injectivity of Chern

character. The proo! of surjectivity is the same as in Theorem 1.5 in [13]. 0

PROOF OF THEOREM 5:

Theorem 5 ia a direct consequence of Theorem 2. o

PROOF OF THEOREM 6:
Let G be a connected, compact Lie group. Observe that any map

BT(CD) -t (BG)p ia induced by a homomorphism T(CD) -. G what ia an immEtr

diate consequence of [7] 1.1. Theo;l'em. This was the crucial point to prove Theo­

rems 1,2,3 and 4 for X' =X(w ' ,p,T / ). The proofs of Theorems 1,2 and 3 for

X' = (BG)p are the same. Observe that KO((BG)p;Zp) = KO((BT)p;Zp)W.
Hence the proof af Theorem 4 carry aver to the case X I = (B G)p.

Cl

PROOF OF COROLLARY 7: H the natural representation of W on

~1(T) ~ ~ ia irreducible then r 1cr) : if2((BT) ) -. 1r'2((BT)p) is an isomor-
p .P I

phism or a trivial map. The correspondence w -t w from Theorem 7 point b)

is then an isomorphiam. The rest ia obvious. CJ

Whilst writing this paper we were partially supported by Centre de Recerca

Matematica, Bel1aterra (Barcelona).
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