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NOTES ON LOCALLY FREE CLASS GROUPS

CHIA-FU YU

Abstract. A theorem of Swan states that the locally free class group of a

maximal order in a central simple algebra is isomorphic to a restricted ideal

class group of the center. In this article we discuss this theorem and its gen-

eralization to separable algebras for which it is more applicable to integral

representations of finite groups. This is an expository article with aim to

introduce the topic for non-specialists.

1. Introduction

A more precise title of this article should be “Notes on locally free class groups of
orders in separable algebras over global fields”. Our goal is to introduce the locally
free class group of an R-order Λ in a separable K-algebra. Here R is a Dedekind
domain and K is its fraction field, which we shall assume to be a global field later.
We refer to Section 3 for definitions of separable K-algebras and R-orders.

The notion of locally free class groups can be defined in a more general setting.
However, since results discussed here are only restricted to the case where the
ground field K is a global field, we do not attempt to discuss its definition as
general as it could be. Instead we shall illustrate the essential idea of this notion
(see Section 2).

After illustrating the notion, we present the main theorem on locally free class
groups. We then explain how to deduce a theorem of Swan [9, Theorem 1, p. 56]
from the main theorem. The strong approximation theorem (SAT) plays an impor-
tant role in the proof of the main theorem, and we give a short exposition of the
SAT. Our another goal to take this opportunity to introduce the reader (mainly for
graduate students and non-specialists) some useful tools and results in Algebraic
Number Theory and show how to apply them together.

2. The cancellation law

Let us first motivate the notion of locally free class groups by the classical the-
orem of Steinitz. Let R be a Dedekind domain with fraction field K and we will
always suppose that R 6= K. An R-lattice is a finite R-module M which does not
have non-zero torsion elements, that is, M is isomorphic to a finite R-submodule
in a (finite-dimensional) K-vector space. We have the following results concerning
the classification of R-lattices (cf. [1, Theorem (4.13), p. 85]):

(1) Every R-lattice M is R-projective, and M ' ⊕n
i=iJi for some non-zero

ideals Ji of R, where n is the R-rank of M .
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2 CHIA-FU YU

(2) Two R-lattices M = ⊕n
i=iJi and M ′ = ⊕m

i=iJ
′
i of the form in (1) are iso-

morphic if and only if n = m and the products J1 · · · Jn and J ′1 · · · J ′n are
isomorphic.

From the statement (2) one can easily deduce the following result: If M and M ′

are two R-lattices, then we have

(2.1) M ⊕R 'M ′ ⊕R ⇐⇒ M 'M ′

The property (2.1) is called the cancellation law.
As we learned from Algebra, a useful and easier way of studying rings to study

their modules, instead of their underlying ring structures. Using this approach, the
cancellation law then can be used to distinguish certain rings which share the same
good properties. For example, consider the quaternion Q-algebras Bp,∞, which are
those ramified exactly the two places {p,∞} of Q, for primes p. Choose a maximal
order Λ(p) in each Bp,∞, that is, Λ(p) is not strictly contained in another Z-order
in Bp,∞. Then one can show that the cancellation law for ideals of Λ(p) holds true
if and only if p ∈ {2, 3, 5, 7, 13}. We will also give a proof of this fact later.

Now let Λ be an (not necessarily commutative) R-algebra which is finitely gen-
erated as an R-module. The above example shows that the cancellation law for
(right) projective Λ-modules need not hold. In Mathematics, we often encounter
a situation that a nice property we are looking for turns out to be impossible. In
that situation one usually remedies it by creating a more flexible notion so that
the desired nice property remains valid in a slightly weaker setting. In the present
case, one can for example consider the following weaker equivalence relation:

(2.2) Define M ∼M ′ if M ⊕ Λr 'M ′ ⊕ Λr for some integer r ≥ 0.

Then it follows from the definition that the cancellation law holds true for this new
equivalence relation, that is, we have

(2.3) M ⊕ Λ ∼M ′ ⊕ Λ ⇐⇒ M ∼M ′.

The modules M and M ′ satisfying the above property are said to be stably isomor-
phic. The reader familiar with algebraic topology would immediately find that the
way of defining a “stable” notion here is similar to that in the definition of stable
homotopy groups. It is also similar to that in the definitions of stable freeness and
stable rationality. These are reminiscent of the definition of groups K0 and K1 in
Algebraic K-theory using an inductive limit procedure.

3. Locally free class groups

For the rest of this article we assume that the ground field K is a global field;
that is, K is a finite separable extension of Q or Fp(t). Thus, R is the ring of S-
integers of K for a finite set S of places which contains all archimedean ones when
K is a number field. Let A denote a finite-dimensional separable K-algebra. That
is, A is a finite-dimensional semi-simple K-algebra such that the center C of A is
a product of finite separable field extensions Ki of K. Recall that an R-order in A
is an R-subring of A which is finitely generated as an R-module and generates A
over K. We let Λ denote an R-order in A. A Λ-lattice M is a R-torsion free finitely
generated Λ-module.
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Example. Let G be a finite group with charK - |G|. Then the group algebra
A = KG is a separable K-algebra. We can see this by Maschke’s Theorem (cf. [1,
Theorem 3.14, p. 42]): Every finite-dimensional representation of G over K is a
direct sum of irreducible representations. Then by definition KG is a semi-simple
K-algebra. Applying Maschke’s Theorem again to an algebraic closure K of K,
we see that the algebra K ⊗K KG = KG is also semi-simple. Therefore, A is a
separable K-algebra. Clearly, the group ring Λ = RG is an R-order in A, and any
representation M of G over R is a Λ-lattice.

For any integer n ≥ 1, denote by LFn(Λ) the set of isomorphism classes of locally
free right Λ-modules of rank n. Two locally free right Λ-modules M and M ′ are
said to be stably isomorphic, denoted by M ∼s M

′, if

M ⊕ Λr 'M ′ ⊕ Λr

as Λ-modules for some integer r ≥ 0. The stable class of M will be denoted by [M ]s,
while the isomorphism class is denoted by [M ]. By a Λ-ideal we mean a Λ-lattice in
A, that is, it is an R-lattice which is also a Λ-module. Let Cl(Λ) denote the set of
stable classes of locally free right Λ-ideals in A. The Jordan-Zassenhaus Theorem
(cf. [1, Theorem 24.1, p. 534]) states that LF1(Λ) is a finite set, and hence so the
set Cl(Λ) is. We define the group structure on Cl(Λ) as follows. Let J and J ′ be
two locally free Λ-ideals. Define

(3.1) [J ]s + [J ′]s = [J ′′]s,

where J ′′ is any locally free Λ-ideal satisfying

(3.2) J ⊕ J ′ = J ′′ ⊕ Λ

as Λ-modules. Such a Λ-ideal J ′′ always exists and we will see this in Section 4.
The following basic lemma shows that Cl(Λ) is an abelian group, called the locally
free class group of Λ.

Lemma 1. The finite set Cl(Λ) with the binary operation defined in (3.1) forms
an abelian group.

Proof. By (3.2), the commutativity holds true. We prove the associativity. Let
J1, J2, J3 be three locally free ideals of Λ. Suppose we have [J1]s +[J2]s = [J ′]s and
[J ′]s + [J3]s = [J ′′]s. Then

(J1 ⊕ J2)⊕ J3 ' Λ⊕ J ′ ⊕ J3 ' J ′′ ⊕ Λ2.

Similarly if [J2]s + [J3]s = [G′]s and [J1]s + [G′]s = [G′′]s, then J1 ⊕ (J2 ⊕ J3) '
G′′ ⊕ Λ2. This shows [J ′′]s = [G′′]s and the associativity holds true.

We introduce some more notations. Denote by C the center of A. One has
C =

∏s
i Ki and A =

∏s
i Ai, where each Ai is a central simple algebra over Ki. For

any place v of K, let Kv denote the completion of K at v, and Ov the valuation ring
if v is non-archimedean. We also write Rv for Ov when v 6∈ S. Let Av := Kv⊗K A,
Cv := Kv ⊗K A and Λv := Rv ⊗R Λ be the completions of A, C and Λ at v,
respectively. By a place w of C we mean a place w of Ki for some i; that the
algebra A splits (resp. is ramified) at the place w of C means that Ai splits (resp. is

ramified) at the place w. Let R̂ =
∏

v 6∈S Rv be the profinite completion of R, and
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let K̂ = K ⊗R R̂ be the finite S-adele ring of K; one also writes AS
K for K̂. Put

Â := K̂ ⊗K A, Ĉ := K̂ ⊗K C and Λ̂ := R̂⊗R Λ =
∏

v 6∈S Λv.

It is a basic fact that the set LF1(Λ) is isomorphic to the double coset space

A×\Â×/Λ̂×. There is a natural surjective map

(3.3) LF1(Λ)→ Cl(Λ)

by sending [J ] 7→ [J ]s. Let NAi/Ki
: Ai → Ki denote the reduced norm map. It

induces a surjective map Ni : Â×i → K̂×i because we have the surjectivity Ai⊗Kv →
Ki⊗Kv for any finite place v of K. The reduced norm map N : A =

∏
iAi → C =∏

iKi is simply defined as the product N = (NAi/Ki
)i. Then we have a surjective

map N : Â× → Ĉ×, and it gives rise to surjective map (again denoted by)

(3.4) N : LF1(Λ) ' A×\Â×/Λ̂× → N(A×)\Ĉ×/N(Λ̂×).

We will see that N(A×) = C×+,A, where C×+,A ⊂ C× consists of all elements

a ∈ C× with r(a) > 0 for all real embeddings(places) r which are ramified in A.
The main theorem for the locally free class groups is as follows.

Theorem 2. The map (3.4) factors through LF1(Λ) → Cl(Λ) and it induces an
isomorphism of finite abelian groups

(3.5) ν : Cl(Λ) ' K̂×/C×+,AN(Λ̂×).

We now describe the theorem of Swan on locally free class groups. Assume that
A is a central simple algebra and Λ is a maximal R-order in A. Define the ray class
group ClA(R) of K by

ClA(R) := I(R)/PA(R),

where I(R) be the ideal group of R and PA(R) be the subgroup generated by the
principal ideals (a) for a ∈ K×+,A. Here K×+,A ⊂ K× is the subgroup of K× defined

as above. In terms of the adelic language, the group ClA(R) is nothing but the

group K̂×/K×+,AR̂
×.

Theorem 3 (Swan). Let K be a global field and R the ring of S-integers of K for
a finite set S of places containing all archimedean ones. Let A be a central simple
algebra and Λ a maximal R-order in A. Then theres is an isomorphism of finite
abelian groups Cl(Λ) ' ClA(R).

To see Theorem 3 is an immediate consequence of Theorem 2, we just need to
check that N(Λ×v ) = R×v for v 6∈ S (Λv here is a maximal Rv-order). There exists
a maximal subfield E ⊂ Av which is unramified over Kv. Since any two maximal
orders in Av are conjugate, Λv contains a copy of the ring of integers OE of E. As E
is unramified over Kv, the successive approximation shows that NE/Kv

(O×E) = R×v .

It follows that N(Λ×v ) = R×v .

Proposition 4. Let Bp,∞ and Λ(p) for primes p be as in Section 2. Then the
cancellation law for ideals of Λ(p) holds true if and only if p ∈ {2, 3, 5, 7, 13}.

Proof. The cancellation law holds if and only if the map LF1(Λ(p))→ Cl(Λ(p))
is a bijection. By Swan’s theorem, the locally free class group Cl(Λ(p)) ' ClBp,∞(Z)
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is trivial. Thus, the cancellation law holds if and only if the class number h(Λ(p)) =
|LF1(Λ(p))| is one. On the other hand we have the class number formula [3]

(3.6) h(Λ(p)) =
p− 1

12
+

1

3

(
1−

(
−3

p

))
+

1

4

(
1−

(
−4

p

))
,

where
(
·
p

)
denotes the Legendre symbol. From this one easily sees that h(Λ(p)) = 1

if and only if p ∈ {2, 3, 5, 7, 13}.
For the rest of this section we give a proof of the following basic fact.

Lemma 5. Let A is a separable K-algebra and C its center. Then N(A×) = C×+,A.

Proof. Since A =
∏

iAi and C×+,A =
∏

iK
×
i,+,Ai

, it suffices to show N(A×) =

K×+,A for any central simple K-algebra A. We can use the Hasse-Schilling norm

theorem (the local-global principle for the reduced norm map) to describe N(A×):

N(A×) = {x ∈ K×;x ∈ N(A×v ) ∀ v};
see [8, (32.9) Theorem, p. 275] and [8, (32.20) Theorem, p. 280]). Clearly N(A×v ) =
K×v when v is complex, non-archimedean, or a real split place for A. It remains to
show that if v is a real ramified place for A, then one has v(a) > 0 if and only if
a ∈ N(A×v ).

Lemma 6. Let H be the real Hamilton quaternion and n ∈ N. Then N(GLn(H)) =
R+.

Proof. We give two proofs of this result. One is topological and the other one is
algebraic. As R+ = N(H×) ⊂ N(GLn(H)), it suffices to show N(GLn(H)) ⊂ R+.

(1) The set GLn(H)ss ⊂ GLn(H) of semi-simple elements is open and dense in the
classical topology. By continuity it suffices to show N(x) > 0 for any x ∈ GLn(H)ss.
Since such x is contained in a maximal commutative semi-simple subalgebra, which
is isomorphic to Cn, we have N(x) > 0.

(2) The algebraic proof relies on the existence of the Dieudonné (non-commutative)
determinant (cf. [1, p. 165]). Suppose that D is a central division algebra over any
field K. There is a group homomorphism (called the Dieudonné determinant)

det : GLn(D)→ D#,

where D# = D×/[D×, D×]. The reduced norm map N : D× → K× gives rise to
a map nr : D# → K×. The reduced norm map N : GLn(D) → K× can be also
described as

N(a) = nr(det a). ∀ a ∈ GLn(D).

It follows that N(GLn(D)) ⊂ N(D×). Particularly N(GLn(H)) ⊂ N(H×) = R+.

Remark 7. One can show a slightly stronger result that the Lie group GLn(H) is
connected. Let G1 be the kernel of the reduced norm map N : GLn(H) → R×.
Then G1 = G1(R) for a connected, semi-simple and simply connected algebraic
R-group G1, and hence that G1 is connected. Then the fibers of the reduced norm
map N are all connected as they are principal homogeneous spaces under G1. We
just showed that the image of the map N is also connected (Lemma 6). Thus,
GLn(H) is connected.
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4. Proof of Theorem 2

For any integer n ≥ 1 and any ring L not necessarily commutative, let Matn(L)
denote the matrix ring over L and let GLn(L) denote the group of units in Matn(L).
Let Nn : Matn(A) → C be the reduced norm map, which induces a surjective

homomorphism Nn : GLn(Â) → Ĉ×. For any integer r ≥ 1, let Ir ∈ Matr(Z) be
the identity matrix. Let ϕr : GLn → GLn+r be the morphism of algebraic groups
which sends

a 7→ ϕr(a) =

(
a

Ir

)
.

Clearly any locally free right Λ-module M of rank n is isomorphic to a Λ-
submodule in An. Therefore, the set LFn(Λ) is in bijection with the set of global
equivalence classes of the genus of the standard lattice Λn in An. The latter is nat-

urally isomorphic to GLn(A)\GLn(Â)/GLn(Λ̂). If n ≥ 2, then it follows from the
strong approximation theorem (see Kneser [6] and Prasad [7], also see Theorem 10)
that the induced map

(4.1) Nn : GLn(A)\GLn(Â)/GLn(Λ̂)
∼−→ Ĉ×/Nn(GLn(A))Nn(GLn(Λ̂))

is a bijection.

Lemma 8. We have

(4.2) Ĉ×/Nn(GLn(A))Nn(GLn(Λ̂)) = Ĉ×/N(A×)N(Λ̂) = Ĉ×/C×+,AN(Λ̂).

Proof. We have seen in Lemma 5 that Nn(GLn(A)) = N(A×) = C×+,A. We now

prove Nn(GLn(Λv)) = N(Λ×v ) for v 6∈ S since the statement is local. The group
GLn(Λv) contains as a subgroup the group En(Λv) of elementary matrices with
values in Λv. Since Λv is semi-local, we have a result of Bass [10, Proposition 8.5]
that GLn(Λv) is generated by the subgroup En(Λv) and the image ϕn−1(GL1(Λv)).
Since En(Λv) is contained in the kernel ofN , we haveNn(GLn(Λv)) = Nn(ϕn−1(Λ×v )) =
N(Λ×v ).

For any integer r ≥ 1, we say two locally free right Λ-ideals J and J ′ are r-stably

isomorphic if J ⊕Λr ' J ′ ⊕Λr as Λ-modules. Let ĉ ∈ Â× be an element such that
ĉΛ = J ; we have ϕr(ĉ)Λr+1 = J ⊕ Λr.

The morphism ϕr induces the following commutative diagram:

(4.3)

A×\Â×/Λ̂× ϕr−−−−→ GLr+1(A)\GLr+1(Â)/GLr+1(Λ̂)

N

y Nr+1

y
Ĉ×/C×+,AN(Λ̂×)

id−−−−→ Ĉ×/C×+,AN(Λ̂×),

where the reduced norm map Nr+1 is known be a bijection. Two isomorphism

classes [J ] and [J ′] in A×\Â×/Λ̂× are r-stably isomorphic if and only if ϕr([J ]) =
ϕr([J ′]). As Nr+1 is an isomorphism, this is equivalent to N([J ]) = N([J ′]). The
latter condition is independent of r. Therefore, we conclude the following statement.

Lemma 9. Let J and J ′ be two locally free right Λ-ideals. The following statements
are equivalent.

(1) J and J ′ are stably isomorphic.
(2) J and J ′ are r-stably isomorphic for some r ≥ 1.
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(3) J and J ′ are r-stably isomorphic for all r ≥ 1.

(4) One has N([J ]) = N([J ′]) in K̂×/C×+,AN(Λ̂×).

Thus, the reduced norm map N induces an isomorphism

(4.4) ν : Cl(Λ) ' Ĉ×/C×+,AN(Λ̂×).

We now check that ν is a group homomorphism. Let J and J ′ be two locally
free Λ-ideals. Let ĉ and ĉ′ be elements in Â× such that ĉΛ = J and ĉ′Λ = J ′. Put
J ′′ := ĉĉ′Λ. We claim that

(a) J ⊕ J ′ ' J ′′ ⊕ Λ as Λ-modules;
(b) ν([J ]s)ν([J ′]s) = ν([J ′′]s).

Statement (a) follows from[
ĉĉ′ 0
0 1

]
· Λ2 = J ′′ ⊕ Λ, and N2

([
ĉĉ′ 0
0 1

])
= N2

([
ĉ 0
0 ĉ′

])
in Ĉ×/C×+,AN(Λ̂×). Statement (b) follows from

ν([J ]s)ν([J ′]s) = N([ĉ])N([ĉ′]) = N([ĉĉ′]) = ν([J ′′]s).

This completes the proof of Theorem 2.

5. Strong approximation and remarks

In this supplementary section we give a short exposition of the strong approxi-
mation theorem and explain how (4.1) follows immediately from this. We keep the
notations of Section 3. In particular K denotes a global field and S is a nonempty
finite set of places of K.

Theorem 10 (The strong approximation theorem). Let G be a connected, semi-
simple and simply connected algebraic group over K. Suppose that

(∗) G does not contain any K-simple factor H such that the topological group
HS :=

∏
v∈S H(Kv) is compact.

Then the group G(K) is dense in G(AS
K).

Proof. See Kneser [6] when K is a number field and Prasad [7] when K is a
global function field. The results were proved upon the Hasse principle, i.e. the
map

H1(K,G)→
∏
v

H1(Kv, G)

is injective. The Hasse principle was known to hold for any simply-connected group
at that time except possibly for those of type E8. The last case of type E8 was
finally completed by Chernousov in 1989.

The strong approximation theorem is a strong version of “class number one”
result.

Corollary 11. Let G be as in Theorem 10 satisfying the condition (∗) and assume
that S contains all archimedean places of K. Then for any open compact subgroup
U ⊂ G(AS

K), the double coset space G(K)\G(AS
K)/U consists of a single element.
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Let A, C and R be as in Section 3. Now we let G and C× denote the algebraic
groups K associated to the multiplicative groups of A and C, respectively. For any
commutative K-algebra L, one has

G(L) = (A⊗K L)×, C×(L) = (C ⊗K L)×.

We denote again by N : G→ C× the homomorphism of algebraic K-groups induced
by the reduced norm map N : A → C, and let G1 = kerN denote reduced norm-
one subgroup. It is easy to see that the base change G1 ⊗K is a finite product of
simple groups of the form SLm, and hence G1 is semi-simple and simply connected.

Recall that A is said to satisfy the Eichler condition with respect to S, if for any
simple factor Ai of A there is one place w of the center Ki over some place v in S
such that the completion Ai,w at w is not a division Ki,w-algebra. Another way to
rephrase the last condition for Ai is that the kernel of the reduced norm map

NAi/Ai
:
∏
v∈S

(Ai ⊗Kv)× →
∏
v∈S

(Ki ⊗Kv)×

is not compact. In other words, the algebra A satisfies the Eichler condition with
respect to S (also denote A=Eichler/R, where R is the ring of S-integers of K)
if and only if the reduced norm-one subgroup G1 satisfies the condition (∗) in
Theorem 10. In particular, we have the following special case of Theorem 10 for
G1.

Theorem 12. Let A be a separable K-algebra and G1 the associated reduced norm-
one subgroup defined as above. If A satisfies the Eichler condition with respect to
S, then G1(K) is dense in G1(AS

K).

Theorem 12 is what we use in the proof of Theorem 2. When K is a number
field, this is the first case of the strong approximation theorem, proved by Eichler
[4]. Swan [11] gives a more elementary proof of this theorem.

Suppose that A=Eichler/R, and let U be an open compact subgroup of G(AS
K) =

Â×. We want to show that the induced surjective map

(5.1) N : G(K)\G(AS
K)/U → N(G(K))\Ĉ×/N(U)

is injective. Let ĉ ∈ Ĉ× be an element and ĝ ∈ Â× with N(ĝ) = ĉ. Then the fiber
of the class [ĉ] is

(5.2) N−1([ĉ]) = G(K)\G(K)G1(AS
K)ĝU/U.

If x1, x2 ∈ G1(AS
K) be two elements, then

(5.3) G(K)x1ĝU = G(K)x2ĝU ⇐⇒ G1(K)x1(ĝU ĝ−1) = G1(K)x2(ĝU ĝ−1).

Thus, we get a surjective map

(5.4) G1(K)\G1(AS
K)/G1(AS

K)∩ĝU ĝ−1 → G(K)\G(K)G1(AS
K)ĝU/U = N−1([ĉ]).

As we know the source of (5.4) consists of one element (Corollary 11), the fiber
N−1([c]) also consists of one element. This shows that (4.1) (or (5.1)) is a bijection.

We end with this article by a few remarks. Theorem 3 was first proved by Swan
[9, Theorem 1, p. 56] when K is a number field. Fröhlich [5, Theorem 2, p. 118] gave
another proof of Swan’s theorem using the ideles. The proof given here is the same
as that of Fröhlich and of Swan; all uses Theorem 12. The statement for Swan’s
theorem over global fields (Theorem 3) can be found in Curtis-Reiner [2, Theorem
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(49.32), p. 233] and Reiner [8, (35.14) Theorem p. 313]. Note that in Reiner [8,
(35.14) Theorem p. 313] there is an assumption of A=Eichler/R when K is a global
function field, but that is superfluous. Notice that Prasad’s theorem, though for
most general cases, came a few years after Reiner wrote his book Maximal Orders
(published in 1975). This could be the reason why the result [8, (35.14) Theorem
p. 313] is limited to those satisfying the Eichler condition in the function field case.

The updated version of Swan’s Theorem (Theorem 3) is then presented in the
later books by Curtis and Reiner. They also give a more general variant (Theo-
rem 2); see [2, (49.17) Theorem, p. 225]. The proof of Theorem 2 given in Curtis-
Reiner [2] is different from the original proof of Swan and Frölich; it is proved based
on Algebraic K-theory. This of course brings in more insights to the topic. Never-
theless, the original proof may be more accessible for non-specialists as it is much
shorter and also conceptual. A very nice exposition for the proof of Theorem 12 can
be found in Section 51 of Curtis-Reiner [2], which follows Swan [11]. The paper [11]
contains some minor errors; see [12, Appendix A] for corrections and improvements.
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