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Abstract

The Green operators occurring in the pseudodifferential calculus on man-
ifolds with edges have been defined via their mapping properties. We give a
transparent equivalent description of them in terms of their Schwartz kernels.
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Key words and phrases: pseudodifferential operators, manifolds with sin-
gularities.
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4 Section 1

1 Introduction

Let M be a compact manifold with singularity S, i.e., M is a compact Hausdorff
topological space, S C M and M \ S is a smooth manifold without boundary.

For any smooth symbol a(z,() of order m on T*(M \ §), we may consider a
pseudodifferential operator A = op (a), defined first on functions of compact support
in M\ S.

Since M \ S is non-compact, it is not to be expected that A is determined
uniquely modulo “small” operators, even if a(z, () is “smooth” up to the singularity.
To make use of the compactness of M, we have to extend the operator A to functions
defined up to S.

For this purpose, the idea suggested by Schulze [10, 13] is to find a proper
reformulation of the operator A close to the singularity. More precisely, one looks
for an operator A® defined on functions which are supported close to S, such that
A = A4 modulo smoothing operators on M \ S. Such a reformulation certainly
depends on the structure of M near the singularity.

Each singularity S, when blown up, produces a specific class of degenerated
differential operators, called totally characteristic. In this way we guess a class of
smooth symbols on T"(M \ S) to be reformulated. Then, one arrives at various
subalgebras of the algebra of pseudodifferential operators on M \ S. These are of
the form

‘POA(R)'(»bO + ‘PooATJ)om (1-1)
where (g, o) is a C™ partition of unity on M \ S with

wo=1 close to S,
wo =0  away from a small neighborhood of S,

and ¥, “covers” ¢,.

Such operators are referred to as pseudodifferential operators on manifolds with
singularities and act in relevant Sobolev spaces on M.

Because of the compatibility of A and AR away from the singularity, each op-
erator of the form (1.1) possesses an interior symbol, which is perhaps suppressed to
control its behavior up to the singularity. Moreover, when realized as a pseudodif-
ferential operator along S, the operator A(® has an operator-valued symbol acting
in the fibers of the “normal bundle” of S, perhaps, after blowing up the singularity
in an appropriate way. The latter operators are sometimes called “transversal op-
erators” and admit additional symbols homogeneous with respect to a group action
in the fibers (so-called “singular symbols”).

While the invertibility of the singular symbol (Lopatinskii condition) is a nec-
essary condition for the Fredholm property of the operator in question, such is
not usually the case. The invertibility of the interior symbol implies only that the
singular symbol is a Fredholm operator. Thus, to achieve the invertibility of the
singular symbol, one needs to border AR} with a number of smoothing operators in
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M\ S, that however affect the singular symbol of A(®), These are pseudodifferential
operators along S with classical operator-valued symbols, called the Green symbols.

In this way we obtain what looks like the operators in Boutet de Monvel’s theory
of boundary value problems and encompasses this theory, namely

(R)
A(B)=¢0(AT §)¢0+¢w(g g)"/)ooa (1.2)

where the operator P has the meaning of a corestriction or potential operator with
respect to S, T of a trace operator, and F is nothing else than a matrix of pseudod-
ifferential operators along S with scalar symbols.

A familiar argument, based on pseudolocality of the operators in question, shows

o f Ty Toyp N . . AR p .
that if ( My Ty ) 1s a parametrix for ( T E and IT a parametrix for A,

then
M, II II 0
(B) _ n 1
II —éﬂ(HZI H22)¢0+¢00(0 0)11)001

is a parametrix for (1.2).
When carried out on the symbolic level, the parametrix construction for the
AR p
T F
A®)_ Tt is therefore adequate to have all the “inverse symbols” from the very
beginning in the class.

When seeking an analytical expression for the index of an operator A%}, one
has to construct a very exact parametrix inverting this operator not as usual up to
a compact error but up to a trace class error. For the operator A this construction
is usually made by means of interior symbolic calculus. But for the operator-valued
symbols in question differentiation in the covariable does not improve their differen-
tial properties. So we need to find another way to indicate that such differentiation
improves the properties of the symbols.

The present paper gives a new characterization of the Green pseudodifferen-
tial operators, generated in the parametrix construction for elliptic operators on
a manifold with edge singularities. This will be performed locally on the level of
specific operator-valued symbols in a wedge of the form X® x U, where X% =
(R4 x X)/({0} x X) is the model cone with base X which is a compact C* mani-
fold, and U < RY is an open set, the edge. An allowed case is dim X = 0; then the
wedge equals Ry x U that may be regarded as the local form of a C* manifold with
boundary, where the model cone corresponds to the inner normal Ry and the edge
to a patch U of the boundary.

The role of the Green operators for solving elliptic (say differential) equations
within a pseudodifferential algebra on a given configuration with edge singularities is
analogous to that of the contribution from the boundary to classical Green’s function
in elliptic boundary value problems.

From the pseudodifferential calculus of boundary value problems with the trans-
mission property it is known, cf. Boutet de Monvel [1], that Green’s function equals

operator ) invests the class of admissible operator-valued symbols of
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a sum [+ G, where I is a parametrix of the given elliptic operator and G a singular
Green operator (in the notations of [1]) !. Locally G is (up to a smoothing Green
operator) a pseudodifferential operator with an operator-valued symbol of special
kind, cf. Schulze [13, 2.2.3]. This is the motivation to call the analogous objects for
elliptic operators on more general manifolds with edges Green operators.

The structure of Green’s function in the standard situation for elliptic boundary
value problems is based on the elliptic regularity of solutions with smoothness up to
the boundary when the right-hand sides and boundary data are smooth. This is a
consequence of the transmission property of the involved interior symbols. Using the
concept of discrete asymptotic types, the meaning and significance of the transmis-
sion property is now elucidated: roughly speaking, a pseudodifferential operator has
the transmission property if Taylor asymptotics close to the boundary are preserved
under its action.

There is an enormous gap between this comparatively simple special case and
the general Green operators in edge problems (even when dim X = 0, which corre-
sponds to the case of violated transmission property). The reason is the complexity
of phenomena occurring in the elliptic regularity of solutions near the edges. In con-
trast to the mentioned smoothness (Taylor asymptotics with respect to the distance
variable ) for C* solutions, it consists of asymptotics of the form

00 Wiy

u(t,z,y) ~ 3 3 fui(z,y)t ™ (logt)* as t—0, (1.3)

v=075=0

for every y € U with certain p, = p,(y) € C satisfying Rp, = —o0 as jv — oo,
m, = m,(y) € Z,, and coeflicients f,; in C®(X), where the dependence on y is
jumping in general, even chaotic, with no possibility to choose a numeration of the
P», My in a unified manner under varying y.

This behavior of C* solutions can be observed already in simplest cases of edge-
degenerate differential operators. Solutions in weighted edge Sobolev spaces of finite
smoothness are more difficult to characterize, cf. Chapter 9 in Egorov and Schulze
[3]. The general strategy for understanding the solutions under the aspect of their
behavior near the edges is to construct a parametrix I1‘®) of the given operator A(5)
and to compose this from the left to the equation AB)u = f. On the left-hand side
we obtain ITI{FYAB) = 1 4+ G for a smoothing operator in the calculus, Green in
our terminology. Then the regularity for u will follow from the continuity both of
18} and G between the distribution spaces with asymptotics. So the symbolic
structures behind (%) and GB) have to be rich enough to reflect the mentioned
regularity of solutions with asymptotics. In addition the operators are required to
act continuously within such distribution spaces and in addition to form an algebra.

The latter one, briefly called the edge pseudodifferential algebra (cf. Schulze [9]),
has all these properties, and, in particular, there occur the Green pseudodifferential
operators. They have operator-valued symbols, cf. the explicit definition below, in
which possible asymptotic data are involved as parameters. Qur characterization
here will consist of a description of the kernels in terms of spaces with continuous

!By Green’s function, one means the left upper corner of I8},
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asymptotics. This covers all the special possibilities of positions of exponents in
(1.3) as well as of the jumping m, and f,; under varying y € U, described by C*
functions on U with values in the analytic functionals in the plane of the complex
Mellin covariable, that are point-wise discrete and finite orders. This aspects was
studied in detail in Schulze [8].

The edge pseudo-differential calculus also contains trace and potential opera-
tors with respect to the edge, analogously to the boundary (trace and potential)
conditions in boundary value problems, where the ellipticity is an analogue of the
classical Lopatinskii condition. On the symbolic level they correspond to the trace
and potential operator-valued symbols, also carrying asymptotic information in-
herited from the final elliptic regularity, here with continuous asymptotics, again.
Similarly to boundary value problems, say with the transmission property, the com-
position between a potential and a trace symbol will be a Green symbol. Conversely
our tensor product description in general can be understood as convergent sums of
such compositions.

This relation shows intuitively how the Green symbols organize the interaction
between the interior effects of the calculus outside the edge singularity and the
specific contributions due to the edge. Green, trace and potential symbols can be
understood in a unified way as block matrix-valued symbols, where the entry in
the left upper corner are the proper Green objects, whereas the entries outside the
diagonal are interpreted as trace and potential symbols. The right lower corner is a
matrix of scalar classical symbols along the edge.

This point of view also belongs to the axiomatic ideas for the pseudodifferential
calculus on configurations with polyhedral singularities of higher order. In the past
years this theory has seen much progress, and in particular, the role of the Green
operators there is to formulate the specific interactions of properties of solutions
relative to the lower-dimensional skeletons. Here there arise many types of Green,
trace and potential operators, operating between distribution spaces (with asymp-
totics) on the faces of various dimensions, and the structure of the (block matrices
of these) Green operators is so rich that the various reductions to components of
the lower-dimensional skeleton generate at once the pseudodifferential calculus that
is originally given there from the knowledge of the analysis for the lower singularity
orders (cf. Schulze [11] for second order corners). Here for edge singularities the
lower dimensional face is the edge alone, and the block matrix shaped Green opera-
tors contain (as right lower corners) the classical pseudodifferential calculus on that
C* manifold.

2 FEdge Sobolev spaces

Fix a smoothed norm function n — (7) on R, i.e., a positive C* function on R?
with the property that (n) = || for all || 2 ¢ > 0.

Let L be a Banach space with norm || - ||[z. Denote by £,(L) the space of all
continuous linear operators in L, equipped with the strong operator topology.

In the sequel, (k1),,, stands for a strongly continuous group of operators on



8 Section 3

L, i.e., k) is a continuous mapping of Ry — L,(L) satisfying the composition rule
Kakp = Ky, for all A, p € Ry. In particular, ) i1s an isomorphism of L, for each
A e R,

Definition 2.1 Given any s € R, the “twisted” Sobolev space W*(R?, L) is de-
fined to be the completion of S(RY, L) with respect to the norm

1
2
lallwsaeny = ([, )Wy Foalltan)

This concept can also be extended to the case where L is a Fréchet space. For
our purpose, it is sufficient to do this for those L which are projective limits of
Banach spaces.

Namely, suppose (L, ) is a sequence of Banach spaces with continuous embed-
dings L,4; — L,, and suppose the group actions agree on all the spaces. Then, we
set W*(R?, L) = proj lim,_, ,W?*(R?, L,).

The main property of the spaces W?*(RY, L) is that these are semilocal spaces.
In other words, the multiplication operator u — ¢u is continuous on W?(RY, L),
for each ¢ € CZ,.(R). This allows one to define the local versions W (U, L) and

comp
W, (U, L) of Sobolev spaces on each open set U C RY.

In particular, if L = K*7(X") is the weighted Sobolev space on the stretched
cone XY = R, x X over a compact manifold X of dimension n, and kyu(¢,z) =

AFu(M, z), then W2 (X0 x U) := W2, (U,K*(XD)) is known as the (edge)
Sobolev space over the stretched wedge XP x U whose edge is U.

3 Cone spaces with continuous asymptotics

The continuous asymptotic type will be described in terms of analytic functionals.
We start, therefore, with a short description of those functionals.

Namely, if K is a compact set in the complex plane, then we denote by Aj the
space of all f € Hol (C)" having K as a carrier. We have A} = Hol ()’ provided
that the complement of K is connected.

The space A is known to be a nuclear Fréchet space. Therefore, for any Fréchet
space L, we may consider the space A% (C, L) of L-valued analytic functionals carried

by K.
Pick a cut-off function w € C%,,,(R}), ie., any function with w(t) = 1 near
t=0.

Suppose K lies on the left from the vertical line Rz = 32—, ie, Rz < 42—y
for all z € K. Then, for any f € Ak(C,C*(X)), the function w(t) (f(z),t7*) is
easily verified to lie in KX*7(X9),

We want to define subspaces of K*?(XP) consisting of functions u such that the
difference u(t,z) — w(t) {(f(z),t~%) has a gain in the weight. To this end, we need
some preliminaries.

A weight datum 9 = (v,(—[,0]) consists of a number ¥ € R and an interval
(=1,0] with 0 < 1 < o0.
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As described above, when working with the spaces K*7(X9), we have to con-
sider weight data = ('f -2, (—1,0]).

A set ¢ C C is called a carrier of asymptotics if ¢ is closed, has connected
complement and if the intersection of o with each strip {¢ € Rz < ¢} is compact.

Given a weight datum d = (’y -5 (=1 0]), we are going to introduce asymptotic
types related to ®. For this purpose, we should distinguish the cases of finite and
infinite weight intervals (—{,0].

If I < oo, then by an asymptotic type related to D is meant any pair as = (o, L),
where

e 0 is a carrier of asymptotics contained in the complex strip 4% —y—1 < R2 <
5* —7; and

e ¥ is a closed subspace of AL (C,C*=(X)).

If I = oo, then by an asymptotic type related to ? is meant any collection
as = (o,(%,)) where

® 0 is a carrier of asymptotics contained in the complex strip £z < 142 —+; and

e (X,) is a sequence of closed subspaces of Ay (C,C*®(X)), with K, CC o
carriers of asymptotics and sup,ep, Rz = —co0 as v — oo.

Let us denote by As (0) the set of all asymptotic types related to 0. We are now
in a position to introduce our spaces with continuous asymptotics.

Definition 3.1

o For asymplotic type as = (o, %) related to a weight datum with finite weight
interval, the space K3Y(XP) is defined to consist of all u € K*7(XY) such that
ut, z) — w(t) (f(z),t77) € K+=9(XO).

o For asymptotic type as = (o,(L,) related to a weight datum with infinite weight
interval, the space K2J(XD) is defined to consist of all u € K*?(X5) such that
u(t,z) — w(t) TN (fo(z),t7%) € K*(XO) for some sequence f, € 5, and
some sequence (yy) of real numbers convergent to +o0.

Notice that this definition is independent of the particular choice of the cut-off
function w.

To topologize the space K27(X7) in the case of finite weight intervals, denote by
A,,(XD) the space of functions u € K®7(XP) of the form u(t,z) = w(t) (f(z),t7),
where f € .

By the Kéthe-Grothendieck duality, A’(C, C*(X)) & Hol (€ \ o, C*(X)) has
a Frechet topology which is nuclear. Then, we endow the subspace £ by the induced
topology. Moreover, the mapping of £ — 2,,(X"), given by f — w(?) {(f(z),17%), is
easily seen to be injective and surjective. Thus, we can give 2.,(X") the topology
induced by this algebraic isomorphism.
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Fig. 1: A carrier of a continuous asymptotics with infinite weight interval.

Lemma 3.2 For each asymptotic type ‘as’ related to a weight datum with finite
weight interval, we have

K3v(XP) = £ XP) 4 21, (XD). (3.1)

Proof. See Lemma 1.3.14 in Dorschfeldt [2].
O

We make K27(XO) a Fréchet space by endowing it with the topology of non-
direct sum of Fréchet spaces. Moreover, if o N {Rz = 42 — 5 — [} = §, then the
sum (3.1) is direct.

We now turn to the case of infinite weight intervals. In this case, the space
K27(XD) is given a projective limit topology. We shall not attempt to describe this
topology in general, just looking at a model situation (cf. Figure 1).

Lemma 3.3 Let ‘as’ be an asymptotic type associated with infinite weight in-
terval. Suppose there is an increasing sequence ¥y = 49 < 41 < ... such that each
K, is contained in the complexr strip 1—'%’1 -1 < Rz < %’3 — Yy—1. Then, for
asy = (UK., @), all the embeddings K37, (XP) — K2 (XO) are continuous
and K37(X") = nR_, K57, (XO).

asy

Proof. Ibid., Lemma 1.3.15.

O
When given the topology of the projective limit of the sequence (IC"" (X D)),

aay

the space K277(XU) becomes a Fréchet space.

Example 3.4 Let p be a fixed point in the strip 42 — 4 — 1 < Rz < 12 — 4
and let o = {p}. If ¥ is a subspace of C®(X), then the analytic functionals of the

form
m

(f(z),u) =3 fi() (8/02)'u(p), u € Hol(a),

j=0
with f; € £, form a subspace of A’ (C,C®(X)). We have
(f(z),t7) = 3 fi(z)t™ (logt)’, t>0. (3.2)
=0

What we obtain in this way, is known as discrete conormal asymptotics for t — 0+
for solutions of elliptic equations on the stretched cone R, x X. The works of
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Kondrat’ev [5], of Eskin [4], and, for pseudodifferential operators on the half-axis,
of Schulze [10] show that one may expect a solution u of an elliptic equation on the
half-axis R, to have asymptotics of the form

oo My

~ 303 fuile) i (logt), t— 04, (3.3)

v=0 y=0

with exponents p, € C satisfying p, — —oo0 as ¥ — o0o0. This motivates the

definition of function spaces with continuous asymptotics.
O

In the local theory of boundary value problems, the analysis takes place in
domains Ry x U, where /' C R? is some open set of the boundary and R, is the
inner normal. In this context, solutions of elliptic equations depend on the variables
(t,z) € Ry x U, and thus the poles p, and their multiplicities m, + 1 may depend
on the variable y € U. It is the case, for example, in the well-known problem of
Babushka (1986}, i.e., the Dirichlet problem for the Laplace equation in an oblique
cylinder, where the edge angle varies along the edge. This simple observation causes
serious difficulties when one works in the framework of discrete asymptotic types, for
the poles that appear may be spread over regions in C and the multiplicities of poles
may vary with varying y € U. In order to be able to cope with those difficulties,
Schulze [8] introduced continuous asymptotic types. In recent years it turned out
to be a very useful tool in wedge theory (cf. [13]).

If u(t, ) = w(t) (f(z), %) is an element of A,,(XY), with as = (¢, L), then

kau (t,2) = w(M) (AT 2 f(2), %), A > 0.

For each fixed A > 0, the function w(At) is again of cut-off nature and so does
not affect the property of being in ,,(X") modulo elements of K*"*+=0(X8), On

the other hand, A~ = exp ((1—'2"2 —z))log A) is an entire function of z, hence

the product A*¥*~* f(z) is again an analytic functional with values in C**(X) and
carrier . Whether this functional belongs to £ or not, would be a property of £
itself. A kind of this property is that ¥ is invariant under multiplication by entire
functions. If such is the case, then xyu € U,,(X™) modulo K®"+-0(X0) for all
A>0.

Hence it follows that the space K277(XD) is invariant under the group action
(K3)yso- Applying the general construction of Section 2 to the spaces K27(XD)
yields (edge) Sobolev spaces with asymptotics W*(R%, K327( X)) over the stretched
wedge XU x RY.

4 Pseudodifferential operators with operator-va-
lued symbols

The theory of pseudodifferential operator with operator-valued symbols is a natural
extension of the scalar case.
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Suppose that L and V are Banach spaces with fixed group actions (NE\L)),\eR
+

and ( i\ ))Ael+ respectively.

To shorten notation, we suppress the indices (L) and (V) and write both nf\l‘)

v)

and 3 ’ simply x5 when no confusion can arise.

Definition 4.1 Given any open set U C RY and number m € R, we let S™(U x
RY, L(L — V) consist of all a € C2(U x R, Ly(L — V) with the property that,
for each compact set K C U and each multi-indices a € Zf and B € Z3, there is a
constant cx o g such that

||"°(n) (D"D a(y, )) K (n) m=lfl forall ye K, neR%. (4.1)

< ek (M)

Ly(L—V)

The best constants cg 4 in (4.1) form a system of seminorms on the space
S™U x R?, L(L—V)) under which it becomes a Fréchet space.

We mention that the asymptotic sums of symbols of decreasing orders can be
carried cut within these symbol classes modulo

S=(U x R, L(L— V) = NuS™(U x R%, L{L - V).

Classical symbols of order m are defined to be those « € $™(U x R?, L(L — V)
which have asymptotic expansions into functions homogeneous in 5 of decreasing
degrees m — j, 3 € Z,. The homogeneity is understood in terms of the group
actions.

More precisely, a function a € C2.(U x (R?\ 0), L,(L — V)) is called homoge-
neous of degree m in 7 # 0 if

a(y, M) = A™kya(y,n)&y! forall e Ry,

provided 7 # 0. It is easy to see that if a is homogeneous of degree m in 7 # 0,
then, for any excision function y € C{2(RY, the product x(n) a(y, n) is in the symbol
class S™(U x R%, Ly(L—V)). Now, a symbol ¢ € S™(U x R?, L,(L—V)) is called
classical if there are functions ap—-; € C2(U x (R7\ 0), L(L — V)) homogeneous of
degree m — j in 5 # 0, such that a ~ 72 xam-; for some excision function x. We
denote by ST(U x R?, L(L—V)) the space of all classical symbols.

For a € ST(U x R%, L(L — V)), the component o (a)(y,7) = am(y,n) is
called the principal edge symbol of a.

Lemma 4.2 For each a € S7(U x R, L{L —V)), we have
Teage(a)(y,n) = Jim A" k3" a(y, Ap)sa (4.2)

in the operator norm of Ly(L— V).

The symbols occurring in the edge algebra correspond to the particular choice
of the spaces L and V, namely, L = K*7(X®) @ C* and V = K*~™5(XU) g C¥+
or those with asymptotics, where both C*- and C* are endowed with the identity
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group actions. They are not classical while the principal wedge symbol is yet defined
by (4.2), the limit being in the strong operator topology of £;(L— V). We set

ES™(U x R%,2) = N,egS™U x RY, LK (X)) @ € — K ™5(XD) @ CH)),

with ® = (—y = 2,6 — 2,(~1,0]) a weight datum,
Given an operator-valued symbol a(y,y’,n) € S™(U x U x R?, L(L — V)), with
U an open subset of R?, we can form

1 —y! ' t !
op(a)u(y) = (%),,f /T a(y, o n)uly)dy'dn, yeU,  (4.3)

defined first on u € CZ,, (U, L). The double integral on the right-hand side of (4.3)
is interpreted in the sense of oscillatory integrals, now for the corresponding vector-
or operator-valued functions. In contrast to the scalar case, we have here the groups

. . (L) %) . .
of isomorphisms (n,\ )Aen+ and (rcA )AGR+ in the spaces L and V respectively.

However, writing

1 / ey~ Tlu-v'm)

op(a)u(y) = )7 mn (Rehelys¥'smnen) (riyuly’)) dy'dn

and using the estimates

RO
. ) 1
|n&)'£(.) < ) (ma.x ()\, X)) , A>0, (4.4)

with constants ¢! > 0 and R") > 1, allows us to perform all essential constructions
for oscillatory integrals in the operator-valued set-up. '

The operators op(a) given by (4.3), for a € S™(U xU xR, L(L — V)), are called
pseudodifferential operators of order m with operator-valued symbols. The space of
such operators is denoted by £L™(U, L(L~—V)). We write L (U, L(L— V)) for the
subspace consisting of those operators which correspond to the classical symbols.

5 Kernels of pseudodifferential operators

Every operator A € L™(U,L(L—V)) is easily proved to induce a continuous map-
ping A: C%, (U, L) —= CZ(U,V)).
Moreover, the juxtaposition u — Au yields a continuous mapping C2__(U) —

Ce2 (U, L(L— V). Thus, setting o
(Ka,g ®u) = (9, Au)y, for g,ueCy (U), (5.1)

we obtain an operator-valued distribution K4 on the product U x U. This distri-
bution K4 € D'(U x U, Ly(L—V)) is called the Schwartz kernel of the operator A
2

2The kernel theorem of Schwartz is valid for operators in £, (L} — V), one of the spaces L, V
being nuclear (see Theorem 1.4.2 in [15]).
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Arguing formally, we may write

oo =[], (i

whence KA(y y) = ]:n,_l,y »8(y,7',1). Note that for every s € Z, thereisanm € R
such that F..' _.a(y,y’,n) is of class C, (U x U, Ly(L—V)). In fact, it suffices to
choose m < —s — ¢ — R — RWY) for the constants R(Z), RY) from (4.4).

It follows that the operators in L™°(U,L(L — V)) = NpuealL™(U, L(L — U))
have Schwartz kernels in C2(U x U, L(L —V)). Conversely, if K(y,y’) is a kernel
in C(U x U, L(L —V)), then the associated integral operator can be written as
A = op(a) for an a(y,y’,n) € S™(U x U x R, L(L — V)). It is sufficient to
set a(y,y’,n) = (2r)7e VWV MK (y, ¢ )w(n) with any w € CZ,,(R?) satisfying
Jw(n)dn = 1. We have thus proved the following result.

‘/'_‘“’""'”a(y, Y, n)dn) g(y)uly)dydy',

Lemma 5.1 The space L~°(U, L(L —V)) coincides with the space of all integral
operators of the form Au = [ K(.,y")u(y')dy’, where K(y,y") € C(U x U, L(L —
V)).

We endow L£~°(U, L(L — V7)) with the Fréchet topology of the kernel space
C(U x U, Ly(L—V)).

When interpreted in the sense of oscillatory integrals, the operator-valued func-
tion fm_{y »a{y, ', 1) is easily seen to be smooth away from the diagonal A of U xU.
It follows that sing supp K4 C A.

An operator A € L™(U, L(L—V)) is called property supported if, for arbitrary
compact sets Ky, K, C U, both (K, x U) Nsupp K4 and (U x K2) Nsupp K4 are
compact sets in U x U.

If Ae L™(U,L(L— V)) is property supported, then it extends by duality to

continuous mappings
A: €U, L) - &, V),
A: DU, L) — DU,V).
Lemma 5.2 Every operator A € L™(U, L(L — V)) can be written as A = A" +
A" where A’ € L™(U, L(L—V)) is property supported and A" € L=°(U, L{L—V))

is smoothing.

Proof. Indeed, pick a properly supported C* function x on U x U, such that
X = 1 in a neighborhood of the diagonal A. Then

A" = op(xa),
A" = op((l - x)a)

fill the bill.

Thus, given any m € R, we have exact sequence

S™U XU X R L(L=V))  L™(U,L(L—V))

O U X UXR LISV~ T=(U.L(LV))

— 0, (5.2)
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and each equivalence class in ct:_";u.ccf,;l/v has a property supported representative.

If A e L™U,L(L — V)) is property supported, then we may consider the
operator-valued function a(y,n) = e~V ~Twm 4eV=10m)  for (y,9) € T*(U). Tt turns
out that a(y,n) € S™(T*(U),L(L—V))and A = op(a) modulo L=°(U, L(L - V)).

i S™(UxUxR™ LI~V :
In other words, every equivalence class in z= TxUXES LV has a representative
which is independent of y’.

We will say that a(y,n) € S™(T*(U), L(L — V)) is a complete symbol of A €
L™U, L(L—V))if A = op(a) modulo L™°(U, L(L — V). It follows from the above
that every pseudodifferential operator A has a complete symbol. Moreover, every
operator A € LT} (U, L(L— V)) has a complete symbol in ST(T*(U), L(L—V)).

The subspace LU, L(L — V))} of L™(U, L(L — V)), consisting of operators
supported in a proper closed set ¢ C U x U containing A, can be given the topol-
ogy induced by the mapping A — e~V=1wm AeV=10n) Then, the whole space
L™U,L(L — V)) is endowed with the Fréchet topology of the non-direct sum
Lr(U, £{L—V)) + LU, L(L > V)).

6 Green symbols

The calculus of pseudodifferential operators on a manifold with edges (cf. Schulze
[8]) is organized close to the edges in local coordinates y € U, with U an open
subset of RY, as the Fourier pseudodifferential calculus along U with operator-
valued symbols acting in the weighted Sobolev spaces on the stretched model cone

0 =R, x X of the wedge. These operator-valued symbols are thus the families
a(y,y',n) € S™U x U x R, L(K*7(XO) — K*~™5(XD)) which are pointwise ele-
ments of the cone algebra with asymptotics (cf. Schulze [10]). The cone operators
are defined as sums like axq + ar + saq + g, with axs a Mellin operator near ¢t = 0,
ar a Fourier operator away from { = 0, sp a smoothing Mellin operator, and g a
Green operator. Now these items depend on (y,y',7) € U x U x R9.

We discuss the parameter-dependent Green operators as particular classical
operator-valued symbols to be called here Green edge symbols. As described above,
this notation is motivated by the structure of Green’s function of a classical elliptic
boundary value problem. The Green function is, up to a fundamental solution of the
elliptic operator, a pseudodifferential operator with a special Green symbol along
the boundary. In this interpretation the boundary corresponds to the edge and the
inner normal of the boundary to the model cone of the “wedge.”

To this end, fix a weight datum ?' = (6— 5 (=1, O]) Recall that, for an

asymptotic type as’ € As(d'), the space K27™?(X2) can be written as a projective

limit of Banach spaces invariant under x,. This is also the case for K£2%°(X9), which
gives us the symbol spaces S™(U x R, L(K*7(XP) = K2%¥(X9)), with U an open
set in R¥,

Given any element a € L(K*7(XP) — K'¥(XT)), we can define the transpose
a’ as an element of L(KX~*#(XY) = K~*77(X7)) via the non-degenerate pairings
K#7(XB) x K=*=7(X") — C induced by the inner product in K*°(X®). (Namely,

aa'
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we set (au,D)oox0y = (u,a_’ﬂ),co,o(xg) for all u,v € CZ,,(X"). * ) Thus, to each
a(y,n) € SPU x RY, LK (XP) = K¥(XD)) there corresponds pointwise the
transpose a’(y,7n), and we may demand that this operator-valued function belong
to ST(U x R, L{K>4(XT) — KZ:77(XD)) for some other asymptotic type as” €
As(d"), where 0" = ( -y =5,(= 0])

Since we are again aimed at the analysis near ¢ = 0, we shall replace ICM. (X5
and K22, 7(XP) by the subspaces

S5,(XO) = wKSF(XD) + (1 -w) S(X9),
SAHXC) = w KT (X0) + (1 - w) S(xO)

respectively, where w(t) is a cut-off function and §(XP) = S(R,,C®(X)). It is
easily seen that S°,(X") and S_,)(X") are independent of the concrete choice of w.

Definition 6.1 An operator-valued symbol ( g(yo, ") 8 ) in ES™(U x R%,0) is

called a Green edge symbol of order m with asymptotics if there are asymptotic types

as’ € As(6—%,(-1,0]),

as" € As(—vy—3,(=1,0]) (6.1)

such that

9(y,1) € NexST(U x RY, £('C"“’(XDJ—>5“".r(X”)))1
9'(¥,m) € Neer c(Uqu LK*~5(XT) = S570(XD))).

Then, a weight datum ? = (-—7 ~ 50 —=3,(-1, 0]) consists of real numbers
—v — % and § — 2 and an interval (—{,0] with 0 <1 < oo.

For such a weight datum 0, denote by ESZ (U x R?,0) the set of all Green edge
symbols of order m and with asymptotic types satisfying (6.1).

[t is worth pointing out here that the space ESZ(U x RY,0) is closed under
multiplication from both the right and the left by functions in Ci2(U, CZ,. (X))
as well as by powers t?, p € Z4 (cf. Schulze [14, 3.3.1]).

Remark 6.2 Smoothing Green operators are compact.

7 FEdge conditions

For studying elliptic pseudodifferential operators on manifolds with edges it will
be necessary to formulate additional conditions of trace and potential type with
respect to the edges. They will have the form of pseudodifferential operators with
operator-valued symbols which are similar to the Green symbols from Definition 6.1.

To discuss this symbols let us agree to consider the finite-dimensional spaces
C? with the identity group actions.

3The space of Green edge symbols seems to depend on the particular choice of the scalar product
in K%0(x9).
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Definition 7.1 An operator-valued symbol ( t(y{;q) g ) in ES™(U x R%, D) is

called a trace edge symbol of order m with asymplotics if there is an asymplotic type
as” € As(—y - 7,(~1,0))

such that
Hy,m) € MeerSG(U x R, L(K*(XP)—CH+)),
t(y,n) € SFUxRL,LCH -8 (XT))).
For a weight datum d = (~ — 2,6 — 2,(~1,0]), denote by ESF(U x RY,0) the
subspace of ES™(U x RY,0) consisting of all trace edge symbols with asymptotics.
Note that it is typical for the edge pseudodifferential calculus that the trace
objects occur in integral form, in contrast to the case of standard boundary value
problems. In other words, the traces which restrict the argument functions to the
edges, possibly after differentiating them with respect to the t-variable (that is
those of the form t(y,n)u = ¢;Dju|i=o, with j € Z,) do not belong to the trace
operators here. This would be impossible any way, because in elliptic edge problems
we cannot expect the solutions to have such traces on the edges. We will get in fact
more general (e.g. discrete) asymptotics that are just the reason for our framework
with arbitrary asymptotic types.

Definition 7.2 An operator-valued symbol g P(yoaﬂ) ) in ES™(U x R%,0) is

called a potential edge symbol of order m with asymptotics if there is an asymptotic
lype
as' € As(6 — g (—1,0)

such that
p(y,m) € STU xR%L(CH = 85,(XD))),
P(y,n) € NerSHU x RY, LK $(XP)— C-)).

Given a weight datum d = (—y — 2,6 — £,(—1,0]), denote by ESP(U x RY,2)
the subspace of ES™(U x RY,0) consisting of all potential edge symbols with asymp-
totics.

It follows directly from these definitions that (35) is a potential edge symbol if
and only if the transpose (2, 8) is a trace edge symbol. For this reason, potential
edge symbols are sometimes called corestriction edge symbols.

The composition of a potential edge symbol and a trace edge symbol is a Green
edge symbol.

For simplicity of notation, we use the same names ‘Green,’ ‘trace’ and ‘potential’
operators for the entries g(y, ), t(y,n) and p(y, 7), too, tacitly identifying them with
the corresponding matrices.

We are now in a position to describe the edge conditions which are substitutes
of boundary conditions for the case of edge problems. These are Fourier pseudodif-
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ferential operators along the edge with operator-valued symbols

)C"'"(XU) )C"""‘S(XD)
)' & - D ., (y,m) €U xR,

Cd_ Cd+

_{ aty,m) ply,n)
aly,m) = ( t(y,n) e(y,n)

(7.1)
where g(y,7) is a Green edge symbol, t(y,n) a trace edge symbol, p(y,7) a potential
edge symbol, and e(y,n) € ST(U x RY, L(C¥ — C¥)) is a (dy x d_)-matrix of
scalar classical symbols of order m along the edge.

Using edge conditions (7.1), one corrects the edge symbols originated with in-
terior symbols of elliptic operators in the wedge, thus arriving at the isomorphism
of the singular symbol.

8 An example

Before giving a kernel characterization of Green symbols, let us have look at the
model situation.

Let y=86=0and =N +1 >0, and let dim X = 0 that corresponds to the
case of boundary value problems.

Consider the asymptotic type as = (o, &), where

e 0= (0,—-1,-N),

e I is the space of analytic functionals of the form (f,u) = LN ¢ f, u(—v), for
u € Hol{o), with f, a complex number.

If fe X, then (f,t7%) = N f,t*. Since each function u € CJ (R, ) can be
written in the form
N 94 (0)

u(t)y =3

=0

” v +'(2),
where u' € CJ}.(R,) vanishes up to order N at ¢t = 0 (in other words, u’ is N-flat at
t = 0), such asymptotics are called the Taylor asymptotics of order N.

Hence it follows that 2,,{R,) is the space of Taylor asymptotics of order N,
and S° (Ry) = S(R;) provided N = co.

This also suggests that the coefficients f, ;(z) in (3.3) play the role of traces at
t = 0 in general. '

For the weight datum 9 = (0,0, (—o0,0]), the space ESG(U x R?,d) consists of

all matrices ( 9(!!0,7?) g ) such that

9(y,m) € NMier ST(U x RY, LIK*O(Ry) — S(R4))),
9'(y,1) € NuerST(U xRY, LIK*(Ry) = S(Ry)))-

The latter conditions are easily verified to amount to saying that

g(y,n) € Sp(U xR L(LYR:) — S(R4))),
g'(y,n) € SFU xR, LLHRy) — S(Ry))).
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Note that these symbols just coincide with the singular Green symbols of type
zero in the boundary symbolic algebra for pseudodifferential boundary value prob-
lems in Boutet de Monvel’s class, cf. Schulze {12] and Schrohe [7].

More general singular Green symbols of type J in Boutet de Monvel’s alge-
bra have the form 23’=Ogj(y,q)D‘Z, with g;(y,n) a singular Green symbol of or-
der m — j and type 0. They are considered to act from H*(R}), s > J — 1, to
H*J(R,). In the case of non-trivial model cone, a substitute for D, is the totally
characteristic derivative (—td;). Thus, we might consider more general edge sym-
bols 23’=0 g;(y,n) (=td:), with g;(y,n) a Green edge symbol of order m — j with
asymptotics. However, these are not covered by Definition 6.1, though (—¢3;) does
not shift the weight.

We note that the space of all operators g € L(L*(R;)— S(R..)), whose trans-
poses are in L(L?*(R,) — S(R,)), coincides with the set of all integral operators
(qu)(t) = J&° Ky(t,t)u(t)dt', u € L*(R,), where K, € S(R; x R,).

9 Kernel characterization of Green symbols

In the sequel, let
as’ € As(6-2Z,
as" € As(—vy-—-

stand for two fixed asymptotic types.
Lemma 9.1 For each operator g : K®V(XO) — K-™¢(XU), the following con-
ditions are equivalent:
1) The mappings
g + K*(XP) = 82,(XP),
g+ K*7HXP) - §0(XP)

are continuous for all s € R.
2) The mappings

g+ K%(XP) = 8;,(X9),
gl . KO'_J(XD)—i —’Y(XD)

as’

are continuous.

Proof. Only the implication 2) = 1) requires a proof. To do this we pick a ¢
satisfying condition 2).

Since K*7(XU) is a Hilbert space with dual K=*=7(XT) and S¢,(X7) is a
nuclear Fréchet space, it follows from g € L(K®7(XP) — S%,.(XD)) that g can be
represented by a kernel

K, € §,(X9) @, K> (XD

(cf. Theorem 1.4.2 in [15]).
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The same reasoning, when applied to ¢’ € L(K®%(XT) = S)(XP)), yields

Ky € S;(XP) @, K2 (XD).

F o

Since K,(t,z,t',2') = K (t',2',t,z), we can assert that
g g

Ky € (S5,(XP) @ Ko71(XP)) n (K*(X7) @, S;(X7)).

ast

On the other hand, it is easy to see that, for each s € R, we have

(S5, (X®) @, KO7(X7)) 0 (K™ (XT) @ S;(X7))

as”

= (S5,(X%) @ K=7(X9)) n (K~ (XP) @, S;H(XT)).  (9.1)

Repeated application of the above arguments in reverse order shows now that
the statement 1) holds, as required.
O
Since s is arbitrary in (9.1), we may take —s as large as we like. Then, (9.1)
implies the following result.

Corollary 9.2 Under condition 2) of Lemma 9.1, we have K, € CZ((Ry %
X) % (X x Ry)).

Now, we return to the equality (9.1). It is to be expected that the intersections in
question are in fact equal to the tensor product S2,,(X®)®,S_(X"). This question
can be treated in the more general framework of topological tensor products. Let
L, V be Fréchet spaces and let Lo, V4 be nuclear Fréchet spaces with continuous
embeddings Lo — L, V5 « V. Isit true that (Vo ®,L)N(Lo®-V) = Vo ®x Lo? The
equality would extend the well-known result {Schwartz’s lemma) that if a function
k(z,2') can be infinitely many times differentiated separately in z and 2, then also
the mixed derivatives exist. For this reason, the answer seems to be negative in

general 4.

Lemma 9.3 For each numbers v,6 € R and asymptotic types as’ and as”, it
follows that
(82:(X9) @, KO 1(X™)) n (K*(X) @+ S1(XD)) = S2,(X7) @ SH(XT).

In the case of discrete asymptotic types, this result is proved by Rempel and
Schulze (cf. Subsection 1.2.2 in [6]).

From Lemma 9.3 we deduce that each Green edge symbol ¢(y,n) of order
m and with asymptotic types as’, as” is represented by a unique kernel function
Ky(y,m;t,2,t',2") in C2(U x RY, 88, (X)) ®@x S, (X)), such that

QO"

g(y,n)u(t,z)=/J‘(DKg(y,7;r;t,:c,t', e Yu(t', o)t dt'dz’ for uw e K*(XD), (9.2)

4Some suggestive evidence to the negative answer is that (£ @z D) N (D’ ®x €) # € @4 &, for
the left side contains the kernels of all pseudodifferential operators on the manifold in question.
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where dz is the Riemannian volume element on X.

Given a Green edge symbol g(y,n) of order m, let us have a look at the sequence
of homogeneous components of g. Denote by g;(y,7) the homogeneous component
of g(y,n) of degree 7, § £ m. Then, g;(y,7) is uniquely determined by its restriction
to the unit sphere in R? via

9i(y,m) = 9l Ky g; (ylz—|) Klpi-1, 7 € R\ {0}. (9.3)

On the other hand, the above argument yields a kernel K, (y,n;t,z,t',2') in
C (U x 897,885,/ (XP) @S (XD)) for the restriction of g;(y,7) to the unit sphere

1™~ as

Sl = {n € R?: |n| = 1}. Hence it follows, by (9.3), that

i - n t o1 N g
swnua) = b [ K, (nithl ot )u () raes
’ xa @7 ol Inl

e N O N T P 2

.+ﬂ+ ] T

is homogeneous of order 7 + n + 1 in 5, and so, when multiplied by an excision
function x(7), belongs to

SHHU xR, S2,(XT) @ S;M(X D)) = ST U xRY) @ (S5,(X7) @S (XD)),

ol

the space §&,(XP)®, S..7(X"Y)) being endowed with the identity action. (We have
used the fact that the space of classical symbols is nuclear.) Thus, we are allowed
to take an asymptotic sum of these kernels within the symbol space ST (U x
R, S2,(X®) @« SL(X D).

After this motivation, we are able to formulate our main result, which makes
more precise the structure of kernels (9.2) of Green edge symbols with asymptotics.

Theorem 9.4 For each k € S3" (U x R?) @, (Sf,,(XD) ®x S;Z(XD)), the
operator family

a(y,n) = u(t,z) — /XU E(y,n;t(n), 2, t'(n), 2" ) u(t', 2') t"dt'dz’, u € K®(XD),
(9.4)
is a Green edge symbol of order m with asymptotics as’ and as”. Conversely, every
Green edge symbol of order m with asymptotics as’ and as” has such a representation.

Proof. Let us first assume gi(y,n) to be of the form (9.4) with a kernel
k(y,mit 2, 2') in SEH (U x RY) @, (85,(XC) @, S7(XO)). Then,

a ’H

Ko gn s e (t,2) = [ byt e, (), @) ult'(n), <) " dtds

1 n
= 7 o Mt o2t )
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By a familiar argument of topological tensor product, we may write the kernel
k(y,n;t,z,t',z') as a convergent sum

o0
k(y,mt,z,t,2) = Y c;aP(y,n) @ K9(t, 2,1, 2),
i=1
where

a¥ly,n) € SHTI(U x RY), a) 50 as j — oo,
k(f)(t,:c,t’, t') € Sf,,(XD) Ox S;Z(XD), kU) 5 0 as j — oo,
and
¢ € C, Zfozl |CJ'| < 0.

By the above, the space S2,,(XT) can be represented as the projective limit of
a sequence of Banach spaces (V,). Then, for the operators

Tiu(t,z) = / KOzt 2 u(t, ) e, w e KOY(XP),

X
we obtain

1Zill o x0)=vy) = 0, as j — oo,
where v = 1,2,.... Moreover, using symbol estimates for a¥)(y,7), we can assert
that

||a(3)(yaﬂ)Tj”c()cc'n(xﬂ)-.v,,) <G (ﬁ)mMH ||Tj||cuc0a(xﬂ)—.v.,)
for y € K CC U, with constants C; — 0 when j — oo. Hence it follows that

||*“(u)-1 9x(y, 1) "(n)“c(:co.v(xﬂ)-.v,,) Se(m™

for all y € K and n € RY, with ¢ a constant depending on K, and for v = 1,2,....
In an analogous manner we can argue for the derivatives DY Dﬁ gx(y,n), where
a € ZY and B € ZY, which yields the relevant estimates with (n)™~!" on the right.
For the transpose we can do the same. This finally shows that gx(y,7) is a
Green edge symbol of order m with asymptotics as’ and as”, as desired.
Conversely, let g(y,n) be a Green edge symbol of order m with asymptotics as’
and as”. Write

o0

g(y,m) ~ 2 X(1) gm-3 (¥, 1),

=0
where gm—;(y,7) is the homogeneous component of ¢g(y,7n) of degree m — j in 5 #
0 and x(n) an excision function. The asymptotic sum can be carried out as a
convergent sum

o0

9(w,m) = 2 x(&51) gm-5{y, 1),

=0
with (e;) a sequence convergent to 0 fast enough. Then, the difference ¢(y,%)—4(y,7)
is a smoothing Green edge symbol with asymptotics.
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As described above, each component g,,—;(y,7) is defined by the unique kernel
—j+n n
| K, (y, M—l;t(n),w,t'(ﬂ),m’) :

where K,,._ (y,m;t, 2, ¢, 2') € CR(Ux S9!, 85, (XP)®.S.,7(XT)). We can assume,

Sm—y as'

by decreasing ¢; if necessary, that (n) = |n| for x(&;1) # 0. Set

—J4n n
km-i(y,mit 3, ', 2') = x(ejm) n|™ " K, (y,-—;i,w,t',:c’) ;

In|
then, kp—; € S YU x RY) @, (st,(X':') O 5-1(XD)) and

el as"
n ! !
—tinl, 2,1|n] m)-
™ Inl, z,%'|nl,
(9.5)
We next claim that the series %2, kn—;(y,7;t,,t',2') converges in the sym-
bol space STt (U x R?) @ (Sf,,(XD) O S_"(X':')) for a suitable choice of the

aal!

constants ¢;. Here we may forget about the subscript ‘cl’ since the summands are
homogeneous of degree m — j +n + 1 in 7 for |p| > ¢ and hence the convergence of
the associated series of homogeneous components is trivial. Thus, letting

Tonei(y ) (6,2) = [ bmesly, 52,8, ) ult ) A, w € KO7(XP),

km—i (v, m5 t(n), 2, ' (n), =) = x(g;n) In[" " K, (y,

we see at once that the convergence of the series 352, km_j(y,7;t,2,t',z) in the
space ST (U x RY) @, (Sf,,(XD) @ Sa',?',(XD)) to a limit k(y,n;t,z,t,2') is

cl
equivalent to the convergence of the series .72 Trm-;(y,7) in the symbol space

Smmtl(J x RY, 88(XP) @ S,(XD)) to a limit T(y,n), where
T(y,mult,z) = / . k(y,mt,z, t, ) u(t', 2') " dt'dz’, v e KO(XO).
X

If the spaces S¢,(XP) and S, (XP) are written as the projective limits of

3"

sequences of Banach spaces (V,) and (L,) respectively, then, by Lemma 9.3, the
topology of S™+*+1([J x R?), 8%, (XP) ® S_1(XP)) may be given by the family of
seminorms

Sepin(T) = sup  (n)"™ "W D2 DET(y, n)| coomx)-miys
(y;m)EK xR

woxT) = —men= 1+l De DAT

Sa,,{j‘,K;u( ) = sup (77) ” v-n (y,q)”C(ICo-—‘—rLy)a

(ym)EK xR

where a varies over Zf, S over Z3, K over compact subset of U, and v = 1,2,.. ..
From the properties of the functions k,,_;{y,7;t,z,t',z') we immediately see that
the operator families Trn_;(y,7) and T, _.(y,7) are elements of

SpIH (U x R, L(KO7(XO) - 8E,(XD)), (1))
= proj lim,_,,S7™*"* (U x Re, LIKO7(XP) = V,), (1)),

SETHM(U xR, LEOH(XO) - ST (X)), (1)
= proj lim i (U x R%, L(K*5(XP) = L,), (I))

v—ooel
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respectively, all the symbol spaces being defined with respect to the identity group
action in the involved spaces.
Now, the sequence (T,.-;(y,7n)) has an asymptotic sum 7'(y,n) in the space

S™H (U x RY, L(KOT(XP) - 82,(XD)), (1)), such that at the same time T"(y, )
is the asymptotic sum of the sequence of transposes (T,,"n_j(y,n)) in the space
Stnt (U x RY, L(K®8(XU) - S (XD)), (I)) We obtain T'(y,n) as a conver-

gent sum

T(y,m) = ZX €;1) Trm—3(y, 1)

for a suitable sequence of constants (¢;) tending to 0 sufficiently fast. Moreover,
when taking the asymptotic sum, we have uniqueness modulo smoothing symbols

in §7° (U x R?, L(KO7(XD) —+S§,,( X9y, (1)) Recall that the space of symbols of
order —oo is independent of the group actions in the corresponding spaces, so that
(1) is unnecessary in this case.

Taking ¢; < ¢; for all j, which is an allowed choice, we then may modify the
above ¢;, again, by taking them smaller, if necessary. Finally, it is possible to set
¢; = €;. The convergence of the series 3724 x(€;1) Tia—j(y,n), which relies on the
systems of seminorms s, 5 k., (), 8o g5 (" ) now corresponds exactly to the desired
convergence of the series 322 kn_j(y,m;t,2,t', 2’) to a function k(y,n;t,z,t',2') in

the space ST (U x RY) @ (52,'(XD) @ 5-7(){':')). We can now return to the

st

original operator family g(y,7n), concluding that the difference

9-co(¥:1) = 9(y,7m) — fxc k(y,n;t(n), 2, t'(n),z") (-) 1" dt'dz’

is a smoothing Green edge symbol with asymptotics as’, as”. Indeed, by (9.5),

fxn k(y, n;t(n), =, t'(n), ") () t"dt'dz’

= fxn Z km—i (v, t(n), 2, '(n), 2") (-) " dt'dz’

j=0

= o) [ " Koy (1 st ) O s

= Zx(e,-n)gj-m(y,n)

=0
~ g(y, 7?)3

as required.
To complete the proof, it remains to observe that each smoothing Green edge
symbol with asymptotics as’, as” has a representation of the form

g-oo(y,m)u (t, ) = /Xn kooo(y,mit(n), z,t'(n), ") u(t!, 2’y t"dt'ds’,  u € KOV(XO),

with some k_oo(y, 7;t,2,t',2') € S~®(U x R?) @, (Sf,,(XD) R Sa,u(XD))
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10 Kernel characterization of trace and poten-
tzal symbols

For every k(y,n;t',2') € Sc, (U x R?) ®, (C** ® S.,7{X7)), the operator family

te(y,m) u(t,a:)—»/x k(y,mt'(n), 2" u(t', ') t"dt'dz’, we K®(XD), (10.1)

1s a trace edge symbol of order m with asymptotics as”. Conversely, every trace
edge symbol of order m with asymptotics as” has such a representation.

Similarly, for every k(y,7n;t,z) € S, ++(U x R?) ®@x (S2,(X") ® C¥-), the
operator family

pe(y,m) : w— k(y,mt(n),z)u, ue€Ch, (10.2)

is a potential edge symbol of order m with asymptotics as’. Conversely, every
potential edge symbol of order m with asymptotics as’ has such a representation.

The proofs of these assertions are quite analogous to the proof of Theorem 9.4
and are left to the reader.

In particular, we obtain from this characterization that, if p is a potential edge
symbol of order m; with asymptotics as’ and ¢ is a trace edge symbol of order m,
with asymptotics as”, then pt is a (dy X d_)-matrix of Green edge symbols of order
my + mg with asymptotics as’ and as”.

Conversely, every matrix-valued Green edge symbol g(y,7n) of order m with
asymptotics as’, as” can be written in the form

gly,n) = ch pi(y,n) ti(y,n),

where p; — 0 are potential edge symbols of order 7, ¢; — 0 trace edge symbols of
order 2, and ¥_; |¢;| < oo (cf. Egorov and Schulze (3, 7.2.1]).

2°?

11  Some applications

With the help of Theorem 9.4 it is easy to see that Green edge symbols with asymp-
totics are invariant under multiplication by powers of t both from the left and the
right.

Indeed, for each asymptotics u(t,z) = w(t){f(z),17*) of asymptotic type as =
(0,%), we have

Pult,z) = w(t)(f(z),t" )
= w(t)((z = 2+ )" f(2),17%),

where (z — z+p)* f(z) is the pull-back of f(z) under the biholomorphism z — z+p
of the complex plane. Thus, the product is of asymptotic type (z — z + p)*as =



26 Section 11

(6 —p,(z— 2+ p)*L). Hence it follows that

tpS:’(XI:I) - Pu (K:oon'+l—0(XD) + Qla,(XD)) +1° (1 —w) S(XD)
= w (Koo.‘r+p+l—0(XCl) + m(ZHH_p).“(XD)) + (1 _ w) S(XCJ)

+

= S('rxn-fz+p)‘a:(XD)‘ (111)

Corollary 11.1 Assume g(y,7) is a Green edge symbol of order m with asymp-
totics as’, as". Then, for each py, p2 € R, the composition t™ g(y,n)t™ is a

Green edge symbol of order m — p; — p; with asymptotics (z — 2z + p;)*as’ and
(z - z+p1)"as"

Proof. By Theorem 9.4, we conclude that there exists a kernel k(y,n;t,z,¢', z")
in ST U x RY) @4 (85,,()(':') ®r Sov(XD)) such that g(y,n) is given by (9.4).
Hence

P g(y ﬂ)t”" u(t, z)
= PR () ) k(y, mi (), @, (), &) (2 ()7 u(t, <) 7 dt e’

- / lyn,tm z,¢'(n), @) u(t', o) " dt'da,

where I;(y,n;t,z:,t’,a:’) = ()PP k(y, p;t, x, U, ') 1P
It follows from (11.1) that this new kernel k(y,n;t,z,t’,z’) belongs to

—)y - n 5 -
;? Pt +1(U X Rq) O ( (:—f:+p2)‘aa'(XD) @ S(zltﬂ{pl)‘“"(xu)) '

Applying Theorem 9.4 again yields the desired assertion.
0
Yet another consequence of Theorem 9.4 is that the Green edge symbols with
asymptotics are invariant under multiplication by functions of Ccornp(R‘l" CR(X x
U)) both from the left and the right. However, the asymptotic types change in
general.

Corollary 11.2 Assume g(y,n) is a Green edge symbol of order m with asymp-
totics. Then, for each ¢1,¢, € C,(Ry, C2(X xU)), the composition ¢2 g(y, 1) ¢
is a Green edge symbol of order m with asymptotics.

Proof. We give the proof only for the composition ¢(y,n) ¢1; similar arguments

apply to the case of ¢ g(y, 7).
Given any ¢ € CZ, (R4, Ci(X x U)), we use the Taylor formula to write ¢ in
the form

t x y Ztu (}5,. x y tN+1 ¢N+1(t,x:y)s

v=0

with arbitrary N =0,1,... and ¢,(z,y) = —‘ﬂo'z—'”l vr=0,1,...,N
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Then, for each N =0,1,..., we have

N
g9(y,n) $(t',z",y) Zg y,mt” bl y) + 9(y,m) ¢ dnn(t 2 y).
v=0
From Corollary 11.1 it follows that the composition g(y,n)t" ¢,(z’,y) is a Green
edge symbol of order m — v with asymptotics as’ and (2 — z + v)*as”. For as’ =
(¢”,£"), we consider a new asymptotic type as = (g, L), where

U, (c"—v)N{zeC: Rz > L+n

++ =1} (shadow condition),

L= 65310 (Z =zt V)*E” l(a"—u)n{zEC: Rz> M 41}

Then, g(y,n)t" ¢.(z',y) is a Green edge symbol of order m—v with asymptotics
as’ and as, and we may take an asymptotic sum of this symbols within the space.
Since g(y,n)t”"'r“H dn+1(t', 2’ y). is of order m — N — 1 (while being not classical),
we conclude that

90,7 6(E, ', y) ~ Y 9l ) ¢ 80" v)
v=0
in the sense of asymptotic sums of Green edge symbols with asymptotics as’ and

as. This finishes the proof.
O

12  Smoothing Mellin operators

A standard asymptotic summation allows one to invert, up to smoothing Mellin
edge symbols, the Mellin edge symbols with invertible conormal symbol. Smoothing
Mellin edge symbols are used in explicit form only for a finite weight interval (—{,0],
with | = 1,2,.... By a smoothing Mellin symbol of order m € R, is meant a family

sm(y,m) = )t—,; E Y 0P ats;a-2(hia) (W, m) 1% ot (n)),

J=0|a|<s

where g, 1 are cut-off functions close to t = 0, and k;, are meromorphic functions
on the complex plane, taking their values in the algebra of smoothing pseudodiffer-
ential operators on X.

The weights v, are chosen in such a way that the vertical line {z € C: Rz =
142 _ 4, .} does not meet any pole of ;4 in the complex plane. Moreover, sm(y, )
is cons1dered to act from K>7(XP) to K®4(X"), for any s € R. Therefore, the

exponents m and j involved must satisfy

’YJ’,CI‘ S 7!
Vi — +J 2 6

5To define these restrictions, use the equality A ,,,, = A}, + A,  in the sense of non-direct
sum of Fréchet spaces.
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for all 7 and «.

Let us denote by ESgy (U x R%,0) the space of all matrices ( SM(SJ,??) g )’

where sap(y, ) is a smoothing Mellin edge symbols of order rn and with respect to
a weight datum d = (—7 - 2,6=2,(-1, 0])

It is easy to see that ESGy (U xR%,0) C ESG(U xR%,0)if I <y—m—4§. As the
operator of multiplication by ¢ decreases the order m by 1, it follows that, for each
smoothing Mellin edge symbol sa(y,7n) of order m, the composition " spm(y,7)
is a Green edge symbol of order m — N, provided N is large enough (precisely,
N >l —~+m+§). This is one of the motivations for introducing Green edge
symbols.
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