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Abstract

The Green operators occurring in the pseudodifferential calculus on man­
ifolds with edges have been defined via their mapping properties. We give a
transparent equivalent description of them in terms of their Schwartz kerneis.

AMS subject classification: primary: 35S15; secondary: 46E40, 58G 15.
Key wards and phmses: pseudodifferential operators, manifolds with sin­

gularities.
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4 Section 1

1 Introduction

Let M be a compact manifold with singularity S, Le., M is a compact Hausdorff
topological space, SeM and M \ S is a smooth manifold without boundary.

For any smooth symbol a(z, () of order m on T·(M \ S), we may consider a
pseudodifferential operator A = op (a), defined first on functions of compact support
in M \ S.

Since M \ S is non-compact, it is not to be expected that A is determined
uniquely modulo "smalI" operators, even if a(z, () is "smooth" up to the singularity.
To make use of the compactness of M, we have to extend the operator A to functions
defined up to S.

For this purpose, the idea suggested by Schulze [10, 13] is to find a proper
reformulation of the operator A elose to the singulari ty. More precisely, one looks
for an operator A (R) defined on functions which are supported elose to S, such that
A(R) = A modulo smoothing operators on M \ S. Such a reformulation certainly
depends on the structure of M near the singularity.

Each singularity S, when blown up, produces a specific elass of degenerated
differential operators, called totally characteristic. In this way we guess a elass of
smooth symbols on T·(M \ S) to be reformulated. Then, one arrives at various
subalgebras of the algebra of pseudodifferential operators on M \ S. These are of
the form

'PO A (R)1,bo + 'Poo A1,bOC))

where (<Po, ',000) is a Coo partition of unity on M \ S with

(1.1 )

{
'Po == 1
tpo == 0

elose to S,
away from a small neighborhood of S,

and 1,b/,l "covers" ',0/,1'

Such operators are referred to as pseudodifferential operators on manifolds with
singularities and act in relevant Sobolev spaces on M.

Because of the compatibility of A and A(R) away [rom the singularity, each op­
erator of the form (1.1) possesses an interior symbol, which is perhaps suppressed to
control its behavior up to the singularity. Moreover, when realized as a pseudodif­
ferential operator along S, the operator A(R) has an operator-valued symbol acting
in the fibers of the "normal bundle" of S, perhaps, after blowing up the singularity
in an appropriate way. The latter operators are sometimes called "transversal op­
erators" and admit additional symbols homogeneous with respect to a group action.
in the fibers (so-called "singular symbols").

vVhile the invertibility of the singular symbol (Lopatinskii condition) is a nec­
essary condition for the Fredholm property of the operator in question, such is
not usually the case. The invertibility of the interior symbol implies only that the
singular symbol is a Fredholm operator. Thus, to achieve the invertibility of the
singular symbol, one needs to border A(R) with a. number of smoothing operators in
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M \ S, that however affect tbe singular symbol of A (R). These are pseudodifferential
operators along S with classical operator-valued symbols, called the Green symbols.

In this way we obtain what looks like the operators in Boutet de Monvel's theory
of boundary value problems and encompasses this theory, namely

(B) ( A(R) P) (A 0)
A = 4>0 T E 1Po + 1>00 0 0 1P00, (1.2)

where the operator P has the meaning of a corestriction or potential operator with
respect to S, T of a trace operator, and E is nothing else than a matrix of pseudod­
ifferential operators along S with scalar symbols.

A familiar argument, based on pseudolocality of the operators in question, shows

h .f (l111 l112 ). . f (A (R) P) cl l1 . r At at 1 l1
21

l1
22

IS a parametnx or T E an a parametnx lor ,

then

rr(B) -.J.. (l111 l112 ) ./. +.J.. (rr 0) ./.
- % l1

21
l1

22
% 'f'oo 0 0 0/00,

is a parametrix for (1.2).
When carried out on the symbolic level, the parametrix construction for the

(

A(R) P)
operator T E invests the dass of admissible operator-valued symbols of

A (R). lt is therefore adequate to have all the "inverse symbols" from tbe very
beginning in the dass.

When seeking an analytical expression for the index of an operator A(B), one
has to construct a very exact parametrix inverting this operator not as usual up to
a compact error but up to a trace dass error. For the operator A this construction
is usually made by means of interior symbolic calculus. But for the operator-valued
symbols in question differentiation in the covariable does not improve their differen­
tial properties. So we need to find another way to indicate that such differentiation
improves the properties of the symbols.

The present paper gives a new characterization of the Green pseudodifferen­
tial operators, generated in the parametrix construction for elliptic operators on
a manifold with edge singularities. This will be performed locally on the level of
specific operator-valued symbols in a wedge of the form X6. X U, where X6. =
(lR+ x X)/( {O} x X) is the model eone with base X wbich is a compact Coo mani­
fold, and U c lRq is an open set, the edge. An allowed ease is dimX = 0; then the
wedge equals lR+ x U that may be regarded as the loeal form of a Coo manifold with
boundary, where the model cone eorresponds to the inner normallR+ and the edge
to a patch U of the boundary.

The role of the Green operators for solving elliptic (say differential) equations
within a pseudodifferential algebra on a given configuration with edge singularities is
analogous to that of tbe contribution from the boundary to classical Green's function
in elliptic boundary value problems.

From the pseudoclifferential calculus of boundary value problems with the trans­
mission property it is known, cf. Boutet de Monvel [1], that Green's function equals
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a sum TI + G, wbere TI is a parametrix of tbe given elliptic operator and e a singular
Green operator (in tbe notations of [1]) 1. Locally G is (up to a smoothing Green
operator) a pseudodifferential operator with an operator-valued symbol of special
kind, cf. Schulze [13, 2.2.3]. This is the motivation to call the analogous objects for
elliptic operators on more general manifolds with edges Green operators.

The structure of Green's function in the standard situation for elliptic boundary
value problems is based on the elliptic regularity of solutions with smoothness up to
the boundary when the right-ha.nd sides and boundary data are smooth. This is a
consequence of the transmission property of the involved interior symbols. Using the
concept of discrete asymptotic types, the meaning and significance of the transmis­
sion property is now elucidated: roughly speaking, a pseudodifferential operator has
the transmission property if Taylor asymptotics elose to the boundary are preserved
under its action.

There is an enormous gap between this comparatively simple special case and
the general Green operators in edge problems (even when dirn X = 0, which corre­
sponds to the case of violated transmission property). The reason is the complexity
of phenomena occurring in the elliptic regularity of solutions near the edges. In con­
trast to the mentioned smoothness (Taylor asymptotics with respect to the distance
variable t) for Cco solutions, it consists of asymptotics of the form

00 m v

u(t,x,y) "V L ~fvJ(x,y)t-Ptl(logt)k as t -+ 0,
v=Oj=O

(1.3)

for every y E U witb certain Pv = Pv(Y) E C satisfying ~Pv -+ -00 as j v -+ 00,

m v = mv(y) E Z+, and coefficients fv,j in CCO(X), where the dependence on y is
jumping in general, even chaotic, with no possibility ta chaase a numeration of the
Pv, m v in a unified manner under varying y.

This behavior of Coo solutions can be observed already in simplest cases of edge­
degenerate differential operators. Solutions in weighted edge Sobolev spaces of finite
smoothness are more diffi.cult to characterize, cL Chapter 9 in Egorov and Schulze
[3]. Tbe general strategy for understanding the solutions under the aspect of their
behavior near the edges is to construct a parametrix TI(B) of the given operator A(B)

and to compose this from the left to the equation A(B)u = f. On the left-hand side
we obtain TI(B) A (8) = 1 + e(B) for a smootbing operator in the calculus, Green in
our terminology. Then the regularity for 'U will follow from the continuity botb of
TI(B) and e(B) between the distribution spaces with asymptotics. So the symbolic
structures behind n(B) and e(B) have to be rieb enough to refleet tbe mentioned
regularity of solutions with asymptotics. In addition the operators are required to
act continuously within such distribution spaces and in addition to form an algebra.

The latter one, briefly called the edge pseudodifferential algebra (cf. Schulze [9]),
has all these properties, and, in particular, there occur the Green pseudodifferential
operators. They have operator-valued symbols, cf. the explicit definition below, in
which possible asymptotic data are involved as pa.rameters. Our characterization
here will consist of a description of the kerneis in terms of spaces with continuous

1 By Green's funetioIl, one means the feft upper corner of n(B).
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asymptotics. This covers all the special possibilities of positions of exponents in
(1.3) as weIl as of the jumping m v and !v,i under varying y EU, described by Coo
functions on U with values in the analytic functionals in the plane of the complex
Mellin covariable, that are point-wise discrete and finite orders. This aspects was
studied in detail in Schulze [8].

The edge pseudo-differential calculus also contains trace and potential opera­
tors with respect to the edge, analogously to the boundary (trace and potential)
conditions in boundary value problems, where the ellipticity is an analogue of the
classical Lopatinskii condition. On the symbolic level they correspond to the trace
and potential operator-valued symbols, also carrying asymptotic information in­
herited from the final elliptic regularity, here with continuous asymptotics, again.
Similarly to boundary value problems, say with the transmission property, the com­
position between a potential and a trace symbol will be a Green symbol. Conversely
Ollr tensor product description in general can be understood as convergent sums of
such compositions.

This relation shows intuitively how the Green symbols organize the interaction
between the interior effects of the calculus outside the edge singularity and the
specifie contributions due to the edge. Green, trace and potential symbols can be
understood in a unified way as block matrix-valued symbols, where the entry in
the left upper corner are the proper Green objects, whereas the entries outside the
diagonal are interpreted as trace and potential symbols. The right lower corner is a
matrix of scalar classical symbols along the edge.

This point of view also belongs to the axiomatic ideas for the pseudodifferential
calculus on configurations with polyhedral singularities of higher order. In the past
years this theory has seen much progress, and in particular, the role of the Green
operators there is to formulate the speeific interactions of properties of solutions
relative to the lower-dimensional skeletons. Here there arise many types of Green,
trace and potential operators, operating between distribution spaces (with asymp­
totics) on the faces of various dimensions, and the structure of the (block matrices
of these) Green operators is so rieh that the variOllS reductions to eomponents of
the lower-dimensional skeleton generate at onee the pseudodifferential calculus that
is originally given there from the knowledge of the analysis for the lower singularity
orders (cf. Schulze [11] for seeond order corners). Here for edge singularities the
lower dimensional face is the edge alone, and the block matrix shaped Green opera­
tors contain (as right lower corners) the classical pseudodifferential calculus on that
0 00 manifold.

2 Edge Sobolev spaces

Fix a smoothed norm function 7] 1-+ (7]) on lRq
, Le., a positive Coo function on lRq

with the property that (1J) = 11Jl for all 1771 ~ c > O.
Let L be a Banach space with norm 11 . I1 L. Denote by .ca(L) the space of all

continuous linear operators in L, equipped with the strong operator topology.
In the sequel, (K:;d,\>o stands for a strongly continuous group of operators on
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L, i.e., K).. is a continuous mapping of lR+ -4 Ln(L) satisfying the composition rule
K)..K p = K)..p for all A, p E lR+. In particular, K).. is an isomorphism of L, for each
A E lR+.

Definition 2.1 Given any s E IR, the "twisted" Sobolev space W,s(lRq, L) is de­
fined to be the completion 0/ S(lRq, L) with respeet to the norm

1

lIu Ilw'(Il.,L) = (1.. (7) )2'II K (")-' F._" U Ilid7)) ,- ,

This concept can also be extended to the case where L is a Frechet space. For
our purpose, it is sufficient to do this for those L which are projective limits of
Banach spaces.

Namely, suppose (Lv) is a sequence of Banach spaces with continuous embed­
dings Lv+1 ~ Lv, and suppose the group actions agree on all the spaces. Then, we
set W,s(IRq, L) = proj limv_ oo yV,s(IRq, Lv)'

The main property of the spaces W,s (IRq, L) is that these are semilocal spaces.
In other words, the multiplication operator 'U 1-+ <pu is continuous on W,s(IRq, L),
for each <p E C:mp(Rq). This allows one to define the local versions Wl~c(U, L) and
W:omp(U, L) of Sobolev spaces on each open set U C lRq

•

In particular, if L = K"''''(XO ) is the weighted Sobolev space on the stretched
cone X D = IR+ X X over a compact manifold X of dimension n, and K.)..U (t, x) =
A~'U(At,X), then Wl~(XO x U) := Wz~c(U,K",i(XO)) is known as the (edge)
Sobolev space over the stretched wedge X O x U whose edge is U.

3 Gone spaces with continuous asymptotics

The continuous asymptotic type will be described in terms of analytic functionals.
We start, therefore, with a short description of those functionals.

Namely, if !( is a compact set in the complex plane, then we denote by AKthe
space of all f E Hol (Cl' having ]( as a carrier. We have A K= Hol (](l' provided
that the complement of !( is connected.

The space AKis known to be a nuclear Frechet space. Therefore, for any Frechet
space L, we may consider the space AK(C, L) of L-valued analytic functionals carried
by](.

Pick a cut-off function w E C:mp(R+), i.e., any function with w(t) =1 near
t = 0.

Suppose ]( lies on the left from the verticalline ~z = I1n -I' i.e., ~z < I1n
-,

for aB z E !(. Then, for any f E AK(C, COO(X)), the function w(t) (f(x), t- Z
} is

easily verified to lie in }Coo·'Y(XO ).

We want to define subspaces of }ClI,'"Y(XO) consisting of functions 'U such that the
difference u(t, x) - w(t) (f(x), t- Z

} has a gain in the weight. To this end, we need
some preliminaries.

A weight datum tl = (" (-1,0]) consists of a number , E lR and an interval
(-1,0] with 0 < I::; 00.
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As described above, when working with the spaces K"'''Y(XO ), we have to con­

sider weight data l) = C, - ~,( -1,0l).
A set 0 C C is called a carrier of asymptotics if 0 is closed, has connected

complement and if the intersection of 0 with each strip {c' ::; ~z ::; c"} is compact.

Given a weight datum l) = (, - ~,( -1,0]), we are going to introduce asymptotic
types related to l). For this purpose, we should distinguish the cases of finite and
infinite weight intervals (-1,0].

If 1< 00, then by an asymptotic type related to l) is meant any pair as = (0, E),
where

• 0 is a carrier of asymptotics contained in the complex strip ltn
-, -1 ::; ~z <

!±11 - "'V. and2 11

• E is a closed subspace of A~(C, COO(X)).

If 1 = 00, then by an asymptotic type related to l) is meant any collection
as = (0, (E v )) where

• 0 is a carrier of asymptotics contained in the complex strip ~z < ltn
-,; and

• (E v ) is a sequence of closed subspaces of A~)C,COO(X)), with /(v ce 0

carriers of asymptotics and sUPzEKl' mz ---+ -00 as v ---+ 00.

Let us denote by As (1)) the set of all asymptotic types related to l). We are now
in a position to introduce our spaces with continuous asymptotics.

Definition 3.1

• Por asymptotic type as = (0, E) related to a weight datum with finite weight
interval, the space K~~"Y(XD) is defined to consist 01 all u E 1\::"'''Y(XO ) such that
u(t, x) - w(t) (f(x), t-X) E 1\::1I,"Y+1-O(XO).

• For asymptotic type as = (0, (E v ) related to a weight datum with infinite weight
interval, the space K~~(XD) is defined to consist of all u E K"'I'(XO) such that
u(t, x) - w( t) L:~=l (/v (x), t- Z

) E KlI,"YN (XO) for some sequence /v E Ev and
some sequence (,N) of real numbers convergent to +00.

Notice that this definition is independent of the particular choice of the cut-off
function w.

To topologize the space K:~~I'(XO) in the case of finite weight intervals, denote by
21a ,,(XO ) the space of functions u E }(OO'I'(XO ) of the form u(t, x) = w(t) (f(x), t-Z),
where / E E.

top. ...

By the Köthe-Grothendieck duality, A~(C, COO(X)) ~ Hol (C \ 0, COO(X)) has
a Frechet topology which is nucIear. Theo, we endow the subspace E by the induced
topology. Moreover, the mapping of E ~ 21all (XO ), given by f ~ w(t) (f(x), t- Z

), is
easily seen to be injective and surjective. Thus, we can give 21a~(XO) the topology
induced by this algebraic isomorphism.
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Fig. 1: A carrier of a continuous asymptotics with infinite weight interval.

Lemma 3.2 Far each asymptotic type 'as' related ta a weight datum with finite
weight interval, we have

(3.1 )

Proof. See Lemma 1.3.14 in Dorschfeldt [2].
o

We make K~~1'(XO) a Frechet space by endowing it with the topology of non­
direct sum of Frechet spaces. Moreover, if u n {~z = ltn - , - 1} = 0, then the
sum (3.1) is direct.

We now turn to the case of infinite weight intervals. In this case, the space
K~~1'(XO) is given a projective limit topology. We shall not attempt to describe this
topology in general, just looking at a model situation (cf. Figure 1).

Lemma 3.3 Let 'as' be an asymptotic type associated with infinite weight in­
terval. Suppose lhere is an increasing sequence , = ,0 < ,1 < .. , such that each
1(, is conlained in the complex strip ltn - 'v :::; fRz < ltn - /v-l . Then, for

aSN = (U~!(v, ffi~), alt the embeddings K~~+l (X O
) ~ K~~~(XO) are continuous

and K~"'Y(XO) = n°o K~'1' (XO)
a~ N=l aSN •

Proof. Ibid., Lemma 1.3.15.
D

When giyen the topology of the projeetive limit of the sequence (K ~~:. (X 0 ) ) ,

the space K~:(XO) becomes a Frechet spaee.

Example 3.4 Let p be a fixed point in the strip 1in
- , -, l ~ ~z < 1in - "

ancl let u = {p}. If Eis a subspace of Coo (X), then the analytic funet ionals of the
form

m

(f(x), u) = L fj(x) (8/8z)ju (p), u E Hol (u),
j=O

with fj E E, form a subspaee of A~(C, Coo(X)). We have

m

(f(x), t- Z
) = L Ij(x) t-P (logt)j, t > O.

j=O
(3.2)

What we obtain in this way, is known as discrete conormal asymptotics for t ~ 0+
for solutions of elliptic equations on the stretched cone IR+ X X. The works of
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Kondrat 'ev [5], of Eskin (4], and, for pseudodifferential operators on the half-axis,
of Schulze [10] show that one may expect a solution U of an elliptic equation on the
half-axis R+ to have asymptotics of the form

00 mll

u(t) r..I L L fv,j(x) t-PII (log t)j, t ~ 0+,
v::;Oj::;O

(3.3)

with exponents Pv E C satisfying ~Pv -t -00 as v ~ 00. This motivates the
definition of function spaces with continuous asymptotics.

o
In the local theory of boundary value problems, the analysis takes place in

domains R.+ x U, where U c IRq is some open set of the boundary and R+ is the
inner normal. In this context, solutions of elliptic equations depend on the variables
(t, x) E IR+ X U, and thus the poles Pli and their multiplicities mv + 1 may depend
on the variable y E U. It is the case, for example, in the well-known problem of
Babushka (1986), i.e., the Dirichlet problem for the Laplace equation in an oblique
cylinder, where the edge angle varies along the edge. This simple observation causes
serious difficulties when one works in the framework of discrete asymptotic types, for
the poles that appeal' may be spread over regions in C and the multiplicities of poles
may vary with varying y E U. In order to be able to cope with those difficulties,
Schulze [8] introduced continuous asymptotic types. In recent years it turned out
to be a very userul tool in wedge theory (cf. [13]).

If u(t, x) = w(t) (f(x), t- Z
) is an element of 21a$(XO ), with as = (a, L:), then

For each fixed ..\ > 0, the function w(..\t) is again of cut-off nature and so does
not affect the property of being in 21(u(XO) modulo elements of ,lC00.'"Y+1-O(XO). On

the other hand, ..\~-z = exp (( lin
- z)) log..\) is an entire function of z, hence

the product ..\~-% f(x) is again an analytic fUDctional with values in COO(X) and
carrier a. Whether this functional belongs to ~ 01' not, would be a property of E
itself. A kind of this property is that E is invariant under multiplication by entire
functions. If such is the case, then K.,\U E 2ta$(XO ) modulo Koo,'"Y+1-0(XO ), for all
..\ > O.

Hence it follows that the space K::7(XO ) is invariant under the group action
("'\);.>0' Applying the general construction of Section 2 to the spaces K~~'Y(XO)

yields (edge) Sobolev spaces with asymptotics W$(lRq
, K~:7(XO)) aver the stretched

wedge X O x IRq.

4 Pseudodifferential operators with operator-va­
lued symbols

The theory of pseudodifferential operator with operatar-valued symbols is a natural
extension of the scalar case.
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Suppose that Land V are Banach spaces with fixed group actions (",~L))
>'ER+

and (K\V)) respectively.
>'EI+

To shorten notation, we suppress the indices (L) and (V) and write both K~L)

and ",\V) simply K>. when no confusion can arise.

Definition 4.1 Given any open set U C JRN and number m E IR, we let sm(U x
IRq,.c( L -t V)) consist 01 all a E Gl:c(U x IRq, .cb(L -t V)) with the property that,
for each compact set !( C U and each multi-indices a E Z~ and ß E Z~, there is a
constant CK,Ct,ß such that

The best constants CK,Ct,ß in (4.1) form a system of seminorms on the space
sm(u x IRq, .c(L -t V)) under which it becomes a Frechet space.

We mention that the asymptotic sums of symbols of decreasing orders cau be
carried cut within these symbol classes modulo

Classical symbols of order mare defined to be those a E sm (U X IRq, .c(L -t V))
which have asymptotic expansions into functions homogeneaus in TJ of decreasing
degrees m - j, j E Z+. The homogeneity is understood in terms of the group
actions.

More precisely, a function a E C1O:C(U x (IRq \ 0), .cb(L -t V)) is called homoge­
neous of degree 7n in TJ =f. 0 if

provided TJ =f. O. It is easy to see that if a is homogeneous of degree m in TJ =f. 0,
then, for any excision function X E C/:(IRq, the product X( 7]) a(y, TJ) is in the symbol
dass sm(u X IRq,.cb(L-t V)). Now, a symbol a E sm(u x IRq,.cb(L-t V)) is called
classical if there are functions am-j E C~AU x (JRq \ 0), .cb(L --t V)) homogeneous of
degree m - j in 7J =f. 0, such that a I'V L~o Xam-j for some excision function x. We
denote by Sd(U x IRq, .c(L -t V)) the space of all classical symbols.

For a E Sd(U x IRq,.c(L -t V)), the component u;dge(a)(Y,7]) = am (Y,1J) is
called the principal edge symbol of a.

Lemma 4.2 For each a E Sci(U x IRq,.c(L-t V)), we have

(4.2)

in the operator norm 01 .cb(L -t V).

The symbols occurring in the edge algebra correspond to the particular choice
of the spaces Land V, namely, L = K"t'"y(XO ) EB Cd- and V = K,,-m,5(XO ) EB Cd+
or those with asymptotics, where both Cd- and Cd+ are endowed with the identity
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group actions. They are not classical while the principal wedge symbol is yet defined
hy (4.2), the linut heing in the strong operator topology of [,b(L-:, V). We set

ESm(U x IRq, 1)) = n"eaSm(U x IRq, ['(K:"''''{(Xo ) EB Cd- -:, K,,-m,o(xO ) EB Cd+)),

with l) = (-, - ~,8 - ~,( -1,01) a weight datum.
Given an operator-valued symbol a (y, y', 7}) E sm (U X U x lR.q , [,(L -:, V)), wi th

U an open subset of IRq, we can form

op(a)u (y) = (2~ )q JJeFf(v-v' ,") a(y, y', 1] )u(y')dy'd1], y E U, (4.3)

defined first on u E C:mp (U, L). The double integral on the right-hand side of (4.3)
is interpreted in the sense of oscillatory integrals, now for the corresponding vector­
or operator-valued functions. In contrast to the sealar case, we have here the groups
of isomorphisms (K~L)) and (K~V)) in the spaees Land V respectively.

~eR+ ~Ea+

However, writing

and using the estimates

(4.4)

with eonstants c{') > 0 and R(') ;::: 1, allows us to perform all essential eonstructions
for oscillatory integrals in the operator-valued set-up.

The operators op(a) given by (4.3), for a E sm (U X U X IRq, [,(L -:, V)), are called
pseudodifferential operators of order m with operator-valued symbols. The space of
such operators is denoted by [,m (U, [,(L -Jo V)). \Ve wri te [,cl (U, [,(L -Jo V)) for the
subspace consisting of those operators whieh correspond to the classical symbols.

5 K ernels 0/ pseudodifferential operators

Every operator A E [,m(u, L(L -t V)) is easily proved to induee a eontinuous map­
ping A : C:mp(U, L) -t C~AU,V)).

Moreover, the juxtaposition u 1---+ Au yields a continuous mapping C:mp(U) -t

C~(U,J:.(L -+ V)). Thus, setting

(l(A,g &; u) = (g, Au)u, for g, u E C:mp(U), (5.1 )

we obtain an operator-valued distribution !(A on the product U x U. This distri­
bution !(A E V' (U X U, Lb(L -t V)) is called the Sehwartz kernel of the operator A
2

2The kernel theorem of Schwartz is valid for operators in .c( (L~ --+ V)I one of the spaces LI V
being nuclear (see Theorem 1.4.2 in [15]).
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Arguing formally, we may wri te

(g, Au}u = J' f (-(.1) f ev'=f(lI-t/,71)a(y, y', 1])d"l) g(y)u(y')dydy',
Juxu 27r q Jl.q

whence !(A (y', y) = F;;~Y-lJ' a(y, y', 1]). Note that for every s E Z+ there is an m E lR.
such that F;:"y_yl a(y, y', 1]) is of dass CioA U x U, .cb(L -+ V)). In fact, it suffices to
choose m < -8 - q - R(L) - R(V) for the constants R(L), R(V) from (4.4).

It follows that the operators in (,-OO(U,.c(L -+ V)) = nmE2.cm (U,.c(L -+ U))
have Schwartz kerneis in GI: (U x U, (,(L -+ V)). Conversely, if !«(y, V') is a kernel
in G~(U x U, ('{L -+ V)), then the associated integral operator can be written as

A = op(a) for an a{y,y',n) E S-oo(U x U x IR.q,(,(L -+ V)). It is sufficient to
set a(y,y', 1]) = (27r)qe- AlI- lI',71)]«(y,y')w(1]) with any w E C:mp(IRq) satisfying
Jw( 1] )d1] = 1. We have thus proved the following result.

Lemma 5.1 The space (,-oo(U, .c(L-+ V)) coincides with the space 0/ all integral
operators 0/ the form Au = f ]«(., y')u(y')dy', where ]«(y, v') E Cl~(U X U, .c(L-+
V)).

We endow .c-oo(U, .c(L -+ V)) with the Frechet topology of the kernel space
C1:(U x U,.cb(L-+ V)).

When interpreted in the sense of oscillatory integrals, the operator-valued func­
tion F;;:",v-v' a(y, y', 1]) is easily seen to be smooth away from the diagonal ~ of U x U.
It follows that sing supp ](A C ~.

An operator A E .cm(U, .c(L-+ V)) is called property 8upported if, for arbitrary
compact sets ](1, ](2 C V, both (]<1 x U) n supp !(A and (U x !(2) n supp ](A are
cornpact sets in V X U.

Ir A E .cm
( V, .c(L --+ V)) is property supported, then it extends by duality to

continuous mappings
A : &I(U, L) --+ &I(U, V),
A : 'EY(U, L) --+ 'EY(U, V).

Lemma 5.2 Every operator A E .cm(V, ('(L -+ V)) can be written as A = AI +
A", where AI E .cm (U, .c(L -+ V)) is property supported and A" E L -00 (U, .c(L -+ V))
is smoothing.

Praof. Indeed, pick a properly supported Coo function X on U x U, such that
X == 1 in a neighborhood of the diagonal ~. Then

AI = op(Xa),
A" = op((l-x)a)

fill the bill.
o

Thus, given any m E lR., we have exact sequence

O
sm(u X U x Rn, L(L-+ V)) Lm(U, L(L-+ V))

-+ -+ -+ 0,
S-oo(U X V x IR.n,L(L-+ V)) L-oo(U,.c(L-+ V))

(5.2)
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and each equivalence elass in c"'::JYit~lfI:Jh has a property supported representative.

If A E .cm(U,.c(L ~ V)) is property supported, then we may consider the
operator-valued function a(Y,'l]) = e-..;=I(y,'1} AeR(·,t]), for (y, 1]) E T"'( U). It turns
out that a(y,1]) E sm(T"'(U),.c(L-+ V)) and A = op(a) modulo .c-oo(U,.c(L~V)).
I th d . I I' sm UxUxl." C L-V h t .n 0 er wor s, every equlva ence c ass In 8- 00 UxUXR~,C L-V as a represen atlve
which is independent of y'.

We will say that a(y,1]) E sm(T"'(U),.c(L -+ V)) is a comp/ete symbolof A E

.cm (U, .c(L -+ V)) if A = op(a) modulo .c-oo (U, .c (L -+ V)). It follows from the above
that every pseudodifferential operator A has a complete symbol. Moreover, every
operator A E .ccl(U,'c(L~ V)) has a complete symbol in Sd(T"'(U),'c(L~ V)).

The subspace .c,;(U, .c(L -+ V)) of .cm(V, 'c(L -+ V)), consisting of operators
supported in a proper elosed set a C U X U containing ~, can be given the topol­
ogy induced by the mapping A t-+ e-Fi'{Y,'1) AeR {·,)]). Then, the whole space
.cm(V, .c(L -+ V)) is endowed with the Fnkhet topology of the non-direct sum
.c;:(V, .c(L~ V)) + .c-oo(U, .c(L~ V)).

6 Green symbols

The calculus of pseudodifferential operators on a manifold with edges (cf. Schulze
[8]) is organized elose to the edges in local coordinates y EU, with U an open
subset of IRq, as the Fourier pseudodifferential ca1culus along U with operator­
valued symbols acting in the weighted Sobolev spaces on the stretched model cone
X D = IR.r x X of the wedge. These operator-valued symbols are thus the families
a(y,y',1]) E sm(u x U x lRq,.c(K"'l'(XD)-+K,,-m,8(XD)) which are pointwise ele­
ments of the cone algebra with asymptotics (cf. Schulze [10]). The cone operators
are defined as sums like aM +a:F +SM +g, with aM a Mellin operator near t = 0,
a:F a Fourier operator away from t = 0, SM a smoothing Mellin operator, and 9 a
Green operator. Now these items depend on (y, y', 11) E U x U x lRq

.

We discuss the parameter-dependent Green operators as particular classical
operator-valued symbols to be called here Green edge synlbols. As described above,
this notation is motivated by the structure of Green's function of a classical elliptic
boundary value problem. The Green function is, up to a fundamental solution of the
elliptic operator, a pseudodifferential operator with a special Green symbol along
the boundary. In this interpretation the boundary corresponds to the edge and the
inner normal of the boundary to the model cone of the "wedge."

To this end, fix a weight datum i)' = (h" - ~,( -1,0]). Recall that, for an

asymptotic type as' E As(D'), the space JC:~lm,c(XD) can be written as a projective
limit of Banach spaces invariant under /'C.\. This is also the case for JC;:;;C(X D), which
gives us the symbol spaces sm(u x Rq, 'c(K",'"Y(XD)~ K:;C(XO )), with U an open
set in RN.

Given any element a E 'c(Ks''"Y(X D ) -+ Kt,C(XD )), we can define the transpose
a' as an element of .c(K-t,-C(XD ) ~ K:-",-'"Y(XD )) via the non-degenerate pairings
X::",'"Y(XD) x K-s,-'"Y(XD) ~ C induced by the inner product in KO,O(XD). (Namely,
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we set (a u, v),co,O(X O ) = (u, a' v)x::o,O(X O ) for all u, v E C:'np(XO). 3 ) Thus, to each

a(y,1]) E S'cl(U x lRq,'c(K6,')'(XO) -+ K::\XO )) there corresponds pointwise the
transpose a'(y, 7]), and we may demand that this operator-valued function belong
to Sd(U x IRq, 'c(K6,-S(XO) -+ K~;,-')'(XO)) for some other asymptotic type asu E

As("OU), where "0" = (-, - ~,( -1,0]).

Since we are again aimed at the analysis near t = 0, we shall replace K::s(XO )

and K:;;-1'(XO ) by the subspaces

S~",(XO) = w K::\XO) + (1 - w) S(XO),
S;,,7,(XO) = w K:;;-1'(XO ) + (1 - w) S(XO)

respectively, where w(t) is a cut-off function and S(XO ) = S(lR+, COO(X)). It is
easily seen that S~"/(X/\) and S:lJ-r(X/\) are independent of the concrete choice of w.

Definition 6.1 An operator-valued symbol ( g(ya' 1)) ~) in ESm
( U X IRq, ll) is

called a Green edge symbol 0/ order m with asymptotics i/ there are asymptotic types

such that

as' E As(8 - ~, (-1,0]),
as" E As(-, - ~, (-1,0])

g(y, 1]) E n"EI. 5;;(U x lRq, 'c(K6,')'(XO) -+ S~./(XO))),

g'(y,r,) E ()"EJ.S;:(U x lRq,'c(K"'-S(XO )-+S;,,7,(XO ))).

(6.1)

Then, a weight datum "0 = (-, - i, 8 - i, (-1,0]) consists of real numbers
-, - i and 8 - ~ and an interval (-1,0] with 0 < I ::; 00.

For such a weight datum "0, denote by ES~(U x lRq
, i') the set of all Green edge

symbols of order m and with asymptotic types satisfying (6.1).
It is worth pointing out here that the space ESG(U x IRq, il) is closed under

multiplication from both the right and the left by functions in Crc(U, C:mp(XO))
as weIl as by powers tP, p E Z+ (cL Schulze [14,3.3.1]).

Remark 6.2 Smoothing Green operators are compact.

7 Edge conditions

For studying elliptic pseudodifferential operators on manifolds with edges it will
be necessary to formulate additional conditions of trace and potential type with
respect to the edges. They will have the form of pseudodifferential operators with
operator-valued symbols which are similar to the Green symbols from Definition 6.1.

To discuss this symbols let us agree to consider the finite-dimensional spaces
Cd:!: with the identity group actions.

3The space of Green edge symbols seems to depend on the particular choice of the scalar product
in KO,O(XO ).
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Definition 7.1 An operator-valued symbol ( t (yÜ '7 ) ~) in ESm (U x IR', D) is

called a trace edge symbol of order m with asymptotics if there is an asymptotic type

" ( n ]as E As -,- 2' (-1,0 )

such that
t(y,1]) E n"EILSd(U x lRq,.c(K""'Y(XO)--tCd+)),
t'(y, 1]) E Sd (U x R5,.c(Cd+ --t S:87/(X O

))).

For a weight datum '0 = (-, - ~,h' - ~, (-1,0)), denote by ESr(U x IRq, D) the
subspaee of ESm (U x R.q, '0) eonsisting of all traee edge symbols wi th asymptoties.

Note that it is typical for the edge pseudodifferential calculus that the traee
objeets oeeur in integral form, in eontrast to the ease of standard boundary value
problems. In other words, the traees whieh restriet the argument functions to the
edges, possibly after differentiating them with respeet to the t-variable (that is
those of the form t(y,1])u = cjD{u !t=o, with j E Z+) do not belong to the traee
operators here. This would be impossible any way, beeause in elliptie edge problems
we eannot expeet the solutions to have such traees on the edges. We will get in fact
more general (e.g. discrete) asymptotics that are just the reason for our framework
with arbitrary asymptotie types.

Definition 7.2 An operator-valued symbol (~ p(Yo '7) ) in ESm(U x IR', D) is

called a potential edge symbol 0/ order m with asymptotics if there is an asymptotic
type

as' E As(h' - ~, (-1,0])

such that
p(y,1/) E Sd(U x IRq,.c(Cd

- --tS~~(XD))),

p'(y,1]) E n"ExSci(U x IRq,.c(K",-O(XO)--tCd_)).

Given a weight datum '0 = (-,- ~,8 - ~, (-I, Ol), denote by ESp(U x IRq, '0)

the subspace of ESm(U x IRq, D) consisting of all potential edge symbols with asymp­
totics.

It follows direetly from these definitions that (g~) is a potential edge symbol if

and only if the transpose (~I g) is a traee edge symbol. For this reason, potential
edge symbols are sometimes ealled eorestriction edge symbols.

The eomposition of a potential edge symbol and a traee edge symbol is a Green
edge symbol.

For simplicity of notation, we use the same names 'Green,' 'traee' and 'potential'
operators for the ent ries 9(y, 1] ), t(y ,1]) and p( y, 1] ), toD, tacitly identifying them with
the corresponding matriees.

We are now in a position to deseribe the edge conditions which are substitutes
of boundary eonditions for the ease of edge problems. These are Fourier pseudodif-



18

ferential operators along the edge with operator-valued symbols

K""(XO ) K,,-m,c(xO )

a(y, 7]) = ( g(y, 7]) P(Y, 71) ) : ffi ---4 ffi
t(y,11) e(y,7]) Cd- Cd+

Section 8

(7,1 )
where g(y, 7]) is a Green edge symbol, t(y, 7]) a trace edge symbol, p(y, 7]) a potential
edge symbol, and e(y, 7]) E Sci (U x IRq,.L:(Cd- ---4 Cd+)) is a (d+ x d_ )-matrix of
scalar classical symbols of order m along the edge.

Using edge conditions (7.1), one corrects the edge symbols originated with in­
terior symbols of elliptic operators in the wedge, thus arriving at the isomorphism
of the singular symbol.

8 An example

Before giving a kernel characterization of Green symbols, let us have look at the
model situation.

Let 1 = 8 = 0 and 1= N + 1 > 0, and let dirn X = 0 that corresponds to the
case of boundary value problems.

Consider the asymptotic type as = (a, ~), where

• a = (0, -1, -N);

• ~ is the space of analytic functionals of the form (I, u) = L~=o fy u( -v), for
u E Hol (a), with Iv a complex number.

If lEE, then (I, t- Z
) = L~=o Iv t V

• Since each function u E C~c(IR.+) can be
written in the form

N avu (0)
u(t) = L I tV + u'(t),

y=o v.

where u' E C~(lR.+) vanishes up to order N at t = 0 (in other words, u' is N-flat at
t = 0), such asymptotics are called the Taylar asymptotic8 of order N.

Hence it follows that 2{a,,(lR.+) is the space of Taylor asymptotics of order N,
and S~,,(IR+) = S(IR+) provided N = 00. '

This also suggests, that the coefficients Iv,j( x) in (3.3) play the role of traces at
t = 0 in general.

For the weigh t datum D= (0,0, (-00,0]), the space ESo(U x IRq, D) consists of

all matrices ( g(ya' 1) ) ~) such that

g(y, 7]) E n"EI. Sci (U x IRq, .L:(K",O(lR+) ---4 S(lR+))),
g'(y, 7]) E n"eJi Sci (U x lRq,.L:(K ",0 (lR.+) ---4 S (IR+))).

Tbe latter conditions are easily verified to amount to saying that

g(y,7l) E Sd(U x Rq,.L:(L2(~) ---4 S(IR.+))),
g'(y,7]) E S'J(U x lR.q,.L:(L2(~) ---4 S(lR.+))).
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Note that these symbols just coincide with the singular Green symbols of type
zero in the boundary symbolic algebra for pseudodifferential boundary value prob­
lems in Boutet de Monvel's dass, cL Schulze [12] and Schrohe [7].

More general singular Green symbols of type J in Bautet de Monvel's alge­
bra have the form Ef=o gj (y, 1]) D1, wi th gj (y, 1]) a singular Green symbol of or­
der m -;" and type O. They are considered to act from H"(IR+), s > J - ~, to
H$-J (IR+). In the case of non-trivial model cone, a substitute for Dt is the totally
characteristic derivative (-tad. Thus, we might consider more general edge sym­
bols r:,f=o gj(Y, 1]) (-tad i , with gj(Y,1J) a Green edge symbol of order m - j with
asymptotics. However, these are not covered by Definition 6.1, though (-tat) does
not shift the weight.

We note that the space of all operators 9 E .c(L 2 (lR.+ ) -t S(14)), whose trans­
poses are in .c(L2 (IR+) -t S(Rr)), coincides with the set of all integral operators
(gu)(t) = J;' I<g(t,t')u(t')dt', u E L2(lR+), where 1<0 E S(lR+ x IR+).

9 K ernel characterization 0/ Green symbols

In the sequel, let
as' E As(8 - ~, (-1,0]),
as" E As(-/ - ~, (-/,0])

stand for two fixed asymptotic types.

Lemn1a 9.1 For each operato1' 9 : ,(o,"Y(XO ) -t ,(-m,S(XO)J the Jollowing con­
ditions are equivalent:

1) The mappings

9 K:"'''Y(XO
) -t S!",(XO

),

g' K:"'-S(XO ) -t S~7,(XO)

are continuous Jor all .s E IR.
e) The mappings

9 K:°'"Y(XO
) -t S!",(XO

),

9' JCo,-S(XO ) -t S~;,(XO)

are continuous.

Proof. Only the implication 2) =} 1) requires a proof. Ta da this we pick a 9
satisfying condition 2).

Since K:"'''Y(XO ) is a Hilbert space with dual }C-.!,-"Y(XO) and S:.!,(XO) is a
nucIear Frechet space, it follows from 9 E .c(Ko,"y(XO) --+ S:",(XO

)) that 9 can be
represented by a kernel

(cf. Theorem 1.4.2 in [15]).
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The same reasoning, when applied to g' E .c(X::0,-S(XO) --+ S~7,(XO)), yields

1(9' E S~7/(Xo) 011" JCo,O(Xo).

Since /(9 (t, x, t', x') = /(9'( t', x', t, x) 1 we can assert that

On the other hand, it is easy to see that, for each s E IR, we have

(S~$'(XO) 011" KO·-'Y(XO
)) n (JCo,S(X O

) 0~ S;$7,(XO
))

= (S:$/(XO) 01r X::-$,-'Y(XO )) n (JC-~,6(XO) ®1r S~7,(XO)) . (9.1)

Repeated application of tbe above arguments in reverse order shows now that
tbe statement 1) bolds, as required.

D
Since 8 is arbitrary in (9.1), we may take -8 as large as we like. Then, (9.1)

implies the following result.

Corollary 9.2 Under condition 2) of Lemma 9.1 J we have J(g E CI~((R+ x
X) x (X x 1R+)).

Now, we return to the equality (9.1). It is to be expected that the intersections in
question are in fact equal to the tensor product S~$,(XO)01rS~7,(XD).This question
can be treated in the more general framework of topological tensor products. Let
L, V be Fnkhet spaces and let Lo, Vo be nuclear Frechet spaces with continuous
embeddings Lo '-+ L, Vo '-4 V. Is it true that (V00 1r L)n(Lo01r V) = V001rLo? The
equality would extend tbe well-known result (Schwartz's lemma) that if a function
k( z, z') can be infinitely many times differentiated separately in z and z', tben also
the mixed derivatives exist. For this reason, the answer seems to be negative in
general 4.

Lemma 9.3 For each number8 "h E Rand asymptotic types as' and aS"J it
follows thai

In the case of discrete asymptotic types, this result is proved by Rempel and
Schulze (cf. Subsection 1.2.2 in [6]).

From Lemma 9.3 we deduce that each Green edge symbol g(y,1]) of order
m and with asymptotic types as', as" is represented by a unique kernel function
/(g(Y,1];t,x,t',x') in C~c(U X IRq,S~$,(XO)01rS~7,(XD)), such that

g(y,1])u.(t,x) = f K9 (y,1];t,x,t',x')u(t',x')tm dt'dx' for u E x::o'")'(Xo ), (9.2)JXD
4Some suggestive evidence to the negative answer is that (E 0. 1)1) n (V' 0,.. E) ::f. E 0. E, for

the left aide contains the kerneis of aB pseudodifferential operators on the manifold in question.
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(9.3)

where dx is the Riemannian voluIne elenlent on X.
Given a Green edge symbol g(y, 11) of order m, let us have a look at the sequence

of hOInogeneous components of g. Denote by gj(Y, fJ) the homogeneous component
of g(y, fJ) of degree j, j ~ m. Then, gj (y, fJ) is uniquely determined by its restriction
to the unit sphere in IRq via

9i(Y,'1) = 1'Ili "IMi (Y' I~I) "1"1-1 , 'I E IRq \ {O}.

On the other hand, the above argurnent yields a kernel !(9j (y, 7J j t, x, t', x') in
C~(U x Sq-l, S~",(XO ) 011' S;,,7, (XO )) for the restriction of gj (y, 7J) to the uni t sphere
Sq-l = {1J E IRq: 17J1 = I}. Hence it folIows, by (9.3), that

9i(Y,'1)u (t,x) = 1'Ili Lo K g; (Y' 1~ljtl'll,x,t',x') u C~I'x') tmdt'dx'

= Lo 1'Ili+n+IK gi (Y' I~I ;tl'll, x, t'I'II, x') u(t', x')t
m

dt'dx'.

~oreover, the kernel

I li+n+l}( ( fJ. t t' ')7J 9j Y, j;1i l ,x, , x

is homogeneous of order j + n + 1 in 7J, and so, when Inultiplied by an excision
function X( fJ), belongs to

s~tn+I ( U x IRq , S~", (XO
) 011' S;,,7, (XO

)) = s~tn+
1

( U x IRq) 011' (S~", (XO)011' S;,,;, (XO)),

the space S~"/(XO) 011' S;'7,(XO)) being endowed with the identity action. (We have
used the fact that the space of classical symbols is nuclear.) Thus, we are allowed
to take an asymptotic sum of these kerneIs within the symbol space s;:+n+l (u x
IRq, S~",(XO) 011" S;'7,(XO)).

After this motivation, we are able to formulate our main resuIt, which makes
more precise the structure of kerneis (9.2) of Green edge symbols with asymptotics.

Theorem 9.4 Por each k E s;:+n+I(U X IRq) ®1l' (S!",(XO) 011" S;'7,(XO)), the
operator family

gk(Y,TJ): u(t,x) -+ r k(Y,11;t(11),x,t'(11),x')u(t',x')tm dt'dx', u E KO,,(Xo ),Jxo
(9.4)

is a Green edge symbol 01 order m with asymptotics as' and as". ConverseIy, every
Green edge symbol 01 order m wilh asymptotics as' and as" has such a representation.

Proof. Let HS first assume gk(Y, 7J) to be of the form (9.4) with a kernel

k(y, 7Jj t, x, t', x') in s;:+n+l (U x IRq) 0". (S~",(XO) 0". S;,,7,(XO)). Then,

r k(y, fJ; t, x, t' (7]), x') u(t' (11), x') tm dt'dx'Jxo
1 r k( I ') (' ') ,nd 'd I= (11)n+l Jx o Y,11;t,x,t ,x u t ,x t t x.
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By a falniliar argument of topological tensor product, we may write the kernel
k(y, 1Jj t, x, t', x') as a convergent sum

00

k(y, 7]; t, x, t', x') = L Cj a(j)(y, 7]) @ k(j)( t, x, t', x'),
j;;1

where

a(j) ~ 0 as J ~ 00,

k(j) ~ 0 as J ~ 00,

and

Ci E C, L~1 ICil < 00.

By the above, the space S~",(XO) can be represented as the projective limit of
a sequence of Bana.ch spaces (Vv )' Then, for the operators

we obtain

IITjllC(KO,"Y(XO)_V~)~ 0, as J ~ 00,

where v = 1,2, .... Moreover, using symbol estimates for a(j)(y,7]), we can assert
that

Ila(j)(y, TJ) TillC(KO,"Y(XO)_V~) ::; Ci (7])m+n+1 11TjllC(x:o."Y(XO)_V~)

for y E K ce U, with constants Ci --+- 0 when j --+- 00. Hence it follows that

for all y E ]( and ." E IRq, with c a constant depending on !(, and for v = 1,2, ....
In an analogous manner we can argue for the derivatives D~D~9k(Y,7]), where

a E Z~ and ß E Z~, which yields the relevant estimates with (TJ)m-1ßI on the right.
For the transpose we can do the same. This finally shows that gk (y, TJ) is a

Green edge symbol of order m with asymptotics as' and asn, as desired.
Conversely, let g(y, 7]) be a Green edge symbol of order m with asymptotics as'

and asn. Write
00

g(Y,7]) rv E X(7]) 9m-i(Y' 77),
i=O

where gm - i (y, TJ) is the homogeneous cornponent of 9(y, TJ) of degree m - j in 7] =1=

o and X( 7]) an excision function. The asyrnptotic SUln can be carried out as a
convergent surn

00

g(Y,7]) = E X(ci.,,)gm-i(y,TJ),
i=O

with (c j ) a sequence convergent to 0 fast enough. Then, the difference g(y, 1J) - g(y, 1])
is a smoothing Green edge symbol with asymptotics.
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As described above, each component 9m _i (y ,1]) is defined by the unique kernel

17Ilm-j+n+l Kgm_ i (Y' I~I; t(7I), x, t' (71), x') ,
where 1(Ym_j (y,1]; t, x, t', x') E Cl~(U X Sq-l, S!lJ,(XO)01rS~7,(XO)). We can assume,
by decreasing Ci if necessary, that (1]) = 11]1 for X(ci1]) f= O. Set

km - j (y, 71; t, x, t', x') = X(t; j7l) 17Ilm-
j
+n+l Kgm - i (Y' I~ I; t, x, t', x') ;

then, km- i E 5;:-i+n+1(U x IRq) 0". (S~SI(XO) 011" S:lJ;'(XO)) and

km-j(y, 71; tM, x, t'(7I), x') = X(ej71 ) 17Ilm-j+n+l Kgm_ i (Y' I~I j t17l1, x, t'17l1, Xl) .
(9.5)

We next claim that the series L~o km-j(y, 1]; t, x, t', x') converges in the sym-

bol space s;:+n+l(u X IRq) 011" (S:lJ'(XO) 011" S:7,(XO)) for a suitable choice of the
constants Cj. Here we may forget about the subscript 'cl' since the summands are
homogeneous of degree m - j +n +1 in 1] for 11]1 ;::: c and hence the convergence of
the associated series of homogeneous components is trivial. Thus, letting

Tm - j (Y,1])u(t,x) = f km _ i (y,1];t,x,t',x')u(t',x')tm dt'dx', u E }C°,I'(XO
),Jxo

we see at onee that the eonvergenee of the series L~o km-i(y, 1]; t, x, t', x') in the

space Sci+n+1(U x IRq) 0'11" (S~lJ'(XO) 011" S:lJ7,(XO)) to a limit k(y, 1]; t, x, t', x') is

equivalent to the convergence of the series L~o Tm - i (Y,17) in the symbol space
sm+n+1 (U x IRq, S!..,(XO) 011" S:..;;(XO )) to a limit T(y, 17), where

T(y, 1])u (t, x) = f k(y, 1]; t, x, t', x') u( t', x') tm dt'dx', u E }C°'I'(XO
).Jx o

If the spaces S!lJ'(XO) and S:lJ;'(XO ) are written as the projective limits of
sequences of Banach spaces (Vv ) and (Lv) respectively, then, by Lemma 9.3, the
topology of sm+n+l(U X lRq),S~61(XO) 0 S:lJ;'(XO)) may be given by the family of
semlnorms

S~,ß,K;v(T) =

where Q' varies over Z~, ß over Z~, ]( over compact subset of U, and v = 1,2, ....
From the properties of the functions km-i(y, 1]; t, x, t/, x') we immediately see that
the operator families Tm-j(y, 1]) and T:n-i(y, 1]) are elements of

S;:-i+n+1 (U x R5, .c(}Co·I'(XO ) ---+ S~..,(XO)), (1))
= proj limv_ oo S;7-j+n+l (U x IRq, .c(KO,I'(XO) ---+ Vv ), (1)),

'S;:-i+n+1 (U x IRq, .c(KO,-S(XO ) -+ S:..;'(XO )), (1))

= proj limv_ooS~-j+n+l (U x IRq, .c(KO,-S(XO) -+ Lv), (1))
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respectively, all the symbol spaces being defined with respect to the identity group
action in the involved spaces.

Now, the sequence (Tm - i (y,1])) has an asymptotic sum T(Y,.1]) in the space

sm+n+1 (U x IRq, ,C(K,0'''' (XO ) ~S~4/ (XO )), (I)), such that at the same time T'(y, 1])

is the asymptotic sum of the sequence of transposes (T:n_j(y, 1])) in the space

s;:+n+l (U x IRq,'c(KO,-6(XO)~S~;'(XO)),(I)). We obtain T(y,1]) as a conver­
gent sum

00

T(y,7]) = LX(fi1])Tm-i(y, 7])
j=O

for a suitable sequence of constants (fj) tending to 0 sufficiently fast. Moreover,
when taking the asymptotic SUffi, we have uniqueness modulo smoothing symbols
in S-oo (U x IRq, L(KO,,(XO )~ S~3/(XO)), (1)). Recall that the space of symbols of
order -00 is independent of the group actions in the corresponding spaces, so that
(I) is unnecessary in this case.

Taking fi ::; Ci for all j 1 which is an allowed choice, we then may modify the
above Ci, again, by taking them smaller, if necessary. Finally, it is possible to set
fi = ci' The convergence of the series L~o X(fj1]) Tm- i (Y,77), which reHes on the
systems of seminorms S~,ß,KjlI(')' S~,ß,K;Y(')' now corresponds exactIy to the desired
convergence of the series L:~o km-i(y, 7]j t, x, t', x') to a function k(y, 1]; t, x, t', x') in

the space s;;:+n+l(u X IRq) 011" (S~,,/(XO) 011" S;,,;'(XO)). We can now return to the

original operator family g(y, 7]), concluding that the difference

g-oo (y, 7]) = 9(Y, 1]) - f k(y, 1]; t (1]), x, t' (Tl), x') (.) t,n dt'dx'Jxo
is a smoothing Green edge symbol with asymptotics as', as". Indeed, by (9.5),

f k(y, 1]j t (7]), x, t' (1]), x') (.) tm dt'dx'Jxo

= f f: km - i (y,1]j t(1]), x, t'(1]), x') (.)tmdt'dx'
JX D j=O

= f: X( fj71)10 1'1lm -
j
+n +1

J(gj-m (Y' _jTlI; t 117 I, x, t'l17 I, x') (.) t'ndt'dx'
J=O X 1]
00

= LX(fi1])gj-m(Y, 1])
;=0

"-J9(Y,77),

as required.
To complete the proof, it remains to observe that each smoothing Green edge

symbol with asymptotics as', as" has a representation of the form

9-00(y,1])u(t,x) = f k-oo (y,17j t(7]), x, t'(17), x') u(t',x') tmdt'dx', u E K,°'1'(Xo ),JXD

with same k-oo (y,1J; t, x, t', x') E S-OO( U x IRq) 011" (S~3'(XO) 011" S;3;/(XO
)).

D
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10 Kernel characterization 0/ trace and poten­
tial symbols

m+!!.±.!.
For every k(y, 7]; t', x') E Sel ~ (U x IRq) ~11" (Cd+ ~ s:,,;,(XO )), the operator family

is a trace edge symbol of order m with asymptotics as". Conversely, every trace
edge symbol of order m with asymptotics as" has such a representation.

m+~Similarly, for every k(y,7]jt,x) E Sel (U x IRq) 011" (S~ ..,(XO) ~ Cd_), the
operator fanlily

(10.2)

is a potential edge symbol of order m with asymptotics as'. Conversely, every
potential edge symbol of order m with asymptotics aB' has such a representation.

The proofs of these assertions are quite analogous to the proof of Theorem 9.4
and are left to the reader.

In particular, we obtain from this characterization that, if p is a potential edge
symbol of order ml with asymptotics aB' and t is a trace edge symbol of order m2
with asymptotics as", then pt is a (d+ x d_)-matrix of Green edge symbols of order
ml + m2 with asymptotics as' and as".

Conversely, every matrix-valued Green edge symbol g(y, 7]) of order m with
asymptotics aB', as" can be written in the form

g(Y,7J) = Lei Pi{y,7])ii(y,7]),
i

where Pi -4 0 are potential edge symbols of order rg., tj -4 0 trace edge symbols of
order ~, and Li leil < 00 (cf. Egorov and Schulze (3,7.2.1]).

11 Sorne applications

With the help of Theorem 9.4 it is easy to see that Green edge symbols with asymp­
toties are invariant under muItipIication by powers of t both from the Ieft and the
right.

Indeed, for each asymptotics u{t, x) = w{t)(f(x), t- Z
) of asymptotic type as =

(u, E), we have

tPu(t,x) = w(t) (f{X),t-(1;-P})

= w(t) ((z f-4 z +pt f(x), t- Z
),

where (z I-t z+p)* f{x) is the pull-back of f(x) under the biholomorphism z f-4 z+p
of the complex plane. Thus, the product is of asymptotic type (z I-t Z + p)*as =
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(a - p, (z ~ z + p)*E). Hence it follows that
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tPSJIJ(XO ) - tPw (Kco,/'+l-O(XO ) + 2lolJ(XO )) + tP(1 - w) S(XO)

_ w (Koo./,+p+l-O(XO ) + 2t(z_z+p)+o,,(XO )) + (1 - w) S(Xo )

= S~~z+p)+a$(XO). (11.1)

Corollary 11.1 Assume g(Y,'1]) is a Green edge symbol 0/ order m with asymp·
totics as', as". Then, for each P1, P2 E IR, the composition tP'1 g(y, 1]) t'pl is a
Green edge symbol of order m - P1 - P2 with asymptotics (z 1-+ Z + P2)*as' and
(z --+ z + pd·as".

Proof. By Theorem 9.4, we conclude that there exists a kernel k(y, 7]; t, x, t', x')
in Sd+n+1(u X IRq) 01t (S~ ../(XO) 011" S;..7,(XO )) such that g(y,1]) is given by (9.4).
Hence

tP'1 g(y, 7]) t'PI u(t, x)

= r (7]) -1'1 -1'2 (t (7]) )1>1 k(y, 7]; t (1]), x, t' (7]), X') (t' (1]))pl U(t', x') t,ndt'dx'Jxo
= r k(y, 7]; t(7]), X, t' (7]), X') u(t' , X') en dt'dx' ,Jxo

where k(y , 1]; t, x, t' ,x') = ("I) -PI -P2 tP2 k(y, 7]; t, x, t' , X') tpl •

It follows from (11.1) that thi s new kernel k(y, 1]; t, x, t' , x') belangs to

Applying Theorem 9.4 again yields the desired assertion.
o

Yet another consequence of Theorem 9.4 is that the Green edge symbols with
asymptotics are invariant under multiplication by functions of C~mp(Rr,C~(X x
U)) both fron1 the left and the right. However, the asymptotic types change in
general.

Corollary 11.2 Assume g(y, 1]) is a Green edge symbol 0/ order m with asymp·
toHcs. Then J /or each 4>1, 4>2 E C~mp(IR.+, C~(X x U)), the c01nposition 4>2 g(y, 1]) 4>1
is a Green edge symbol 0/ order m with asymptotics.

Proof. We give the proof only for the composition g(y, 7]) 4>1; similar arguments
apply to the case of 4>2 g(y, 1]).

Given any 1J E C~p(Rr, C~(X x U)), we use the Taylor formula to write 4> in
the form

N

4>(t,x,y) = E tV 1Jv(x,y) + tN+1 1JN+dt,x,y),
v=O

'th b't N 0 1 cl A. ( ) a,tb(o,x,y) 0 1 NWI ar I rary =" ... an 'f'v x, Y = I , V = 1 , ••• ,v.
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Then, for each N = 0, 1, ... , we have

N

g(y,TJ)4>(t',x',y) = 'Lg(y,11)t'lI 4>v(x',y) +g(y,11)t,N+l fjJN+l(t',X',y).
v=o

27

Frorn Corollary 11.1 it follows that the cornposition g(y, 7]) t'lI 4>v( x', y) is a Green
edge symbol of order m - v with asymptotics as' and (z t-t z + vtas". For as" =
(u", ~"), we consider a new asyrnptotic type as = (u, ~), where

0" U~o (0"" - v) n {z E iC: ~z ~ 1; n + 'Y -I} (shadow condition),

~ = ffi~o (z ........ z + vt~"I(O'I/-v)n{%EC: ~%~~+--y-l}

5

Then, g(y, 7]) tW 4>v(x', y) is a Green edge symbol of order m- v with asymptotics
as' and as, and we rnay take an asyrnptotic surn of this symbols within the space.
Since g(y,7])t,N+l4>N+l(t',X',y). is of order m - N - 1 (while being not elassical),
we conelude that

00

g(y, 7]) fjJ( t', x', y) I"V ~ g(y, 11) t'V fjJv (x', y)
1'=0

in the sense of asymptotic sums of Green edge symbols with asymptotics as' and
aso This finishes the proof.

o

12 Smoothing Mellin operators

A standard asymptotic summation allows one to invert, up to smoothing Mellin
edge symbols, the Mellin edge symbols with invertible conormal symbol. Smoothing
Mellin edge symbols are used in explicit form only for a finite weight interval (-1,0],
with I = 1,2, .... By a smoothing Mellin symbol of order m E IR, is meant a family

1 1-1 .

SM(Y, 7]) = epo(t(1])) t m L L tJ oPM,--Yj,a-!f(hj,o )(y, 7]) 7]a 1/;o(t(7])),
j=o lol::;i

where 'Po, 1/;0 are cut-off functions elose to t = 0, and hj,o are meromorphic functions
on the complex plane, taking their values in the algebra of smoothing pseudodiffer­
ential operators on X.

The weights ,j,o are chosen in such a way that the verticalline {z E C: ~z =
Iin -'i,a} does not meet any pole of hj,o in the complex plane. Moreover, SM(y,1])
is considered to act from K"'''(XO) to KOO,S(XO ), for any s E IR. Therefore, the
exponents m and j involved roust satisfy

{
lj,o ::; "

1i,o - m +j ~ fJ

5To define these restrictions, use the equality A~lU0'2 = A~l + A~:;I in the sense of non-direct
SUffi of Frechet spaces.
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for all j and 0'.

Let us denote by ESSM(U x IRq, D) the space of all matrices (
SM(y,1]) 0)

o 0'
where SM(Y, 1]) is a smoothing Mellin edge symbols of order m and with respect to

a weight datum D= (-, - ~,5 - ~,( -1,0)).
It is easy to see that ESSM(U x IRq, D) c ESG(U x Rq, D) if I .:::; ,-m-5. As the

operator of multiplication by t decreases the order m by 1, it follows that, for each
smoothing Mellin edge symbol SM(y,1]) of order m, the composition tN SM(Y, 7])
is a Green edge symbol of order m - N, provided N is large enough (precisely,
N 2:: I - I +m + 6). This is one of the motivations for introducing Green "edge
symbols.
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