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Removable Singularities of Holomorphic Vector Bundles

Shigetoshi Bando

In the pioneering work [Ul], Uhlenbeck proved the following removable
singularities theorem for Yang-Mills connection.s.

Theorem. Let A be a Yang-Mills connection on a bundle P over the punc
tured ball B* = B\{O} in R 4

• If the square integral of the curvature tensor
RA of A is finite

r IRA I2 < 00,

JB*
then the bundle P and the connection A extend smoothly to the whole ball
B.

Since as pointed out by Itoh [I], any Einstein Hermitian connection of a
holomorphic vector bundle on a I(ähler surfaces is a Yang-Mills connection,
we get

Corollary. Let (E, h) ---+ B* be an Einstein Hermitian bolomorphic vec
tor bundle over the punctured ball B* C C 2 • If its curvature is square
integrable, then (E, h) e:>.:iends to the whole ball B as an Einstein Hermi
tian holomorphic vector bundle.

In a sense the assumption of the corollary is toD strang. Itassurnes
not only the Yang-Mills equation but also the equation comming from the
holomorphicity. So it would be natural to try to get rid of the Einstein
conditian. In this direction there are warks by Cornalba-Griffiths [CG],
Siu [SI] and Uhlenbeck [U2]. They assumed pointwise estimates of the
curvature; boundedness or positivity. We only assurne the curvature belangs
to L 2 and get,

Theorem 10. Let (E, h) ----t B* be a. Hermitian holamorphie vector bundle
over the punctured ball B* C C2. If it satisfies

{ IRh l2 < 00,

Ja*
then E extends to a holomorphic vector bundle E denned on tbe wbole ball
B. And evelJ' holomorphic section of E is loca1ly square integrable.

The idea of the proof is rather standard. First we show E and its dual
vector bundle E* have sufficiently many holomorphic sections on B* so that
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we can imbedd E into a trivial vector bundle of sufficiently high rank. Then
we extend E as a torsion free sheaf [ over B. Since the dimension of the
base space is 2, the double dual [** of f defines the desired vector bundle E.
The last statement of the theorem is an easy consequence of an anayitical
lemma.

We remark that for an open set U it holds that

r(E; U) f"V { S E r(E; U n B*) I s is locally square integrable}

f"V r(E; UnBill).

The author would like to express his gratitude for the hospitality of
Max-Planck-Institut für Mathematik. Trus work 1S done during his stay
there.
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1. Extension of line bundles.

Theorem 1. Let S be an analytic subset of at least codimension 2 of the
ball B in C n , and (L, h) be a holomorphic Hermitian line bundle defined
on B\S. Assume that tbe cunrature W of(L, h) is square integrable, then L
extends to the whole ball B as a holomorphic line bundle.

Proof. It is easy to see that the following definition gives a well-defined
d-closed (1, l)-current w on B. For a smooth 2(n - l)-fonn () with compact
support in B,

w(O) = f w A O.
JB\S

Then there exists a (O,O)-current u such that

yCTaou == w.

The regularity theorem says that u is smooth on B\S. We replace the
Hermitian metric h on L by hell., then its curvature vanishes. It means that
L comes from a representation of '1rl(B\S) == {I}. Thus L is a trivialline
bundle on B\S, which clearly extends to the whole ball B as a line bundle.,
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2. Solving 8-equations.

Prom now on we work under the assumption of theorem. We may
assume that B = {z E C 2 11z12 < I} and (E,h) i8 defined on a larger
punctured ball.

Let p be a smooth 8-closed E-valued (O,l)-form which has compact
support in B*. We want to salve the following equation;

8u = p on B*,

with u E H 1 , namely u and its covariant derivative \7u are square integrable.
First we solve the 8-Neumann problem; with the formal adjoint {J of 8

DqS = (879 + {J8)qS = p. on B*,

with tP E H 1 which satisfies the 8-Neurnann condition at the boundary aB.
We need to specify a base metric and a fibre metric. We fix the base metric
to be the standard Euclidian one and the fibre metric to be hK = he-K1z ]2

with a sufficiently large canstant ]{ to be chosen later.
For a small number € > 0, we solve the the Dirichlet-8-Neumann prob

lem on B: = { z E C 2I € < Izl2 < 1 }, i.e. we put the o-Neumann condition
on { Izl2 = 1 } and the Dirichlet condition on { Izl2 = €}.

LemITla 2. If we take [{ large enough, then for a section tP which satisnes
the Dirichlet-8-Neumann condition, we get that

(DtP, tP) = 11 8tP1l 2 + II 19 tPII 2 > IlqS11 2
•

In particular we can solve the equation OqS = p, with IlqSlI, II19qSlI, 118qSII < IIpll.

Proof. Let RK = Rh + [( be the curvature tensor of the metric hK , and "7
be a cut-off function which i8 equal to 1 near the origin, then,

(04), tP) = 1184>11 2 + II19qSII 2

> J1'\7°,1 <P 12+ (RK<P, <p)

>J~ 1'\7°,1 ('I7<PW - 1'\7°,1 'l71 21<p12+ (RK<P, <p)

= J~(1'\70,1('I7<P)12 + 1'\71,0('I7<pW)

-1'\7°,1'17121<p12 - ~(trRK<P' <p) + (RK<P, <p)
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=J~1V'(7]cPW + I~lcPl2

- 1V'°,17]12 1cf!1 2
- ~ (trRh cP, cf!) + (Rh cP, cf!),

where tr is taken in the form part. Since 7]ifJ has compact support, we cau
apply the Sobolev inequality and get that with a positive constant S,

Choose TJ such that whose support is so small that

and take !( large enough, then we get that

Letting € ---t 0 we get

Lemma 3. We have a solution 4> E Hl of the ä-Neumann problem on B*.

By Moser's iteration arguement one cau get the following lemma. (c.f.
[BKN] Lemma(5.8), Lemma(5.9).)

Lemma 4. Let I be a square integrable non-negative function on B*, and
u be a locaJly H 1 non-negative function on B* such that with a positive
constant c

6.u > -lu - c- , on B* ,

where 6. == L: (a~:)2' If u E H 1 or fB(r) uP == o(r 2
) as r ---t 0 with

p > 1,where B(r) == {izi < r}, then we get that u E Lq for aJl q > 1 on
B(1/2).

The equation 04> == p implies 6.<jJ == 2Rh<P - tr Rh<P - 2p, hence 6.1<pI >
-41Rh 11 <P 1- 2] pi· The lemma yields that ifJ E L q for all q > 1. By integration
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by parts with a cut-off function 'rJ we get that

As 4> E Lq for any q > 1, it holds that JB(r) 14>1 4 = O(r4
-

28
) for any positive

8, and JB(r) 1\74>1 2 = O(r2
-

Ö
). Taking 8 of the equation 04» = P, we get that

o = 804» = 81984> = oä4>, and .6.184>1 > -2IRKllä4>]. Appying Lemma 4
with u = 104»1 and 1 < P < 2, we get that 8</> E Lq for any q > 1. Taking a
cut-off function 'f} = 7]r such that 'rJ(z) = 1 for Izi > 2r, = 0 for jzl < rand
1\77]1 < 2/r, we get that

as r ----t O.

Thus putting u = '84> we get

Lemllla 5. For a given smooth 8-closed (0, 1 )-form p with compact support
in B*, we can solve the ä-equation

with lI u ll < IIpll.

8u = p on B*,

Let s be a holomorphic section of E defined in a neighborhood of Zo E
B*, and'1] be a cut-off function with compact support in B* which is equal
to 1 in a neighborhood of Zo such that 'rJS makes a smooth section on B* by
putting 'rJS = 0 where S is not defined. Then p = ä('rJs) is a 8-closed (0, 1)
form which vanishes in a neighborhood of zoo We take a pluri-subharmonic
function w(z) = log Iz - Zo 12 as a weight function, and use a fibre metric
he-klzI2_2w instead of he-klzl2 in the proof of Lemma 5. Since p E L 2 in
the new metric the solution u also belongs to the L 2 -space that means u
vanishes at zoo Thus 'f}S - u is a holomorphic L 2-section of E on B* which
is equal to S at zo.
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Lemma 6. For any point Zo E B* we ean fined a family {Sl,S2, ... ,Sr},

r,= rankE of holomorphie L2 -sections on B* (L2 with respect to the given
metrie h) wbich gives a base of E zo at zoo

Lemma 7. There exists a family {S1, S2, . .. , sm} of finite numbers oI hlo
morphie L2-seetions on B* such that {Sl(Z), S2(Z), .. . , sm(z)} spans E z for
each point z E B(1/2)*.

Proof. Theorem 1 says that the determinant line bundle detE extends
to the whole ball as a holamorphie line bundle, which we still ca1l det E.
Fix a point Zo E B* and construct holomorphic L 2-sections SI, S2, . .. , Sr on
B* wmch gives a base at zoo Then (j = SI 1\ S2 1\ ... 1\ Sr gives a section
of det E on B*. Since by Hartogs' theorem a extends to B as a holo
morphic section, we still call it er, the divisor (a) = {z E B Ia( z) = O}
has a finitely many irreduceble components D i (i = 1, ... ,1) in B(4/5).
Take a point Zi E B(4/5)* in each component Di, and construct a family
{Si ,1,Si,2," "Si,r} of hplomorphic L2 -sections on B*, which spans E Zi at
Zi. Then {Sl,S2"",Sr',Si,1,Si

1
2, ... ,Si,r(i = 1, ... ,1)} spans Ein B(3/5)*

except finite numbers of points {zj}. Again we construct finite numbers
of holomorphic L2_sections {s~, s~, ... , S~, } on B* to make them span E
at {zj}. Then {SI, S2, ... , Sr, Si,l, Si,2, ... , Si,r, S~, S~, ... , S~, } is the desired
family.

Since E* also have the square integrable curvature, we have

Lemma 8. There exists a family {tl, t2, . .. , in} of finite numbers of hio
morphic L 2 -sections on B* such that {t 1 (z), i 2 (z), . .. , tn(z)} spans E; for
each point z E B(1/2)*.
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3. Extension of Holomorphic vector bundles.

We embedd the vector bundle EIB.' B = B(1/2) in the trivial vector
bundle c n by

E 3 S'--'+ « s,t1 >,< s,t2 >, ... ,< s,tn » E C n
.

Then it is generated by the images { Si } of { Si }~l. By Hartogs' theorem Si
extends to the whole ball B as a holomorphic section. We define a coherent
subsheaf [ of c n on B as the one generated by {Si}' Since dim B = 2, the
double dual [** of [, which coincides E ecxept at the origin, comes from a
holomorphic vector bundle E. Then there exists a non-zero polynomial P
such that for any holomorphic section S of E, Ps belangs to f. It implies
that the restriction of Ps to B* is square integrable with respect to the
metric h. We fix an arbitrary smooth fibre metric Ti on E. Then log+ trhh
belongs to the Lq-space for any q > 1. A calculation shows

We solve the equation

6.v = -2(ltrRhl + ItrRhl) E L 2
,

vl aB = log+ trhhlaB

Then we get that v E H 2 and log+ tr-r..h < v. We apply the following lemma
to see tri). h belangs to the Lq-space for any q > 1.

Lemma 9. Let v be a function in the H 2 -space on areal 4-dimensional
ball, then exp v belongs to the Lq -space for any q > 1.

Naw we get our

Theorem 10. Let (E, h) ---t B* be a Hermitian holomorphic vector bundle
over the punctured ball B* C C 2 . If it satisnes

then E extends to a holomorphic vector bundle E denned on the ,vhole ball
B. And every holomorphic section of E is locally square integrable.
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