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Removable Singularities of Holomorphic Vector Bundles

Shigetoshi Bando

In the pioneering work [U1], Uhlenbeck proved the following removable
singularities theorem for Yang-Mills connections.

Theorem. Let A be a Yang-Mills connection on a bundle P over the punc-
tured ball B* = B\{0} in R*. If the square integral of the curvature tensor

R4 of A is finite
/ |RA|2 < 00,

then the bundle P and the connection A extend smoothly to the whole ball
B.

Since as pointed out by Itoh [I], any Einstein Hermitian connection of a
holomorphic vector bundle on a Kéhler surfaces is a Yang-Mills connection,
we get

Corollary. Let (E,h) — B* be an Einstein Hermitian holomorphic vec-
tor bundle over the punctured ball B* C C2. If its curvature is square
integrable, then (E, h) extends to the whole ball B as an Einstein Hermi-
tian holomorphic vector bundle.

In a sense the assumption of the corollary is too strong. It assumes
not only the Yang-Mills equation but also the equation comming from the
holomorphicity. So it would be natural to try to get rid of the Einstein
condition. In this direction there are works by Cornalba-Griffiths [CG],
Siu [S1} and Uhlenbeck [U2]. They assumed pointwise estimates of the
curvature; boundedness or positivity. We only assume the curvature belongs
to L? and get,

Theorem 10. Let (E, h) — B* be a Hermitian holomorphic vector bundle
over the punctured ball B* C C?. If it satisfies

/ IBAJ2 < oo,

then E extends to a holomorphic vector bundle E defined on the whole ball
B. And every holomorphic section of E is locally square integrable.

The idea of the proof is rather standard. First we show E and its dual
vector bundle E* have sufficiently many holomorphic sections on B* so that
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we can imbedd F into a trivial vector bundle of sufficiently high rank. Then
we extend E as a torsion free sheaf £ over B. Since the dimension of the
base space is 2, the double dual £** of £ defines the desired vector bundle E.

The last statement of the theorem is an easy consequence of an anayitical
lemnma.

We remark that for an open set U it holds that

N'(E;U) = {s € T'(E;UNB*) | s is locally square integrable }
= T'(E;UNB").

The author would like to express his gratitude for the hospitality of
Max-Planck-Institut fiir Mathematik. This work is done during his stay
there.



1. Extension of line bundles.

Theorem 1. Let S be an analytic subset of at least codimension 2 of the
ball B in C", and (L, h) be a holomorphic Hermitian line bundle defined
on B\S. Assume that the curvature w of (L, h) is square integrable, then L
extends to the whole ball B as a holomorphic line bundle.

Proof. It is easy to see that the following definition gives a well-defined
d-closed (1,1)-current @ on B. For a smooth 2(n — 1)-form # with compact

support in B,
@(8) = / wA®8.
B\S
Then there exists a (0,0)-current u such that

vV —100u = @.

The regularity theorem says that u is smooth on B\S. We replace the
Hermitian metric A on L by he*, then its curvature vanishes. It means that
L comes from a representation of mj(B\S) = {1}. Thus L is a trivial line
bundle on B\S, which clearly extends to the whole ball B as a line bundle.



2. Solving d-equations.

From now on we work under the assumption of theorem. We may
assume that B = {z € C?||z|> < 1} and (E,h) is defined on a larger
punctured ball.

Let p be a smooth O-closed E-valued (0,1)-form which has compact
support in B*. We want to solve the following equation;

Ou=p on B*,

withu € H?, namely u and its covariant derivative Vu are square integrable.
First we solve the 0-Neumann problem; with the formal adjoint ¥ of 0

O¢ = (09 +99)¢p=p . on B*,

with ¢ € H'! which satisfies the §-Neumann condition at the boundary 0B.
We need to specify a base metric and a fibre metric. We fix the base metric
to be the standard Euclidian one and the fibre metric to be hx = he— K|z’
with a sufficiently large constant K to be chosen later.

For a small number e > 0, we solve the the Dirichlet-0-Neumann prob-
lem on B* = {z € C?| e < |2]2 < 1}, i.e. we put the 8-Neumann condition
on {|z|? =1} and the Dirichlet condition on {|z|? = ¢}.

Lemma 2. If we take K large enough, then for a section ¢ which satisfies
the Dirichlet-0-Neumann condition, we get that

O, 0) = [108]* + 1194]1* > l|¢]|*.
In particular we can solve the equation¢ = p, with ||8|], |94l |0¢] < ||ol|-

Proof. Let Rk = Rp + K be the curvature tensor of the metric hx, and 5
be a cut-off function which is equal to 1 near the origin, then,

@ ¢, ¢) = ||0¢]* + |94
> f Vo142 + (Ricd, 6)

> [ SV ) — IV PI8P + (Rich,
1
= [0V ) + IV )P
LI i(trRqu, 8) + (Ricd, 8)
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1 K
= [ VGO + 6P
— [V — (xR, §) + (Rad ),

where tr is taken in the form part. Since n¢ has compact support, we can
apply the Sobolev inequality and get that with a positive constant S,

( / In¢l4)1/2 <s [1v@s)r

Choose 1 such that whose support is so small that

1
Ri|* < ,
fsupp,,| Wl < 515

and take K large enough, then we get that

©6,8)2 [(5 = 96 + (1 = 1= 3 (5 Ra,6) + (Rt 6)
> ¢l

Letting e — 0 we get
Lemma 3. We have a solution ¢ € H' of the 0-Neumann problem on B*.

By Moser’s iteration arguement one can get the following lemma. (c.f.
[BKN] Lemma(5.8), Lemma(5.9).)

Lemma 4. Let f be a square integrable non-negative function on B*, and
u be a locally H' non-negative function on B* such that with a positive
constant c

Au > —fu —c, on B*,

where A = Z(aix?V‘ Ifu € H' or fB(r)uP = o(r?) as r — 0 with
p > l,where B(r) = {|z| < r}, then we get that w € L7 for all ¢ > 1 on
B(1/2).

The equation O¢ = p implies Ap = 2Rp¢ — tr Rp¢p — 2p, hence Alg| >
—4|Rp||¢] —2|p|. The lemma yields that ¢ € L? for all ¢ > 1. By integration
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by parts with a cut-off function n we get that

frror <o ime) s fer) "} oor)
«(frwar) (fsupmw) |

As ¢ € L9 for any q > 1, it holds that fB(r) |4|* = O(r*=??%) for any positive
8, and fB(r) |V&|? = O(r?~°). Taking 9 of the equation O¢ = p, we get that
0 = 80¢ = 0904 = 08¢, and A|Bg| > —2|Rk||04|. Appying Lemma 4
with v = |04| and 1 < p < 2, we get that O¢ € L7 for any ¢ > 1. Taking a

cut-off function n = n, such that n(z) = 1 for |2| > 2r, = 0 for |z| < r and
|Vn| < 2/r, we get that

0 = (090¢,n"¢) = (90¢,9(n*04)) = [1904|* + 21904, V" *n * O¢),

2/3 1/3
||m95¢||2$4(/ |vm3) (/ 15¢|ﬁ) 00 asr—o.

Thus putting u = J¢ we get

Lemma 5. For a given smooth O-closed (0, 1)-form p with compact support
in B*, we can solve the 0-equation

Oou=p on B*,

with [lu|| < |A]l-

Let s be a holomorphic section of E defined in a neighborhood of z; €
B*, and n be a cut-off function with compact support in B* which is equal
to 1 in a neighborhood of zy such that ns makes a smooth section on B* by
putting ns = 0 where s is not defined. Then p = d(ns) is a J-closed (0,1)-
form which vanishes in a neighborhood of z;. We take a pluri-subharmonic
function w(z) = log |z — 20|* as a weight function, and use a fibre metric
he=kl21"=2v instead of he=*l#I* in the proof of Lemma 5. Since p € L? in
the new metric the solution u also belongs to the L?-space that means u
vanishes at z5. Thus 7s — u is a holomorphic L?-section of E on B* which
is equal to s at 2.



Lemma 6. For any point zy € B* we can fined a family {sy,s2,...,3+},
r.= rankE of holomorphic L%-sections on B* (L? with respect to the given
metric h) which gives a base of E,, at z.

Lemma 7. There exists a family {s1,82,...,8m} of finite numbers of hlo-
morphic L?-sections on B* such that {s;(z),s2(2),...,5m(2)} spans E, for
each point z € B(1/2)*.

Proof. Theorem 1 says that the determinant line bundle detE extends
to the whole ball as a holomorphic line bundle, which we still call det E.
Fix a point 2o € B* and construct holomorphic L2?-sections s, s2,...,5, on
B* which gives a base at z;. Then ¢ = 51 A sy A ... A s, gives a section
of det £ on B*. Since by Hartogs’ theorem o extends to B as a holo-
morphic section, we still call it o, the divisor (¢) = {2z € B|o(z) = 0}
has a finitely many irreduceble components D; (¢ = 1,...,!) in B(4/5).
Take a point z; € B(4/5)* in each component D;, and construct a family
{si1,8iz2,...,8ir} of hplomorphic L?-sections on B*, which spans E,, at
z;. Then {s1,82,...,8/,8i1,8i2,...,8,,-(t=1,...,0)} spans E in B(3/5)*
except finite numbers of points {z}}. Again we construct finite numbers

of holomorphic L?-sections {s,s5,...,ss } on B* to make them span F
f ! I 1 : :

at {z}. Then {s1,82,...,8r,8i1,8i,2,---,8i,r,8],89,...,8p } is the desired

family.

Since E* also have the square integrable curvature, we have

Lemma 8. There exists a family {t1,%a,...,t,} of finite numbers of hlo-
morphic L*-sections on B* such that {t,(z),ts(2),...,t.(2)} spans E} for
each point z € B(1/2)*.



3. Extension of Holomorphic vector bundles.

We embedd the vector bundle F
bundle C™ by

B = B(1/2) in the trivial vector

Bt?

E3sr— (< s,t; >, < 8,89 >,...,< 5,1, >) € C™.

Then it is generated by the images { §; } of { s; }2,. By Hartogs’ theorem 3;
extends to the whole ball B as a holomorphic section. We define a coherent
subsheaf £ of C” on B as the one generated by {§; }. Since dim B = 2, the
double dual £** of £, which coincides £ ecxept at the origin, comes from a
holomorphic vector bundle E. Then there exists a non-zero polynomial P
such that for any holomorphic section § of E, P3 belongs to £. It implies
that the restriction of P§ to B* is square integrable with respect to the
metric h. We fix an arbitrary smooth fibre metric A on E. Then log™ try A
belongs to the L7-space for any ¢ > 1. A calculation shows

Alog™ tryh > —2(|trRa| + |trR; ).
We solve the equation

Av = —2(|trRp| + |trR;|) € L?,

vlaB == log+ trﬁh‘aB

Then we get that v € H? and log™ tryh < v. We apply the following lemma
to see trjh belongs to the L?-space for any ¢ > 1.

Lemma 9. Let v be a function in the H%-space on a real 4-dimensional
ball, then expv belongs to the L9-space for any q¢ > 1.

Now we get our

Theorem 10. Let (E, h) — B* be a Hermitian holomorphic vector bundle
over the punctured ball B* C C?. If it satisfies

f RaJ? < oo,

then E extends to a holomorphic vector bundle E defined on the whole ball
B. And every holomorphic section of E is locally square integrable.
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