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CURVE STRAIGHTENING

AND A MINIMAX ARGUMENT FOR CLOSED ELASTIC CURVES

The results obtained here have to do with the following
problem. Imagine the ends of a straight length of springy wire
are joined together smoothly and the wire is held in some con-
figuration described by an immergion Yy of the circle into the
plane or into R’. According to the Bernoulli-Euler theory of
elastic rods the bending energy of the wire is proportional to
the total squared curvature of y, which we will denote by
Fly)= ij’ds. Suppose now the wire is released and it moves so
as to decrease its bending energy as efficiently as possible,
i.e., following "the negative gradient of F" (so our dynamics
are Aristotelian rather than Newtonian, and we are also making
the physically unrealistic assumption that the wire can pass
through itself freély). How does the wire evolve, and what will
happen ultimately (as time goes to infinity)?

Of course, one wants to know first that one can actually
define such a flow on the space of immersed circles, that it
exists for all time, and that one can sensibly speak of a limit-
ing curve y_ for the trajectory through a given inilial curve Y, .
It is shown here that this is indeed the case and that in fact
the Palais-Smale condition holds for this flow. It is proved,
moreover, that if y, is a plane curve of rotation index one
(e.g., if y, is embedded) then the flow carries y, to a circle.

Our main result, héwever, pertains to the non-planar case,
where the situation is more complicated. In a space form it is

possible to integrate the equations for an elastica, i.e., for



a critical point of F, and this enables one to prove, in par-
ticular, that there is a countably infinite family of (similarit
classes of) closed.elastic curves in R® (see Theorem 0.1). Thus,
not all wire loops in R? will flow to a circle. On the other
hand, this leaves open the possibility tﬁat Yo 18 a circle for
almost any initial curve y,, and indeed, our conc;uding Theorem 3.
states that the circle is the only stable closed elastica in R’.

The proof of this theorem itself depends on the dynamical,
i.e., gradient flow approach to the study of F (and avoids a
detailed analysis of the Hessian of F, which is quite complicatec
for non-planar elastic curves). The idea is as follows. One con-
siders a discrete group G of rotations of R*® and an associated
pair of multiply covered circular elastic curves which are G-equi
variantly regularly homotopic, and which are both local minima
for the restriction of F to G-symmetric curves (though multiple
circles are unstable with respect to general variations). An
appeal to the minimax and symmetric criticality principles then
enables one to conclude that there exists a non-circular elastica
of "saddle type". Comparison with the classification theorem
shows that one can account in this way for all non-circular solu-
tions, hence all are unstable.

We remark that a similar critical structure occurs for
"free" (length unconstrained) elastic curves in the standard two-
sphere: it was shown in (5] (by an entirely different method)
that all closed non-geodesic solutions in S? are unstable and
can be regarded as minimax critical points arising from symmetri-
cal regula; homotopies between certain multiéle coverings of a
prime geodesic (though the minimax argument in [5] is made only

heuristically). To the extent that a similar picture holds as



well for manifolds of (non-constant) positive cutvature one
gains a new view of closed geodesics. as the limits of almost
all trajéctoriés of -VF.

The organization of the paper 1s as follows. Section 0
is # brief review of some basic facts concerning elastic curves
in space forms and the classification of closed elastic curves
in R* (details can be found in [5],[6]). Section 1 is devoted
mostly to the proof of condition (C) for the curve straightening
flow. We have included details and have atuaxté&.to keep the
discussion as self-contained as possible. In Section 2 we derive
a second variation formula which is compatible with the set-up
of Section 1 and use the formula to verify the hypothesis of the
splitting theorem of Gromoll and Meyer, which is required for
our instability theorem. Also, we illustrate the stability prob-
lem for elastic curves by applying the formula to several con-
crete cases where explicit computations are possible. Section 3
combines the results of the previous three sections in the mini-
max argument and concludes with the instability theorem for non;

circular elastic curves.



0. Closed Euclidean Elastic. Curves

A classical elastica (or elastic curve) is a curve in R?

or R® which 48 critical for the total squared’curvatura
functional F(y)= fyk’ds defined on regular curves of a fixed
length satisfying given first order boundary data. If one re-

moves the constraint on arclength one speaks of a free elastica.

The notions of elastica and free elastica are meaningful in any
Riemannian manifold, k being the geodesic curvature of vy.

The present paper is concerned mostly with closed elastic
curves (where the boundary conditions specify that y is closed
to first order), though much of what we do applies to the general
boundary value problem (see Remark 1 at the end of Section 1).
The most obvious examples of closed free elastic curves are the
closed geodesics. Almost as obvious examples of closed (non-free)
elastic curves are provided by the geodesic circles in a space

form M, e.g., in R*° (actually, in the hyperbolic case, circles of
sinh™' (1)
J-G

of M). All other examples of closed elastic curves (free or not)

radius are free -- G being the sectional curvature

require some work to obtain, but in the case of a space form
there are some nice facts about elastic curves which make a com-
plete classification possible.

To begin with, the Euler equations for the squared curva-
ture x=k? and torsion Tt of an elastica y can be put in the form

(xg) *=P(x) = =x>+2ux® +4Ax~4c?
Lo

where Xg is the derivative of x with respect to the arclength

parameter, u is a Lagrange multiplier which arises when arclengtl

is constrained, and c>0 and.A axre arbitrary constants. As P(x) it



cubic polynomial in x (depending on parameters u, A, c¢) it
follows that the curvature and torsion of y can be expressed

in terms of elliptic functions. Furthermore, the determination
of whether y is closed comes down to an investigation of periods
of associated elliptic integrals.

The 1at£er statement, though not obvious, comes directly
from the.fact that the symmetry of M enables one to integrate
the Frenet equations for y. This is explained by Bryant and
Griffiths in terms of the theory of exterior differential sys-
tems [1]. Independently, the present authors worked out a classi-
fication of closed free elastic curves in two dimensional space
forms [5] as well as closed (non-free) elastic curves in Euclidean
space (6]. .

In order to describe the classification in the Euclidean
case it is helpful to gi#e a brief sketch of the argument. It is
proved in [5] that if vy is an elastica in a space form M’ (it
suffices to consider the‘three dimensional case since all higher
torsions vanish) and {T,N,B} is the Frenet frame for y then the
fields

Jo=(k?=u)T + 2k _N + 2kTB
{oro
extend to Killing fields on the universal cover of M?.

We explain how this is used when M?=R’. “In this case J,
can be shown to have constant magnitude and therefore must be a
translation field, while J;: is easily shown to be a combination
of Jo and a rotation field about an invariant line of J;. Thus,
for every elastica vy in R* there 1is naturally associated to y

a cylindrical coordinate system (r,6,z) on R®, the restrictions



to vy of the coardinate fields %-;, %'6" g'z' beixig expressible

in terms of k, t, T, N, B, Setting v(s)=(xr(s),0(s),z(s) one
then obtains the derivatives r', €', z' by taking dot product
of T with the expressions for %;, %5, %; (and normalizing in
the case of %5). Integration then yields y(s).

In particular, to determine whether y closes up one con-
siders the definite integrals over one period of the curvature
function, for these are the net changes of r(s), 08(s), z(s) in
each period. As it turns out, Ar=0, A8 is an elliptic integral
of the third kind and Az is an elliptic integral of the second
kind. Now y is closed if and.only if it satisfies

Az=0
%? = rational}

thus explaining the claim made earlier concerning the closedness
question.

To describe the behavior of Az, A@ we note first that the
general expressions for the curvature and torsion of an elastica
Y can be given in terms of the maximum, a, of k? and two further
parameters O0sSpsws! which control the shape of vy:

Jo

2
k?=x(s)=a(1- 51- sn? (rs,p)), T

(0.1)
T(s)x(s)= ¢

Here sn(t,p) is the Jacobi elliptic sine function of mod-
ulus p, and a, p, w are of course related to the parameters u,
c, A appearing in the Euler equations. Two of these relations
will be useful later and we note them here:

4c? = 21(1-w’)(w’-p‘)
wh
a (0.2)
us= Tw? (3\9"'93-1, .
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Since we are interested only in the shape of y it is
convenient to fix a=1 and to consider the triangular (p?,w?)-para-

meter space for all elastic curves (not necessarily closed) in R?®.

\

helices

'U“
v

Figure 1

From (0.1) one sees that the planar elastic curves are rep-
resented in Figure 1 by points on the upper and diagonal boundaries,
and the non-planar elastic curves (e¥cept for the helices) corres-
pond to points in the interior (so all curves drawn in Figure 1 are planar).

:Analysis of Az shows that the curve Az=0 behaves qualita-
tively as pictured in Figure 1. Note that the circle and the
figure eight are the two points of intersection of Az=0 with



the boundary. Analysis of 46 is much more difficult but the

computations in [6] show that A8 decreases monotonically from

0 to -7 as the curve Az=0 is traversed from left to right.
Together with a few simple observations about the quali-

tative behavior of r(s) and z(s) this proves the classification

Theorem 0.1 a) Let vy be a closed planar elastica. Then Yy is

a circle or (ﬁp to similarity) the unique figure eight elastica
which closes up in one period of its curvature k(s8)=cn(rs,p)
or a multiple cover of one of these two. |

b) For each pair of integers 0<2n<m there is
(up to similarity) a unique non-planar elastica Ym,n which closes
up in m periods of its curvature (k given by (0.1)) as it makes n
windings around the z-axis (its axis of symmetry). All of these
curves Ym,n are embedded and lie on embedded tori of revolution.
The knot types represent;d by elastic curves in R? are ptecisely
the (m,n)~torus knots satisfying m>2n. Any closed Euclidean

elastic curve is one of the above.



1. Condition (C) for Total Squared Curvature

In this section we define a gradient flow for total
squared curvature and show that this flow satisfies the
appropriate compactness condition for applying the minimax
principle in the infinite dimensional situation. We begin by
recalling the Palais-Smale condition on a c! map £:M+R, M a
c! Riemannian Hilbert manifold:

(C) Given any sequence {sn} in M on which f is bounded
but on which |[|Vf]] is not bounded away from zero
there exists a convergent subsequence {Snj}'

Since the total squared curvaturg of a regular curve is
unchanged under arbitrary reparametrizations it is apparently
impossible to obtain condition (C) without restricting to a
manifold of specially parametrized curves, e.g., arclength-
parametrized curves. In fact it is convenient to consider the
total squared curvature functional as being defined directly
on the manifold of unit tangent fields, i.e., on curves in the
unit sphere S?={x¢R?®: |x|=1}.

Observe that if Y is an arclength-parametrized curve in
R? its total squared curvature is just twice the energy of its
derivative; that is, if w=y':[0,1] +R’ lies on the unit sphere
then F(y)= f: k*ds = f: (w'yw')dt = 23 (w) . Furthermore, y is a
regular closed cufve precisely when w is a "balanced"” closed
curve, i.e., w is a closed curve satisfying L:wdt=0. Thus, the
study of F on unit speed closed curves in R? is equivalent to
the study of J on balanced closed curves in S?. Finally, since
J is invariant under rotations of SK it will suffice to fix a
point P¢s? and study J on balanced curves in S? which begin and

end at P.
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Now it is well known that if M is a Riemannian manifold
and P,Q¢M then one can obtain condition (C) for J:Q(P,Q) +R
where Q(P,Q) is a certain Riemannian Hilbert manifold of
curves in M which start at P and end at Q. Thus, setting M=§?
and P=Q, we can view our goal in this section as that of
showing that condition (C) persists upon restriction of J to
the submanizold QB of balanced curves in Q=Q(P,P). This conclu-
sion is by no means automatic even though the restriction is
to a smooth submanifoldfof finite codimension ( consider, e.q.,
the functional f(x)=(x,x)> on an infinite dimensional Hilbert
space, the unit sphere as a submanifold, and {sﬁ}an orthono;mal
sequence) .

The outline of the proof is as follows. We first show
that J:Q-*RAsatisfies a slightly stronger version of condition
(C), condition (C), which is the same except that the phrase
"| V€]l is not bounded away from zero" is replaced by "VE(s,)
hgs a Cauchy subsequence”. We will be considering 1 as a sub-
manifold of a Hilbert space H so the term "Cauchy” here refers
simply to the norm on H (though one could also make sense of
(C) in an intrinsic way).

We then consider the restriction JsaJlgB and a sequence
{w } in @y for which Jy(w;) is bounded but ||vI; (w Il 1is not
bounded away from zero, the objective being to satisfy the
hypothesis of (C) -- that J(w ) has a Cauchy subsequence. On
achieving this we conclude that the subsequence converges to a
critical point of JB by virtue of QB being closed and VJB
being continuous.

To this end we introduce auxi!liaiy functionals Y:Q +R,

Y(w)=£§(y,m}dt, one for each unit vector ye¢R*® and note that



is balanced precisely when Y(w)=0 for all y. In the spirit
of Lagrange multipliers we then write

VIl ) = VJB(wn) + AnVYn(wn) ’
the numbers An>0 and unit vectors Yn being uniquely deter-
mined by the curves wy (we are assuming here that VJ(wn)#
VJB(wn) ). As will be seen below the sequence {mn} is bounded
in QcH and a subsequenc; of {An} is bounded in R. Therefore,
the proof will require just one additional ingredient, that
the mapping (y,w)r>VY(w) : S*xQ +H is compact.

We now begin to £1i1ll in the details. Let Ho=L? (I,R*’) be
the Hilbert space of square integrable maps of the unit inter-
val I={0,1] into R® with inner product <u,v, =}:(u(t),v(t))dt,
and let H=H,=H, (I,R’) be the Hilbert space of absolutely
continuous maps w:I +R? having square intégrable first deriva~-
tive, the inner product on H given by (w,n); ={w,nd, + (w'/nN"o.

Now consider the subsets QBcncH defined by
@={weH: [w(t)| =1 for all t and w(0)=w(1)=P}, Q ={weQ:[, w(t)dt=0}.
According to the standard theory (see [7]), Q is a closed c”
submanifold of H and by the implicit function theorem QB is in
turn a closed C~ submanifold of Q of codimension three. Note
that all the functionals Y:Q +R are c” since they are restric-
tions of continuous linear maps on H. Note also that the C” map
J:Q +R is given simply by 2J(w)=<w,w: -1 and therefore a subset
of Q is bounded in H precisely when it is J~bounded (a fact we
alluded to earlier).

We now wish to equip 2 with a natural Riemannian structure
and consider the gradient of J relative to that metric. The
metric we will use has been considered before (é.g., by Tromba

[11]) for studying the geodesic problem.
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Since we are considering S* as a submanifold of R’ we
can take advantage of the usual identification of the tangent
spaces S;(t) with subspaces of R’ and define spaces of
"tangential B vectorfields w(t) along w", k=0,1, by

Ho (w*TS? )={weH, (I,R?) : w(t)ts’( for almost all t} and

wit)
H, (0*Ts?)={weH, (I,R*): w(t)es] ., for all t}.

Given wef and weH, (w*TS?) we let %g denote the (almost
everywhere defined) cova;iant derivative of w along w. Here
the covariant derivative is that of the standard metric on S?
and can be written ze=T(w(t))w’(t) =w' () = {w' (), w(t)) w(t)
with w' the ordinary derivative of w as a map into R® and N{w(t
the orthogonal projection of S* onto s’(

w(t
the tangent space at w to the Hilbert manifold Q can be iden-

)° A8 is well known

tified with the space Qw={we81(m*TS’): w(0)=w(1)=0}. So we

can now define our Riemannian metric { , >, on Q, by

Dw Dv
3t’

Now set a=VJ(w), the gradient 6f J at w (relative to the

(w,V)

Da Dw
metric ¢ , )w). Then by definition DJ(w)ws(a,w)ma TR
On the other hand the formula for the differential of J is
DI (w)w=(w',w') o = (w',g—-::l),. Thus, (g%-m' ,g—-:). =0 for all weq .
The significance of this is apparent f£rom the "Du Bois-Raymond
lemma" (the version we give here is from Klingenberg [4], and
applies to any Riemannian manifold M).

Proposition 1.1 Let w be an H, curve in M and let

vVeH, (w*TM) . Suppose that (v,g-l;), =0 for all weH (w*TM) satis-

fying w(0)=w(1)=0. Then v lies in H, (w*TM) and is parallel, i.e

Dv
2t

Proof: Let z¢H (w*TM) be defined by atf'v' z(0)=0. In other

=0 a.e.

words, in terms of local coordinates, z=(z1,...,2") is the
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unique solution to the linear system with H L coefficients

n .

d .k d 4k .k Koo .

3 ? +iZj=1(HE“’”ij z v , 2z (0)=0, k=1,2,...,n.
14

Let xtH, (y*TM) be defined by 3£ =0, x(1)=z(1). Then w(t)=

z(t) - tx(t) lies in H, (w*TM) and satisfies w(0)=w(1)=0. Thus

we have (V=X,v=X)o = (V,V=XDq = (X, V=XDo =

(v,%‘:’), - j:(-g-t-(x,w))dt = 0. So v=x a.e. ///7

We can now conclude that there exists x¢H,6 (w*TS?) such that
DR-wex, -0 (1.1)

Recall our goal is to get the curves W to converge in Q cH.
For this we will need the X, to converge in H,. Here an ele-
mentary comparison between the covariant derivative and the

ordinary derivative is called for:

Proposition 1.2 If A is an H, bounded subset of Q then

there exists a constant C such that, for any weA and any weH, (w*TS?),
lwlly s cdigglly+ liwlle) -

Proof: As noted earlier w' can be resolved into components tangential

and normal to §*, w' =-.‘)Dlt' + (W', w)w . Since gt-((nIW)w we can rewrite this

as w's-g-—.z-(w,m')w. On A we have an Ho, bound on ' and a C° bound on

w (since H, is contimously enbedded in C°), so | w'l, sc, (IB¥]l,+ Il wil,)

for same constant C,. Therefore, for a new constant C,

Hwll=tlwe iR+ flw (B E cUiZell, +wll,. /11

It is now a simple matter to complete the first step in

the outline:

Proposition 1.3 J:Q+R satisfies condition (C).

Proof: Let {mn} be a J bounded hence H,; bounded sequence for
Da

3 = L _f_l -
which e, VJ(an) converges in H,;. Then W= 3T x  for

certain parallel fields x  in H,. Since {“;1} is H, bounded



and since i%?-:-lsla'! for all t we have an H, bound on l%‘-’g .
As we also have an H, bound on {“’;1} this gives an H, bound
on {x }. Proposition 1.2 now implies that {x } is in fact H,
bounded. Since H, is compactly embedded in H, we can therefore
assume that {x } converges in H,.

By hypothesis we have {a } hence { } converging in H,.
Combining this with (1.1) and the previous paragraph we conclude {wn}
converges in H,. Since {wn} is H, bounded we can alsoc assume

{w } converges in H,. so {mn} converges in H,. ///

We now carry out a similar analysis of the gradient of Y. Set
B=VY(w), ¥(t) =NM(w(thw=w-( y,w(t)wlt) (1.2)

On the one hand <at 3¢/ =DY¥(wlw for all w in @ and on the
other hand DY(w)w=Y(w) = [} (y,w)dt = [} (¥,w)dt. Define z¢H (W*TS') b

g.zé-s-i;' z(0) =0 (1.3)

Since any wenw satisfies w(1)=0 integration by parts now gives
Dw o]

DY (w)w= (2,3-1-__-), » hence (3 z'3t> =0 for all w in @ ,. There-

fore, by Proposition 1.1, there exists x¢H (w*rS?) such that

DB DX . o

F=z+5, =% (1.4)

Using formulas (1.1) - (1.4) we can easily prove smooth-

ness of critical points of J’B as well as the compactness state-

ment mentioned above:

Proposition 1.4 Let MQB be a critical point of JB'
i.e., O= VJB(w) = V3 (w) - AVY (w) for some A, y. Then u is c”.
Proof: Using the above notation we have a=18 . Taking 'g'E gives
w' = (A(z+x)-x), so w' is actually in H,. But the H, function w"
can now be written w"-%—:—'- (w',wDw=-2¥ ~<w',wYw, so in fact

w' is itself in H, . The result follows now fram the formula for w". ///



-15-

Proposition 1.5 Let {yn} be a sequence in S? and let {wn}
be a bounded sequence in 1. Then Bn = VYn (mn) has a subsequence

which converges in H,. I.e., the map (yu)+> VY(w) :S*Q+H is compact.

Proof: By (1.3), (1.4) we have an H, bound on second covariant
derivatives: "—3?_‘2'1" llf}n]l, $ 1. Meanwhile, we can obtain an H,

bound on the first covariant derivative as follows. Since

8= fB,8rau= j[ (dtas (8%)dtdu = 2 j <e, )dtdusznell IIDBn

we have IIBI(,SZIlaBH Therefore, gg gg)o-DY( )8 = f(y gydt

D
I8ll, s 21138, o | Ze2ll, s2.

Proposition 1.2 now implies that %EB is H, bounded. So

D8
we can assume -a-EE converges in H,. Further use of Proposition

1.2 now implies the result. ///
It remains only to prove

Proposition 1.6 Suppose {mn} is a sequence of curves in QB

such that Jg(w ) and |v3g(w )il, are both bounded sequences.
Then (a subsequence of) the sequence {An} defined by the
equation VJ(w ) = VJB(“’n) +A,9¢ (w ) is also bounded.

Proof: The sequence || a i mn=||V Jlw ) “m is bounded since

D
(O D7 (o) 3y = [y (o rgeacs llogll, llal,

Therefore,
|IABII = | A VY, (un)ll is also bounded.
AR
l)‘-nl =—|—I—-Tn , SO it will suffice to bound || Bn“w
8

away fram zero. The strategy for doing this is to compare Bn
with §n' (which also tends to push Wy in the direction of

increasing Y), and to bound ||¥ ||, away from zero.



Let us first see how to bound (a subsequence of) Ili?nllo
away from zero. Since Wy, is H; bounded we can assume it
converges in C° to some balanced curve w. For each yes?,
y(t)=Mw(t)y vanishes at no more than two points w(t), and
since  is balanced and continuous it follows that lH¥ll, >0.
By compactress, HS}HH° must therefore be uniformly bounded
‘away from zero as y varies over S?. Finally, continuity of the
functionals Y on C° allows us to conclude that a positive
lower bound exists for “f’n”.-

To compare B8 with frn we first subtract from the 9n
certain fields Rn(t) obtained by restricting to w, a rotation
field on S?, so chosen as to put §n-Rn in @, i.e., so that
S}n(O)=Rn {(0) (hence also §n(1)=Rn(1)) . Clearly this can be done

so that R, has maximum length §n(0)$1 .
Now balanced curves have the property that rotations of

’s’ do not affect any of the functionals Y. Therefore, we can

write <Bn,yn-Rn>mn = DY (w,) [yn-Rnlonn(wn)ynz(yn,yn)o and hence

(8n ,Yn"Rn)mn _ (Al

1 =Roll, 3,7RYl,

18l 2

It remains to obtain upper bounds for [|¥.| and |[R |
n] mn Rl'l Un

One easily sees that -g-%s -{y,w)w' and hence that
(?,i‘r)m = [; (%,%)dt = [;(y,m)’(w' y0') dt s 2J(w) . Finally, since
R (t) is the restriction of a rotation field R:R’ +R’ with

maximum length on S? less than one, the chain rule gives
DR - 5
IRy ll, =I5B iRy [, SUDR, - wplls llwglls 27 (o). 111
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Thus we have proved

Theorem 1.7 JB:QB + R satisfies the Palais-Smale condition (C)

By virtue of the correspondence described at the begimning of this
section and Proposition 1.4 we have the immediate
Corollary 1.8 The total squared curvature F achieves its infimum

in each iegular homotopy class of unit length immersions y:s1->R’. Thus,

for each integer p there exists a closed C~ elastica Yp “which minimizes F
among all regular closed curves in R? havingrotatiaxindexpandlmgﬁmor_:e.
Of course, these elastica were already known fram the classification
Thecrem 0.1; for p#0, ypisﬂxep—foldcizcularelastica,arﬂwithpﬁwe
have thus recovered the figure eight elastica by "topological" means and
established that it globally minimizes F in its regular hamotopy class.
Actually, amadxstbrbe_rcmpact:essa;gmrtwouldhave sufficed
(in place of Theorem 1.7) for the corollary. On the other hand, all
immersions of S' into R* are known to be regularly homotopic (see (14),
so minimization of F in the non-planar case would yield only the circle.
Thus, for the purpose of studying non-planar elastica the gradient tech-
nique is essential.
Even for the planar case the additional dynamical information which
Theorem 1.7 provides is noteworthy:
Corollary 1.9 The "curve straightening flow" induced by -VJBde.forms
every (unit length) immersion y:S' +R® of rotation index cne to the circle

Yq in the infinite time limit. More generally, the trajectory through an

imrersion y :S1

+R? of rotation index p converges to yp (in the case
p=0 the trajectory may also converge to a multiple cover of Yp) .
Proof: This is immediate from Theorem 0.1, Theorem 1.7, and

Theorem 4.1 of ([8]. /77
The corresponding question for the "curve shortening” flow

is still open (for that problem one begins with the arclength



functional L rather than F and studies the dynamics of kN, the
negative L?-gradient of arclength). However, the convex case
has been settled, that is, it is known that a convex curve
curve becomes circular in the limif: as it shrinks down to a
point [ 2]. The argument depends on the fact that a convex curve
remains convex under the curve shortening flow.

We conjecture that the curve straightening flow also
preserves convexity. Indeed this is easy to prove if y, happens
to be symmetric with respect to the reflections about x and y
axes, or with respect to rotation by w. For in this case the
corresponding trajectory W, of -VJB satisfies VJB(ww)=VJ(ww) ’
i.e., AWEO. Making use of this fact a simple computation shows
that the curvature k of y evolves according to %k;;= -k+2w.

Webcncludetlﬁssectimwithmmksmnirgvari&timsof
Theorem 1.7:

1) Very little of the above has to be altered to cover the boundary
value problem for elastica. The basic formilas and propositions remain
essentially the same (but the proof of Proposition 1.6 becames slightly mor
subtle). In particular, condition (C) holds for the following problem. Fix
a length L, two unit vectors P,Q, and a point n=(0,0,2)¢R* with 2<L. We the
consider the functional Jn:nn(P,Q) +R where Qn(P,Q)={w¢H1([0,L] /5?): w(0)=F
o(L)=Q, and [lu(t)dt=n} and I ()= [P(u',u")@t. Note that if u is a criti
point of Jn and if v:{0,1]+ R’ is an arclength parametrized curve satisfyir
Y'=w then vy is an elastica of length L satisfying y'(0)=P,y'(L)=Q, and
(after translation) y(0)=0, y(L)=n. One can also allow one ar both of P,Q
to be variable.

2) Even though condition (C) does not hold for either the arclength



-19=

functional L or the unconstrained total squared curvature
functional F the combination F5=F+eL, €>0, is well behaved.
In fact, given a regular closed curve y:{0,1]+R® we can
parametrize y by constant speed L=L(y) and associate with ¥y
the pair (%u L)EQBXR. Then the functional JE:RBXR-rR defined

1]
by Jg(w,u)= %J (n) +¢L satisfies Fe(y)=Jg(% » L), and using

B

Theorem 1.7 J is easily shown to satisfy condition (C).

€
B
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2. The Second Variation of JB

Following the notatién of the previous section we

associate with any wef, the unique number A>0 and unit vector

B
y satisfying VJ(w)='VJB(w)-vAVY(w) (unless VJ(w)cVJB(m),

in which case we set A=0). If w happens to be a critical point
of JB:QB->R then w is smooth and has at each point a #elocity
vector V=u', speed v=|V|, and Frenet frame {T,N}. Letting R

be the Riemann curvature tensor on the standard sphere S?
(with sign convention (R(U,W)W,U0>20), we have the following
formula for the second variation of Jgt

Proposition 2.1 Let w be a critical point of JB and let U,W

be in TmQB' Then

D? J4 (w) (U,W)= J (U, +R(W, V)V = Ay, w)WAL

o
= -1, —g’, + VLW, NN =A(Y,wyWHAt.
Proof: To prove the first formula (from which the second
follows trivially) we consider a two parameter variation
w(t)=w(u,w) (t) of w within QB and corresponding variation field:
U, W and velocity field V extending U,W,V, respectively.
The first variation of J; at w in the T direction is

— = ,DU Da - -
simply DJB(“)U’IO<TE'3'E)dt where a=VJ(w). But to get our

second variation formula we must take advantage of the fact that
the vector AB=AVY(w) is always orthogonal to Qy and thus we

. =) = (1¢DU Da_,DB
can write instead DJB(«»)U = Io ( T T )dt.

Before taking another derivative we should clear up a
significant notational ambiguity. The vector y and the number A
are fixed, i.e., belong to w(t) rather than w(t); thus, the
above formula is not simply another way of writing the identity
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b5 (@ T =T, () =.
Since 0=c-k6=3-)‘§| (0,0) Ve can now write (using
formulas (1.1)~-(1.4))
+d_,DU Da_,DB <M/DUD = = . = =
D?Jg (w) (U, W) ’fo'&'v7<'5'€"5'€"‘ﬁ'>dt'v=w=o fo<~§-€,w(v+x k(z+§)>dt|w=0

- (00w, 2 BoE-a @m0 at]

[Note that integration by parts for the second term is wvalid
because the fields X, Z, x are all in H; along each w. On the
other hand, V is known to be in H; only along the critical point
w, so partial integration of the first term has to wait until

w is set equal to zero].
=f(FeaE) - {0 RV (x=Atzeg)dae - UG y=Cy @a) ) at] g

Obsgerve that rQIE(Y-(Y'(T‘)&;) =-(y,§>5-(y,5)§, and the
covariant derivative just takes the tangential part of this.

N‘otiné also that x-A(z+x)=-V, the formula follows. /17

To prove our main result on instability it will be impor-
tant to observe that the self-adjoint operator naturally
associated to the above Hessian is of the form identity plus
compact:

Proposition 2.2 Let w be a critical point of JB. Then the

self-adjoint operator K:TwﬂB*TmnB satisfying
D? JB(w) (u,w) = (U, W+K(W))w is compact.
Proof: From Proposition 2.1 we see that K satisfies
(U KW, = U,~v(W,N)N+ Xy, wIW),. Therefore,
(U, K(W))Jsclu,u0),(W,W), where C depends only on w. From

Section 1 we know that a-ny X in 'rwnB satisfies (X,X), g 4(){,)(2u
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so we have, setting U=K(W), {K(W) ,x(w% S4CW,W>, . Since
K is linear and since the Hilbert space TmnB is compactly
embedded in H, it follows that K is compact. 11/

For concrete computations we write W in terms of the
Frenet frame for u, w=£T+gN. Letting k denote the geédesic

curvature of w< S? (so DT . vk N) and substituting into Prop.2.1

Tt
one easily obtains:

Proposition 2.3 D*J,(w) (W,W)==~ [0 £[£' =2vk g'~ (v2k2+\(y,w))£]

+glg'"+ 2vkmf'-(v’ (k:,-ﬂ + My, ,w>)gldt.

Since we are interested in the stability of elasticae it is
still more convenient for most applications to write the formula
in terms of the curvature k and torsion 1 of the elastica y:I-+R?

Proposition 2.4 D’JB(w) (W, W)=~ f; f[f"-2‘tg'+(§(k’ ~u)=-t?)£]

+glg'+ 215'+(%(3k’-u)-1”)g]dt,
where y is given by formula (0.2).
Proof: Noting that v=k and the Frenet frame {T_,N ,B } for vy is

Yy

given by T_=u, NY T, BY N, one easily checks that vkws'r. Taking

Y
%:tq- of the identity a=AB8 g;ves v"r+v’kmN=-A§, hence
(g—]s‘-)N +k'rB =- My-(y,'rY)'r ).where 8 is the arclength parameter on Yy
From Section 0 we know that J,=(k? -u)'r +2( dsm +2k‘rB extends to a
constant field on R’. It follows by comparison with the previous
line that -%’-ﬂ\y. The formula is now easily obtained from

<2
Proposition 2.3 using the substitutions v=k, vkms't, (Xy,m)s-u‘-i}——)-

In applying Propositions 2.3 and 2.4 one must keep in mind
that £ and g are not arbitrary functions vanishing at 0 and 1;
for W is supposed to be tangent to Qg i.e., [;Wdtao. Of course,

this complicates the analysis of the already complicated looking



D'JB(w). Fortunately, the formula simplifies drastically in
certain special cases of interest, e.g., if y is planar, if
A=0, if we let one of £ or g be zero. Each of these possibilities
will occur in one of the following
Examples: 1) Let yp be the p-fold circular elastica (lying
in the x,y-plane) having curvature 27p. Thus, wpsyé is the
p-fold geodesic wps(cosJprt),sin(Zﬂpt),O) having velocity 2wp.
Since wp is already a critical point of the unconstrained
functional J we have A=0. So Proposition 2.3 gives
D=JB(mp)(w,W)=-J;ff" + gg" +(2mp)2gidt.

Let us first set g=0. Then D’JB(wp)(W,W)sf;(f')’dt>0,
corresponding to the fact that yp is stable with respect to

planar variations.

0

Now let £=0, and write g(t)= %ﬁ + a cos (2mnt) +b_sin(2mt).

n=1

Then the tangency condition J:Wdt is simply a,=0. Substitution
-.-]
now leads to D*J(w ) (W,W)= :E: (27)? (a? +b?) (n?*-p?). For p=1
P n=1 n n

this quantity is positive (ignoring pure rotations of S?), and
for p>1 this quantity can be made negative (simply choose an=0
vn, b1=1, and bnsﬂ for n>1). This corresponds to the fact that
Yq is stable (even for non-planar variations) while Yp’ p>1,

is unstable as an elastica in R?.

2) In this example we show that an elastica con-
sisting of at least two full turns of a helix is unstable as a
solution to the boundary value problem (see Remark 1 at the end
of Section 1). A unit speed parametrization y:(0,L] +R' for exactly
two turns of a helix of curvature k and torsion t is given by

k k
Y(t"(;:cos(at)' ;,Bin(at), §t)' where al=k3+Ya’ L'% .



The corresponding two-fold circle w(t)sy'(t)=§(-sin(at),cos(at),%
is a critical point of the functional anﬂn(P,P)*-R (here P=w(0):=
0,%,%) and n=t0,0,%H ).

Proposition 2.4 applies to Jn if we simply replace 1 with L
in the upper limit of integration. For helices the modulus p is
zero (see Figure 1) so formulas (0.1) and (0.2) imply u=k?-2t?.
It follows that the second variation of Jn at w in the direction
W=fT+gN can be written D’Jn(m)(W,W)s f: (£f')?+(g’)?~-k?’g?~41f'g d

Since the unit tangent and normal vectors to w are given by
T=(-cos(at) ,-sin(at),0) and Naé(rsin(at),-rcos(at),k), the condi-
tion j; Wdt=0 for tangency of W to Qn can be written as three
equations Igfcos(at)dtsgfg gsin(at)dt, Iifsin(at)dts-ifigcos(ai
and fg gdt=0.

The instability of w (hence of y) can now be seen by check-
ing that , for example, the choice W= 4r(cos(§t)—1)T - asin(%t)N
gives D’Jn(m)(W,W)=—§§3(51’+k’)<0 and is compatible with the

tangency conditions.

For the hélix one can also determine explicitly all Jacobi
fields and after a lengthy computation one obtains a transcendent:
equation describing the qpan:znoe-of conjugate points. It can be
seen in this way that the distribution of conjugate points depends
in a rather complicated way on k and t but that in any case a

conjugate point will occur after less than two turns of the helix.

3) We show here that the figure eight elastica is unstable
in R?. Considering a normal variation W=gN, we see from Proposi-

1
tion 2.4 that  DJg(w) (W,M) = -f,g(g" + 3(3k?-p)g)dt.

The squared curvature of the figure eight can be written



k? (t) =acn? (rt+K,p) ; here we have translated the argument rt by
K, the complete elliptic integral of the first kind. For the
figure eight we know also that w=p (see Figure 1) so formulas

(0.1) and (0.2) give r’=z%, r U= (1= 31-5,). Setting u=rt+K and

h{u)=rg(t), the above integrand becomes h(u) *Lh{u), where L is
the Lamé operator given by Lh=h" + (4p*+1-6p?sn?u)h.

Note that the figure eight closes up in one period of
k, 1.e., after u changes by 4K. Thus, we can write

3
D’JB(w) (W, W) == %IK h(u) *Lh(u)du. Therefore, it suffices to

find a positive eigenvalue of the Lamé& operator L belonging to
an eigenfunction h which vanishes at endpoints and integrates to
zero (for then the corresponding g will satisfy g(1)=g(0)=0, as
well as the tangency condition Os(f; gdt)N=f;Wdt ).

Consider the function h(u)=cn(u)dn(u), where dn(u) is the
elliptic function dn{u)=Vi-p?sn’u. Then h(K)=h(3K) =0, and since
h(u+2K)=-h(u) we also know that h integrates to 0. Finally, using
the standard formulas -g‘-l-snu =cnu dnu , %—acnu ==gnu dnu , and

%Ednu =-p?’cnu snu , one readily obtains Lh=3p?h.
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In the next section we will be applying the minimax
principle to the restriction of JB to a certain submanifold of
QB consisting of curves having additional symmetry. We will need
to know that the multiply covered gecdesics w, are stable with respect
to the corresponding symmetric variations (even though, as seen
in the first example, they are unstable with respect to general
variations in Q.).

To be specific, let us take as our base point P a point on
the equator of S?, let g2p>0 be integers, let m=p+q, and let G
be the group generated by Re, the rotation about the z-axis by
an angle e=§%§=zﬁg. The submanifold of Qg which we wish to con~
sider can now be defined by §é={m¢nsz m(t+%)=Re(w(tn for all ter}
We note that the tangent space to QB at w is descibed by
T, 0= (WeT Q- W(t+l-15)=DRe'W(t), texr}

={(£T+gN) ¢ T Q¢ E(tsd)=£(t), glt+d)=g(t), ter).

Proposition 2.5 Let J; be the restriction of Jg to Q. Then wy
and w_, are strict relative minima for Jy. In fact the Hessian
of 38 is positive definite at w_ and w__, i.e., for r=p,-q and

P -a

- - 1
for all W in TmrﬂB, D JB(qr) (W,W)2 a2 <W,W>mr.

Proof: Since w. is already a critical point of the "extended"
functional JB' we can simply take the second variation formula
for J; and apply it to vectors W in Twrﬁé.

As in Bxample ‘1 we set W=fT+gN and consider the Fourier series for g(t),

the anly difference being that g(t) is now periodic with period i:

g(t)= 2 a_cos(2mmt] + b_sin(2mmt). This tine swbetitution gives
n=1

DT, (w) W =] (£')%at + g(zu)’(a;,ﬂ:;,) mrt-r)z L[ £+ g 2ae= Leww

Taylor's theorem now hqﬂJeS'uun:w&,isezst:hﬂ:]ncalnﬂnﬁnnxﬂmrﬁg. //
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3. The Minimax Argument

A simple description of the minimax principle begins with
a connected manifold M, a smooth function £:M +R, and two local
minima x,y¢M for £. Intuitively, one expects to obtain a third
critical point z¢M by considering the set A of all continuous
paths £:I+M Jjoining x to y and setting Minimax(f,A)=
Inf Sup £(£(t)) ; the number Minimax(f,A) should be a critical
sggu:egf f belonging to some unstable, i.e., "saddle type"
critical point ze¢M,

In this section we set f=J;, X=u, and y=u_g. It is not
hard to see that x and y are G-equivariantly homotopic among
balanced curves in S?, so it makes sense to let M be the compo-
nent of ﬁB containing x and y. We wish to see now that the above
picture is valid in our case.

To begin with, the conclusion that Minimax(f,A) is indeed
a critical value of £ is justified since £ satiéfies condition (C),
precisely the condition which enables one to extend to the infi-
nite dimensional setting the key lemma on deforming M downward
via the flow of ~Vf (see (8] for a general discussion of the
minimax principle). Actually, Theorem 1.7 asserts only that
condition (C) holds for J , not its restriction f. But observe
that Jg is always tangent to the submanifold Mc QB; thus, unlike
the restriction of J to Qg the restriction of Jg to M trivially
preserves condition (C). The same observation also implies that
the resulting critical point 2 of £ is in fact a critical point
of JB (one can also view "this as a simple case of the principle
of symmetric criticality [9]).

Still we have gained nothing unless we can show that this

minimax critical point is not x or y. For this it would suffice



of course to show that f(z)=Minimax(f,A) is greater than both
f(x) and f£(y). Such a statement would be obvious if we knew
that there existed neighborhoods O, Oy of x,y, respectively,
such that f(u)>f(x) for all ueaox and f(u)>f(y) for all ueaoy.
But this follows easily from Proposition 2.5; for given the
positive definiteness of D*f at x and y one can either appeal
to the Morse-Palais lemma (since x,y must be non-degenerate)

or one can argue directly from Taylor's theorem.

Theorem. 3.1 For each pair of integers gz2p>0 there exists a

non-circular closed elastica yp q
. ’

and G-equivariantly regularly homotopic to yp, the p-fold circu-

in R? which is G-symmetric

lar elastica, and G is the group generated by rotation about the
z axis by an angle 6=%§§. For distinct relatively prime pairs

p:q the vy are geometrically distinct nonplanar elastic curves

’
Proof: 5h: theorem follows essentially from the above observa-
tions together with the correspondence between critical points
of J,:0, +R and closed elastic curves in R’. However, one must
make the following additional observations. First, the minimax
critical point z is not itself a geodesic since x,y are the only
geodesics in M. Second, éhe‘only non~circular closed elastica in
the plane is a figure eight curve having a zz symmetry (see

Theorem 0.1), so z can be planar only in the case p=q. /17

Comparison with Theorem 0.1 shows that we have thus recove
all closed elastic curves in R? by our symmetrical minimax argu-
ment. The goal now is to show that all of these critical points
are of saddle type. In finite dimensions such a conclusion would
follow automatically from the minimax argument, but in the infin

dimensional case one has to be careful.
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It would suffice to show that these minimax critical
points are all non-degenerate in the sense of [7], but the
whole point is that we are trying to avoid a detailed analysis
of the apparently complicated Hessian for non-planar elastic
curves. Fortunately, the conclusion of Proposition 2.2 is
precisely the hypothesis of the splitting theorem of Gromoll
and Meyer for degenerate critical points [3] (we are indebted
to Tony Tromba for calling our attention to their theorem).

As preparation for quoting the splitting theorem we use
a local chart ¢ about our minimax critical point z to pull back
f to an open set Q in a Hilbert space: h=f°w-1:QCH->R. We might
as well assume that y takes z to the origin in H and that h(0)=0.
By the chain rule it follows that the Hessian of h at 0 has the
same kind of representation in terms of a compact operator (which
we will still call K).

Now set N=ker (Id+K), a finite dimensional subspace since
Id+K is Fredholm, and let E be the orthogonal complement of N.
Then the splitting theorem asserts the existence of an origin
preserving diffeomorphism ¢ of some neighborhood of the origin
of H, an orthogonal projection P:E+ E, and an origin preserving
smooth map j:N +E such that, for small (v,w)¢ ExN=H,

hed (v,w)= |Pv|? - [[(I@-P)v|]* + h (] (W) ,w).

We now assume z is a local minimum for f and seek a contra-
diction. Thus, we might as well assume that
he¢ is non-negative. Since we also have h(j(0),0)=0 it follows
that P is in our case just the identity, so hod= ||v|? +h(j(w) ,w).
From the classification theorem we know that z is an isolated

critical point of £, so 0 is an isolated critical point of hed.



Therefore, there exists an €>0 such that he®(v,w)>0 on the set
0.-{(0,0)}, where O_={(v,w)¢H: llvll s¢ , vl se }. In particular,
h{(j(w),w)>0 for |jw|l=€. But N is finite dimensional so compact-
ness implies the existence of § such that h(j(w),w)26>0. This
of course is precisely the condition (transferred back to the
original functional £) which would allow us to>obtain a still
higher crit.cal value for £ corresponding to a fourth critical
point in M -- a contradiction to the classification theoren.
Thus we have established

Theorem 3.2 The only relative minimum for JB:QB-vR is a prime

geodesic. Hence, the only stable closed elastica in R? is a

circle, once covered.

Corollary Let M be R? or R?’. Then there exists (up to simi-
larity) a unique stable closed elastica in each regular homotopy
class of immersed circles in M. | b
Proof: For M=R’ this is just the above theorem. Por M=R? one
combines Theorem 0.1 with Example 2.1 and the fact that multiply
covered figure eight elasticae are unstable even with respect to
planar variations (Theorem 3.2 and Example 2.3 give instability
for figure eights in R® only, but a special argument can be made

for the planar case). /

Finally, we remark that although the curve straightening flow itseld
does not realistically describe any physical process (as far as we know) ,
instability theorem does have physical consequences. It implies, in particu
that a knotted springy wire cammot rest in stable equilibrium without poini
of self-contact — an experimentally observable fact. This fact leads to a
rather curious "topologically constrained” variational prcblem; what actual
happens if one forms a knot in a piece of springy wire? Experiments yield
same beautiful curves with impressive symmetry (e.g., for the figure eight
knot or the Chinese button knot) .
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