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RIGID EMBEDDINGS OF SASAKIAN HYPERQUADRICS IN C"*!

VLADIMIR EZHOV, MARTIN KOLAR, AND GERD SCHMALZ

1. INTRODUCTION AND RESULTS

Chern-Moser type normal forms of embedded real hypersurfaces in C"*! have proved to
be highly efficient tools in the study of automorphisms that fix the reference point of the
normal form (see e.g. [3],]9], [8] [4]). In fact, any such automorphism becomes a projective
transformation in suitable Chern-Moser normal coordinates. However, the Chern-Moser
normal form does not provide any information about the automorphisms that move the
reference point. CR manifolds that possess such automorphisms are particularly interesting
and have been known as rigid CR manifolds in Complex Analysis and as Sasakian manifolds
in Differential Geometry. We will be using the following non-standard definition of a
Sasakian manifold, which is equivalent to the standard one (see e.g. [2]).

Definition 1. A 2n+ 1-dimensional CR manifold M together with a vector field x is called
Sasakian manifold if

(i) x is transversal to the CR distribution TCEM
(ii) x is an infinitesimal CR automorphism of M, i.e. [x,T''M] C T'OM, where
TUOM is the i-eigenspace of the CR structure J in the complezification of TCRM.

In Section 2 we will show the following canonical embedding theorem.

Theorem 1. Let M be a Levi non-degenerate real-analytic Sasakian manifold of dimension
2n+ 1 with an infinitesimal CR automorphism x. Then there exists a local embedding into
C"*! with coordinates (z € C",w € C) such that x = 2Re% and M has the defining
equation

(1) v=(z2)+ Y Fulz3)

k,0>2

where (z, z) is the Levi form of M at the reference point 0 and Fyy are polynomials of degree
kin z and £ in Z.

Any two canonical coordinates of M at a fixed reference point 0 are related with each
other by a linear coordinate change z — Cz, w — pw, where C' is a complex invertible
matriz and p € R such that (Cz,Cz) = p(z, z).
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2 VLADIMIR EZHOV, MARTIN KOLAR, AND GERD SCHMALZ

We will refer to the defining equation (1) of a Sasakian manifold in canonical coordinates
as a normal form. Notice that a normal form equation does not depend on the variable
u = Rew. This property has been used as the definition of the class of rigid hypersurfaces
[1].

CR manifolds that admit more than one Sasakian structure may have different canonical
defining equations. While the only Chern-Moser normal form of a CR hyperquadric is the
standard equation Im w = (z, z), its canonical equations as Sasakian manifolds can be very
different from its standard algebraic form and rather complicated, similar to the canonical
forms of spherical tube hypersurfaces in [7]. We will call a Sasakian manifold a rigid
hyperquadric if it is in normal form and locally biholomorphically equivalent to a standard
hyperquadric.

In Section 4 we give an upper bound of the parameter space of canonical equations of
rigid hyperquadrics. More precisely, we show, that for any choice of a hermitian n x n-
matrix H, a vector m € C" and a real number 7 there is a most one canonical equation of a
rigid hyperquadric of the form (1). This is based on a modified Chern-Moser normalisation
procedure.

Generalising a construction by Stanton [10] in C? to higher dimensions we provide in
Section 5 a family of explicit rigid hyperquadrics that depends on the correct amount of
parameters. However, as in the C? case [5, 6], this family is not complete. This has been
shown in Section 6.

In Section 7 we prove our main result, which uses the following notation of trace operator.

If

(z,2) = 2TAz

for some non-degenerate hermitian matrix A, then the corresponding trace operator is

defined as ’
(0 (0
= () (&)

Our main result is the following

Theorem 2. For any triple of parameters (H,m,T), where H is a hermitian matriz,
m € C" and 7 € R, there exists a unique canonical defining equation

v=(z,2)+ Z Fr(z,%),
k,£>2
of the rigid hyperquadric v = (z, z), such that
tr Fao = (Hz, 2), tr? Fyy = (z,m), tr® Fyg = 7.
Thus, the functions tr Fyg, tr? F3o and tr® F33 form an adequate parameter set for rigid

hyperquadrics.

Acknowledgements. The authors wish to thank Max-Planck-Institut fir Mathematik
Bonn, where part of this research was conducted, for its hospitality and support.
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2. NORMAL FORM OF SASAKIAN HYPERSURFACES
In this section we prove Theorem 1.

Proof. Let M be a 2n + 1-dimensional Sasakian manifold with infinitesimal automor-
phism x. Assume that (i, ..., ¢, span TH9M on some neighbourhood U of a fixed reference
point p. Then the vector fields (1, ..., (., x —10; are closed under commutator brackets on
M = U xR, and therefore define the T bundle of a complex structure there. M is embed-
ded into M with defining equation t = 0 and, by construction, T40M = T1’0M|MH(C®TM.

Let (z,w) be coordinates on M such that the infinitesimal automorphism x = 2 Re 8% =
a% and p = 0. Using transversality of x and the implicit mapping theorem the defining
equation can be written as

v = d)(za Z, U),
where, in fact ¢, does not depend on w because x is an infinitesimal automorphism. The
normal form can now be achieved in two steps. Let ¢g(z) = ¢|z—0 where z and z are
considered as independent variables in the power series of ¢. Then the coordinate transform

w—w—2igy

eliminates the terms (0, k) terms and (k,0) terms. Now,

v:<z,z>+2¢ke

where ¢y is a polynomial of bidegree (k,¢).
In order to eliminate the terms of bidegree (k,1) and (1, k) with £ > 1 we represent

n

9¢ i}

Zg zj = (f(2),2)
i=1 "7

where f(z) is a holomorphic vector function. The coordinate change z — f(z) removes the

terms in question.

For uniqueness, any coordinate change that preserves the infinitesimal automorphism
% has the form z — f(z) and w — pw + g(z), where p # 0. Vanishing of the (k,0) terms
determines g. Vanishing of the (k,1) terms (k > 1) determines the terms of order > 2 in
f. Therefore the normalisation mapping is uniquely determined up to linear coordinate
change. O

3. FORMALISM FOR TRACE COMPUTATIONS

In this section we introduce a formalism for the computation of traces which will be used
in the following sections.
By Df we denote the holomorphic gradient of f with respect to the hermitian form
<Za C> = Akﬂ’%% Le.
af .. Of
— 2 i k ki )
<C7 Df> - 32’3€ or Df - )‘ 82]7

where (A*7) is the inverse matrix of (\y;).
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Lemma 1. Let f,g be homogeneous forms. Then
trfg = (tr f)g+ ftrg + (Df, Dg) + (Dg, D).
In particular, if f has bidegree (p,q) then
tr f(z,2) = (tr f)(z,2) + (n+p+q)f.

Proof. Without loss of generality we assume that (z,z) = Y ¢;j[27|? is diagonal with
c;j = 1. We have

O*fg  O*f of 9g  0g Of d%g
021071 021027 " 021 051 " 020 07 | 02107

Summing up q% for j from 1 to n and using

of dg " dg Of ~
Z:: 19,7 95 (Dg,Df,) and ZCJE?J&J (Df,Dg)

yields the first formula. For the second formula take g = (z, z) and use

tr{z,z) =n

and
0
(D9 D) =Y s e = 32 50 =y,
hence
_ - 0
(D3, D)+ (D1 Dg) =Y 2+ Y L = ar O

Corollary 1. If A, B,C are hermitian matrices then

tr(Az, z)(Bz,z) =tr A(Bz, z) + tr B(Az, z) + (Az, Bz) + (Bz, Az)

tr?(Az, 2)(Bz, z) =2(tr Atr B + tr(AB))(Cz, 2) + 2(tr Atr C + tr(AC))(Bz, 2)+
+2(tr Btr C + tr(BC))(Az, z) + 2tr A(Bz,Cz) 4+ 2tr A(Cz, Bz)+
+2tr B(Az,Cz) 4+ 2tr B(Cz, Az) + 2tr C(Az, Bz) + 2tr C(Bz, Az)+
+ (BAz,Cz) 4+ (Cz,BAz) + (ABz,Cz) + (Cz, ABz)+
+(CAz,Bz) + (Bz,CAz) + (CBz, Az) + (Az, CBAz)+
+ (ACz,Bz) 4+ (Bz, ACz) + (BCz, Az) + (Az, BC%)

13(Az, 2)(Bz, 2)(Cz, 2) =6(tr Atr Btr C + tr ABtr C + tr AC'tr B 4 tr BC'tr A + 2tr ABC).
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4. MODIFIED CHERN-MOSER NORMALISATION

In this section we prove that for each triple (H,m,7) from Theorem 2 there is at most
one rigid hyperquadric.
We apply a modified Chern-Moser normalisation procedure to the hyperquadric V =
(Z,Z) to obtain a hypersurface of the form
v = <Z, Z> + CQQ(Z,E) + Fgg(z,g) + Fgg(z,f) + Fgg(Z,E) + -

For given tr Fyg, tr? Fs, tr® F33 such normalisation mapping is uniquely determined up to
automorphisms of the hyperquadric V = (Z,Z). We construct the inverse mapping as a
composition of two:

o
Z =p(w*) + 2" + ZT](Z*,w*)
j=2

W = q(w*) + 2129]'(2*, w™)
j=1

where Tj(2*,w*) and g;(z*, w*) are polynomials of degree j in z*.
The second mapping has the form
(2) 7= W) R (w) 2
w = h(w"),
where a(w) is a matrix-valued function with «(0) = 0, which takes hermitian values for

real w and h is a scalar function, which takes real values for real w and satisfying h(0) = 0,
R'(0) > 0.

Lemma 2. If we assume

(3) ¢ =1+2i(p,p)
then the first mapping has the form

Z*

1—2i(z1, p'(w*))
21<z*,p(u7*)_>
1 —2i(z*, p/(w*))

where p is a C"-valued function with p(0) = 0 and will be determined later.

Z =p(w*) +

W =q(w") +

Condition (3) has been imposed for convenience in the computation and will be removed
in the next step.

Proof. First we show that any mapping that does not produce terms of bidegree (k,0)
(k>0)and (k,1) (k > 1) if plugged into the standard hyperquadric equation has the form
of the first mapping:

The geometric condition that the line z* = 0,v* = 0 belongs to the intermediate surface
is equivalent to the condition that the resulting equation has no F{j, term. The functions
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(p(u*), g(u*)) define a parametrised curve on the standard hyperquadric, that is Im g(u*) =
(p(u*), p(u”)).
Now we find the condition for F}jy = 0 for £ > 1 and F}; = 0 for k > 2 from

q—q — * *
T T2 e) Y Tip+ 2+ )Y ) =0.
VR =(2%2% )3 s
The condition F}, = 0 implies
g1=(z,p(u)),  gj(u") = (T;(u"),p(u’))
and Fjp; = 0 implies
igj_1(2",2%) — (T}, 2") + {{Tj—1,p') (2", ") = (Tj_1,p)(z", 2") = 0.
It follows
T; = 2i<Tj*17p/>Z*'
Let 7; be the scalar function defined by
Tj = 752",
then
7 = 2i(2", p') 11
Hence,
11]' = (2i<2’*,p,>)]_1z and gj - (21<Z*7p/>)j_1<2*7p>7
which yields the first mapping. O

In order to determine the second mapping we need to compute the terms F3,, Fi3 and
F3; resulting from the first mapping. Notice that, owing to (3), F}| = (%, 2), as required.
Using (3) again we have

1 q//

Fip == 52 (i(,2)% + o= T (—ile, 20 + (I, To)+
+ (5020 + (0, 51z 2)) + iz, 2),9'i(2,2)

=2(p/,p') (2, 2)* + 42,9 ) (1, 2) (2, 2)
tr Fiy =(4n + 8) (', p'){(z, 2) + (2,0 )1, 2))
Similarly,

F3 =—gi(—ic) — g2’1’(_ i(2,2))" + (T2, T3) + (2, T3(i(2, 2)))

+ (71 Fp, ) + (S (0(2,2))%,2)

=(=2(p", 2) + 4i(p, 2) (¥, ) (2, 2)?
tr? Fyy = — 4(n+ 1)(n + 2)((p", 2) — 2i(p', 2)(¢', ')
Finally,
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S 2 - )

+8(p,p') (2, 2)° + 3200, ) (2,0 ) (', 2) (2, 2)° + 16(z, )2 (1, 2)* (2, 2)
tr’ Fiy =4i(n +2)(n+ Dn(p",p) — @, p")) +48(n + 2)(n® + 5n + 8)(p, p')*.

*
F33

Lemma 3. The functions o, p, h of the second mapping (2) are determined by the ODEs

!/

(4) o' == ) =20 e H e
(5)  p =21 ) e J(rhll))?i 7 o
© =gl BB LRI Gy i) —
_ 6(7@;(‘; iTll; 4) Wy 2
with initial conditions p(0) = 0, h(0) =0, A’ (0) > 0. Here H = tr Fyy, H = H — 2n+2 tr H,

m = tr? Fzg, 7 = tr° Fy3 and Fa, Fos, F33 are the corresponding terms in the resulting
equation.

Proof. Plugging the second mapping into the final equation gives an identity the (2, 2),
(2,3) and (3,3) of which yields the ODEs (4)-(6). We start with the (2,2) component.

o — R {(I—2a"v)z,z2) — (W)*Fa(el®z,e71%2) 4 - .. ’v:(z,z)-ﬁ-FQ*Q =0.

Notice that the term Fbo of a rigid hyperquadric must be a pure trace term of the form
Fy = (Az, z)(z, z), hence

1

1
Fyy = H - tr H (z, z)* H
22 = +2< z Z><27Z> 2(n+1)(n+2) r <Z,Z> n+2< z Z><Z,Z>
where (Hz, z) = tr Fyp and H = H — 2n+2 tr H.
It follows

R F}y 4 2(c/ 2, 2) (2, 2)h — (W)?Fa(e'® z,e7 1% 2
tr Fiy + 2tr(a/z, 2)(z,2) — W/ tr Fop(e'® 2,719 2
A(n+2)((', ) (2, 2) + (P, 2) (2, P))+
+2(tr o)z, 2) +2(n 4+ 2)('2,2) — (e 'Y Hel " 2,2)h' = 0
hl

tra/ = — 2)(p, p’ —tr H.
vl = (2008 + gy
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This yields

!/

(2,2) = =0/, p)(z,2) — 2(z, ) (P, 2) + (e 'Y Hel 2, 2)

2n + 4
/
F— N — 2 Ny _iaﬁia.
o =—({p,p)—20.p)p + 5 e e
Considering the (2,3) component of the identity
Wo— Nz z) — Fos(e®z,e 1 2)(W)? + ... =0
gives
h/F2*3 _ F23<eiaz’efia2)(h/)5/2 -0
—(e 1 m, 2) (WP = A(n+ 1)(n +2)((", 2) — 2i(p/, 2) (9, p)) = 0
(h/>3/2 —i 1 siol NN
ia _9 -0
M+ Dtz ® P - 2EPp
and hence

(h/)3/2
e
4n+1)(n+2)
The ODE (6) results from the (3,3) component of the identity. Let H = e~ '® Hel®,
Notice that tr H = tr H.

1/ —ia

P’ =21, p))p —

6n(n+1)(n+ 2)

W trd Fiy — 5 B 420 tr3((o 2, 2) Fiy) — 20 t13 (2, 2)2(z, 2)
"\2 1 2 . .
_6n(n + 1)(TL + 2) (zh)/ + 671(71 + 2)(” + )h/// + 4(h/)2 tI‘3 Fgg(ela 2, el 2)(0/2, Z> _ 7_(h/)3 =0

(h”)z 9 r] 7 /
o7 + (m((trH)2 + trH2) —7)(h )3

+4i(n +2)(n+ Dn((p",p') — ¢/, p")H +12(n + 2)(n* + 5n — 4)(p, p')*h' = 0
Using combinations with automorphisms of the standard hyperquadric we may assume
that «(0) = 0, #'(0) = 1, p/(0) = 0, A”(0) = 0. Tt follows that, for prescribed constant
tr Fho, tr2 Fhs, tr® Fi3, the system of ODE has a unique solution o, p,h. O

2n(n +1)(n + 2)h" —6n(n + 1)(n + 2)

We conclude, that rigid hyperquadrics can be written in modified Chern-Moser normal
form with prescribed tr Fao, tr? Fas, tr® F33. However, this does not guarantee that the
resulting hypersurface has to be rigid.

5. STANTON’S MAPPING IN HIGHER DIMENSIONS

Let M be a Saskian hypersurface with infinitesimal automorphism % in normal form

that is locally equivalent to the standard Levi non-degenerate quadric

V = (2, 2).
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Under the holomorphic equivalence mapping the infinitesimal automorphism of M relates
to an infinitesimal automorphisms of the quadric. The relevant infinitesimal automor-
phisms of the quadric are well-known and form a n? 4+ 4n + 2-parametric family consisting
of

)
X = (b+10Z +aW +2i(Z,a)Z + pZW)
)
+ (14 2i(Z,b) + 2rW + 2i(Z, )W + pW2)W,

where a,b € C", r,p € R and 6 is a hermitian matrix.
The relation between the infinitesimal automorphisms yields the ODE system

o4
(7) o = b+10Z +aW + 2i(Z,a)Z + pZW
ow . . 2

The normal form conditions on M impose the initial conditions Z(z,0) = #@b)’ W(z,0) =
0. Though this system is equivalent to a linear system and therefore can be explicitly solved,
the solution depends on the Jordan normal form of a rather general (n+1) x (n+1)-matrix.
Instead we follow Stanton’s approach and start with the particular case a = p = 0, that is,
when system (7) has linear and triangular form

0z
8 — =b+XZ
(8) 5 0T
ow
subject to the initial conditions Z(z,0) = T W(z,0) =0, where X =rI+i6, and 0 is

a hermitian matrix. One can check by direct computation that the solution of the system
(8) is

Z(z,w) =X"1(eXv —1)b+ E}Xi
T 1—2i(z,b)
W () =(1 — 25X —10.5) =L 4 932X (T — oK) (2 4 X—1p).p)
’ ’ 2r 1—2i(z,b) ’
2rw 1 2rw -1
=° 21<[e - (ZTX)_I(e%weX“’)} X~1p, b>
2r 2r
2ie2rw _ _
e X—l I — —Xw
1_21<Z,b>< ( € )Z,b),

which we call Stanton mapping.
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Proposition 1. Under the Stanton mapping the polynomials Fao, Fos and F33 of the re-
sulting defining equation of a rigid hyperquadric take the form

Foy =2(b,b) (2, 2)? + 4(b, 2){2,b) (2, 2) — 2(0z, 2)(z, 2)
Foz =2((r] —10)b, 2)(z, 2)2 4+ 4i(b,b) (b, 2)(z, z)*
Fys (2, z>3[§r2 _ gwb, b) + 8(b, b)?]

+ 2(z,2)[(622, z) — 6(02, 2) (b, b) — 2(Ab, 2)(2,b) — 2(02,b) (b, z) + 16(z, b) (b, z) (b, b)]
+ 4(z,2)[(02, 2)% — 4(02, 2) (2, b) (b, 2) + 4(z, b)*(b, 2)?]

Proof. Representing the Stanton mapping as power series

where Zp and W are polynomials of degree k in z, we compute the resulting terms Fbs,
F23, F33. We have

(9)

1 1 1 — . .
Foy =v*((Zg, Zg) — (520, 20) = (Zo. 520) + ;(Wg = W) +v(i{Z1, 21) = (21, 21)) + (Z2, Z2)
1 — . .
=v*((Zy, Z) + (W = W) + (21, 20) = (20, Z1))v + (23, Za)

1 1 1 — F: —
Fys =0*((Z5, 20) ~ (520, Z0) = (Zo, 5 20) — 12W7) + 57 (2125, 1) — W)

41
+v(i(Z], Z2) — (21, Z3)) + (Z2, Z3)
1 1 — F: —
=v*((Zy, Z1) — <§Z”, Zy) — *.W{') +0(i(Z], Z2) — (21, Z3)) + (Za, Z3) + %(QKZ& Z1) — W)
UB . 1! 4 n 1ﬁ 1}2 1! 4 4 1
F33 25(1<ZO7Zo> (Zy, Zy) + W +5Wo ) — 5(<Zl721> —2(21,21) + (71, Z7))
) ) 1 .
+iv((Zy, Za) — (Z2, Zy)) + (Z3, Z3) + 1 Fas((Z}, Z1) — (21, Z1)) — F23(§W1' +i(Z1, Zy))

’UFQQ

1—: S
— Fea(GW] = (%0, Z1)) + (Wo' = Wg) + 4i(Zy, Z))

where ZJ’- and WJ’ denote the derivative with respect to w of the component of Z(z,w),
respectively of W (z,w) of degree j in z evaluated at 0.
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We have the Maclaurin polynomials

1 1
Zo =bw + 5 Xbw? + < X7bu’ + -
1
Zy =z 4+ Xwz + §X2w2z+---
Zy =21(z,b)(z + Xzw + - )
Z3 = —4{z, D)%z + - --

2
Wo =(1 — 21X 1, b))(w + rw? + Srw’ + )

3
. 1. _
+2i<[w+(2r_%X)wz-l-(gXQ—7"X+27“2)w3+...]X—1b’b>
' 2 (22 1 . 5
=w + (r +i(b, b))w +[§r +§((3r+10)b,b>]w 4

Wy =2i((w + (2r — %X)wQ +-++)z,b)

=2i((w + (r + %X)w2+-~)z,b>
=2i(z,b)w +i((3r +16X))z, b)w? + - --

Hence, after substituting v = (z, z), we obtain

11

Fsy =(b, b}vQ + (i(X2z,2) —i(z, X2))v +4(z,b) (b, z)v — i,(21<X_1b, b) + (b, X_1b>)(rv2)

21
- (((%X + )X b, b) + (b, (%X +7) X 71)) (—v?)

=2(b, b) (2, 2)* 4+ 4(b, 2)(2,b) (2, z) — 2(02, 2) (2, 2)
Fos =((b, X z) — <%Xb, N+ 200, 2) (X 2z, 2) — (2, X2))v — 8i(b, 2)%(2,b) (2, 2)

+ (b, (r + %X)z>v2 + 2i(b, 2)(2(b, b)(z, z>2 +4(b, 2)(2,b)(z,z) — 2(0z, 2)(z, 2))

(r—10)b, 2)(z,2)% + 4i(b,b) (b, 2) (2, 2)°
2, (r —i0)b)(z, 2)? — 4i(b,b)(z, b) (2, z)?

=2

(
Fyy =2(

Finally, we compute the polynomial Fjs3

3 1 1— 2
Fi3 :%(i(Xb, b) = (b, Xb) + W + W) — %((XQz, 2 — 2X 2, X2) + (2, X22))
1 .
+ 11}(<Zé, Z2> — <ZQ, Zé>) + <Z37 Z3> — 2F22<¢92, Z> — F23(§W1/ + 1<Z, b>)
1— UFQQ

(W — WG+ 4i(b,b))

— F32(§W1, — 1<b, Z>) +

i
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Therefore,

2 4
F33 :U3[§7"2 - §<9b, b) + 8(b, b)?]

+ 20%[(0%2, 2) — 6(0z, 2) (b, b) — 2(0b, 2)(z,b) — 2(0z,b) (b, z) + 16(z, b) (b, 2) (b, b)]
+ 4v[(02, 2)% — 40z, 2)(2,b) (b, 2) + 4(2,b)*(b,2)?] O

It is easy to compute the traces of Fyo and Fbs.
(10)  trFa = (4(n+2)(b,b) —2trl)(z,2z) +4(n + 2)(z,b)(b, z) — 2(n + 2)(0z, z)
tr® Fyo = 4(n +2)(n + 1)(b,b) — 4(n + 1) tr
tr? Foz = 4(n 4 1)(n + 2)((Xb, 2) + 2i(b, b) (b, 2))

It follows from the Corollary 1 that

tr(fz, z)2 = 2tr0(0z, z) + 2(0z, 02)
tr(z, 2)% = 2(n + 1)(z, 2),
tr?(z,2)? = 2(n + 1)n,
tr®(2,2)% = 6(n + 2)(n + 1)n,
and, therefore,
3 312 2 2, 4 2
trd o2 - <0b b +8(b,5)%] = 6(n +2)(n + n[zr? — Z(6b,8) +8(b, b))
tr3 202(0%2, 2) = 12(n + 2)(n + 1) tr 62
tr3(—=120%(0z, 2) (b, b)) = —72(n + 2)(n + 1) tr (b, b)
tr3 4v?(— (0D, 2) (z,b) — (0z,b)(b, 2)) = —48(n + 2)(n + 1)(6b, b)
tr° 320% (2, b) (b, 2) (b, b) = 192(nn + 1)(n + 2) (b, )?
tr® 4v(0z, 2)? = 24(n + 2)((tr 0)* + tr 62)

)
r*(—16v(0z, 2)(z, b) (b, 2))
>2

—96(n+ 2)(tr (b, b) + (0b, b))
tr3 16v(z, b)2(b, (

92(n + 2) (b, b)2.

Thus for tr3 Fy3 we find
(11)
tr® Fi3 = 4(n+2)(n+ 1)nr? —8(n+2) (n® + Tn + 18) (6b,b) — 24(n +2)(3n+7) tr (b, b)
+12(n + 2)(n + 3) tr 6% + 24(n + 2)(tr ) + 48(n + 2) (n® + 5n + 8) (b, b)*.
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6. INCOMPLETENESS OF THE FAMILY OF GENERALISED STANTON SURFACES.

By plugging the Stanton mapping into the standard quadric equation we find a family
of rigid hyperquadrics, which we will call generalised Stanton hypersurfaces.

Proposition 2. The defining equations of the generalised Stanton hypersurfaces are

sin 2rv 1= e 200, —20u 1o
5 (1—2(0b, X1 X1b)) = \1<—21<zb>>\2 (€20 — cos 2rv)b, X "L X 1p)
N <(e—29v _ e2irv)z’ X—1b> <X_1b, (6—291) _ e2irv)z>
1—2i(z,b) 1+ 2i(b, z) ’

where b € C", r € R and 0 is a hermitian n X n-matriz, and X =r +1i6.

Proof. The terms that contain (z,z) (on the RHS) result from
<6729v 2, Z>

<e(r+i0)(u+iv) 2, e(r+i€)(u+iv) Z> o
= -7/
|1 —2i(z,b)|?

[1—2i(z,b)|?

The linear terms in z without Z (on the LHS) come from
(eXw 2, X1 (eX¥ —1)b)

e2r(u+iv) . <
XY T —e Xy, ) —
i d—eTnh 1-2i(z,b)
Dropping the common denominator 1 — 2i(z, b) we find the numerator
eQru<(e2irv . —Tu ei@(quiv))Z’ X71b> o eQru<(67201) _eTu ei@(u+iv))2’ X71b>
_ leu((GZirv o 67291})2, X71b>.

The Z component is the complex conjugate of the above.
The terms with no z (on the LHS) are

2rw -1 2rw -1
- < [e —(2r — X) M - eXw)] X1, b> -

eQrw -1 B e
2i2r 2i2r 2r
2rw __
<b, [e o _ (2’/“ - X)_l(e%ﬂw _eXw):| X—1b> _ <X_1(8Xw —I)b,X‘l(eX“’ —I)b)
= S (L1 ) 4 (o - X) e — ) X 0) -
- 2r 2r 7 ’
©_1)b, X 1X 1)

2rw _1b7 X_1b>+<b, (27“ B X)_1(62rw . eXw)X—1b>_<(eXw _I)(eX

<e
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: s 2rw -1 _ : 27w -1 B
— eZT‘u Sln2T’U _ <(7«- 10)(6 )b,X_lX_1b> _ <(T+10)(e >b,X_1X_1b>
2r 2r 2r

+ <(62’r‘w _ exw)b,X_lX_1b> + <(62T’lf} _ eXw)b,X_lX_lb>

— (XY =) (eX? —1)b, X 1 X 1b)

_ sin 2rv (b X1 1p) — o2 (r —1i6)(cos2rv + isin 2rv) b XX
2r 2r
_ 2 < (r+10)(cos 227“0 —isin 2rv)b7X_1X_1b>
r

+ e (21 X1 1p) — (eXWh, X~1X1p) — o2 (e 21T p X 1K 1h)
B <e)‘<w b,X‘lX'_lb> _eru(em20vp x 1% —1p) 4 (eXwp X 1K 1p)
(b, XTIX 1) — (b, X1 X 1)
= sir;irv — e?™ cos 2rv (b, X_lX_lb> —e?
+ e (21 b, XX ) — (X b, X TIX ) + e (e 2 b, XTLX D)
B <e)’<@ b, X*1X71b> _erulem20vp x1X1p) 4 (X v p, X LX)

oy SIN 2TV

(0b, X 1 X'b)

+ (b, X1X 1)
oy SIN 27V

=e o (1 — (60, X_IX_1b>) + e2"%((cos 2rv — e~ 2V b, X "1 X " 1p)

0

Although this family has the correct dimension, already in the special case F53 = 0 one

can see that it does not provide all normal forms of rigid hyperquadrics. In this case the
formula simplifies to

sin 2rv

_ [a—20v
o = (e z,2).
It follows from (10) and (11) with b = 0 that
Fy =21(0z,2)(z, 2)
tr Fog = 2itré(z, z) + 2i(n + 2)(0z, z)

2
Fyg = 5r2(z,2)° — 4(02,2)° (z,2) + 2(6°7, 2)(2, )

tr3 F33 = 4(n 4 2)(n + Dnr? + 12(n + 2)(n + 3) tr 62 + 24(n + 2)(tr 6)%
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From these equations 6 and 2 can be determined, but 72 becomes negative if
tr® Fy3 — 12(n + 2)[(n + 3) tr 6% — 2(tr 0)* < 0.
This problem can be fixed by allowing r? to be negative, i.e. r being purely imaginary.
The resulting rigid hyperquadrics are

sinh 2rv
2r

The theorem below shows that this phenomenon also occurs for b # 0. However it can’t
be fixed by the imaginary r trick.

= (e7 2 2, 2).

Proposition 3. For any parameter m € C™ there exists a critical value 7 such that for
the triple (0, m,T) with T < 7* the rigid hyperquadric is not a generalised Stanton surfaces.

Proof. Since tr Fyy = 0, equation (10) yields
(12) 0 =(b,b) + 2(-, b)b,
tr0 =(n+2)(b,b).

Assume that (m,m) > 0 and set e = ) g (The cases of (m, m) being negative or
zero can be handled by a similar argument.)

It follows from (10) that
<€, Z> = (T - Z<b7 b>)<b7 Z>
Then b is defined implicitly by

e
b= T
Hence,
(e, €)
1 bb) = ——"F"—= .
(13) (b,0) r2+(b,b>2>0

We also obtain from (13)

From

we conclude (b, b) < (e, e)!/3, and therefore
0 < (b,b) < (e, e)'/3.
From (11) and (12) we have

tr3 F33 .
4n+2)(n+1)n

12— 3(b,b)%> > —3(b,b)> > —3(e, e)?/>.



16 VLADIMIR EZHOV, MARTIN KOLAR, AND GERD SCHMALZ
Thus we have obtained a set of parameters which are not covered, namely
tr Foo =0

tr? Fo3 = (m, z), such that (m,m) >0
tr3 F33 = 4C(7‘L + 2)(7‘L + l)n

where C' < —3(e,e)?/? 0.

7. THE GOOD PARAMETERS. PROOF OF THEOREM 2

Instead of solving the general ODE system (7), we consider the more special system,
involving only parameters 6, a, p:

o0z
5, = 10Z+aW +2i(Z,a)Z + pZW
oW

5 = 1+2i(Z, a)W + pW?2,

subject to Z(z,0) = z and W (z,0) = 0, with 6 being a hermitian n x n matrix, a € C",
p € R. The lower order jets of the solution are

2 .3 2
Z(z,w) = %aqL%0a+z+iw9z+%(p702)2+2iw<z,a>z+---
W(z,w) =w+ §w3+i<z,a>w2 + -

The initial conditions make sure that the resulting defining equation is in normal form.
We use the formulae (9) to determine the terms Fho, Fa3 and Fis:

Fyy = —2(0z,2)(z, 2)
tr Fog = —2(tr 0(z,2) + (n + 2)(0z, 2))
tr? Fyp = —4(n 4+ 1)tré
Fo3 = —2(a, 2)(z, z)?
tr? Fos = —4(n + 2)(n+ 1)(a, 2)

2
Fs3 = _§p<za Z>3 + 4<92’ Z>2<Za Z> + 2<92Z) Z><Za Z>2
tr® F33 = —4(n + 2)(n + Dnp + 12(n + 2)(n + 3) tr 6% 4 24(n + 2)(tr 6)*.



RIGID EMBEDDINGS OF SASAKIAN HYPERQUADRICS IN Cr+! 17

Solving these equations for 6, a, p yields

tr2 Fyy

(02, 2) :—2n+4trF22+4(n+1)(n+2)<z,z>
0 — _ o n tr H
244 4An+1)(n+2)
o tI‘2F23
@2 =~ i BT
T it 2t )
_ tr’ Fys 3(n+3) 6
p——4(n+2)(n+1)n+n(n+l) tr92+m(tr0)2
— T n 3(n+3) G H? 3(n +4)(tr H)?
T i+t dn(n+ Dn+22 6n(n+12(n 1 2)°

which shows that for each triple (tr Fag, tr? Fog, tr3 F33) = ((Hz, 2), (m, 2),7) there exists
a set of parameters (6,a,p). O
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