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NORMAL AFFINE SURFACES PROPERLY DOMINATED BY C x C*

Introduction. In 1980, Nishino—Suzuki [11] had a beautiful theorem or a cluster
set of a holomorphic mapping of a punctured disc in € into a compact non—singular

surface, and Suzuki [12] applied it to the study of complex analytic compactifications of
* *
ex¢C ,(C)2.

Later, the author applied it to the linearization of a polynomial automorphism of
€2 of finite order ([2]) and the determination of a normal affine surface properly domi-
nated by ¢ ([4]), (see also Miyanishi [8], Gurjar—Shastri [5]). An affine variety X
is said to be properly dominated by an affine variety V if there is a proper morphism
f:V—X of V onto X.

Now, in this paper, we will apply it to the determination of a normal affine surface

*
properly dominated by € x € . Qur main result is the following

Theorem. Let X be a normal affine surface properly dominated by € x C* .
Then, (i) X~ C 20t €xC if X is non—singular, (ii) X~ C 2/Ga for a small finite
subgroup Ga. of GL(2;C) , or X~ Cx UZ*/Gb for a small finite subgroup Gb of
Aut(C x C*) with exactly two fixed points if X is singular.

Acknowledgement. This paper was prepared while the author stays at the Max—
Planck—Intitut fiir Mathematik in Bonn. He is grateful to the institute, especially, Pro-

fessor Dr. F. Hirzebruch for hospitality and encouragement.



Notation
b,(M)

x (M)

a(S) =
PLS) =
P_(S) =
")
()

[D]

(e3e}

i=th Betti number of M

the Euler number of M

a canonical divisor on a normal Gorenstein surface S
mmnk&%)

dim BX(S, 4)

dim B'(S,0(mKy)

the logarithmic Kodaira dimension of an open surface X

the first Chern class of a line bundle ¢

the line bundle defined by a divisor D

a non-singular rational curve with the self~intersection number m

transversal (resp. tangential) intersection of two non—singular

rational curves corresponding to the vertices
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Aut(di2) : the group of algebraic automorphisms of ¢?

Aut(C x C*): the group of algebraic automorphisms of € x ¢
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§ 1. Theory of cluster sets of holomorphic mappings

n
1. Let S be a normal Gorenstein projective algebraic surfaceand C= U C, (C;
i=1

is irreducible) be an algebraic curve in S with Sing S N C = ¢ . Assume that

n
(i) any singular pointof C= U C, is an ordinary double point,
i=1
(ii)  there is no non-singular rational irreducible component of C with the
self—intersection number —1 which has at most two intersection points

with other components of C.
We call such a pair (S,C) the minimal normal pair.
Let (S,C) be a minimal normal pair. Then we have

Lemma 1.1 (Nishino—Suzuki [11]). Assume that for each C, , there is a holomor-
* *
phic mapping ¢,:4 — S\C of a punctured disc o :={z€C;0< |z| <1} into
S\C such that

C,Co08)CC,

— * —
where ,(0;S)= N ¢.(a), & ={z€C0< |z| <p}, ¢,(a) is the closure of
p>0 1P "p i‘%p

n
U C, must be one of the type from (a) to () in
i=1

Table I below, in which, for types (3) (r22), (1), (), (§), (¢), each irreducible

¢i(A;) in S. Then the curve C =
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component of C is a non—singular rational curve and assigned Figures (1 —5) represent

the dual graph T'(C) of C.
2. Since S is Gorenstein, one can define a canonical divisor KS on S.

Then we have

n
Proposition 1.2. Assume that C= U Ci is one of the types (7), (7)., (6,
i=1

(€) in the Table I. If K is written as follow:

n

then the dual graph T(C) is one of the type from F. 1 to F. 15 in Table II, in which,
adjacent to the vertex representing the irreducible component Ci of C, we write the

order ’\i of K¢ on Ci .
For the proof, we need the following
Lemma 1.3 (Lemma 6 in Suzuki [12]).

Let Al, LA m be irreducible non—singular rational curves on a smooth projective
m
U

algebraic surface M such that A := Ai is simply connected. If there is a pair
1

=
ij(1<ij<m) such that (A%)>0, (A?) 20 and ANAj=¢ , then
(A?) = (A?) = 0, and there is only one Ak(k #i,j) which intersects Ai U Aj . Further,
for this A, , wehave (A, - A)) = (Aj "A)=v21.



Table 1.

Name of type Explication of C

(a) a(n) an irreducible non—singular elliptic curve with
the self-intersection number (02) =n20

(B) B(n) an irreducible rational curve with only ong

ordinary double point and (02) =n>0

(8) Amy, - ) (2 2)

Figure 1, all n, =— 2 or max {ni} >0

(7) Any, o) (r21)

Figure 2, all n, =—2 or
max {n1 +1,n .0 _,,n + 1} >0

(v) r(ng, . )(r21)

Figure 3, max {n1 + 1,1, .. ,nr} >0.

- Figure 4, (i) .no >2-2,

(i) (£;,2,85) = (333), (2,4,4) or

(2,3,6 ~m) (0 <m < 3), (iii) for each
i(1<ig3), (ql,f',i) is a pair of coprime

integers such that 0 < q, < £;and that

£
1_ 1
q ni1 " h — L (continued
iy fraction
. expansion),

n.
1T,
1

where n, i > 2 are integers appearing in
Figure 4

(¢) e(ny, - on))

Figure 5, max{n;} 2 0.




Figure 3



Figure 4

Figure 5



Let us denote, for simplicity, by (nl; ;nk) the dual graph which looks like Fi-
gure 5. Let us consider the configuration (m;0;n) of non—singular rational curves in a
smooth complex surface. Blowing up the point of intersection of the curves correspon-
ding to the vertices with weights 0 and n , we have the configuration (m;—l;—l;n——l) .
Blowing down the (—1)—curve which is the proper transform of the rational curve
corresponding to the vertex with weight 0, we have the new configuration
(m+1;0;n—1) . We call this transformation (m;O;n) — (m+1;0;n—1) the elementary
transformation (with center 0). By a succession of N—clementary transformations, we

have the configuration <m+N;0;m—N> of non—singular rational curves.
3. We will prove Proposition 1.2 below.
(1) The case where C is of the type (7).
First, let us consider the case of ma.x{n1 +Ln,, ..,0p_4my + 1} >0.
Claim (1.1). k#1.

Indeed, if k = 1, then we have the dual graph T'(C) which looks like Fig. 16.



A A
22
o (n,+120)
A A

Fig. 16

By the adjunction formula, we have 2(2A +1)+ (24 + 1)n; =0, hence, n; =-2.
Since n, + 1> 0, this is a contradiction.

q.e.d.

Repeating blowing ups and elementary transformations on C, we have the dual

graph which looks like Fig. 17.

G ol

2A -1 A

1 @ Cm, ———— (a2 1m; € T)
20 (2) »

Fig. 17



Claim (1.2). q=2 and my=1.

Indeed, if q 2> 3, then, contracting the (—1)—curve corresponding to the vertex
with weight —1 in Fig. 17, we have the dual graph Fig. 17°.

Fig. 17’

By Lemma 1.3, we have max{-m,, ... ,—mq} < 0. We may assume that m, >2
(2<j<q-1). If m, = 1, then, by Lemma 1.3, we must have q=2. This is a

contradiction, since q > 3 by assumption. Thus mj 22 for 1<j<q.

By the adjunction formula, we have easily

2= [mq,. g ] (Ag+1)
(1.3)

2= [mq_lr- . :mg] (A2+1) )

where [m ¢ ;m.] (1 <i<q) represents an integer defined inductively by the follo-

wing way:



[41=1, [mg] =m,
(1.4)

[mq, com] = m, [mq—l’ ,mi]—[mq_ peem]

Since [mq, o] > [m wome ] if mj22 (i<j<q), by (1.3), we have

q-1
Ay =-1.Let C, be the irreducible component of C corresponding to the vertex with

weight —m, (see Fig. 17). Then we have
1111—2=(KS . Cl)=2/\+m1-i-¢\2
Since A2 =-~1, we have A= —% f I . This is a contradiction. Therefore we have
q < 2. Using the adjunction formula, one can easily verify that q # 1. Thus, q = 2. By
the adjunction formula, we have (2x + 1)(m; —~1) =0, hence, m; =1.
q.e.d.
By Claim (1.2), we have the dual graph F.2.
Next, if all n, = — 2, then we have the dual graph F.1.

(2) The case where C is of the type (7).

Since max{n1 + 11, .. ,nk} >0, repeating blowing ups and elementary

transformations on C , we have the dual graph which looks like Fig. 18.
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C @
2\ -1 q
v (@

Fig. 18

where q=0,0r q>1 and m; >2 (1<£j<q) by Lemma 1.3. By the adjunction for-
mula, we have [mq, -] (A; +1) = 1. Thus we have [mq, ..,my] =1, namely,
q = 0. Then we have A = —1 . Therefore we have the dual graph F.3.

(3) The case where C is of the type (5).

Let CO’ Ci 11 (1€i£3,1< Jl < ri) be the irreducible components of C corres-
ponding to the vertices with weights n,, —n, i respectively (see Figure 4). Then we
put

3

(1.5) Kg=x,Co+ ) () N ci,ji) ,
i=1 ji=1

where ’\0’ ’\i Jl € I . By the adjunction formula, we have
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3

i=1
(1.6) 1 _2_ni,ji_l = Ai,ji‘—2—Ai,ji_1 hd ni,ji_
- A ‘n.

Ir, 1,ri—1 o, 1,14

”‘i,ji

We put ¢, = [ni'ri' 'ni,l] and q; = [ni"i’ ’ni,z] . Since ni,ii >2, we have

g,2r,+1, & >q;>0.By(16), we have easily

(L.7) (A + D —ghg+ D=1 (1£i<3)
(1.8) (g + Dng + B(\ { + 1) =1

3 3
(L.9) (Ag + Dy + 2 ll )+Y £=1

i=1 1 i=1 1

Since (£,£9,85) = (3,3,3), (2:4,4), (2,3.6), (23,5), (2,3,4), (2.3,3), we have

3

D) 11[1- 16 (£,,88,) = (333), (2.4,4), (2,36)
i=1
3 i

@) Y £>16e Ry =(235), (234), (233)
i=1 !

3
Case (i). 2 %:=1

i
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3
In this case, by (1.9), we have (A;+ 1)(n +2 1—)-0 By (1.7), we have
i=1
3 q;
Ay +1# 0. Hence, El—+n =0. Since ny2—2, we must have ny=-1 or
i=1

9 93 93 111) (111 111
-2.If n0=—1,thenwehave [l;,]‘;,l;]=[g,3','3], [E’Z’I] y [-2-,3-,3-]
Thus we have the dual graphs F.4, F.5 and F.6, respectively. If n,=-2, then we have

[%’%’%] = [32;:%’%], [%,%,%] ) [%'32{»%] . Thus we have the dual graphs F.7,

F.8 and F.9, respectively.

3
Case (ii). 2 %:>1.
i=1 *

In this case, we have
3 3
_ 1
—(A0+1)_.2 l;—l/.Z

Hence, we have n,=-1 or -2 . If n,=-1, then we have

[%,%,%] = [% :1; 5] [% %,%],[%,%,%] and Ay =-2. Thus we have

the dual graphs F.10, F.11 and F.12, respectively. If n,=-2 , then

—2 is not integer. Hence ny#—2 . Thus, we have

J‘!"

3
“otn=F -1/ 1 ¢

finally the dual graphs F.4 — F.12.
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(4) The case where C is of the type (e).

Since max{n,} > 0, repeating blowing ups and elementary transformations on C

as before, we have the dual graphs F.13, F.14 and the following Fig. 19.

0 -2 Al ’\q
() )
0 m —m -——— ,
O—E—®
Fig. 19

where q>1 and m; >2(1<j<q) by Lemma 1.3. By the adjunction formula, we

have
(1.10) [mq, oy (A + 1) + [mq, iy =1
Thus we have
m_, ..,m;] —1
—(A +1)=—4 2 €.
[mql ’ml]

Hence, q =1 and Al = —1 . Thus we have the dual graph F.15. This completes the
proof of Proposition 1.2.

Corollary 1.4, Let (S,C) be as in Proposition 1.2. Then we have Table ITI below.



Type F.1 | F.2 | F.3 I F.4 F.5
K2 0 ‘ m + 4 | n+4 l — 2 _ 92
Type F.6 ‘ F.7 l F.8 ’ F.9 F.10
K2 — 32 l 0 \ 0 I 0 —2
Type F.11 | F.12 ‘ F.13 | F.14 F.15
K2 -1 l 0 l 8 l 8 8—m
S 1

Table III
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*
§ 2. A characterization of ¢ , €xC

Let (S,C) be a minimal normal pair of a smooth projective algebraic surface S
n
and an algebraic curve C= U C, on S. Assume that C is one of the type from (a)

1=1
to () in TableI. We put X :=S\C.

Proposition 2.1. If H,(X;Z) =0 for i> 0, then Xy €2,
Proof. Let us consider an exact sequence over 7 :

(2.1) —+Hi(s,C) — H(S) — HI(C) — BT 1(5,C) —
Il /11
Hy ; (X) Hy_; (X)

Since B,(X;Z) = 0, we have H'(S;Z) ¥ B'(G;Z) for i> 1. In particular,
HY(C;7) » B(S;7) = 0. Thus C is one of the types (1), (1), (6), (¢). Since
b,(S) = 0, we have q(S) = 0. Further, Hz(S;lI) is generated by

¢,([C{1), .- ,y([C,]) over Z. Thus we have

(i) Kg = ¥AC, (Ai €
(ii) det((C, - Cj)) $0
Let T be a tubular neighborhood of C in S and 4T be the boundary of T .

We may assume that T\Cw~ 9T (deformation retract). Let us consider the following

diagram over 7 :
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0— Hz(ﬁT)———rﬂz(X)eﬂz(T)——-—'Hz(S)-——qu(0T)-—-—»0

(2.2) 11 | [}
0 —— Ha(X)—-oﬂz(C)—-rH2(S)—-bH2(X) —0

J11 J1

0 0

Then, we have
(iii) Hl(a’I‘;ﬂ) =0
On the other hand, by the Noether formula, we have
. 2
(iv) 12Pg(S) = Kg + b,(C) - 10,

since q(5) =1b,(5)=0, b2(S) = b2(C) . By (i), we can apply Proposition 1.2. Thus, C
is one of the type from F.1 to F.15. By (ii), C is one of the types F.3, F.10, F.11, F.12,
F.13 and F.15 (c.f. Suzuki [p. 457, 12]). By (iii), we have the types F.10 and F.13. If C
is of the type F.10, then, by (iv) and Table III, we have 12Pg(S) =—8<0.Thisisa
contradiction. Therefore C must be of the type F.13. In particular, S~ X m (a
Hirzebruch surface), since b2(S) = b,(C) = 2. One can easily show that
X =8\C=¢2.

q.e.d.

Proposition 2.2. (c.f. Suzuki [12]). Let (S,C) and X be as above. If
H(XZ) =7, B(X;Z) =0 for i>2,then X2 CxC .

Proof. Since H2(X;E) =0, by (2.1), we have
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(2.3) 00— H2(S;H) —_— H2(C;H) — H(XI) — H3(S;I) =0.

Since b,(S) =by(S) <b;(X)=1 and S is projective, we have b,(C) = q(S),
b,(5) = 0, that is, C is one of the types (7), (7'), (6), (¢) . Further, we have

n
(i) Kg=) AC (A e X)
i=1
(ii) det((C; -Cj)) =0.

By the Noether formula, we have
2
(iii) 12Pg(S) = Kg + by(C) - 11,

since by(S) = by(C) — 1. Since b¥(S) = 2P g(8)+121 and
i H2(S;IR) — H2(C;[R) is injective, we have,

(iv) ((G;-C j)) is not negative semi—definite.

Now, by (i) and Proposition 1.2, we have the dual graph from F.1 to F.15. By (ii), we
have the dual graphs F.1, F.2, F.4—F.9, F.14. By (iii), we have F.1, F.2, F.14 (see Table
). By (iv), we have F.2, F.14 (c.f. [p. 457, 12]). If C is of the type F.2., blowing
down two (—1)—curves, we have a smooth projective surface S" and an algebraic curve

C’ with the dual graph T(C’) which looks like Fig. 20.



-18 —

Fig. 20

Let C; (i=1,2), C;J be the non—singular rational curves corresponding to the
vertices with weights 0,4 ,respectively. Then there is a ruling ¢: S — P! which has

C; as a smooth fiber and C(’) as a double section.

Thus S is a rational ruled surface. Since
1= by(C') = by(S) = by(C') —by(S) = 3—by(S), we have by(S)=2. Hence, we
have S ¥ £_(infact, S ¥P! x P! or 3, ).

~ On the other hand, one can easily verify that

H,(X;T) ¥ BX(C;I)/H¥ST) x T® T, (see Fig. 20). This camnot occur, since
HI(X;ZZ) &~ 7 by assumption. Therefore we have finally the dual graph F.14. Then one
can verify that S¥E_ and S\C2CxC .

q.e.d.
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§ 3. Affine surfaces properly dominated by € x C*

1. Let X be a normal affine surface over € and f:CXC*-—-»X be a proper

morphism of € x ¢ omto X. Let (5,C) be a minimal normal completion of X,

n

namely, S i8 a normal projective algebraic surface and C= U C, i8 an algebraic curve
i=1

on S such that X ~ S\C. By a resolution of singularities, we may assume that S is

non—sinéula.r at every pointon C.
Lemma 3.1 C is one of the type from (a) to (¢) in Tablel.

Proof (cf. [2]). By the proof of Lemma 2 in Suzuki [12], we can find two
regular points P, , P, of C; and a divergent sequence of points {(x} .7, n)};':=l in
*
€ x € satisfying (i) lim f(xkn'ykn) =P, (k=1,2), (i)
n- o

lim x; = lim x, =o, (ii) X # Xy, - Further, we can find a holomorphic
n- o n- o

function with no zero on A; such that h(x, )= ykn#O for k=12 and |
n=12,... We put ¢,(x):=1(x,h(x)) . Then we have a holomorphic mapping
¢, : A; — S\C such that ¢;(0;S)(C C) contains two regular points of C, of C.
Thus, by Proposition 3 of Nishino—Suzuki [11], we have C, C ¢,(0;S) C C . By Lemma
1.1, we have the claim.

qg.e.d.

*
2. Since € x C is Stein and { is proper finite, X is also Stein, and further
H,(X;Z) =0 for i> 2, Hy(X;Z) is a torsion free group (see Narasimhan [9], [10]).
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Lemma 3.2. Assume that Hl(X;Zl) has a torsion. Then there is a finite unramified

covering x: X — X of X such that H,(X;Z) is free.

*
Proof. Since X is Stein, we have H'(X,0) & H(XI) ¢ Hy(X;Z) © Tor H,(X;T)
(the universal coefficient theorem). Then, there is a line bundle L on X with

L®™_ 1 for some m>1(m€Z).Let s#0 bea non—zero section of L®m_.

~ ~
Then we put X := R("y8) (the Riemann domain over X ). Then X is a n—fold section
of L, which is desired. |

q.e.d.

* -
Let V be the fiber product of ¢ x € and X over X. Then we have a commu-

tative diagramm:

| o

where o, f are the natural projections. Since = : X — X is a finite unramified co-

* *
vering, s0i8 #': V— C x € . Then wehave V2 € x C by Lemma 3.3 below.

*
Lemma 3.3. Let v:= {vl, ,vk} (k > 0) beasetof k pointsin € x C , where
) L
v=¢ if k=0.Let ¢ : M —CxC —v is a finite unramified algebraic covering.
- * *
Then there is a finite unramified algebraic covering ¢:{ x € — € x € such that

] * — ) *
M 2 €xC -y (v).In particular,if k=0,then M € x € .
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Proof. M can beimbedded in a normal (affine) surface M such that ¢’ extends
to a proper morphism ¢: M — € x C* . Since € x C* is smooth and ¢’ is unrami-
fied, M is smooth, and thus, ¢:M——C€x € is also unramified. Now, since
(€ x C*) ~ T, we have = (Cx C*)/xl(M) vZ for some m>1(m€Z) . Thus
go:M——tCKC* is equivalent to a covering ¢:CK€*—4CXC* with
#(z,w) = (z,wm) , where (z,w) is a coordinate system of € x C* .

q.e.d.

Definition 3.4. We call the normal affine surface X the torsion free reduction of
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§ 4. Proof of Theorem (Non—singular case)

*
Assume that X is non—singular. Since f: € x { — X is proper finite, we have
*
b(X) <b(CxC ) for i21 (ci Theorem (2.1) in Fujita [1]). Thus we have two ca-

ses:
(i) bX)=0fori>o0,
(i) b(X)=1, b(X)=0 for i>1.

Since X is Stein, we have Hi(X;H) =0 for i> 2 in any case.

Let (S,C) be the minimal normal completion of X . By Lemma 3.1, C is one of
the type from (a) to (¢) in Table I If H,(X;Z) is free, then, by Proposition 2.1 and

*
Proposition 2.2, we have X ~ € 2 or (xC .
Lemma4.1. H,(X;Z) has no torsion.

Proof. I H,(X;Z) has a torsion, then we take the torsion free reduction
~ * ~
x: X — X . Then there is a proper morphism f:CxC — X (see (3.1)). Since
~ ~ * ~N
H (X;Z) is free, we have X2 € 2 ot €xC . In the case of X=C?2 , since

1=x(€2)=(deg1r) «- x(X), we have degx=1, namely, X~ X . In the case of

XvCx C* , by the same argument as in Proposition 1.2, we can see that the dual graph
I'(C) looks like F.2 or F.14. If the dual graph looks like F.2, then one can easily see that

&(X) =1 . On the other hand, since «: X — X is a finite unramified covering, we
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have — o = &(C x C*) = K{X) = &(X) (cf. litaka [6]). This is a contradiction. Thus
*

the dual graph must be F.14. Hence X = S\C =€ x € . Therefore H,(X;Z) has no

torsion.

q.ed.

This completes the proof of the non—singular case.
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§ 5. Proof of Theorem (Singular case)

Let x= {xl, ,xr} be the singular points of X , and Uj be a small closed con-

tractible neighborhood of x; such that Uj\xj 9 U; (deformation retract) and

Uj n U, =¢ (j ¥ k) , where 0Uj is the boundary of U.i . Take a point v € rl(xj) .
*
Since f: € x £ — X is a proper finite mapping, there is a small ball a 5 with center

*
\f in C€xC  such that f]Aj:Aj——-rUj is a proper finite mapping with

1 . -
. o) = . . . ] = f . » of = .
4 ni (xJ) {vJ} Since rl(AJ\vJ) 1 and deg lAJ <+o, wl(UJ\xJ) (0 UJ)

is a finite group.
Thus we have
Lemma 5.1 Each xj is a quotient singularity.

Now, let K be a subgroup of rl(X\x) of finite index and o’ :Y — X\x be a
finite covering associated with the subgroup K . Then the finite quotient group
’ ’ *
G := a(X\x)/K actson Y freely. Let Z be the fiber product of € x € —v and Y

over X\x, where v =1 1(x) . Then we have a commutative diagram:

Z’ g! x )

1D I

CxC-v——X\z ,

where 7 , g’ are the natural projections. One can easily show that

* H ?
P:7 —CxC —v is a finite unramified covering. Then Z (resp. Y) can be im-
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bedded in a normal affine surface Z (resp. Y) such that 7’ (resp. o’) extends to a pro-
* *

per morphism 7:Z— CxC (resp. 0: Y —X),since €x € , X are normal

and f, o' are proper morphisms. Further, the morphism g’: Z —Y also extends

to a proper morphism g:Z —— Y . Thus we have a commutative diagram:

Z g y Y

(5.2 l ) l“

CxC — 1 X

f

In particular, G can be extended to algebraic automorphisms of Y (with isolated
fixed points). Thus we have

Lemma 5.2 X~ Y/G.

_ ) *
Next, since 7:Z—71 l(v) —+Cx € —v i3 a finite unramified covering, by

Lemma 3.3, we have
*
Lemma 53 ZaC{xC .

We put y:= 0_1(::) and z= g_l(y) . Then we have Y\y= Y' . Since
rl(Z\z) = (Cx ¢ - z) ¥ I , the image Im(rl(Z\z) — rl(Y\y) is isomorphic to
I (m€NU{0}).Since Im(rl(Z\z) is a subgroup of 11(Y\y) of finite index (c.f.
Theorem (2.12) in Fujita [1]), xl(Y\y) is a finite subgroupif m # 0.

' *
Taking a finite covering associated with the subgroup Im(x;(CxC \z)) (or ta-

king the universal cbvering if 1rl(Y\y) is a finite group) if necessary, we may assume
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that 1rl(Y\y) =1 or I . Further, taking the torsion free reduction of Y if necessary,
we may assume that H,(Y;Z) is free.

Thus we have

Lemma 5.4. wl(Y\y) =1 or 7,and H (Y;Z) is free.

Let W be a contractible neighborhood of y in Y with W\y s O W (deforma-
tion retract), where d W is the boundary of W . Then we have an exact sequence over
.

(53) —H(IW)— Hi(Y\y) ® H(W) — H(Y)—H, (6 W)— .
We know that y = a_l(z) consists of at worst quotient singularities (c.f. Lemma 5.1).

Thus, both #,(d W) and H,(8 W;I) are finite groups.

On the other hand, since g: € x C*—z-——bY—y is proper finite, we have
*
b(Y\y) Sb,(C€x € —2z) namely, by(Y\y) <1 and by(Y\y)=0. Thus by Lemma
5.3 and (5.3) above, we have

Lemma 5.5.

(a) TI(Y\Y) =1& Hi(Y;”) =0(i>0), Hz(Y\y;H) =0,
H/(owWI)=0,
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b)) =(Y\n)=Ie H((LD)=1, H(Y;I)=0 (i>1),
Hy(Y\yiZ) = 0, H (6 W;Z)=0.

Since (8 W) is a finite group and H,(4 W;Z) = 0, we have

Corollary 5.6 The set y = a_l(a:) consists of at worst rational double points of

Let (S,C) be the minimal normal completion of X such that S is smooth in a
n
neighborhood of C = U C (see § 3). By Lemma 3.1, C is one of the type from (a)
i=1

to (e).

A m
Let v:S—— S be the minimal resolution of S and put u—l(y) =E= Ej ,
=1

where y = a_l(z) = X =—— §. By Corollary 5.6, one can define a canonical divisor

KS on S, and further, we have

Lemma 5.7. Supp KANE=¢, K. 2 KS .
S S

*
Proof. We have K.=v K¢ + EnjEj (n.i € Z) . Since each Ej is (—2)— curve
S

and the intersection matrix ((E; Ej)) is negative definite, we have all n; = 0.

q.ed.
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Let us consider an exact sequence over Z :

_H!(S,C U E)— H(S) — H(CUE)— BT 1(5,C U E)—

(5.4) [l 1]
H, ; (Y\Y) H3_i (Y\Y)

By Lemma 5.5, we have
(5.5) 0 — H(S;Z) — H¥(C U B;T) — B, (Y\y) — 0.

Indeed, by (5.4), we have b3(§) < bl(Y\y) <1 . Since S s projective, we have
0 = by(S) = b,(5) = b,(C) = q(S) . By (5.5) and Lemma 5.6, we have

(i) Kg = E AC,  (N€D),

i=1
(i), det((C; - C)) $0 if x(Y\y)=1,
(ii),, det((C; - C)) =0 if m(Y\y) 2 Z.

Since b+(§) =2P g(/S\) +121 and ((E - Ej)) is negative definite, we have
(iii) ((C; - C j)) is not negative semi—definite.

By the Noether formula, we have
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. a 2 .
(iv), 12Pg(S) = K§ +b,(C) + 8t ~10 if 11(Y\y) =1,
(iv), 12pg(§) = K§ + by(C) + 8t — 11, if =y (Y/y) ¥ 1,

where t(> 0) is the number of singularities of Eg—typein Y.

Let 8T be the boundary of a small tubular neighborhood T of C in S . Repla-
cing, in the diagram (2.2), C, S by CUE, § , respectively, we have

(v), H (8 T;0) =0 if x(Y\y) =1,
since HZ(Y\y;IZ) =0.

*
Proposition 5.8. Y~ €2 or €x € .

Proof. We have only to prove the smoothness of Y (see (5.2), Lemma 5.3, Lemma
5.5). By Lemma 5.5, we have two cases (a) and (b). First, let us consider the case (a).
We have then (i), (ii) 2’ (iii), (iv),, (v) » above. By the same argument as in Proposition
2.1, we have the dual graph I'(C) which looks like F.10 (with 12Pg(§) =8(t-1)),

A

and F.13 (with 12Pg(S) = 8t) . Looking at the order of KA = K in these graphs, one
S

can easily see that P_(S)=P_ (5)=0 for m > 0. Thus, if T(C) looks like F.13,

then we have t =0, namely, Y is smooth. If T(C) looks like F.10, then we have

t =1, namely, Sing Y consists of exactly one rational double point of Es—type. Gur-

jar—Shastri [p. 481-482,5] proved, in this situation, that rl(Y\y) #1 . Therefore Y

must be smooth if wl(Y\y) =1,
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Next, let us consider the case (b). We have then (i), (ii)y,, (iii), (iv),. By the same
argument as in Proposition 2.2, we have the dual graph T'(C) which looks like F.2 (with
12P g(§) = m+ 1), P14 (with 12P I;(§) — 8t) . Looking at these dual graphs (and Fig.
20), one can set that § has a structure of a ruled surface over a non—singular rational
curve (c.f. Suzuki [p. 459,12]). Thus we have P g('S\) =0.If I'(C) looks like F.14, then
t =0, namely Y is smooth. If T'(C) looks like F.2, then we have &(Y) =1 (c.f. [6]).
On the other hand, since g:Z~C x C* ——Y is proper finite morphism, we have

KY) < KT x C*) =—w . This is a contradiction. Therefore Y is smooth if
Tl(Y\Y) o

q.e.d.
By Lemma 5.2, we have
x
Corollary 5.9. X~ ¢ 2/Ga or €x € /Gy, where G, (resp. Gy) is a small finite

subgroup of Aut(C*) (resp. Aut(C x C*)) .

Lemma 5.10 (Miyanishi [7], Furushima [3]) . For a finite subgroup of
Aut(C 2) , there is an automorphism a=ag € Aut(C 2) such that
aoGoa 1= {aogoa_l;GEG}CGL(Z,C).

*
Let g(z,w) = (g;(z,w) , g,(z,w)) be an algebraic automorphism of €xC

*
where (z,w) is a coordinate system of € x € , and gj(z,w) (j=1,2) is a regular

x
rational functionon € x € .

* * *
Let #: { xC — € be the natural projection. For a point w € € , the restric-

— - *
tion =|g(x 1(w)) 1 g(x 1(w) ~C— C is a non—zero regular rational function. Hence

_ *
it must be non—zero constant. Thus we have g(ar"l(w)) =x 1(w’) for some w€C .
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Therefore g induces an automorphism e € Aut(C*) such that pgoT=%0g, hence,
8(8:85)
d(z,w)
g (z,w) =P g(w) 2+ Q g(W) , where P g(w) , Q g(w) are rational functions of w .

Bo(2z,W) = pg(w) . Since | I #0 on Cx ¢ , we have

a *
Now, since ug(w) =3 W,o0r ;5 (ag € C ), the set F(y.g) of fixed points of
ug consists of two points if F(pg) # ¢ . Since any automorphism h#id of € has at

most one fixed point, the number of fixed points of g is equal to two.

Thus we have

Lemma 5.11. Gy C Aut(C x C*) has exactly two (isolated) fixed points on
* .

CxC .
By Corollary 5.9, Lemma 5.10, Lemma 5.11, we complete the proof of Theorem.

Remark. Similarly, one can also prove that a normal affine surfaces properly domi-
* *
nated by (C )2 is isomorphic to either c? , Cx ¢ , (€ )2 or 112/Ga ,
* *
Cx¢ /G‘Z.’ (€ )2/(3c for a small finite subgroup G, , G, , G, of GL(2,C) ,
Aut(Cx € ), Aut(C )2 , Tespectively. The details will be discussed elsewhere.
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F.7
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F.10

F.11

F.12
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-1

-1 -2 -1
-1
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F.14 @ @ @ (A + Ay =m—2)
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