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ABSTRACT. \Ve investigatc thc notion of cxact sequences of Hopf algebras. We as·
sociate to Hopf algehl'as A aud B I an<! a dat.a consisting of an action of B on A,
a cocycle, a coaction of A on Ban<! a co-cocycle , a short exact sequences of Hopf
algebras 0 - A - C - B - O. \Ve dcfinc eiert short exact sequences of Hopf alge
bras and prove that t.heil" isomorphy c1a..."'Ses are in bijective correspondance with the
quotient set of dat.as as abovc such thaI, t.he cocycle and the co-cocycle are invertible ,
modulo a natural action of a subgl'oup of Hcg(B , A).

§o. Introduction. This paper deals with extensions of Hopf algebras. By defini
tion [Dl] the category of quanhl111 groups is the dual category to the category of
Hopf algebras with bijective antipode. For this rcason we can work mainly in this
seconcl category and all the l'esults will tl'anslate to that of quantum groups in the
obvious way. (Some of thc results below are true with weaker hypothesis about the
antipode). It helps our intuition, however, to keep in rnind that a Hopf algebra is
the " algebra of functions on a quantunl group".

Let us fix, for sirllplicitYl a COlnnlutative field k and let us briefly say "Hopf
algebra" for Hopf algebra over k. We sha11 use the following notation: m, ß (01' 8),
€, S mean respectively the rllultiplication, corllultiplication, counit, antipode of a
Hopf algebra (01' an algebra 01' a coalgebra), specified with a subscript if necessary.
The opposite ruultiplication 01' coruultiplication are betokened by a superscript
"op". We shall also llse the following convention: if c is an element of a tensor
product A 0 B, then we write c = Ci 0 ci, onütting the sllruruation sYlnbol. An
exception is the case c = ß(:t:), where we llse SweecUel"S "sigrna" notation but
dropping again the SU111111at.ory. The usual transposition N 0 N' ---+ N' 0 N is
denoted by T. If 9 : N 0 N ---+ N 0 N is a lllorphisol of k-rnodules then gii :
N0 m ---+ N0m has the usual rneaning, for exaruple gi,i+l = idNi-l 0g 0 idNm-i-l.
Dur main reference für the general theory of Hopf algebras is [Sw].
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(N .A.) Forschungsstipendiat der Alexander von H1I IIlboldt-St.ift.ung. Also partially supported

by CONICET, CONICOR autl FAMAF (HCpl'lblica Argentina). (J .D.) Post-doctoral Fellowship
I.C,T.P.
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We consider sequences of InorphislUS of Hopf algebras of the following sort:

(C) k --+ A ~ C ~ B --+ k.

We shall say that (C) is exact if

(1) t is injective. Ident.ify then A with its iInage.
(2) 7r is surjective.
(3) 1ft = c.
(4) ker1T = CA+. (A+ is the augl1lentation ideal, i.e. the kernel of the counit).
(5) A = {x E C: (1r 0id).6(x) = 10x}.

A "categorical" justification for this definition can be fOlmd in Sect.ion 1. Indeed,
(4) implies that t is cononnal and (5), that 1r is 110rlllal (cf. Definitions 1.1.5 and
1.1.9). That is, this definition enjoys the duality inherent to the theory of Hopf
algebras. Clearly, given C and A there exists at nl0st aue B (up to isomorphisms)
11laking (C) conlnlutative; and l'eciprocally, C and B detennine A. In fact, given
a conormal injective 1110rphisnl of Hopf algebras A ~ C, the unique possible B is
the "Hopf cokernel" C/ CA+. Now coudi tiol1 (5) above can be dropped if A ~ C is
faithfully flat. In such case, B cOl1lpletes the exact sequence. We do not know if any
inc1usion of Hopf algebras is faithfully flat. A siluilar analysis proceeds for anormal,
surjective, morphisl1l of Hopf algebl'as C ~ B; hut the role of the "faithfully flat"
requirement is played now by "faithfully cofiat" (cf. Proposition 1.2.11).

These questions have already several al1tecedents in the literature. They were
study first in the setting of Hopf algebras graded by non-negative integers, such that
the 0 component is iS0l1l0rphic to k. In t.his subcategory the case "A conlffiutative,
B cocommutative", was treated in [S] (see also [GD. The definition of extension
given in [S] is justified by a result frolll [MM]. In the general situation, adefinition
of extensions of qua.nhun groups was recently proposed in [PaW]. This elefinition
leds to undetenninacies, see (PaW, 6.3.3] and the Reluark after Lelllllla 1.2.15
below. As stated above, our definition ta.kes care of these probleIns. After receiving
the first version of this paper, S. Montgc>Inery pointed out to the first author that
another definition of exact sequences is given in [Sch], renledying the inconvenients
in (PavV]. Essentially, the definition in [5ch] requires the axiollls (1), ... , (5), but
in addition faithful flatness of t (01' equiva.lently, faithful coflatness of 1f). See the
discussion after Lellllna 1.2.15 below.

We wish to answer the following standard questions: given A and B, which addi
tional data produce an exact sequence (C); reciprocally, when an exact sequence (C)
cau be obtained in such wayj how isoluOrphis111S of exact sequences are translated
in terms of such data.

Let us discuss the first question. The construction of an algebra C out from a
Hopf algebra B, an algebra A weakly acted upon by Band a "cocycle" B 0 B -+ A
was undertakel1 in [BeM] and independently in [DT] (see also [Sw2]). With these
results at hand, our strategy is siInple: first, to obtain a dual statement, i.e. to
show how to construct Cl cO(J,lgcbnL C out frolll a coalgebra B, a Hopf algebra A
weakly co-actil1g on Band a "co-cocycle" A -+ B 0 B. Second, to analize whether
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the algebra and coalgebra structures on the vector space C = A 0 B provided by
the Hopf algebras A, Band the foul' da.ta (weak action, weak coaction, cocyele, co
cocyele) give rise to abialgebra, 01' lllore precisely to a Hüpf algebra. We shall say
that the data is c01lLprLtible, in the "bialgebra" casej we say that a cülnpatible data is
Hopf if the corresponding bialgebra. has an antipode. We obtain a cOluplete answer
for the bialgebra question (see Theol'elU 2.20). These considerations are carried out
in Sectian 2. The existence of antipode is proved Iater, under additional hypothesis
(see Lelnlna 3.2.17).

The isomorphisIll problelll is treated in Section 3. Again, we take profit of
what is known in the algebra case [D); again, we obtain the coalgebra version and
then look for the Hopf algebra case. In 3.1, we define an action of the group of
invertible morphislllS fraIlI B to A (with respect to the convolution product) which
preserve the unit anel counit, on the sets of Hopf and cOlllpatible clata. One has
an application froll1 the quotient sets to isolllorphislll elasses of extensions of Hopf
algebras, resp. bialgebras. vVe ignore if t.hese applications are isolllorphislllS. In
the algebra case [D] this is so if one restricts, on one hand, to data with invertible
cocyele, anel on the other to clcft extensions. An analogous result is true in the
coalgebra case. In 3.2, we define eleft extensions of Hopf algebras. In this setting,
we have complete answers to the problclllS statecl above: any eleft extension of
Hopf algebras is iseuuorphic to Olle obtained [roln a data with invertible cocyc1e
anel co-cücyelej the bialgebras constructecl fronl data with invertible cocyele and
co-cocycle always have an antipode; and the cOl'responding quotient set elassifies
eleft extensions up to isolllOrphisl1lS.

At various key points (e.g. Lenlllla8 1.1.12, 1.2.6, 1.2.7), we have used solutions
of the Yang-Baxter equatiol1 found in {vV3]. Thallks to theIn, any Hopf algebra is
generalizecl COllllllutative and generalized COCOllll11utative. This relllark, due to the
first author, is cOlllpletely new and turned out to be very useful (see the Appendix).

Ac J\N O\V L EDG EM ENTS

We are grateful to A. Tiraboschi for helpful conversations, to S. Montgolnery for
several interesting l'elllarks on the first version of this paper and to H.-.l. Schneider
for kindly sending us his preprint [Sch]. The first authol' thanks also P. Slodowy
for encouragelnent.

§1. The category of quantulll groups. This section is devoted to basic con
structions in the category of quanttull groups. Our ailn is to give adefinition of
exact sequences, and to prove tha.t it is equivalent to the discussed in the Intro
duction. We shall freely use the tel'lllinology and reslllt.s of [McL], of COlllluon use
nowadays. Ta avoid confussions, all the categoric concepts we will work are thus in
the category of Hopf algebras, ulliess explicitly stated.

§1.1 Kernels. The first point we shall touch is the existence of Hopf kerneis, or
nlore generally, of equalizers in the cat.egory of Hopf algebras. Let f, 9 : A ~ B
be two luorphislllS of Hopf algebras. Let us consider the following conditiollS on
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elements x E A:
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(1.1.0)

(1.1.1)

(1.1.2)

(f C9 id)~(x) = (g C9 id)~(x)

(idC9j)~(x) = (idC99)~(x)

(id @f @ icl)(~ @ id)~(x) = (id @g 0 id)(~ @ id)6(x).

If x satisfies (1.1.0), then f( x) = g( x). Indeed, as f is a lnorphism of Hopf algebras,
f( x) = (f 0 c)~(x). The same is tl'ue if x satisfies (1.1.1) 01' (1.1.2). Clearly, the
product of elements satisfying one of these thl'ee conditions again does. Let

HEqual(f, g) = {x E A : x sat.isfies (1.1.0), (1.1.1) and (1.1.2)}.

We shall also consider the algebras

LEqua1(f, g) = {:z; E A ; x satisfies (1.1.0)},

R.Equal(J,g) = {:z: E A: x satisfies (1.1.1)}.

Lelnlna 1.1.3.

(1) S (LEqual(f, g)) = R.Equal(j,!J) anel S (R,Equal(f, g)) = LEqual(f, g).
(2) ~ (LEqual(j, g)) ~ LEqual(j, g) '9 A allel 6 (R,Equal(f, g)) ~ A '9

REqual(f, g).
(3) HEqual(j, g) is a Hopf subaJgehl'a of A.
(4) HEqual(J, g) is tlle equalizer of f allel g.

Proof. S and S -1 are ant.i conulltip licative: t his ilnplies (1); (2) füllüws fraIlI the
coassociativity of .6, cf. [Sw, LelluuH 16.1.1]. (3) is easy to verify and the cündition
(1.1.2) is included to gual'antee that HEqual(f, g) is a subcoalgebra.

Let h : C -+ A be a 1110rphislll of Hopf algebras such that fh = gh; then the irnage
of h is contained in HEqual(j, 9) beca.nse h is a Inürphislll of Hopf algebras. 0

The füllowing is a generalization (a.nd extension) of [BCM, Prop. 1.10].

Lemnla 1.1.4. Tlle following conditiollS al'e equivalent:

(1) LEqual(J, g) = HEqual(j, g).
(2) LEqual(J, g) is a Hopf subalgebra of A.
(3) LEqual(j, g) = REqualej, g).
(4) REqual(f, g) is a Hopf slIbaJgebl'ä of A.
(5) REqual(j, g) = HEqual(J, g).

Proof. (1) ===> (2) is trivial; (2) ===> (3) anel (3) ==> (4) follow froln Lenuna
1.1.3; (4) ==> (5) is a consequence of universality. Int.erchanging right by left, we
übtain the proof of (5) . .. ==> ... (1). 0

The base fielel k is a zero object in the category of Hüpf algebras, i. e. it is
initial (the unit 1 ; k -t A is the unique lnorphisrn of Hüpf algebras with such
domain anel codolnain) and final (idenl for t.he counit c : A -+ k). Thus, the zero
morphism between Hüpf algebras A anel B is lBCA. As usual, the kernel HI(er j of
a mürphisln of Hopf algebras is luerely the equalizer of it and the zero 11lorphism.
Sinlilarly, we have the notions of R.I(er, LKer.
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Remark. The notions of left anel right Hopf kerneis (sets of elements satisfying
(1.1.0) or (1.1.1» appear at least. in [Sw], [B CM]. The condition (1.1.2) was signaled
to the first author by B. Enriquez in the course of discussions about [L, 9.2]. The
notion of Hopf kernel a.lso appears in [Sch], as was communicated to us by S.
Montgomery after reading the first version of this paper.

Definition 1.1.5. A luorphis111 of Hopf algebras f : A -Jo B is normal if the pair
/, 9 = 1BcA satisfies the equivalent conditions of Lemma 1.1.4.

Exaluple. We extend an exaluple fronl [BCM]. Let G be a finite group, H C-..t C
a subgroup, A (resp. B) the algebra of functions on G (resp. H) and R : A -Jo B
the restrietion 111orphisnl. Then it is easy to see that.

LI(er(R) = {f E A : f is eonstant on tbe left coset H x, Vx E C},

RI(er(R) = {f E A : f is eonstant on the right coset xH, Vx E C},

HI(er(R) = {/ E A : f is constant on the left-right coset xHy, VI, y E C}.

It is then eleal' that R, is a nonual lllorphislll if and only if H is anormal subgroup
of C.

The category of Hopf algebras is, not. abelian hut, as in t.he ease of graups, we
still have relations between kernels and 111onolllorphislllS.

Lemma 1.1.6. Let h : A -Jo B he a lnol'phis111 of Hopf algehra..~.

(i) Jf h is injective, thell HKer h = k allel h is nonnal.
(ii) HI(er h = k iE anel only if h is a 1110nOlllOl'pllisln of Hopf algehras.

Proof. The first elaiIu is eleal:: as h is injective, (h 0 icl)~(x) = 1 0 x implies
~(x) = 1 0 x and therefol'e :r. E k. That is, HKer h = LI(er h = k.

Assume that HKer h = k anel let f, g : C -Jo A be Iuorphis111S of Hopf algebras
such that h/ = hg. vVe want to coneluele t.hat then f = g. We neeel for this to use
the algebra structure Oll hOlllt(C, A) [Sw]; explicitly

As f is a lllorphisill of Hopf algebras, it is invertible in this algebra and, in fact,
1-1 = ISe [Sw, 4.0.4]. Then h(f-l * 9) = ceIB and then t.here exists j : C -Jo

HKer h such that /-1 * 9 = I,), where I, is t.he inelusion HI(er h l"-J. A. Thus / = g.

Conversely, if h is a nlononlorphisIu, (lS 1/.1, = lu::, it follows that iHKer h,A = c and
henee HI(er h = k. 0

In [PaW] another definition of nOl"lnalit.y (in t.he eategory of quanttllu groups)
is proposed (see also [Seh]). \;Ve shall see that t.heir definition irnplies our "conor
mality" and that both elefinitions agl'ee uneler faithful eoflatlless requirements. The
next Lemina is the dual version of t.he first. of the preceding stateulents.

A quotient Hopf algebra of a Hopf algebra is a quotient veetor space provided
with a Hopf algebra structure such that the projeetioll is a Inorphism of Hopf
algebras. We shall say that a quotient Hopf algebra is norrnlLl if the projeetion iso
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Leluma 1.1.7. Let 7f : C --. B be a projection of Hopf algebras. Suppose that B is
a right C -quotient c01110dule for the right adjoint coactioll adec) = C(2) 0S( bC(l) )c(3).
Then B is a nOr1nal quotiellt Hopf algehra of C.

Proof. The hypothesis l'eacls: if 7r(c) = 0, then 7f( C(2») 0 S(c(l) )C(3) = O. Let
C E R1<er7r; then 7r(C(2») 0 S(C(1»)C(3) = c(c). Now 7f(C(l)) 0 C(2) = 7r(c(3») 0
C(1}S(C(2»)C(4) = 1 0 C(1}C(C(2») because of Lemma 1.1.3 (2). That is, RI(er7f ~

LI(er 7r. By Lellulla 1.1.3 (1) we get the equali ty. 0

The definitions of coeqtutlizers and cokerllels are rather easy: if f, 9 : A --. Bare
two lllorphisms of Hopf algebras, let J denote the set of the all the elements of the
fonn fex) - g(x), :t: E A. Thell the quotient of B by the two-sided ideal generated
by J is the corresponding; coequalizer, denoted HCoeq(f, g). It is also useful to
consider also the quotients

LCoeq(f,g) = BjBJ, R.Coeq(f,g) = BjlB,

which are actually quotient coalgebl'as of B. Indeed, to see that BJ, JB,BJB are
actually coideals of B, one uses a standard trick:

Lenuua 1.1.8. Tlle followillg statelncllts are equivalent:

(1) BJ = BJB,
(2) B J is a two-sided ideal.
(3) BJ = JB.
(4) J B is a two-sided ideal.
(5) JB=BJB.

Proof. (1) => (2) and (3) => (4) ==} (5) are obvious. (2) => (3) because
JB=S(BJ). 0

Taking as 9 the zero lllorphislll of Hopf algebras, we have the definitions of Hopf,
left and right cokerllels. 0 bserve that the set J in the above clefinitions specializes
in this case to f(A+), whcre A+ = {:l: E A : c(.'];) = O} is the auglnentation ideal of
A.

Definition 1.1.9. '~Te shall say that a l110rphislll f : A --. B üf Hüpf algebras is
COfl,ormal if HCoker f = LCoker f.

Re1nark. The precedillg definition is kllown; it appears e. g. in [Sch3].

Exalnple. Let U8 denote k{){) the group-like coalgebra on the set J\ [Sw, p. 6]. Let
us consider a nlorphislll of groups </J : G -t Hand extend it to thc group algebras
A = k{G), B = k{H). 111 this case R.Coker(4)) = k{lIll(</J)\H) , LCoker(q,) =
k{HjlIll(4))) anel HCoker(</J) = k{lnl(</J)\BjlIll(4»).
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Lemllla 1.1.10. Let It : A ~ B he a 1l10rplli8111 of Hopf algebras.
(i) Jf h 18 8urjective, thell HCoker h = k alld h i8 cOllonnal.
(ii) Heoker h = k if alld olll)' if h i8 an epi11101]Jhi8111 of Hopf algebras.

Proof. It is obvious that h surjective inlplies HCnker h = k. Now the following
fornlula:

implies the cononnality of h.
The proof of the second statell1ent is sinülar to that of 1.1.6. Indeed, if f, 9 :

B -+ C are Hopf algebra 1110rphisll1S such that fit = gh then (f-1 *g)h = eIe; thus
/-1 * 9 factorizes t.hrough HCokcr 11.. Conversely, if h is an ephnorphism then the
projection B -+ HCoker h equals the zero Inorphisll1 and hence HCoker h = k. 0

The following Lenll11a is the clual analogue of Lel1ll11a 1.1.7 and relates our defi
nition of eOnOrIl1ality wi~h [Pa\~T, 1.5].

We shall say that a Hopf subalgebra is c01l.or1nal if the inclusion iso Let Ad be
the well-known right. acljoint act.ion of Aj one has

Lelnilla 1.1.11. All Ad-stah1e Hopf subalgebra 18 cOllonnal.

Proof. 5uppose that A '-t B is Acl-stable. Then, for a E A+ ,b E B, one has
ab = b( 1)S(b(2) )ab(3), i.e. BA+ is a two-sicled ideal. 0

"VVe finish this paragraph with furthel' reulal'ks. A variant of the following Lelnma
is proved in [5eh, 1.3].

LeIllIlla 1.1.12. (i) Jf h : A -+ B 18 ll0l"111a1, then HKer h '-t A is conornlal.
(ii) H h is cOllonnal, t11ell B -+ HCoker 11. is l1onnal.

Proof. (i). We claüu first that we always have

(1.1.13) (LKcr h)+ A = A(LI(er h)+.

It is not difficult to see that LKer h is Ad-stable [BCM]. Thus if x E LI(er h and
a E A, we use

lL:r = lL( 1):z:S( (1.(2) )a(3) = x Ad( lL(I) )a(2)

and c(x Ad a) = c(:c)c(a) to prove (1.1.13). But now it is obvious that if his normal,
then HI(er h f-..+ A is COnOrIllal.

(ii). Let So : B ® B --t B ® B be the Iuap

(1.1.14)

We dahn that therc exists a lllap So nlaking COllullutative the following diagram:

B0B So B®B

id 01t1 l1t0id

B 0 LCoker h So
I LCoker h 0 B.
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For this, it suffices to check that

?

0== (icl01r)(C(2) 0 S(c(1»)c(3»), if C = dh(a) E BJ.

But

(id 01r) (d(2) h( (L(2») (9 S( h( (L(l») )S(d( 1) )d(3) h(U(3»))

= d(2)h(a(2») 0 1r(S(d(1»)d(3»)e;(a(l)U(3»)'

Next we claün that the following diagrarn COllunutes:

B

I1

B

~
IB0B

id 18171"
B 0 LCoeqhI

1So sol
~

IB0B
7f0id

1 LCoeqh (9 B.

We merely need to show that /:),. = Su/:),. but this is a routinary computation.
Now asslllne that h is conol"lnalj and let b E LKer 1r, where 1r : B -+ HCoker h =

LCoker h is the projection. Then

(1r 0 icl)~(!J) = S(1 01r)~(b) = S(b 0 1) = 1 0 b

and hence B -+ HGoker h is nOl"lnal. 0

§1 . .2 Exact ~"eq1Lence~,.. We shall next be concerned with the "image" of a mor
phism of Hopf algebras f : A ----t B. Observe first that f factorizes in the following
way:

HI(er f A

1
f B

r
71" • HCoker f

HCoker(HKer f) -----+1 HKer(HCoker f)

This is proved in two steps. First A(HKer f)+ A ~ ker f because fi = c, anel hence
f factorizes through HCoker(HKer f)· Seconel, hn f ~ HI(er(HCoker f) because
1rf=E:·

Definition 1.2.0. We shall say that a. 1110rphis1l1 f : A -+ B has a Hopf image if
the canonical Illap HCoker(HI(er f) -. HKer(HCoker f) is an iSOI110rphisln, and in
such case we shall denote HIln f = HKer(HCokcr f) ~ HCoker(HI(er f)· Thus f
has a Hüpf irnage if anel only if thc following two cünclitions hold:

(1.2.1)

(1.2.2)

ker f ~ A(HKer f)+ A

HKer(HCoker f) ~ hn f.
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Now we are ready to define exact sequenees. We shall say that the sequenee of
lnorphislns of Hopf algebras

is exact if

(1) f is cononnal anel has a Hopf inluge,
(2) 9 is nonnal anel
(3) HIrn f = HKer g.

As always, a sequence

. 'f cl l'f I'" "A f; A /;+1 A .IS exact I an on y I eae 1 pIece i ~ i+l -----+ i+2 IS.

Let us eonsider now a short sequence

(e)

where 0 is of course the Hüpf algebra k.

Proposition 1.2.3. Tlle se(lucnce (C) is exact i[ allel only if tlJe following condi
tions hold

(1) i is injective. Ielentify tllen A wif.]l its ilnage.
(2) 1r is surjective.
(3) 1ri = t:.

(4) ker 1r = CA+.
(5) A = {x E C : (1r (9 iel)6(:l;) = 1 (9:t}.

Proof. Let us first aSSlune that (C) is exact.

(i). The exactness of 0 ----t A ~ C is equivalent to "i is nonual anel HKer i = k".

(ii). As i has a Hopf inulge, by (1.2.1) ker {, = A(HKer (,)+ A = 0 anel hence i is
injective.

(iii). The exactness of C ~ B ----t 0 is equivalent to "7f is surjective and ker 1r ~

C(HI(er 7f)+C".

(iv). As A = HKertr, one has trI.. = c. But llloreover i is conorInal and this

together with (iii) inlplies (4). Therefore C ~ B is the cokerllel of i anel then

A = HKer(C ~ B), i.e. (5) holels.

(v). Assume now t.hat the conelitions (1), ... , (5) are true. By Lellllna 1.1.6 and

(i), we huve exactness at 0 ----t A ~ C.

(vi). As A is a Hopf algebra, (5) anel Leulnla 1.1.6 iInply that 1r is normal. By
(2), (4) and (iii) we have also exactness at C ~ B ----t O.

(vii). (4) also shows that {. is cononnal. \Ve show now t.hat 1., has a Hopf ilnage:

(1.2.1) is elear, by the injectivit.y of l.. Again, C ~ B is the cokernel of (, anel hence

(1.2.2) follows {rolu (5). Thcrefore we huve exactness also at A ~ C ~ B. 0
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Remark. Note that the bridge between the Hopf- anel set-theoretic conditions is the
requirenlent on the Hopf itnage. Vve did not. eleepeneel our understanding of this
question. But let us lnent.ione a rclated fact. Let

o

o

---tl A

---tl A

---tl C

Li C---tl 1

1r I B

1rl l B

---tl 0

---tl 0

be a lnorphism of exact sequences. Let. us try to prove that e is an isomorphism.
Let c E LI<er e. Then (71'" 0 iel).6.c = (71'"1 e 0 id).6.c = 1 0 c anel therefore c E A.
But then (8 0 iel).6.c = C(I) 0 C(2) = 1 0 c and hence c E k; i.e. 8 is nonnal anel
HI<er e = k. lt is also not elifficult to prove that e is conormal and Heoker e = k.
Thus e is a monoillorphisill anel epilllorphislll of Hopf algebra..,. We da not know if
it is then an iS01110rphisl1l. We 8ha11 prove t.his if the extension is cleft, see Lelnlna
3.2.19. We also ignore if a lllonolllorphislll (resp., epitnorphisln) of Hopf algebras
is injective (resp., surjective).

It seelns that the conelitions ahove are slightly redundant.. Here is a result in
this sense.

Proposition 1.2.4. Assllllle tlur.t A ~ Cf is faitll{ully Bat. Tllen (C) is exact iE
alld only iE (1) to (4) llold.

Proof. We neeel to prove t.hat (5) fo11ows fronl (1), . .. , (4) in presence of fai t.hful
flatness.

Assunle first only (1), ... , (4). Let R. be any algebra, anel, : H -+ C a lnorphisln
of Hopf algebras such that 71'", = c.

Clainl. Let x, V E H0111 et ly (C, R.) sllc11 tlu!-t :1;[, = Vi. Tllen x, = y,.

Proof of the ClfLi1lL. VVe show first that 3; * y-I factorizes through B. Indeed, by
(4), we need to check that :1: * y-I (ca) = 0, for c E C, a E A+. But x * y-I(ca) =
X(C(I)CL(I»)y(Sa(2)SC(2») = O. Now :1:, * (y,)-I(h) = x * y-l(,h) = e(h). Thusx, = y,. 0

Let H = HKer71'". By (2), (4) aud Lenllna 1.12 (ii) (applieel to A -+ C), H =
LI<er 71'"j by (3) A ~ H. Apply now the claün to the inclllsion H ~ C, R. = C C9A C
(see below), x : C 1----+ C 0 1, y :1----+ 1 0 c. By faithful flatness, A ~ H. 0

Corallary 1.2.5. Asslune that A ~ C is faitllfully flat allel cOlloDna1. Set B =
C/ CA+ aJld 71'" the natural projeetion. Tllen (C) is exact.

Remark. We do not know if any inclllsion of Hüpf algebras is faithfully flat. In the
commutative setting, this is we11-known: a purely algebraic proof is contained in
[T]. More generally, it is shown in [Sch] that the incIusion of a central Hopf algebra
is fai thfu11y flat. See also [MW]. .

As A is not central in C,one ShOlllel be careful with the algebra structure of
C0A C.
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Lemma 1.2.6. Let C he a Hopf algehra. Tlle lllultiplication in C 0 C defined by

(1.2.7)

.... ,~...

is associative witll unit 1 0 1. Tlle applications c ~ c 0 1 and c ~ 1 0 c are
morphislns of aJgebras, witlI respect to (1.2.7). ASSU111e in addition that A is an
Ad-invariant Hopf suhalgehra of Cj then C 0A C inllerits a.n algebra structure from

(1.2.7).

Proof. We shall check that tohe kernel of C 0 C ~ C 0A C is a two-sided ideal and
leave the rest of the proof to the reader. Fronl the left:

(c 0 d)(xa 0 y - x 0 ay) = cd(1)xaSd(2) 0 d(3)Y - cd(1)xSd(2) 0 d(3)ay

= cd(1)xSd(2)dCJ )aSd(4) 0 d(5)Y - Cd(1)XSd(2) 0 d(3)aSd(4)d(5)Y'

From the l'ight:

(xa 0 Y - x 0 ay)(c (9 cl) = xaY(I)cßY(2) 0 Y(3)d - Xa(1)V(1)CSa(2)SY(2) 0 a(3)Y(3)d

= X(l(l)Y(I)CSY(2) 0 Sa(2)(l(3)Y(3)d - XlL(1)Y(l)CSa(2)SY(2) (9 a(3)Y(3)d.

o

Let us recall HOW that. the cotensor prodnct of a right. COlllodule M and a left
comodule N aver a caalgebra C is

M l'V'l N k (M N CM 0id - id 0CN 1 M IV. C IV.. N) .loC>IC = 'er 0 . 'CJ 'CI

Here is the dual version of t.he preceding Lenl111a.

Leuuua 1.2.8. Let C he a Hopf algebra. Tlle COllltJitiplication in C <2) C defined
by

(1.2.9)

is coassociative witb cOHnit 101. Tlle HpplicatiollS C&; cl -t e(c)cl alld c 0 d -t ce(<1)
are IlJorpllisnls of coalgehrfls, witll respect t.o (1.2.9). Asslune in additioll tllat
C ~ B is a surjective lllOl'pllislll oE Hopf algebras satisfyiilg tlle following property:

tllereexists'lj;: B ----j. B0C such tlut.t 'tf;(7fb) = 7f(b(2»)&;Sb(l)b(3)' Tllen C[8JBC
inberits a coalgebra structUl'e f1'0111 (1.2.9).

Proof. Again we prove ünly the last statelnent.. Assllllle für siInplicity that a ® b E
C[8JBC, i.e. that a07f(b(l))0b(2) = a(l)07f(a(2»)&;b. Applying Sg4m24(~07jJ0~)

to both sides of this equalit.y we dednce that Li(a &; b) E (C [2JB C) 0 C. (Here So
is defined in (1.1.14), the superscript 3~ indicat.es in which copy of C 0 C So acts,
and m24 (x 0 Y 0 z &; u &; v) = x&; z 0 yu0 v). Applying instead Sl2SJ4(~ 0 id 06.),
we obtain Li(a 0 lJ) E C 0 (C [8JB C) alld we are done. 0
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Recall that to an epiInorphislll C ---+ B of coalgebras one cau associate an "exten
sion of coeffieients" functor - t8JB C frolll B- left cOlnodules to C-right comodules.
The next Definition anel Propositions are known, see [Sch2].

Definition 1.2.10. We shall say that C is B-cofiat if whenever M --t N is an
epimorphislll of B-conloelules then M r8JB C ---+ N [8JB C is also an epimorphism of
C-conl0dules.

We shall be int.erested in a stronger property defined by the three equivalent
conditions of thc following

Proposition 1.2.11. Let C ---+ B be coflat. Tllen tbe followiJlg conditioJls are
equivaleJlt:

a) M t8JB C ---+ 11/1 denned by 1n 0 c ---+ m€(c) is surjective for any B COlllodule
M,

b) M r8JB C = 0 i1l1plies M = 0 for fl.ny B-COll1odule M,

c) Jf M ~ l'l is a nlorpllis111 of B-C01110dules and NI t8JB C~ N t8JB C is
an epinlolpllis1l1, tllen also T is nll epi!norpilislll.

Jf tllese conditions llold, then we sny tllnt C ---+ B is faithfully cofiat.

Proof. a) ==> b) is deal'. b) ==> c): Let L = eoker r. Then N t8J B C ---+ L [8JB C
is an epiInorphisnl by the coflatuess of C. The surjectivit.y of r [8J id implies that
L t8JB C = 0 anc! by 2) this Iueans L = O.

c) ==} a): By c) it is enough t.o show that the IllorphisIn Mt8J B Ct8J B C ~ Mt81 B C
defined by 7f ( m 0 C0 d) = 111, E( c) 0 d is surjective, butthis follows froul the existence
of the 11lorphislu r : M [8JB C ---+ A1 [8JB C [8JB C, r( 111 0 c) ---+ m 0 c(l) 0 c(2) which
is a right inverse of 7f. 0

Proposition 1.2.12. Let C ---+ B he faitllflllly coBat. Tllell for allY comodule M,
M t8J B C ~ M, [1('1110 c) = nu(c) is tlle coe(jualizer of

A1 [8JB C t8JB C ~ 111 [8JB C

where PI (m c:9 c c:9 cl) = 111 0 c€(d) filld ]J2 (n1 0 c c:9 d)rn 0 €( C )d.

Froo/. Let Mt8J B C = L be the coequalizer. Then there is Cl. comodule epiul0rphisIll
L ---+ M. Let !( = ker{L ---+ M}. Consider now

A1 (8JB C t8JB C r8JB C ~ 1\1 [8JB C [8Jn C.

If we can show that thc new equalizer is A1 [8JB ethen by the left exaetness of the
t8JBC functor L t8J B C = 1".1 t8J B C anel thel'efol'e !( = O. The conulltiplication tJ.c
induces T' : Alt8JB Ct8JB C ---+ A1 [8JB C [8Jn C t8JB C, r'(rnc:9c0 d) = 1n0c0d(1) 0d(2)'

If x = L:i mi 0 Ci 0 di E kel'{ At! t8J B C J:.." M} then

PIT(:';) = x

and
P2T(X) = 0

so x = ]11 r( x) - ])2 T( x). This shows that. L [8J B C -t M t8J B C is illjective. 0

Now we present another rcsuIt. concerning the l'edundancy of tohe conditions in
Proposition 1.2.3.
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Proposition 1.2.13. Consider a sequence (C) .. Asslune that C -+ B is faitllfully
coflat. Then (C) is exact if alld only if (1), (2), (3), (5) 110ld.

Proof. Assume first only (1), (2), (3), (5). Let R, be a coalgebra, and , : C -+ H a
morphism of Hopf algebras such that ," = c.

Clainl. Let x, y E HOlllcouly(R., C) sud] that 7fX = 7fY. Tl]en IX = IY.

Proo/ 0/ the Clai1n. VVe show first t.hat X-I * Y factorizes through A. Indeed, by
(5), we need to check that (7f 0 iel)ß(x- I * ver»~ = 10 x-I * y(r), for r E R. But
the left-hand siele is

1r (S(x(r(l)(2»Y(1'(2»(I)) 0 S(X(1'(l»(l»y(1'(2»(2) =

S1r(X(I'(2»)7f(Y(I'(3)) 0 S(X(T(1»)(y(r(4») = 1 0 S(x(r(l)(y(r(2)))'

Now (,x)-l * ,y = 10 x-I *Y = t. Thus,x = IY' 0

Let H = C/CA+. By (5), C -+ Bis nOrIllal and hence (by (1) and Lemma 1.1.12
(i», H is a Hopf algebra. By (3) C --t B factorizes through H. Apply now the
claim to the projection C --t H, R. = C ~ ß C, x, y the res tri ctious of c 0 cl 1---+ ce; ( d),
c 0 d 1---+ e;(c)d. (Here Lenunll 1.2.8 applies because CA+ = A+C). By faithful
coflatness, B ~ H, i.e. (4) holels. 0

Corollary 1.2.14. ASSllllle tlu!.t C ~ B is fait11fully coflat allel normal. Set
A = HI(er7r alld " the indusion. Tllen (C) is eXctct.

From Corollaries 1.2.5 anel 1.2.14 oue eleduces that t.he not.ion discussed in [PaW,
1.5] aud our conorInality agree, nnder faithful flatuess hypothesis. (See Lemnlas
1.1.7 and 1.1.11).

Lelnlna 1.2.15. (i) A faitllfully Bat cOllonnCil Hüpf sulJalgebra A t.-..+ C is Ad
stable.

(ii) A faitllfully coflat nonnill (lllütient Hüpf algebra C -+ B is a rig1Jt C -quotient
conlodule for the right adjoint coaction.

Proof. (i) Let B = C/ A+C and let 7f : C --+- B be the canonical projection. By
Corollary 1.2.5, A = LI(er7f. But if a E A and cE C, Ad(c)a E LKel'1r.

(ii) is left to the reader. 0

Rem,ark. Another definition of short exact. sequences for quantulll groups was given
in [PaW]. In tenns of Hopf algebras, t.hey said that the sequence

(C)

is exact if " is a IlIOn01110rphis111 and B = C/e ,,(A+)C, i.e. B is the cokernel of
t. With this definition, two problenIS arise: given C lUlcl B, on aue side A is not
unique, anel on the other it is Hot proved that such A exists. As for the first, a
counterexaInple is provided in [Pa\V, G.3.3]; here is another oue. Take a group
G with a non-trivial subgroup H such that the union of all the conjugates of H
equals G. Let A (resp., C) be t.hc group algebra of H (resp" of G), and let" be
the canonical inclusion. Thc auglllentat.ion ideal of a group algebra is the vector
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subspace generated by t.he elelllcnts e y -1 with 9 non-t.rivial. Therefore B above is
the trivial Hopf algebra. Tbis is an unpleasant situation, wbich is not possible in
our approach. Indeed, if (C) is exact in 01.11' sense and B is trivial, then by condition
(5) in Proposition 1.2.3 A = C.

As for the existence problelll in our setting, see Corollal'ies 1.2.5 and 1.2.14 above.
On tbe othel' siele, in [Sch] a shol't sequence of Hopf algebras like (C) is said to

be exact if it satisfies eithel' of thc following sets ofaxiollls:

(1) A is a cononllal faithfully Hat Hopf subalgebra of C and B = HCoker i.

(2) B is a nornlal fait.hfully coflat quotient Hopf algebra of C aud A = HI(er 1L

The equivalence of the pl'eceeling requireluents is proved using a result from [T3].
Hy Corollaries 1.2.5 and 1.2.14, the definition in [Seh] agrees with ours, in the
faithfully Bat case.

If oue restriets thc attention to the category of finite dilnensional Hopf algebras,
then the existence probleIllS have bot.h positive answers. Indeed, it is known that
finite dilnensional Hopf algebra.., are free over it.s Hopf subalgebras [NZ] and the
dual stateluent is easy to dednce and well-known. Therefore, it is natural to define
a simple quanttllll finite gronp by any of t.he two following condit.ions.

Definition 1.2.16. Let H be a finite diIllensional Hopf algebra. We sha11 say that
H is siInple if it satisfies any of the following equivalent cünditions.

(a) Let ]( be a nonnal Hopf (luotient a.lgebra of H. Then !( = H 01' ]( = k.
(b) Let !( be a cononnal Hopf stlbalgebra of H. Thell !( = H 01' ]( = k.

Proo! o! tILe eq'ni1JfJ.lence. (a) => (b). Let B = Heoker i. Then, by LClnma 1.1.12
ii), the 1110rphislll H ---t B is 110rnla1. So by (a), B = k an cl ]( = H 01' B = H and
!( = k.

(b) => (a). Let C = Hkcr7r. By Leullna 1.1.12 i), C = Hand then !( = k or
C = k and !( = H. 0

Remark. A nl0re general statenlcnt than the equiva.lence between (a) anel (b) above
is [Seh, Thlll. 1.4].

§2. Short exact sequences. Dur purpose now is to study shürt exact sequences.
More preeisely, given Hüpf algebras A allel B we wish (as usual) to study extensions
of A by B, i.e. short exact sequences like (C). vVe recall first sonle iluportant facts
frOlll [BCM], [DT].

Definition 2.0. Let H be a Hopf algebra. anel A <Ul algebra. A l110rphislll of vector
spaces --..: H 0 A ~ A, h 0 a 1---+ 11. --.. (/" i~ a weak fLction if the following conelitions
are verified, für all a, b E A, h E H:

(2.1) h --.. ab = (h(I) --.. a)(h(2) --.. by,
(2.2) h --.. 1 = c(h)l,
(2.3) 1 --.. CL = CL.

We shall say that a weak action is an fl.ctinn if in addition

(2.4) h --.. (e --.. a) = hE --.. a foI' all fL E A, 11., eE H.
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Let us fix an algebra A wit.h a weak action uf a Hopf algebra H. For each bilinear
map a : H x H -4 A we can deRne a (not necessarily associative) algebra structure
on the vector space A Ci) H (dclloted A#u H) as folIows:

(2.5)

The eielnent a 0 h, when eInphasis Oll tohe algebra structure is needed, is denoted
a#h.

Proposition 2.6. (i). 1#1 is tlle ideutity of A#crH if aJld only if

(2.7) a(l, h) = aCh, 1) = e(h)l, Vh E H.

(ii). Asstune tlw.t a( h, 1) = e(h)l for a11 h EH. Tllen A#uH is associative if
and only if, for any h, 1, rn E H [md a E ..4, the following conditions llold:

(1) (cocyc1e con di tiDU)

(2) (twisted l1lodule condition)

Now we pass t.o the dual nation of the pl'eceding.

Definition 2.10. Let C be a coalgebra. wit.h cOIllultiplicat.ion b, H a Hopf algebra.
We shall say that a. Illnp f' : C -4 C 0H is a 1JJca.k cOfLction if the following conditions
are verified:

(2.11) (c5 0 id)p = 1n 24 (p Ci) p)8, whel'e n124 : C Ci) H Ci) C Ci) H -4 C Ci) C Ci) H is the
map c 0 h 0 cl 0 k I-t C <:0 d 0 hJ.:.

(2.12) (ee <9 id)p = EC 0 l.
(2.13) (id 0E H )p = iclc ·
As usual, a weak coact.ioll is a conction if in addition

(2.14) (id <9~)p = (p Ci) id)p.

ExaUlple. The trivial coact.ion is thc Iunp p : C -4 C 0 B, p(c) = c Ci) l.

It is well-known that an extension of gl'OllPS H -t G -t !( with H abelian gives
rise in a natural way t.o an action of !( on H. This is st.ill t.he case for quantum
groups. Let -

(e)

be an exact sequence of Hopf algebras a.nel aSSluue that in addition B is COCOIn
lllutative. Then the adjoint action ad : C -+ C 0 C, ad c = C(2) 0 S(c(l) )C(3)'

induces adl'r : C -t B 0 C by COIllposing wit.h (IT Ci) 1). As A ~ C is conormal,
adl'r(ker1T) = adl'r(A+C) = O. So thcl'c is a weIl defined coaction,: B -t B 0 C.
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Now the hypothesis "B COCollllllutative" inlplies that , lifts to cf; : B -+ B C81 A.
Indeed, by condit.ioll (5) in Proposition 1.2.3, A is t.he kernel of U : C -+ B C9 C,
U = (( 1r C9 id) - (f 0 id))~. Therefore B 0 A = ker(id 0U), so we need to show
that (id 0U),(c) = O. Now

(id C81U)-y(c) =1r(C(;J)) 0 rr(S(C(2»)C(4») 0 S(C(l))C(5)

J - rr(c(3») 0 f(S(C(2»)C(4») 0 S(C(I»)C(5)

=1r(C(2») 0 rr(S(C(3»)C(4») 0 S(C(I))C(5) - rr(C(2») 0 1 ® S(C(I))C(3) = O.

Clearly, cf; is a coaction.

Exalnples of ext.ensions with B cocornnnltative are the cocentral extensions. One
says that C) is cocenirfl,l if t.he followil1g equivalent conditions hold for any C E C:

(1) 7r(C(l)) 0 C(2) = rr(C(2») (9 c{I)'

(2) 7r(C(2») <9 S(c(I))c(3) = 7r(c) (9 1.

Proo/ 0/ the equi7Jfllencc. Let;c 1 Y : C ---+ B (9 C be the applications x(c) = rr( c) 0 1,
y(c)10 c. Consider the usual nlltltiplicatiol1 in B (9 C. Then (1) reads x * y = y * x
and (2), y-J * x * y = x. 0

Let us fix a coalgebra C with a weak coaction p of a Hopf algebra H. For
each linear map r : C ---+ H 0 H wc can define a COll1l1ltiplication (not necessarily
coassociative) f,T : H T#G' ---+ H T #C0H T #C (here H T#C denotes, for the sake of
differentiating fronl the usual prodnct. coalgehra st.rllct.nre, the vector space H (8) C)
as follows:

(2.15) f,T(h (9 c) = h(I)r(c(I))j (9 P(C(2»)i (9 h(2)r(C(1»)j p(C(2»)i 0 C(3)'

Proposition 2.16. (i). cH T#C := CH <9 ce is a COlUJit oE H T #C iE and only iE

(2.17) (EH 0id)r(c) = ce(C)lH = (id®cH)r(c).

(ii). ASSUllle tlli'd ce (c)1H = (c H (9 id)r (c). Tllen tlle coproduct f,T is co&'>so
ciative iE and only iE tlle following two conditions llold:

(1) (co-cocyc1e condi f.ion)

(2.18) n~H0a(~ 0 id 0r 0 icl)( r 0 p)8 = (id 0mH0 2 )(id 0~ (9 icl ® id)( r 0 T )8;

(2) (twisted COl11odule cOlldition)

(2.19) (id (91n H0 2 )(icl0~ (9 icl0 icl )(p ® r)5 = m }l@2(id ® id 0p 0 icl)(r 0 p)8,

where n~}t02 : H 0 H 0 C 0 H 0 H ---+ C 0 H 0 H sellds h 0 k ® c ® h<9 Je ---+

c (9 hh 0 kk~.

The co-cocycle condition reads

(T(C(l))i)(I) T (P(C(2»)i),(9 (r(c(l))j)(2) T (P(C(2»)i)' 0 r(c()))j P(C(2»i

= r(c(l))) 0 (r(c(I))j\1) r(C(2»)h (9 (r(c(l))i)(2) r(C(2»)h,

and the twisted cC>1l1odule condition is

p(C(l))i (9 (p(C(I))i)(l) r(C(2»)1t 0 (p(C(l))i)(2) r(C(2))/J

= P (P(C(;l»)j),(9 r(c(l))jp (p(C(2»);)' 0 r(c(l))) P(C(2»)i.

Proof. We omit the superscript r in the following.
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(i). It is easy to sec that (id0cHT#C)8(h 0 c) = h(id~e)T(c{1» ~ C(2) and
(eH T#C ~ id)<5(h ~ c) = h(e 0 icl)r(c(l» 0 C(2). Thus (2.17) implies that eH T#C is
a counit. The reciprocal is trivial.

(ii).Let HS first asslune t.hat (2.18) anel (2.19) are satisfied. Clearly, it suffices to
check the coassociativity in an elelnent. of t.he fonn 1 0 c. Hence

(<50 id)<5(c) = [r(c(l})j](l)T ([p(c(2»)d(l))t0 P ([p(C(2»i](2»)p 0 [r(c(I)i](2)

r ([p(C(2»)i](I))t p ([P(C(2»)i](2»)P 0 [P(C(2»i](3) 0 r(c(l)i P(C(2»i 0 C(3)

= [T(C(l))j](l)T (p(C(2»i), 0 P (p(C(3»)Q)p 0 [T(C(1»j](2)r (p(C(2»i)l
p " k

P (p(c(3»q) 0 P(C(4»)k 0 r(c{1»J p(C(2)rp(C(3»Qp(C(4» 0 C(S)

=T( CO»j \9 P (p( C(3»)I/) l' 0 [r( C(l} )i](1) r( C(2»" P (p( C(3»q) p

o p(C(4»)k 0 [r( c( I))J](2)r( C(2»)" p(C(3»Q p(C(4»k 0 C(5)

=T(C(l»)J 0 P(C(2»)i 0 [r(c(l)j](l)[P(C(2»i](l)r(c(3»h
. . h ko P(C(4»)k 0 [T(C(I))J](2)[P(C(2))'](2)r(c(3)) P(C(4»)· 0 C(5)

= (id 08)8(c)

Here the first and the last equalit.ies follow fron1 thc definition; the second, froll1

which is an iteration of (2.11)j t.he t.hird, fron1 the cocycle condition (2.18) and the
fourth, from the twisted ceHnodule conelition (2.1Q).

Couversely, suppose that the coalgehra H T #C is coassociative. Applying
(id 0e )03 (respectivc1y, e \9 id 0 icl0e 0 icl06) to both sieles of the equality express
ing the coassociativity, we get the cocycle conelition (resp., the twisted comodule
conditionj in this case we 111Ust use the hypothesis ec(c)l H = (eH 0 icl)r(c». 0

We want uow to consider the ext.ension problmn. First, cOlubining Propositions
2.6 anel 2.16, we show how to bllild extensions of Hopf algebras.

Theorenl 2.20. Let A, B he two Hopf algehrar;;, provided wit11 a weak action
~: B 0 A -? A alld a weak coactioll p : B -? B 0 A. Let us also fix a cocyc1e
(j : B 0 B -t A, allel a co-cocyclc T : B --t A 0 A. Let C = A T #uB denote t11e
vector space A (9 B IJrovieled wit11 t11e ll11I1tip1ication (2.5) anel t11e cOlllultiplicatioll
(2.15) (delloted 11ere f::1).

Thell C is a bialgehra if and on1y iE tlle following cOllditions hold:

(i) (j satisfies the lI11itary cOlldition (2.7), alld r t11e co-unitary cOlldition (2.17).
(ii) (j satisfies t11e cocycle condition (2.8) allel tlle twisted lllodule conditioll

(2.D).
(iii) r satisfies t11e co-cocycle cOlldi tiOIl (2.18) and t11e twisted c01110dule condi

tiOll (2.1 D).
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(iv) (compatibility witll the unit E1J.ld counit) p(l) = T(l) = 10 1, E: 0 a = E: 0 e,
e(a --.. b) = e(a)e(b).

(v) (conlpatibility hetween tlle product Rnd the coproduct)

(2.21)

(b(l) --.. a)(I)a(b(2) (9 iJ(I»(1)T(b(3)b(2»j 0 (b(1) --.. (L)(~)a(b(2) ~ b(I»(2)T(b(3)b(2»j

= T(b(1»1i (P(b(2»i --.. a(})T(b(I)p) a (p(b(3»j (9 P(b(2»q)
, " - - -

(9 T( b( 1» l p(b(2»1 p( b(3»1 (b(4) --.. a(2) T( b(l)P p(b(2»q )a( b(5) (9 b(3»

(2.22) p(b(3)b(2»i 0 (b(1) --.. a)a(b(2) (9 b(l)p(b(3)b(2»i
- . - k -= P(b(I»iP(b(1»k (9 p(b(1»I(b(2) --.. ap(b(I) )a(b(3) (9 b(2»

for a1l (L, a E A, b, bEB.
Assume furtller that

(vi) (conlpa ti bili ty wi tll the an ti]Jode)

(2.23)

(2.24)

c(b) = S(T(b)j)T(lI) = T(bj)S (T(b)j)

e(b) = a (h(1) (9 S(b(2») = a (S(b(l» (9 h(2»)

Tben A T #tr B is a Hopf algehra, wll0se Cllltipode i8 given hy

More0 ver, let i A : A. ---+ C anel PD : C ---+ B he the applicatiollS a ~ a 0 1,
a 0 b~ c( (L )b. Tllen

is aJl exact sequellce.

Proof. It follows frolu Proposit.ions 2.6 anel 2.16 that. C is an associative algebra
and coassociative coalgebra if and only if (i), (1i), (iii) hold. It is cleal' that (iv)
means that ce is a nl0rphis111 of algebras and that 6.( 1) = 1 0 1. Let us assume
now that (2.21) and (2.22) are true. Let c = a 0 h, C= a0 bE C. Then

~(cc) = fL(l)(b(l) --.. a)(I)a(b(2) 0 b(l)(1)T(h(3)b(2»j 0 p(b(4)b(3»i

(9 u(2)(b(I) ~ ä)(2)a(h(:l) (9 b(l»(2)T(b(3)b(2»jp(b(4)b(3»i 0 b(5)b(4)

= a(1}T(b(I»h (P(b(2»i --.. a(1}T(f,(I»ll) a (p(b(3»j (9 P(b(2»q)

- I"
~ p( h(G) b(4»i 0 (L(2) T( h( 1» I p(b(2)r p( b(3»)l

(b(4) --.. ä(2)T(b(I»)l'P(f,(2)yJ)a(h(5) (9 b(3»p(b(6)b(4»i 0 b(7)b(5)

= (L(l)T(b(l»h (P(b(2»; --.. u(l)T(b(I»P) a (p(b(3»j (9 P(b(2»q)

o p(b('1)",p(b(J»t (9 U(2)T( h( l»h p( h(2»i p(b(:l})i P(b(4) Yll

- - - t - -
(h(5) --.. ii('l)T(b(l)Y P(b(2»fJ P(b(3» )a(b(ß) (9 b(4») (9 b(7)b(5)

= L\(c)6(C).
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Here the first equali ty fo11ows fron1 t.he definit.ions, the seconel froln (2.21), the third
fron1 (2.22) and the last is again by definition, cOlllplementecl by iteratioll of (2.1).
Conversely, (2.21) (resp., (2.22)) can be deduced froln t.he equality expressing the
multiplicative character of ~ by taking a = 1 anel applying id Q9c Q9 id Q9c (resp.,
c Q9 id Q9 id Q9c).

Assume now tha.t (2.23) and (2.24) hold anel let. us check that the S given by
(2.25) satisfies the axiOll1S of t.he antipode. One can suppose that a = 1. One has

rn(S (9 id)~(1 0 h) = { (S[p(p( b(2) );)1(2)] --6 S[p(p( h(2) );)']) 0 S[p(p(b(2»)i )'(1)]}

S(r(b(1»)j]r(b(I»)i P(b(2»)i (9 b(3)

= (S[P(P(h(2»);),](I) --6 S[P(p(b(2»)i)']S[r(b(1»)j]r(b(1))iP(b(2»)i)

a (S[P(P(b(:l»)i)t](2) 0 b(:q) 0 S[p(P(b(2»)j)tl(3)b(4)

= (S[p( b( l»)i]( 1) ----" S[( (p( 'J( 1»)J)( 1) r( b(2) )h]( (p( h(1»)j )(2) r( b(2»)h)

Cf (S{p(b(1»)j](2) 0 b(:q) 0 S[P(b(I»)j](3)b(4)

= (S(b(3») --6 S[r(h(4»)h]r(b('1))h) Cf (S(b(2») 0 b(3») 0S(b(1»)b(5) = c(b).

Here the first equality follows frenn the definitions; the second fronl (2.1) and (2.11);
the thirel fron1 the twisted cOlllodnle condition; t.he fourt.h froin conelition (2.13) anel
the last, from (2.23) anel (2.24). In a siulilar way, one proves 7n(id 0S)~(1 0 b) =
e(b).

Conditions (1) to (5) of Proposition 1.2.3 are also easy to verify anel the Propo
sition follows. 0

Rernark. Conclitions (2.23) and (2.24) are sufficient. but not necessary to have an
antipode. Alllore satisfactory answer is given below (Lenulla 3.2.17) in the context
of eleft, extensions. The genera.l question relnains however open.

Definition 2.26. Let A, B be two Hüpf algebl'as. A data 'D = (--6,0', p, r) is
cornpatible if it satisfes conditions 0), ... (v) in the Theürenl above. If in addition,
A T #a B is a Hopf algebra, then we say that 'D is a Hopf data.

We sha11 show now an cxal11ple of l'econstruction of a Hüpf data fron1 an exact
sequence. A more general statCluent will be given in the next section. Let us fix an
exact sequence

o~ A ~ C ~ B ---7 O.

In particular, we sha11 considel' C as a left A-nloclule anel B-coll1oclule in the obvious
way. We shall aSSUlne in the rest of this sect.ion the existence of a linear isonl0rphisln
:F : C -io A C9 B (whose inverse is denoted 9) sat.isfying the following conditions:

(2.27) :F is a nlorphisnl of A-nloclulcs, i.e. :F(ac) = (CL 0 1):F(c).
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(2.28) :F is morphislll of B-conloclules, i.e. the following diagraul COllllllutes

c C0B

1:F0id

(2.29) F(l) = 1 01.

id0~
--+1 A0B0B.

(2.32) (PAF(c(l)S(PA.F(C(:,n) = e(c) = S(PA.F(C(I))(PA.F(C(2))'

Here PA : A 0 B ~ A is the canonical project.ion, ]JA = id &Jen; in the same vein,
i A : A ~ A (9 B is tohe canouical illchu.;ion a f-+ a (9 1, anel silllilarly for i B, PB. One
deduees easily fron1 the first foul' axi(Hlls above that F L = i A, PB F = 7r.

Thanks to such F, we shall obtain t.he exact sequence (C) as in the preceding
proposition. Let us first int.rocluce a : B 0 B ~ C, = :B 0 A --+ C, f : C ~ A 0 A,
p: C ~ B ® A by the following fOl'lnulas:

a(b 0 b) = 9(1 0 b( I) )9(1 0 [J(I) )9(1 0 Sb(2)S b(2)

b=a = 9(1 0 b(l))a9(1 0 Sh(2)),

f ( c) = (S]J A.Fc( 1) ) (1) pA.Fc( 2) 0 (SPA .FC( I) ) (2) ]J AF c( 3) ,

ß(c) = 7r(C(2)) 0 SPA Fc(I)IJ;\fC(3)'

Lemilla 2.33. Tllcse lllH]JS give rise to a ; B 0 B ~ A, ~: B 0 A ~ A, T : B --+

A 0 A, p : B ~ B 0 A.

Proof. It is straightforward. For eXa.Illple l let us show t.hat. the ilnage of ii is con
tained in A:

(id 07r )tlii(b 0 b)

= (id07r )6Q(10 h(I))( id 0 7r)69(10 b(l)(id07r)tl9(10Sb(2)Sb(2))

= (9(10 bel)~ ® b(2)) (9(10 bel)~ 0 b(2)) (9(10 Sb(4)Sb(4) 0 Sb(3)Sb(3))

= 9(10 b(I)Q(l 0 h(I))9(1 0 sJ,(4)Sb(4) 0 b('2)h(2)Sh(3)Sb{3)

=ii(b0b)0 1.

The rest is sÜllilar. D
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Proposition 2.34. F is fll] iS01110rpl1islll of Hopf algehra... [rom Canto A T #aB.

Proof. p (resp. -->.) is Cl weak coactioll (resp. action) because of (2.32) (resp. (2.31».
These two aXi0l11S also iIllply a( h(1) = a(10b) = c;( 1) and (c; 0id)7 = c; = (id 0C;)7.
From this, we deduce (a \9 1)(1 0 b) = a 0 b.

So let us prove that 0 is Cl 111orphisll1 uf algebras:

Q ((a 0 b)(ä 0 b)) = 0 (a([,(l) -'" ä)a(b(2)' b(I» 0 b(3)b(2») =

Q (aQ(10 b(1»)ä.Q(l (95[,(2»9(1 (9 [,(3»)9(1 0 b(1»)9(1 0 5b(2)50(4») 0 b(5)b(3»)

=O(a 0 b(I)c;( 0(2) )Q( (i, 0f'(1) )Q(10 Sf'(2)Sb(3) )9(10 b(4)b(3») = O(a 0 b)Q(ä 0 b).

Here the first equality is by definition, the second follows beeause Q is a morphism
of A-modules and the t.hird is a consequence of (2.31).

Now we prove that. F is a Illorphis111 of coalgebras:

öT(F(c) = {PAF(c(I))](1)T(iTC(2))j 0 P(iTC(3»)i

(;9 {PA F(c(l)](2)T(iTC(2»i p(iTc(3»i (;9 7rC(4)

= [PA.r(C(l))](1}[SPAF(c(2))](l)PAF(c(:q) 0 7rC(6)

o [PA.r( C(I)](2) [SpAF(C(2»)](2)PAF( C(4) )SpAF(C(5) )PAF(c(7») 0 7rC(s)

=JJAFc(1) 0 7rC(2) 0 ]JAFc(3)1rC(4) = (F 0 .F)ß(c),

taking into account. the fonnula F(c) = ]JA.r(C(l» 0 7r(C(2»)' 0

§3. ISOl1l0rphislllS of extensions. In this section, we study whether two ex
tensions build froln c0111patible dat.a (cf. Definition 2.26) are isomorphie, in terms
of the data. \Ve obtain a cOlllplete answer in the ease of eleft extensions, see 3.2.
Our methods are largely an extension of those in [DL S. Montgomery communi
eated us that Blatt.ner and she obtainecl independently S0l11e of the results in [D]
(unpublished).

9.1 Rudimentary non-u,beli.{J,n coho7TLology. Let A, B be two Hopf algebras and
let Reg(B, A) be t.he group of linear Il1orphisll1S fronl B t.o A which are invertible
with respect to the convolut.ioll product [Sw]. Let also

R.eg} (E, .4.) = {4> E R.eg(B) A) : 4'(1) = I},

Reg~(B , A) = {4> E Reg(B , A) : c: 4> = c:},

Reg},~(B, A) = R.eg l (B, A) n Reg€(B, A);

these are subgroups of Reg(B, A).
Let Wea.k(B 0 A, A) (resp., Coweak(B, B @ A) be the set of all weak actions

of the Hopf algebra B on the algebra A-cf. Definition 2.0 (resp., weak coactions of
the Hopf algebra A on the coalgehra B-cf. Definition 2.10).
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Lemma 3.1.1. (i). Let ...... E vVeak(B0A,A), 0 E hOln(B0B,A), 4> E Reg(B,A).
The fonnulas

(3.1.2)

(3.1.3)

tP o(b'9 cl) = <jJ(b{1)) (b(2) ...... <j>(d(l))) 0(b(3) '9 d(2))<jJ-I(b(4)d(3))

provide a left action ofR,cg1(B,A) on Weak(B0A,A) X hOl11(B0B,A), i.e. 4>.(~

,a) = (tP ...... , "'0). (Here A needs to be only an algebra).
In addition, iE a is invertible then tPa also is; in fact

(tP a )-l(b (9 rl) = <jJ(h(l)d{1))a- l (h(2) (9 d(2)) (h(3) ...... <jJ-l(d(3))) <j>-I(b(4))'

(ii). Analogous1y, let p E Coweak(B, B 0 A), r E hOlll(B, A 0 A). Tlle Eormulas

(3.1.4)

(3.1.5)

ptP(b) = (1 '9 <jJ-l(h(I))) p(h('2)) (10 <jJ(b(3))) ,

rtP(b) = 6<jJ-I(b(l))r(b(2))(<jJ (9 id)p(b{3)) (10 1(b(4)))

provide a right action oE Reg~(B, A) on Coweak(B, B 0 A) x hom(B, A 0 A), i.e.
(p, r ).4> = (ptP, r tP ). (Here B needs to be o1l1y a coalgebra).

Moreover, iE r is invertihle t11cn r tP n1so is, and its inverse is

Proof. (i) is essentially proved in [D], so we prove only thc dual statelnent (ii). Let
us first show that ptP is a. weak coa.ction. Condition (2.12) in Definition 2.10 is
obvious and condition (2.13) follows fnnl1 E<jJ = E. Let us proceed with condition
(2.11). On one siele,

(~0 id)ptP(h) = (10 <jJ-l(b(I))) (609 id)p(b(2)) (109 <jJ(b(3))) j

on the other,

nt24 (ptP 0 ptP)(b(I) 09 b(2))

= p( b(2))i 0 p( b(5))j (9 <jJ -1 (fl( I) )p(b('2))i <jJ( b(;j))<jJ-I (b(4) )p(b(5))j <jJ( b(B))'

and condition (1) für pr/> holds.

Let us prove now the group action aXi01l1s. Let. also 'Ij; E R,eg~(B, A). Then

(p"') 1P (b) = (101/;-I(b(I))) ptP(b(2)) (101/;(b(3)))

= (10 tf;-I(b(l))) (10 <jJ-l(b(2))) P(h(3)) (10 <jJ(b(4))) (10 tf;(b(5))) = p(b)tP*1P.

On the other hand,

(r tP )1P (b) = 6.1/;-1 (b(l))rtP(b(2))(VJ 0id)ptP(b(3)) (101/;(b(4)))

= 6(<jJ * 1/;)-1 (b(I))r(b(2))(<jJ 0 icl)p(b(3)) (10 <jJ(b(4))) (10 <jJ-l(b(5)))

Ct/J 0 icl)p(fJ(II)) (1 0 cjJ(b(7))) (1 01/1(b(8))) = r tP *tJ1;

here one uses the axiolll (2.11). 0
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Lemma 3.1.6. (i) Let (->-, a) E \~eak(B0A, A) x hOIU(B0B, A), 4> E Reg1(B, A).
Then the (non neccssarily [k<;;sociative) algebras A#qB allel A#.qB are iSOlllOrphic.

(ii) Let (p, r) E Coweak(B, B 0 A) X hOln(B, A 0 A), 'ljJ E Reg~(B, A). Then tlle

(non necessarily coa..r.;8ociative) coalgebras A r#B and A rtJ.> #B are isomorplJic.

Proof. (i). Let :F = FIjJ : A#uB -+ A#<I'uB be the application

Clearly, FIjJ:FTjJ = FIjJ*tjJ. Then Oll Olle hand,

:F«a#b)(c#d» = :F (a(b(1) ->- c)a(b(2) ~ d(l)#b(3)d(2»)

= a( b( 1) ->- C )a(b(2) '9 d(1»q., -1 (b(3) d(2»#b( 4)d(3);

on the other,

:F(a#b):F(c#d) = (a</> -1 (b( 1) )#h(2») (c</J -1 (d( 1) )#d(2»)

= aq.,-1(b(1»(b(2) ljJ ->- c4>-l(d(1») ljJa(b(3) 0 d(2»#b(4)d(3)

=a(b(!) ->- c</J-l(d(l»)(l'(2) ->- </J(d(2»)a(b{3) 0 d(3»q.,-1(h(4)d(4»#b(5)d(5);

we only used the definitions and (2.1).

(ii). Let Q : A r#B -+ A rtJ.> #ß hc the applicat.ion

Then

(90 Q)6.(a#b) = (909) (a(I)T(b(l)j 0 P(b(2»i '9 lL(2)T(b(I)j P(b(2»i '9 b(3»)

a(l)T(b(l)jlj; (P(h(2»j(I)) 0 P(b(2»j(2) 0 (I.(2)T(b(1)j p(b(2»i'ljJ(b{3» 0 b(4)

= (L(l)T(b{1»j'ljJ (P(lJ(2»i) 0 p(b(:q)h 0 U(2)T(b(I»j P(b(2»i p(b{3»Iilj;(b(4» 0 b(5);

-anel this equals

6.9(a#b) = 6. ((L'if;( b(l» 0 b(2»)

= a(1)tP(b(l»(1)T vJ (b(2»j 0 fJ"J(b(3»j 0 (l(2)1jJ(b(I)(2)Tt/J(b(2»i Pt/J(b(3»i 0 b(4)

by (3.1.4), (3.1.5). 0

Observe that, if A r #qB denot.es the "bialgebra" obt.aineel from (->-, a) E
Weak(B 0 A, A) x hOln(B 0 B, A), (p, T) E Coweak(B, B 0 A) x hom(B, A 0 A).
(without associativi ty, coassociativi ty nor conlpatibility between the lllultiplication

and cOlllttltiplicatiou), allel q., E !leg1,~(B, A), t.hen A r#qB anel A r4'-l #4' qB are
isol11orphic, as follows fro1l1 t.he proof of the precceling Lelluua.
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Let us now introeluce

Zl,O(B, A) = {(-'", a) E \iVeak(B ® A, A) X hOIn(B 0 B, A) : aCh, 1) = 1,

(-'", a) sat isfies the cocycle coneli tion (2.4) and the T.M.C. (2.5)},

ZU,I(B, A) = {(p, r) E Coweak(B, B @ A) x hOl1l(B, A 0 A) : (e 0 id)r = e,

(p,r) satisfies the co-cocycle cOl1elit.ion (2.13) anel the T.C-M.C. (2.14)},

Zl(B, A) = {V = (->., a, p, r) E Zl,U(B, A) x ZU,l(B, A) :

V is a cOl1lpatible elata} ,

Zl(B,A) = {V = (-'",a,p,r) E Zl,U(B,A) x ZU,l(B,A): V is a Hopf data}.

We shall consider the left, action of R.eg 1 ~(B, A) on the set of datas Weak(B @

A, A) x hom(B ® B, A) x Cowcak(B, B 0 A) X hOIn(B, A 0 A) given by </>'0 = 4>'0,
where if V = (-'", a, [1, r) then tPV = (tP->.,tP (l, [1tP-

1
, r tP -

1
).

Proposition 3.1.7. (i) Z 1 ,U is stahle hy the action ofReg] (B, A) defined in Lelnlna
3.1 (i). Let H 1 ,O(B, A) be the quotient oE Zl ,0 by tlle action oE Regl (B, A). T1Ien
(-'", a) 1-+ A#aB induces an npplication frOll] H l ,0 (B, A) to the set of isolllorpllislll
classes oE B -extensions of nlgebrflB oE A (see 3.2 be1ow).

(ii) ZO,l is stable b'y tlle action of Reg~(B, A) denncd in Len1nI[L 3.1 (ii). Let
H O,l (E, A) be the quotient of ZU,l (E, A) hy of R,eg~(B,A). Tllen (p, r) 1-+ A T #B
gives rise to an application frOlll HU,I(B, A) to tlle set oE isolllorpllisJ]l cla..,;;ses oE
A-extensions oE coalgebnk'"l of B.

(iii) Z 1 is stahle hy tlle action of Reg 1 t" (B, A) defined ahove. Let H 1(B, A) be
tlle quotient of Z 1(B, A) by of Reg l ,t"( B, A). Then (-'", a, p, r) 1-+ A T #a B gives rise
to an application frOlll H 1(B, A) to tl]e set of isonlorpllisll1 classes oE B -extensions
oE bialgebras oE A.

(iv) Tlle statell]ent obtained froll1 (iii) by rcplacing "cOll1patihle" hy "Hopf' is
still true.

Proof. (i) follows fronl Lcuuna. 3.1.6 (i) aael Proposition 2.6; in turn (ii) follows
froin Leinnla 3.1.6 (ii) anel Proposi tion 2.16. (iii) follows frolll the preceding and
2.20, and (iv) fronl (iii) and [Sw, 4.0]. 0

9. ~ Gleft exten Lllion.ll. In t.his snbsectioll, we first recall same facts about eleft
extensions of algebra.,;; fronl [D} anel t.hen st.ate their dual analogues.

Let B be a Hopf algebra. A B-coInoclule algebra is an algebra C, which is
siInultaneously a B-coinodl1le and whose st.rnct.urnl l1I01'phisnl , : C --+ C 0 B is a
morphisill of algebras. The sl1ba.lgebra of invCl.l'iant.s is

{c E C: ,(c) = c01}.

Let A be the subalgebl'a of invariants: then one says that C is aB-extension of
A (nI0re precisely, an ext.ension of algebrns), anel denotes C/A. A nlorphisln of
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extensions preserves, by definition, the algebra and the comodule struetures, and
induees the identit.y on t.he algebra of invariant.s. An extension is cleft if there exists
X E Reg1 (B, C) such that

(3.2.0) IX = (X 0 id)~;

such X is called a section. Notice that [D]

Assullle that B aets weakly on an algebra A aud let Cf be a cocycle satisfying (2.3),
(2.4), (2.5). Then C = A#".B is aB-extension of A, up to identifying the last with
the subalgebra of invariants via the llHtp a 1-+ a#1. Here, the cOßlodule map is

Moreover, the 1110rphislll X : B ~ C, X( h) = l#b is a section if Cf belongs to
Reg(B 0 B, A); the only non-trivial pa.rt follow8 frolll [BlvI, Prop.1.8]. Let us recall
from loc. cit. that.

Thus, in such case A#".B is a. elen B-ext.ension of A. ConverselYl one has the
following ilnportant. fact:

Theore111 3.2.1 ({DT, Th. 11]). Let C be a cleft B-extension of A, X : B --+ C a
section. Define 1-: B 0 A --+ A, a : B (9 B --+ A, by

(3.2.2)

(3.2.3)

lJ ->. (L = X( h( 1) )(LX- 1 (h(2»)'
.. .. 1 ..

a(b 0 h) = X(b(l»X(b(1»X- (b(2)b(2»'

Tllen --->. is a weak action, a is inversible, tl1e algebra A#".B is associative and tbe
c1eft extensions C / A and A#".B/A are iS01110IV1Jic via

a#b 1-+ ax( b),

For obvious reasons, we change now our notation. Let A be a Hopf algebra.
An A-moclule coalgebra is a coalgebra C, which is Silllultaneollsly an A-Inodule
and whose structuralillorphislll Il : A 0 C --+ C is a 11lOl'phislU of coalgebras. The
coalgebra of coval'iants is C/ A+C. If B is the coalgebra of coval'iants, then one says
that C is an A-extension of B (of coalgebl'as) and denotes C\B. We shall denote
by 7r the canonical lllorphisnl C --+ B. Ivlol'phislllS of extensions of coalgebras
preserve both the lllodule and thc coalgebra structUl'es and iu(hlCe the identity on
the coalgebra of covariants. An ext.ension is cleft if there exist.s ~ E R,egt;(C, A)
such that

(3.2.4) e(ac) = o{(c), Va E A, c E C;
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eis then called a reh·action. Notice that

e-1 (ac) = e- 1(c)S(a).

ASSUll1e now that B is a coalgebra pl'ovided with a weak coaction p : B ~ B0A.
Let us also fix a co-coeycle T : B -t A ® A satisfying (e: ® id)T = e:, (2.13), (2.14).
Then C = A T #B is an A-ext.ension of B, up to iclentifying the la:st with the
coalgebra of coval'iants vi Cl the 111ap (1,# b H- c(a)b. A aets by a. (ä# b) = aa# b.
Moreover, the mOl'phislll C: C -t A, e(a#b) = ae:(b) is a retraction if T belongs to
Reg(B , A 0 A), as follows fI'fHll the following LeUl111a whose proof runs as that of
[BM, Prop.1.8].

Leluma 3.2.5. Cis invertible jf and only iE T is.

Proof. Assurne that eis invert.ible. Oue proves easily that

from this one finds the following expression

Conversely, a:sSllllle t.hat r is invert.ihle. Let

One proves ea:sily that C* 11 is the t.riviallllorphisrn. The other ll1ultiplication is the
only non-trivial point of the LCllUl1n.. One has

(3.2.6) 77*c(a#b) = e:(a)r- l (P(b(2»)i)k S (r(b(l))jr- 1 (P(b(2»)j)k) r(b(l»)j P(b(2»)i.

Multiplying the co-cocycle condi t.iol1 on b(2) by (.6. ® id )r- 1(b(l))' one gets

(3.2.7) (r 0 id)p(b) = [T-1(b(I»)k](I) r(b(2»)j

o [r- 1(b(I»)k](2) [r(b(2»)i](I) r(1)(3»)" 0 r- 1 (b(l»)k [r(b(2»)i](2) T(b(3»)h

On the other hand, as p is a weak cnaetion, t.he inverse of the applieation b I---t

(r 0 id)p(b) is the application b I---t (r- 1 0 id)p(b). One deduces therefore from
(3.2.7) that

(3.2.8) (r- 1 0 id)p(b) = r- l (b(2»)j [r(b(:q)k](l)

o r-1(b(l»)h [r- 1(b(2»)i](l) [r(bp ))"'](2) 0 r-l(b(l»)" [r- 1(b(z))j](2) r(b(3))k

Now one can proceed with (3.2.G), thanks t.o (3.2.8):

T- 1 (P(b(2»)i) k S (r(b(I»)i r - 1 (P(b(2»)i)"') r(b(I))j P(V(2»)i

= T- 1(V(3»)h [r(b(4»)q](I) S (r(b(I»)jr- l (h(2»)k [r-1(h(;n)h](I) [r(h(4»)q](2»)

r(h(I»)jr- l (b(2»)k [r- 1(h(3))/I](2) T(b(4»)fJ

= r- 1(b)he:(T- 1(b)h) = (id0e:)r- 1(b) = e(b).

This proves that "7 *Cis the tl'iviall110rphis1l1 anel hence that eis invcrtible. 0
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Now we prove the elual version of Theorelll 3.2.l.

Proposition 3.2.9. Let C be a c1eft A-extellsion of a coalgebra B and let ~ E
Reg~(C, A) be a reh·action. Denne p : C ~ B 0 A, T : C ~ A 0 A by

(3.2.10)

(3.2.11)

{l(C) = 7r(C(2» 0 ~-I(C(I»~(C(3»'

T(c) = ~~-I(C(I» ~(C(2» 0 e(C(3».

Tllen p, T give rise to p : B ~ B !Öl A, r : B ~ A 0 A; p is a weak coaction; (p, T)
belongs to ZO.I(B, A) anel hence A T#B is a c1eft A-extensiop oE B. More0 ver, tbe
applicatioll C -. A T #B given hy

is an iSOIDOrphislll oE A-extensions oE B, wllose inyerse is illduced by tlle lnap
A0C ~ C,

Proof. It is straightforw<ll'clj for eXellllple one proves that both sieles of the co-cocycle
condition equal (~ 0 icl)6.~-l (C(1)(~03 6.( C(2»)j and both sieles of the twisted co
module conelitioll equal 7r(C(2») 0 ~e-l(c(l»)(e02~(C(3»). We leave the details to
the reader. 0

Let us now consider

Z~·U(B,A) = {( --.., a) E Zl,O(B, A) : a is invertible},

Z~,l(B,A) = {(p,r) E ZO,l(B,A): T iH invertible}.

Let H;'o (resp., ·H~·l) be the quotient of Z;,O (resp., Z~,l) by the action of Reg1

(resp., Reg~).

Proposition 3.2.12. The applicatiolls defined in Proposition 3.1.7 give rise to
bijectiollS

H ~ ,0 ( B , A) ~ {iS01110rphy cl fIsses oE c1eEt extensions oE algebras C/ A } ,

H2,I(B, A) ~ {is0111orphy c1(1sses of cleft extensions of conlgebra..,;; C\B}.

Proof. The first is proved in [D]. As for the second, surjectivity follows froll1 Propo
sition 3.2.9. Let ns prove injectivity. Let (p,r),(pl,rl) E Z2,1(B,A) and let
1J : C = A T #B ~ A Tl #B = Cl he an iSOll1orphisll1 of extensions. Let ~ : C ~ A,
6 : Cl ~ A be the retractions defined above anel let [ = ~J 17, iJ = ~-l * [. Then
iJ factorizes through lJ E Rege-(B,A); incleed ii(ac) = e-1(a(1)c(l))[(a(2)C(2)) =
e-1(c(l»S(a(1»a(2)[(C(2») = e(a)ii(c). Now

pJl(1rc) = (10 V-17r(c(1»))p(7rcc.n)(10 lJ7r(C(3»))

= (10 ([)-I(C(l»)~(C(2») (7rC(4) 0 C-I(C(:q)~(c(r)) (10 C- 1(C(6»){(C(7»)

= 7rC(2) 0 (~1)-1(17C(1»~1(T}C(:q) = pl(1rC).

Here one uses an t.he reqllirCllleut.s to a. nlorphisll1 of extensions. Silllilarly, r V = Tl

anel injectivity follows. 0
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Definition 3.2.13. Let

(C)

be an exact sequence of Hopf algebras. We shall say that (C) is eleft, 01' else that
C is a eleft extension of the Hopf algebra A by the Hopf algebra B, if there exist
a section X E Reg I ( B , C) of the algebra extension and a retraction ~ E Reg~ (C, A)
of the coalgebra extension, satisfying the following equivalent conditions:

(1) X-I (1rC) = S(c(1))~(C(2))'

(2) X(1rc) = e- l (c(1))c(:,n.

(3) ~-I(C) = X(1rC(I))S(C(2))'

(4) ~(c) = C(I)X- I (1rC(2))'
(5) eX=cB 1A .

Proof of the eq'ILivalence. (1) {::=::} •.. ~ (4) ==> (5) is easy. (5) ==> (1): Let
77(1rc) = S(C(l) )~(C(2))' As X is a section one shows easily t.hat X( 1rc(l) )S(C(2)) E
A. Then X * 7](1rc) = X(1rC(1))S(C(2))~(C(3)) = e(X(1rC(l))S(C(2))C(3)) = c(c), by
hypüthesis. As X is invertible, this itnplies that "7 = X-I. D

Now we are ready to prescnt t.he llHtin l'esult of this sect.ion. Let

Z~(B,A) = {( ----", a, p, T) E Zl(B, A) : a and T are invertible}.

We shall see (cf. Lenuna 3.2.17 below) that the bialgebra A T #rrB is actually a
Hüpf algebra if (----", a, P, T) E Z~(B, A). Let Hl be the quotient of Z; by the action
üf Regl,~ defineel before Proposition 3.1. 7.

Theorenl 3.2.14. H; (B, A) c1assifies c1eft extensions 0 -+ A ~ C ~ B -+ 0 up
to isoll1orpllisnJs.

Proo/. By [BM, Prop. 1.8}, Lenllna 3.2.5 anel condition (5) in Definit.ion 3.2.13, the
application considered in Proposi tiOll 3.1. 7 gives rise to a Il1ap froln H; (B , A) to
the set of isomol'phy elasses of eleft extensions of Hopf algebras. Let UB prove that
it is surjective. Let (C) be a eleft exact sequence of Hopf algebras, with a section
X and a retraction eas in Definition 3.2.13. Let. ----",0', (1, T be defined by (3.2.2),
(3.2.3), (3.2.10), (3.2.11). Let :F : A T #(1 B --+ C be defined by :F(a#b) = ax(b);
:F is an isoillorphisill of extensions of algebras (Theoreln 3.2.1). But. :F(a#7rc) =
ae-1 ( C( 1) ) C( 2) (by (2) in 3.1.13) and hence :F is also an isOillorphisin of extensions
of coalgebras (Proposition 3.2.9). This ilnplies thc surjectivity.

Let us proceed then with injectivit.y. Let (----", a, (1, T), (--'-I, al, PI, Tl) E Z; (B, A).
Let

o

o

I A i AT#(1B

id1 01
A '1 A Tl #(1t BI I

7f i B

7ft I B

---ti 0

---ti 0

be an iSOlliorphisill of (eleft) exact sequences of Hopf algebras and let x, e, Xl, ~I

be the corresponding sections and retractions. Let 1I E R.eg~(B, A) such that 1I7r =
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~-1 *(~10) and let Jl E Regl(B,A) such that '-Il = (TX1)*X- 1. We know that
(->-I,Ul) = J-l.( ->., a) and (PI, 'TI ) = (P1 r).,; ([D, Leul111u 2.1] anel Prop. 3.2.12). So
we only need to prove thnt

(3.2.15)

Let c = a#b E A T #(TB. Thell

? -1
Il = V •

v(nc) = ~-1 (a(l)'T(b(l))j#p(b(2))i) ~1 0 (a(2)r(b(l))j p(b(2»)i#b(3»)

= r- 1 (P(b(2»)i) k S (a(l)r(b(l))jr- 1 (P(b(2»)i)k) CL(2)'T(b(l))j P(b(2»)iel 0(1#b(3»)

= E(a)e I 0(1#b) = eI 0(1#1rc).

Here the first equality is by definition , the second uses the fOrIllula in Lemllla 3.2.4
and that both el and 0 are 1110rphisnls of A-nloclules; the third follows because
(3.2.6) is equal to the trivial 1110rphisnl. On the other hand, froln c = e(C(l) )0n (C(2»)
it follows that

(3.2.16)

and hence

~J-l(b) = T(1#b(l))u- I (Sb(:1} 0 1I(4»)#S(b(2»)

= ('f(1#b(I)) (b(2) -'- u-1(Sb(7) 0 b(8»)) a(b(3)0Sb(G»)#b(4)Sb(5) = ('f(1#b)#1,

where we have used the fOrIllulas in t.he proof of [BM, Prop. 1.8]. Applying now 0
to (3.2.16), we obtain

and hence n * v Üi the triviainlorphislll, i.e. (3.2.15) holds. 0

Lenuua 3.2.17. Let (-'-,a,p,r) E Z;(B,A). Tllen tlle bialgebra AT#(TB is a
Hopf algebra alld its antipode is defined by

(3.2.18) S(a#b) = [(a- 1 (Sp(b(2»)" 0 P(b(3»)j) 0 Sp(b(I»)i]

[r- 1 (lJ(4»)kS (ap(b(l))i p(b(2))Il P(lJ(3))jr- l (b(4))k) 01]

Proof. Let e, X be t.he "canonical" ret.ract.ion and sect.ion of AT #(TB. Then the
equality c = e( C( 1)) 0 n(C(2») can be replua."ied as idc = (ie) * (X1r) in the algebra
End(C). Hut we know that. ~ and X are invertible ([BM, Prop. 1.8] and Lemma
3.2.5). It follows that idc is invertible and Sc = idc -I = (X-I7r) * (~e-I). Froul
the expressions for X-I and ~ -I (3.2.18) folIows. 0

eleft extensions IHl.Ve another pleasant pl'operties.
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Lemnla 3.2.19. Let us Cl consider a lnorphisnl of exact sequences of Hopf algebras

o

o

A C
Tr lBI I

icl1 01 id1
IA

L1

• Cl
TrI IB

---tl 0

---+1 0

where tlle top exact sequence is c1eft. Then tlle hottom is also c1eft and B is an
isolnorpl1ism.

Proof. Let x, ~ be as in Definition 3.2.13. Let Xl = Bx; c1early, Xl is a retraction
of Cl. Let d E GI; Olle has d = d(U)X~1(d(I))Xl(d(2))' But d(O)X~1 E A c IUIB
and hence 8 is slujcctive. Next we claiuI that ~l(d) = ~(c) if B(c) = d is weil
defined. For, if 8(c) = 0, thcn ~(c) = c(1)X- l (7fC(2)) = e(C(I))X~17flB(c(2)) = o.
Moreover, ~l is a section aud the bOt.tOlll exact sequence is cleft. Now assuille
agaill that B(c) = O. Thell 0 = (~1 071'"1)(8 0 B)~(c) = (c 0 7f)~(c) and heuce
c = C(l)X-1 (7fC(2) )X(7fC(3)) = C( c(I) )x( 71'"C(2)) = O. 0

APPENDIX. BICOVAR.lANT BIMODULES

NICOLAS ANDRUSKIE\VITSCII

The notion of bicovariant. billlodule was iutroduced in [W], see also [W3]. A
crucial feature is that each bicovariant binH)dule COllIes equippecl with a solution of
the braided (01' Yang-Baxter) equation. According t.o [P\:V, p. 411], Connes conjec
tured in 1986 that "bicovariant biIllodules over t.he algebra of sluoot.h functions on
a quantulll group are (in natural way) labeled by representatiollS of another quan
tUlTI group". This was sohred (affinuatively) in [P\iV], by introducing the quantum
double, in a dual way to [D1]. In [T2], it was given an alternatively description
of the quantulll double. It t.urns out. [T2] t.hat the representations of the quanttllTI
double are exactly the crossed bilIlodnles for the original algebra. (This was also
previously observed in [11] nnder a fini teness hypothesis. ) Crossed binlodules were
introduced in [V] and it was proved t.here that their category is braided.

In this appendix, we review briefly t.hese fact.s and cOlnplete this circle of ideas.
\iVe show that the space of "left invariants" is in fact a crossed binlodule and that
there is a oue-to-one correspondence bet.eween crossed bilTIodules anel bicovariant
bimodules. (This is luerely a translat.ion of SOllle facts in [W] t.o a coordinate
free lallguage.) Moreover, thc categol'Y of such billlodules is quasitensorial [D2],
hence braided, and the corresponding solution of the quanttuTI Yallg-Baxter equa
tion (found in [V]) is the Sel.1Ile that of [Vi].

Interesting exanlples of crossed bilnodules are the right adjoint corepreselltation
with the right lllultiplication, 01' (dually) the right aeljoint representation with the
right cOlllultiplicatioll. Tbe sohüiollS of the QYBE they give rise were first pre
sented in [W2], by a elil'ect COlllputat.ioll. (See Corollary A.3) Moreover, by lTIeanS
of these solutions, <Lny Hopf algebra is generalized C01TL1TL1l.tiLtive anel generalized
cocommutative, in the sense of[GR.R.], (CL [11n].
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A.l Left covariant bi1nod7tle~<;. We preserve the notation of the paper. The struc
tural 1110rphism of a COlllodule will be usually denoted c; when one space carries
two different cOlnodule structures, we 8hall writ.e c,. (resp.) Cl 01' Si111ply c) for the
right (resp., left) one.

A left covariant bill10dule 111 has, by definition, abimodule structure and a
left COlllodule structure, over A, both l'elatecl by il11pOsing the COIllodule structural
morphisl11 c : M -? A (9 Iv! to be a nlorphis111 of binl0dules; here as always we use
the comultiplication to endow A 0 A1 with a bi1110dule action of A.

Let N be a right A-lnodule. Then M := A 0 N is a left covariant bimoelule via
the following fOl"lllulae:

(A.1) a(b ® n) = ab 0 n; (b 0 n)a = ba(l) 0 na(2); c(b 0 n) = ß(b)(1 0 1 0 n).

Moreover, any left coval'iant biIllodnle arises in this way. Indeed, let M be a left
covariant bilnodule and let

Let also P: M -? 111, P(nl.) = S(n1.(l)}nl(2)'

Proposition A.l. P is a projector wllose ünnge is Minv, allel tlle latter aCf]uires
a rigllt 1110dule stl'uctUl'e by rt..a = P(na); let us dellote it by N. Then M is
iS0l110rpllic, as a left covR.riant bilnodtlle, to A 0 N witll tlle structure explained
above.

Sketch 0f Proof. (Sec [,;Y, Leuuna 2.2, Theol'Clll 2.1].) One shows first easily that
c(P(m)) = 10 P(nt) anel then, that huP = MiU1!l p 2 = P. It is also obvious that
P(a7n) = c:(a)P(7n) and "m = 7H(l)P(nl.(2»)' In particular, t.he restriction of the
lllultiplication is an epilll0rphislll r,p : A 01V -? 111. Suppose that there exist (J,i E A,
mi E N such that 0 = L: (Lj7ni. Applying (id 0P)c, we get 0 = L: (li0mi and hence
c.p is a linear iSOl110rphislll. N is a right. ulodule with the action defined above, as
follows inlmediately fronl t he fOrIuula P (na) = S (u(l ) }na(2), '/1. E N. Consider N as
a left covariant biIllodule via (A.1); obviously, <p preserves the left action of A and
the COlll0duie structure. It is also ensy to show that <p preserves the right action:
<p«(1 0 n)b) = b(I)P(nb(2») = b(I)S(lJ(2»)nb(3) = Tl.h. 0

Remark. Compare the preceding wit.h [Sw, 4.1].

A ..2 BicovariCLnt bi7norl'U.le~<;. The not,ion of "left covariant biuloelule" has an iIn
mediate translation to "right covariant. biInoclule". Now let U$ recall the definition
of a bicovariant bilnodule. This is a bilnodule 1\1) which is in addition left co
variant, with structural lnorphislll Cf : 1\1 ~ A 0 A1, anel right covariant, via
Cr : M --t M C8> Aj nloreover, the following diagnull Inust COl1Ullute:

1\1
C,

1\1 (9 A cl0id I A 0 ]v! (9 A.
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Let now N be a rigth A-lllodule and a right A-comoduIe, such t.hat

(A.2)

(That is, N is a "right crossed billloduIe", in the tenllinology of [Y].)
Let M = A <9 N provided with the Ieft covariant billlodule structure explained

in A.1 and extelld Cr to 1\1 in the following way:

(A.3)

It is easy to see that 1\1 beccHlles in this way a bicovariallt billloduie. In fact, (A.2)
guarantees that Cf' is a lllolvhisnl of right nlodules. Moreover, auy bicovariant
bimodule is obtainecl in this guise. Finally, it is obvious that a morphism of rigth
modules and right cOluodules f : N -+ }Ol' gives rise to a morphism of bicovariant
bimodules id <9/ : 1\1 ~ 111/, and t.hat. any such Illorphisnl has this fanu.

Exaluple A.l. Consider ..4 as a. right Illodule via the right Illultiplication and
as a right comodule via. the adjoillt.j recall t.hat ad : ..4 -+ A ® ..4 is defined by
ad(b) = b(2) ® S(b(I))h(3)'

We clainl that t.he preceding data satisfies (A.2). Indeed,

(1 ® a(l)) ade ha(:,n) = (lm(2) )(2) <9 (I.(1)S«h(l.(2) )(1»)(lm(2) )(3)

= h(2)U(3) 0a(j)S(a(2»)S(h(1»)h(3)a(4) = ad(b)~(a).

Observe also that ker e is a right subcrHllndule fnr t.he adjoint. In fact, oue has
(e ® id) ad = e, anel also (iel0e) ael = iel.

Exaluple A.2. Consider now A as a. right. COlllodule via the conulltiplication and
aB a right lllodllie via the Adjoint, t.hat is, via the following fonnula: 1l Ad(v) =
S(V(l))UV(2). Again (A.2) is fulfilled:

(1 <9 a(1»)~(bAel(a(2))) = (Sa(:,n'}(/,(:i))(l) 0 (l(1)(S(l(2)b(l(3))(2) =

SU(:l)b(1)U(4) 0 u(l)Sa(2)b(2)a(5) = S(a(l))b(I)a(2) 0 b(2)a(3)'

Remark. Let us now aSSlUlle t.hat. U is a Hüpf algebra dual to A. The Ieft U-lnodule
structures on A proviclecl respectively by (u.a, v) = (a, v. Ad(u)) and (A.16) below
applied to (A, ad) coincide. Iu fact, one lws (v 0 'lL, uel a) = (v Ad(1.l), a}.

Exaluple A.3. Cousider a right. cOlllodule N as a trivial A-llloduIe, i.e. na =
e(a)n. Then the cou1patibility condit.iou (A.2) reuels 11(0) (9 an(1) = neO) (9 n(1)a,

which is fulfillecl if A is COl111I1utat.ive.

A.:1 The q1Lani'tL7n Yang- B (J,XtC7' cfj1/.ntion. Let Bicov (Bicov A if necessary) be
the category of aU rigth uloclules anel right. COlll0duies satisfying the cOlllpatibility
condition (A.2); the lllorphifnlls unlst of course prescrve both structures. Let N, N'
be objects of Bicov allel let R'N,NI be defined by the CoulI1ult.ativity of the foUowiug
diagralll:
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(A.4a)

N0N'

id 0c1

N0N'&;A

N&;N'

rIt0id

7 23

----.1 N &; A &; N';

let SN,N' : N 0 N' -+ }.,T' 0 N be defined by

(A.4 b)

(We shall omit the subscripts whenever no danger of confusion is present.)

Proposition A.2. (i) Bicov is a CJIl<1sitensor categolY (cf. [D2]), wbose associa
tivity cOllstraint is the usual Olle mlCl wll0se "Collullutativity constraint" iS.SN,N"

(ii) S satisfies tl1e qUHnttUll l/ang-Baxter e(juation (Ql/BE for shortY; t1Iat is, if
N, N', Nil are objects oE B'lCOV, tllen

(A.5)
(SN' ,Nil ® icl)(id 0SN,NIJ )(SN,N' 0 id) = (icl0SN,N' )(SN,N" 0 id)(id (9SN',NII).

(iii) S is invertible and i ts inverse is gi ven hy

N®N'
S-1

N'0N

(A.6) c0id1 IT

N0A0N'
id'Olts-l

N0N'.I

Here J-LS-l : A 0 N' -+ N' is the lett nlodule structure given by lLS-l (a 0 n ' ) =
n 'S -} (a), using that S -1 is an an tih 01110nJOlJ)1Jisnl of a.lgebra..~.

In other words, S N,NII is Cl. 1l10l'phislll in Bicov, in fact a natural transformation,
and the following diagraIlls luust COllllllute:

I
f

(A.7a)

(N} (9 N2 ) 0 }.,T'J
8

I N 3 @ (N] 0 N 2 )

1/
NI 0 (N2 0 N3 )

id '08
]\T1 0 (N3 0 N2 )I

(A.7b)

N] 0 (N2 0 N3 )
s

I (lV'2 (9 _N:~) 0 NI

1,
(NI&; N 2 ) &; N 3

S@id
I (]\T2 0 1\T\ ) 0 1\T3

----+1 (N3 (9 NI) &; N 2

IS0id

---+1 (NI &J N 3 ) 0 N 2 ,

----+1 N 2 (9 (N3 0 N})

lid 0S

----+1 N 2 0 (NI 0 N'J)'
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Proof. (i) Let us first prove that SN,N'I is a 1llorphisIll of A-Illodules. Let a E A,
n E N, '11.' E N'. Thcn

Seen. 0 n')a) = S(na(l) 0 n.'a(2»)

= (71.' (1(2) )(0) 0 "UI,( I) ('11' fl(2) )(1) = n(O)fl( 1) 0 nn' (1)a(2)

= Sen 0 n')a,

thanks to (A.2).

Now let us show that it is a 1l1orphisl11 of COll1oclules. Using the cOll1patibility
condition (A.2) and the first axiOl11 of COlllodules, we have:

(S 0 ici)c(n 0 n').= (50 id)(n(o) 0 '12(0) 0 11(1)n(I») = n(O) 0 n(O)71(I) 0 n(1)71(2)

= '/1.(U) 0 (nn(z»)(U) 0 n(1)(nn(2»)(]) = c(S(n (9 n')).

The cOlun1utativity of (A.7 a) (resp., (A.7 b)) follows fronl the coassociativity in
the definition of COlllodule (resp., t.he definit.ion of t.ensor product of COlllodules).

If f : N --+ P (resp., 9 : N' --+ PI) is a 1110rphisl11 of nloelnIes (resp., of comodules )
then 5P,pl (f 0 g) = (f (9 g)5N,N', In particlllar, 5 is a natural transformation.

(ii) follows frOlll (i), see [D2, Rel11ark 4 before Prop. 3.1]. (A direct proof is
straightforward. )

(iii): use that S-1 is the antipode for the opposite conlultiplication and the same
multiplication. 0

Remark. Proposition A.2 is a generalization of [Vi, Prop. 3.1]. Indeed, our fonnula
(A.4), in the case N = N' = Nil, coincides wit.h [W, (3.5)]; this follows froln [W,
(3.15), (2.35) and (2.13)]. On the other hand, Proposition A.2 (ii), (iii) were first
proved in [Y].

Corollary A.3. 0) Let Su : A 0 A --+ A 0 A he defined hy

(A.8)

Tllell So satisnes tlle (jUftl1tll111 Yi'I.l1g-Baxter equa.tioll. Moreover, Su(a '9 bß(c)) =
SoCa 0 b)~(c) allel (Su (9 id) ad02 = acl0:l Su.

(ii) Let 51 : A 0 A --+ A C3J A be denl1ed by

(A.9)

Then SI is also a solution oE tllC QYBE.

Proof. Apply the Proposit.ion to A wit.hin the setting of Exaluple A.1 (resp. A.2)
above. Note that if U is as in the Relllark following Exmuple A.2, then

(Sl(u0v),a0b) = (u0v,Su(a0b)), a,b E A, 1l"V E U.

o
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Now let us consider the quanttllll double & of A, as defined in (T2]: a.s a vector
space, [= End(A); the lllultiplication is given by (T1T2 )(a) = T1(a(1))T2(a(2)); the
cornultiplicatioll, by

C-

cf loc cit for the rel11aining definitions.

Proposition A.4. (i) Let V be CL right [-cOlJ]odule, witll structurallnorphism ce.
Tllen V is an object of BicoVA, witll action and coaction defi.ned by

Converse1y, auy object V of BicoVA is all [-colllodule via tlle applicatioll Ce : V -+

V ®& ~ Horn(A, V 0 A) defined hy Ce (v)(CL) = c(va). Tllese assignemen ts are inverse
of eadl otller alld llellce tlle categories B1:COVA cU1C] Co't11ode are equivalellt.

(ii) Let B : [. x & -+ k he the bilillear f01"111 denned hy

(A.lO) B(F, G) = (c, FG(l))

Let V, V' be two E-COlllodules, let Rv,\l1 he defined hy tlle COlnlTIutativity of tbe
following diagnun:

V0V'
n", \' I

V0V'

(A.lla) cv0cVIl lid 0 B

V 0E0V' 0E
r 2:i

I V 0 V' 0 [. 0 Ej

anel let S\I, \11 he given hy

(A.llb) 5\1 \11 = T R.y VI.
I ,

T llen C omode is a quasi tensor category whose conllllu ta ti vi ty constrain t is 5\1, VI

and t]le equivalence stated i11 (i) preserves tllis additional structure.

Proo/. (i) See [T2]. (ii) is left to the reader.

Part (ii) of the Proposit.ion above is a particular case of the following fact, a
slight gelleralizatioll of [Ly, Th. 2.3.3]:

Proposition A.5. Let p : A'9 A -+ k he a non-degenerate hilinear form satisfying

1(1)9(I)P(9(2), 1('2») = p(!J(l), 1(1))9(2)/(2)'

p(fu, h) = p(/, 11.( 1) )P(9, 11.(2»)

p(h,9f) = P(h(lbf)p(h(2),!J)

for any 1,9, h E A. Tllen tlle category of rigllt A-COlllodules is quasitensorial and
tlle conllllutativity constraint SM,N : A1 @ N -+ N @ M is given by

The data (A, p) is the dual version of a CIllasi tri angular Hopf algebra, see below.



36 NICOLAS ANDIlUSKIE\VITSCH So:, JOIlGE DEVOTO

A .4' QuajitrilLng'/J,la r Ho 1)f aly ebTa,".

Let us assulue the existence of a Hopf algebra U such that A l:......+ U· is a Hopf
algebra dual to U. Let us suppose first that U is quasitriangular [DI], i.e. there
exists R E U '9 U invertible satisfying

(A.12)

(A.13)

ß'(u) = Rß(u)R.- 1
, U E U,

(ß 0 iel)(R.) = R.13 R.23
, (iel0ß)(R.) = R l3 R l2

,

where ß' is the opposite cCHnuHiplication. (A.13) iIllplies that the application A -+

U given by a ~ iel(9(a, _)(R.) (resp., rL ~ (a, _) 0 id(R.)) is an antihomomorphism
(resp., a hOmOl110rphisln) of algebras. 'Notice that:

(A.14) If ucop denotes U as Hüpf algebra with the opposite cou1l1ltiplication, then
(UCOP,R.- 1 ) is also a quasitriangular Hopf algebra, as weIl as (UOP, R.-1).

(A.15) If (V, T) is another qllasitriangnlar Hopf algebra, then (U 0 V, T
23 (R Q9 S))

is also one.

Let now N be a right A-colllodule, heucc a left. U-lnodule with the action clefined
by the cOlumutativity of t.he following diagnl.lu:

(A.16)

U (9 f\l

N0U

J-l

rid 0(,)

--+1 N0A0U.

We shall consicIer Nasa l'ight A-llloclnie by COIllposing the pl'ececling with the
antiholuOluOrphis111 a ~ iel0(a, _)(R.). In COllcrete tenns,

(A.17) na = '/1.(1)('11.(2) 0 a,R.}, nE N, a E A.

To insul'e the pCl'tenence of lV to B'lCOV, we neeel to check the cOlllpatibility concli
tian (A.2). Not.ice first that (A.12) iIllplies, for any 1L EU, (L, b E A, the equality
(a(l) 0 bO) 0 a(2) 0 b(2), ßI(U) 0 R.) = (a(l) (9 b(1) (9 rL(2) 0 b(2)' R. 0 ß(u)} and thus

(A.18)

Taking inta account (A.17), the len. hand siele of (A.2) is

the right one is
(n(l) (9 fL(1), R,}n(u) 0 n(2)rL(2)

and the equality follows fnnu (A.18) (that is, froIll (A.12)).
On the other hanel, let N' be anot.her A-colllodule, '/1 E N, n' E N'. Then the

application (A.4) gives in this case, thanks to (A.17),

n 011,' t-t ('11(1) (911.' (Ib R}n(u) 0 11(u)

which is the saIlle as the act.ion of R. Oll the U 0 U-nlodule N 0 N'. We have
therefore proved the following fact, essentially clue to Rosso [R.}:
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Proposition A.6. Jf U is quasitricll1gnlar, thcn any A-COll1odule belongs to Bicov_
in a "canonical" way; 1110reover, tllC solut,ions oftlle quanttJlll Yang-Baxter equation
provided by (A.4) clJul R. coincide.

Let us consider A as A 0 AcoP-coll1odule via a ~ a(2) ® a(3) ® a(l)' It follows
froIn (A.14) and (A.15) that the application S2 : A C9 A ~ A \2) A given by

(A.19)

sat.isfies the Yang-Baxter equat.ion.

Let HS now recall that a generulized c01n1nutative algebra is a pair (E, S), where
B is an algebra with 11lult.iplication "111 aud S : B <9 B ~ B ® B is a solution of the
QYBE such that

FnS = 1n,(A.20a)

(A.20b)

(A.20c)

S(b (9 1) = 1 09 ("

S(1110 icl) = (icl0nl)SI2S:l:~,

S(10b)=b091,

Seid 0"117.) = (nt 0 id)S23 S12.

The following fact is well-known.

Proposition A. 7. (A, S2) is a generalized COlll111U tative algebra.

Proof. We already showecl that S2 sati:·Jies the quantull1 Yang-Baxter equation.
(A.20a and c) are elil'ect consequellces of (A.12 anel 13), l'espectively, whereas to
prove (A.20b) one uses the following equalities (cf. [D3, Prop. 3.1]):

(A.21) (e0icl)(R.) = 1 = (id0e)(R.).

Now we show that any Hüpf algebra is generalizecl COllul1utative.

Proposition A.8. (A, SI) is a generalized COl1ullutative algebra.

Proof. It is straightforwarcl. For exalllple,

.,nSl (a 0 b) = b(I)S(b(2) )ab(3) = ab;
. 12 2'~(lcl0'111.)S S' (a 0 (,0 c) = c(I) ® S(C(2)ac(:J)S(C(4»)bc(5)

= c(I) 0 S(c(2)j)abc(3) = SI(rn <9 icl)(a 0 b C9 c);

and the rest is siluilar. D

In the salue vein, one clefines genr.rfJ.lized (;OC0l1L11/,ntfLti7Je coalgebras and proves
that, if A is any Hüpf algebra, tohen (.04, Su) is generalizecl cocOlunlutative.
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