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ABSTRACT. We provc timt thc finite fundamental groups of closed, oriented three
dimensional manifolds are just thc finite groups which act freely and linearlyon 8 3 .

1. INTRODUCTlON

A well-known problenl in three dimensional topology is to list an the finite groups
which occur as the funclarnental group of sonlC closecl 3-rrlanifolcl. So far, all the
known exarnples conle frolll the finite subgroups r c 80(4) which operate freely
on the 3-sphere. The associated 3-manifolds 8 3Ir admit Riemannian metries of
constant positive eurvature, anel are known as the (orthogonal) spherical space
fonns. In this paper we prove that these exarnples exhibit all the finite fundamental
groups of oriented 3-nlanifolds.

The classification of orthogonal spherical spaee forills up to isometry was first
proposed by Killing in 1891, anel the problern attracteel the attention of famous
11lathematieians of the tüne, such as Clifford, Hopf, Klein, and Poincare. According
to H. Ropf's 1925 paper [17], the fo11owing is a list of a11 finite fixed-point free
subgroups of 80(4):

(1.1) The cyclic group C(n), thc gcneralizccl quaternion group Q(4n), thc binary
tetrahedral group T* (24) , the binary octahedral group 0* (48) , and the
binary icosahedral group j* (120) .

(1.2) Thc senlidirect product C(2n + 1) )<J C(2k ) of an odd order cyclic group
with a eyclic 2-group. More explicitly C(2n + 1) )<J C(2k ) is given by the
presentation {A, B : A2k = B 2n+l = 1, ABA-1 = B- 1 } where k 2:: 2, n 2::: 1.

(1.3) The senüelirect produet T* (24) )<3 C (3k) of the binary tetrahedral group
T* (24) with a eydic 3-group. More explicitly, T(24) >1 C(3 k ) is given
by thc presentation {P,Q,X : p2 = (PQ)2 = Q2, X3

k
= 1, XPX- l =

Q, XQX- 1 = PQ} where k 2::: 1.
(1.4) The produet of any of the above groups in (1.1)-(1.3) with a cyclic group

of eopriIne oreIer.
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At first glance, thc above list may appeal' to bc random. In the forties and fifties,
efforts were made to interpret Ropf's list using group cohomology [4] and it was
discovered that all these groups have periodic Tate coholl1010gy of period foul'.
In general, a finite group has perioclic coholnology if and only if it satisfies the
p2-conclitions ("any subgroup of order p2 is eyclie") for all primes p. Prom the
viewpoint of group theory, this eondition lneans that the odd Sylow SUbgrOllP is
eyclie and the 2-Sylow subgroup is eyclie 01' generalized quaternion. If the eoho­
ll1010gy has period four then, in addition, the pq-eonditions hold ("every subgroup
of order pq is eyelie") for p and q distinet odd primes.

The necessity of the 2q-eonditions was established by J. Milnor (23] in 1957,
when he showed that the dihedral group cannot operate freely on any Zj2-homology
sphere despite thc fact that it has periodie eohomology of period 4. In this paper,
l\1ilnor also con1piled the following list of all finite groups, not in HopPs list (1.1)­
(1.4), but satisfying the restrictions known at the tüne on fundamental groups of
3-manifolds.

(1.5) The senüdireet product Q(8'm, k, l) of the odd cyclie group C(kl) with the
generalized quaternion group Q(8n). More explicitly, Q(8n, k, l) has the pre­
sentation: {X, Y,Z: X 2 = y 2n = (Xy)2, Zkl = 1, XZX- 1 = zr, YZY =
Z -1 }. Here n, k, l are all odd intcgers and relatively prime to each other,
n > k > l 2:: 1, and T satisfies T =-1 (mod k), r =1 (luod l). If l = 1, we
set Q(8n, k) =Q(n, k, 1).

(1.6) The group Q(8n, k, l) with the same presentation as (1.5), but with n cven.
(1. 7) The sen1idireet produet 0(48; 3k - 1 , l) of the odd order eyelie group C(3 k - 1 l),

3 t l, with the binary octaheclral group 0* (48). More preeisely, 0(48; 3k - 1
, l)

has five generators X, P, Q, R, A and the following relations:

k lx 3 = p 4 = A = I, p2 = Q2 = n2 , PQP-l = Q-l

XPX- 1 =Q, XQX- 1 =PQ, RXR- 1 =X- l , RPR- 1 =QP

RQn- 1 = Q-1, AP = PA, AQ = QA, RAR- 1 = A- 1 .

(1.8) Thc product of any of the above groups in (1.5)-(1.7) with a cyclic group
of coprinle order.

Thus to establish our nuLin result, it is enough to prove that groups in the above
list (1.5)-(1.8) do not aet freely on honlotopy 3-sphercs.

In the late sixties, C. T. C. Wall asked whethcr Milnor's result eould be in­
terpreted using thc new theory of nonsilnply connected surgery. Ronnie Lee (19]
answered this qucstion in 1973 by dcfining a "semieharaeteristic" obstruction for
the problem. As weIl as recovering the previous resnlt of Milnor, the semicharacter­
istie rnles out the family of groups Q(8n, k, l), n even, in (1.6).· Later in [35], C. B.
Thomas observed that this also elitninates the family of groups 0 (48, 3k - 1

, l) in (1.7)
because groups of this type always contain a subgroup isomorphie to Q(16, 3k - 1 , 1).
These results leavc undeeided only the groups Q(8n, k,l), n odd, in (1.5) and their
products with eyclie groups of coprilne order in (1.8) from Milnor's original list.

In this this paper, we settle thc remaining cases by proving the following:

Theorem A. FOT p, q distinct odd primes, the group Q(8p, q) does not operate
freely on any hornotopy 3-sphere.
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Remark. At the rCM in Zürich (August, 1994) J. H. Rubinstein [27] announced
that Q(8p, q) does not act freely on the standard 3-sphere S3. The methods outlined
seem c0l11pletely different fronl those in the present work, but we have not seen the
details.

Notice that a group Q(8n, k,l) in the farnily (1.5) always contains a subgroup
of the fonn Q(Sp, q). Hence Theorem A elinünates the family (1.7) in Milnor's
list and also the cOITesponding products in (1.S). In other words, we establish the
following:

Theorem B. A necessary and sufficient condition for a finite group to be the
fundamental group of a closed, oriented 3-manif?ld is that it belongs to Hopf's list
{1.1}-(1·4}·

Remark: Orthogonal spherical space fornls in dinlension 3 were classified up to
isometry by Seifert and Threfall (in 1930), and the higher dimensional cases by Wolf
[39, Part 111], conlpleting the work oE Vincent. The homeomorphism classification
is not yet known, even assunüng the Poincare conjecture, although partial results
have been obtained by J. H. Rubinstein and J. T. Pitts [26], [27] using 3-lnanifold
techniques. The possible hOluotopy types for 8 3 jG were determined by C. B.
Thomas [33], [34]. Another result in this direction was obtained by R. S. Hamilton
using nlethods frorn differential geornetry: iE a 3-luanifold admits a 111etric of positive
Rieci cUl'vature, then it is an orthogonal space form [16].

We will now outline sonle of the techniques involved in proving Theorem A. It
is useful to start with the analogous spherical space fonu probleIn in higher dimen­
sions: nanlely, the classification of finite group actions (C, r;2n-l) on honlotopy
spheres E2n-l of dilnension 2n - 1, n ~ 3. This problenl was both a motivation
and an iInportant test case for the techniques of algebraic and geollletric topology
developecl in the periocl 1960-19S5. P. A. Snüth hael already shown in 1944 that
thc p2 conditions were necessary for aG-action on any hOlnology sphere Conversely,
Swan (29] proved that every group with perioclic cohomology acts freely and simpli­
cially on a CW complex hornotopy equivalent to a sphere, anel asked whether there
was always a finite simplicial action. Throughout the 1970's remarkable progress
was nlacle on the lügher diInensional space fonn problem, culnünating in the pa­
per of IvIadsen, Thomas and Wall [21]. They used thc surgery theory of Browder,
Novikov, Sullivan und Wall to show that any finite group G satisfying the p2 anel 2p
conditions (for all primes p) acts freely and snloothly on a homotopy sphere of some
odd diInension 2n - 1 > 3. The precise dinlensional bounds were not determined
(although for G of periocl d, either 11, = d 01' n = 2d is realizable).

The next big step forward was the explicit calculation by Milgram [22] in 1979
of the finiteness obstruction for S0111e of the period 4 groups G = Q(Sp, q), following
the method of [37]. In particular, IvIilgram showccl that some of these groups are
not funclanlcntal groups of 3-lnanifolcls. After this followed a sequenee of papers by
lvIilgraln (see the survey in [5]), anel inclependently by rvIadsen [20], aiIning at the
caIculation of the relevant- surgery obstruction. Here the problenl is to determine
which of tbc groups Q(Sp, q) aet freely on r;8k+3, for k > 0, since they act linearly
on S8k+7 for a11 k 2:: O. It ttu'neel out that the answer is computable in principle,
but depencls sporadieally on thc nUl11ber theory of the primes p, q.
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Despite these spectacular breakthroughs in high cliInensions, virtually no further
progress was made lu3ing these lnethods on the space form problem in dimension 3.
On the other hand, since the rnid-eightics a new nlethod for studying the smooth
structure of a 4-manifold X has been developeel by S. Donaldson anel others [7],
llsing the 1l10duli space M(P) ofYang-Mills connections on an SU(2)-bundle P over
X. Striking results (such as thc existence of non-diffeomorphic, simply-connected,
h-cobordant 4-manifolds) follow from studying the geollletry and topology of this
lnoduli space.

Our strategy for proving Theorem A COUles in two parts. Assuming the existence
of a nonlinear space form EIG with fundamental group G = Q(8p, q), we will
construct a G-equivariant SU(2)-bundle P over a certain snlooth 4-manifold (C, Z).
Then we will apply the theory of equivariant nlocluli spaces (M(F), G) developed
in [13], [14] to derivc a contracliction.

:rvlost of the work in the first part of our argurnent is to construct a suitable 4­
dinlensional, framed, cobordisln Y with a reference lnap c: Y -+ BG. The bounclary
8Y = aoY U N, where N is a connectecl 3-manifold anel the composite N ~

Y ~ BG is null-hornotopic. The renlaining boundary cOlnponents 80 Y consist
of two eopies of EIC with opposite orientation, spherical spaee fornlS S/Q(4pq) ,
and a number of copies of "ahnost space forms" S'I H, for certain subgroups H =
Q(8p), Q(8q), C(2pq) of Q(8p, q). By an almost space form S' I H we mean the
quotient of an integral homology sphere S' by a free action of the group H. T.he
induced hOluomorphisln c# on the funclarnental groups 7fl (DY) -+ 7fl (Y) -+ G lnaps
each 7fl (S' IH) onto H c G. Furthernlore, we reqllirc an epimorphisnl c#: 7fl (Y) -+

G , with kernel nornu111y gencrated by 7f1 (N). For gauge thcory, the key additional
property is that b+ CY) = 0, 01' equivalently, that H2 (Y; ZG) contains no positive
definite sllbspaces with respect to the interseetion pairing.

The construction of the abovc cobordisrn Y occupies §§2-8 of this paper. Ba­
sically, we start with a franled cobordisll1 (U, aU) -+ BG with boundary some
appropriate collection of linear and nonlinear space fonus ±'L.IG, anel SI H for
H = Q (4pq ), Q (8p), Q (8q ), 01' C (2pq ). By re-attaching thc top diInensional cell,
we can lnodify U to a 4-clinleIlSional Poincare cOluplex V with av = DU such that
thc cup product pairing on H 2 (V, av; ZG) is negative definite. In this step, wo use
thc deseriptioll of Z[Q(8p, q)]-hcnuitian fonns by nleans of the (larithlnetic square"
[38]. Associated to (V, aV), there is a surgeI'y problem whosc surgery obstruction
group L 4 (ZG) has been computed by Madsen [20]. Using this result, wc describe
in §§7-8 how to elinünate the surgery obstruction. We nlodify V to construct a
new Poincare complex W, together with a new surgery problem X -t W where
SOlue of thc boundary components are changcd to ahnost spherical space fonns
S' IQ(8p), S" IQ(8q), or S'" IC(2pq). Thc domain of the SUl'gery problelll is a COIll­
pact, snlooth, 4-manifold (X, aX), such that ax -+ aw is an integral honlology
eqllivalence.

Since thc surgery 0 bstruction is zero, , the intersection pairing on H 2 (X j ZG) is
the orthogonal direct Slau of the pairing on Wand some free hyperbolie swumands.
In dimension foul' wo lllay not bc able to cOlnpletc the smooth surgerics suggestcd
by this algebraic data. Instead, to get rid of the cxcess hyperbolie surnrnands we usc
thc Disk Elllbedding Theorenl of Freechnan [9], [10] to reprcsent these hyperbolie
summands by topologically ell1beddeel copies of S2 x 8 2 in the interior of X. Then
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we split open the nlanifold X along a suitable 3-nIanifold N. On Olle side of this
splitting, we have the manifold Y with ay = aoY u N wherc aoY = ax. In
addition, the intersection pairing H2 (Y; ZG) (modulo its null space) is negative
definite as requirecl.

In §§9, IOofthis paper, we' consicler thc equivariant moduli space (M(P), G) over
thc manifolcl Z constructecl fronl the C-covering Y of Y by filling all the spherical
boundary COl1lpOnents (Q(4pq), S3) with linear 4-elisks (Q(4pq), D4 ). Over (C, Z)
there is an equivariant SU(2)-bundle P with equiveuiant trivialization along az
such that the relative ehern nlll11ber C2(P, aZ) = 1. By using COllilections which
have L2-finite energy along the cylindrical ends az, as in [30], [3, §1], or [24, eh.
7], we obtain a 5-dinlcnsional moduli space M (P) with an action of C. Notice that
thc C-action on Z has singular points with isotropy subgroup Q (4pq) located at
the centres Xi E D of the attacheel 4-elisks. From this we deduce that the ineluced
C-action on (C, M(F)) has a I-dimensional singular subspace with Q(4pq) as its
isotropy subgroup. Geometrically, this subspace of Fix(M (P), Q(4pq)) represents
a I-paranleter fanlily of fiows of ASD connections in Z, emitting frol11 particle­
like connections at the singular points. By the Uhlenbeck conlpactness theorem,
this flow of instantons has to converge at one of the cylindrical enels of Z (see [8],
[31]), which by symrnetry reasoning Inust be the end associated to (C, ~). Then
we show that this process gives rise to a U(2)-representation of Q(8p, q), which
extends the indusion of Q(4pq) into SU(2). Since this last statement contradicts
thc represcntation theory of Q(4pq), we conclllde that it is impossible to have a free
Q(8p, q)-action on the homotopy sphere E.

Acknowledgement: The second allthor would like to thank the Department of
Mathematics, Hong Korig University of SeimIce & Technology, for its hospitality
anel support while working on this project.

2. A FRAMED COBORDISM

Vve will now start to change the 3-diInensional spherical space form probleIn into
a 4-dinlensional problCln. Wc begin by assuilling thc existcnce of a frcc Q(8p, q)­
action (Q(8p, q),~) on a hOI11otOpy 3-sphere E wherc panel q are two distinct odd
prirnes.

The group Q(8p, q) has the following presentation:

_ ( IAP = Bq = l,X2 = y2 = (Xy)2,XAX-l = A-l \
(2.1) Q(8p,q) - A,B,X,Y XBX-1 =B,YAy-l =A,YBy-l =B-1 /.

In other words, Q(8p, q) is a senIiclirect product C(pq) )<l Q(8) of the cyclic group
C(pq) with the quaternion group Q(8). Here the characteristic hOlllomorphism
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<p: Q(8) -t Aut(C(pq)) = Z/p - 1 x Z/q - 1 is given in the following table.

(2.2)

'P 7l /p - 1 7l /q - 1

X -1 1

Y 1 -1

XY -1 -1

From this clescription, we see the following three lnaximal subgroups:

Q(8p) = (X, Y, A), Q(8q) = (X, Y, B), Q(4pq) = (XY, A, B).

~1oreover, by sencling the elenIents X, Y, XY to appropriate quaternions in {i, j, k},
we see that Q(8p), Q(8p), Q(4pq) respeetively are isomorphie to the following sub­
groups of thc unit quaternions 8 3 :

Q(8p) f"'.J ( ± 1, ±i, ±j, ±k, e21ri / P )

Q(8q) f"'.J ( ± 1, ±i, ±j, ±k, e21ri /q)

Q(4pq) f"'.J ( ± k, e21ri/PQ).

In partieular, thcrc exist frce linear aetions (Q (8p ) 1 8 3 ), (Q (8q ), 8 3 ), (Q (4pq )J 8 3 )

on the 3-sphere 8 3 anel henee spherical space fonns 8/Q(8p) , S/Q(8q), S/Q(4pq).
For our applieation, we also neeel the maxinlal cyclic subgroup C(2pq) gcner­

ated by the elelnents A, B, (Xy)2. By identifying C(2pq) with the cyclic subgroup
(±e21ri/pQ) in 8U(2), we obtain the Eree linear action (C(2pq) , 8 3 ) on 8 3 which has
the lens space L(2pq, 1) = S3/C(2pq) as quotient space.

Proposition 2.3. Assume the existence oJ a nonlineaT space form E/Q(8p, q).
Then there exists a Jramed, compact, 4-maniJold U with the Jollowing propeTties:

(i) 1rl (U) = Q(8p, q).
(ii) The boundary au olU consists oftwo copies of'E/Q(8p, q) with opposite ori­

entation, a copies 01 S/Q(4pq), b copies of S/Q(8p), c copies 01 S/Q(8p),
and d copies 0/ S/C(2pq) where a, b, c, cl are all non-zero und divisible by
48.

(iii) The induced homomorphism 1rl (aU) -t 1rl (U) on the fundamental gr'oups
sends 1rt(E/Q(8p,q)) OT 1rl(8/H) fOT H = Q(4pq), Q(8p), Q(8q), C(2pq)
to the corresponding SUbgTOUpS Q(8p, q) OT H C Q(8p, q).

Proof. As is well-known, the tangent bundle of an oriented 3-manifold is triv­
ial anel henee ean be provided with a franüng. In partieular, we ean choose
a fralned lnanifold structure for each of the linear and nonlinear space forms:
E/Q(8p, q), S/Q(4pq) , S/Q(8p), 8/Q(8q), S/C(2pq). As a result, we can view the
expression for au in terms of these space forms as the following relation in the
framed borelism gTOUp n~r(BQ(8p,q)):

(2.4) a[S/Q(4pq)] + b[8/Q(8p)] + c[SjQ(8q)] + d[S/C(2pq)] = 0
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since the terulS [E/Q(8p, q)] - [E/Q(8p, q)] cancel out. If we can find a solution of
(2.4) by nonzero integers a, b, c, d with a == b =c - d =0 (nlod 48), then it follows
that there exists a franled 4-manifold V' satisfying:

(iv) au' = E/Q(8p, q) U -E/Q(8p, q) U aS/Q(4pq) U bS/Q(8p) U cS/Q(8q) U
dS/C(2pq)

(v) the classifying lnap c: U' ~ BQ(8Pl q) restricted to au' gives thc COITe­

sponding classifying nlap on each of the bounelary coulponents.

Note that c#: 1f l U' ~ Q(8Pl q) is a surjection. By framed surgery, we ean kill the
kernel of c# and obtain a frauled 4-Inanifold U satisfying (2.3) (i)-(iii).

To salve (2.4)1we cornputc n~T (BG) using the spectral sequence with E 2 term
given by

El,j = Hi(G; ofT).

The coefficient groups are O{T = Z, Z/2, Z/2, Z/24 for i = 0, I, 2,3 respectively.
We first stucly the iUlage of our relation nnder the Hurewicz lllap

(2.5)

Since H3 (Q(8p, q); Z) eqnals Z/IQ(8p, q)l = Z/8pq, we have a congrnence equation
in Z/8pq. In fact, by consielering E/Q(8p, q) as the 3-skeleton ofthe classifying space
BQ(8p, q), we can defonn the classifying nlaps for E/Q(8p, q),S/Q(8p),S/Q(8q),
S/Q(4pq), and S/C(2pq) to factor throngh E/Q(8p, q):

fa: S/Q(4pq) ~ E/Q(8p, q)

fb: S/Q(8p) ~ E/Q(8p, q)

Je: S/Q(8q) ~ E/Q(8p, q)

fd: S/C(2pq) ~ '2:/Q(8p, q).

Then thc eontribution of [S/Q(4pq)], [S/Q(8p)], [S/Q(8q)], [S/C(2pq)] to the faetor
H3(Q(8p, q); Z) alnounts to counting the clegrees of the lllappings cleg Ja, deg fb,
deg Je, anel deg fd Inoelulo 8pq.

Prom thc theory of covering spaccs, thc lnaps fb anel fe factor through the
coverings E/Q(8p) ~ '2:/Q(8p, q), E/Q(8q) ~ E/Q(8Pl q).

fb: S/Q(8p) -& E/Q(8p) ~ E/Q(8p, q)

Je: S/Q(8q) -& E/Q(8q) ~ E/Q(8p, q)

Hence we have

eleg fb = deg fb . deg 1fp = Pcleg fb
deg fe = clog f~ . cleg 1fq = q cleg f~·

On the other hand, cleg f;' anel cleg f~ can be taken to be units (mod 8pq) [29]. Since
(p, q) = 1, there exist integers rand s such that 1 = rq cleg fb+ sp cleg f~. ProID
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this last equation it follows that given nonzero numbers a', d' there exist non-zero
integers b' anel c' such that thc expression

(2.6) a'[S/Q(4pq)] + b'[S/Q(8p)] + c'[S/Q(8q)] + d'{S/C(2pq)] = 0

anel so gives no eontribution in H 3 (Q(8p, q)).
The Er3-i tenns of the speetral sequence for i = 1,2 are given by:

I

H 2 (Q(8p, q); n{T) = H 2 (Q(8p, q); Z/2) = Z/2 EB 7l/2,

H 1(Q(8p, q); n~T) = H 1 (Q(8p, q); 7l/2) = 7l/2 (f} 7l/2,

anel there is a splitting n~T(BG) = O~T (BG) EB n~T. Since n~r = Z/24 and the first
sUl11mand is annihilatecl by 16, we obtain a solution of the borclisn1 equation (2.4)
froll1 (2.6) after I11ultiplying the eoefficients by 48. This cOll1pletes the proof. 0

The framed bordislll U constructed above represents only the first step of the
transition from dimension 3 to 4. To apply our equivariant gauge theory, we woulcl
like for instanee to have Z[Q(8p, q)]-hern1itian interseetion pairing

11,: H2 (U; Z[Q(8p, q)]) x H2 (U; Z[Q(8p, q)]) --t Z{Q(8p, q)]

negative definite. To approach this conelition, we will modify U in a nluuber of
steps. This will be earried out in the next foul' sections.

3. A POINCAR."~ COMPLEX

Let (U,8U) be a 4-dimensional, fralned, eobordisll1 satisfying Diagralll 2.4 (i)­
(iii). Let G = Q(8p, q) and let

denote the non-singular synunetric bilinear fonn induced by cup product and evalu­
ation again...~t the funchunental dass. Notice that b is aG-invariant form: b(gx, gy) =
b(x, y) for a11 9 E G anel all x, y E If2 (U, 8U; ZG).

In this seetion we show how to 1110dify U by removing a cell e4 in the interior of
U and then re-attaehing this cell e4 by a Inap f: 8e4

--t U - e4 . Thc result is a CW
cOlnplex

which contains 8U as a subcomplex, denoted by 8V.
Variation of the attaching Il1ap of the top cell cloes not change the 3-skeleton,

anel henee has no effect on the fundalnental group anel homology in dimensions ::; 2.
By Poincare duality,

so we ean identify these two groups.
The 111ain result of this section is:
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Proposition 3.1. Let b': H 2 (V, au; ZG) x H 2 (U, aUj ZG) ~ Z be a non-singular,
G-invariantJ symmetrie bilinear form, with b' - b (lnod IGI). Then there exists
an attaching map f such that the pair (V, aV) is an oriented, finite, 4-dimensional
Poincare pair with ?Tl (V) = G and cup product form b'.

We will first give a description of H2 (U; ZG) as a ZG-Inodule. Note that the
fralned cobordisln U is not uniquely deternüned by (2.4) (i)-(iii). "Ve can, for
exaluple, alter the cobordislu U by taking the connected SUITI with copies of S2 x 8 2

away fronl au. This has the effect of changing H2 (U; ZG) by taking a surn with
a free ZG-lllodule of even rank, and we will refer to this as "stabilization" of the
cobordism U.

Let (Ü, aU) be the universal covering space of (U, 8U). On U, there is a frcc ac­
tion of Q(8p, q) and hence an induced action on its honlology H 2 (Ü). By definition,
thc ZG-nl0dul~structure on H 2 (Ü) is the sarne as H 2 (Uj ZG).

Note that au consists of a co11ection of hOlll0topy 3-spheres. For each of these 3­
spheres, we fonn a cone and extend the G-action to the Gone in an obvious manner.
In this way, we obtain a 4-climensional Poincare cOlllplex U',

ü' = Ü U (cones over boundary spheres)

where thc action of G is no longer free. In fact, for each of the cone points a>., we
have an isotropy subgroup G>. ~ G. Thc Gone points, denoted by ao, al, over the
COlnponents (G, E), (G, -E) ar~somewhat special because they are G-fixed points.

The above construction of V' can be cOlupared with the following. Let E x I
denote the product of E with the interval I = [0,1]. Then on thc two boundary
cOlnponents E x 0, E X 1, we can attach two cones to get the suspension SI !\.E of
E. The action of G on E x I can be extended natura11y to SI !\ E with the upper
anel lower cone points as fixed points. Fronl equivariant obstruction theory, there
exists a degree 1, G-cquivariant Dlap

which sends thc free orbits to free orbits, ao to the lower cone point and 3011 other
a>. to the upper cone point.

Let K. (r.p) clenote the kernel of the natural hOlllorphislll

Then froln the clegrcc 1 property of r.p there is an cxact sequence

of ZG-Inodules. Fronl this sequence it is easy to see that !{. (r.p) = 0 for a11 but the
rniddle honlology K 2 (r.p). Since adcling points 01' delcting points cloes not affect the
seoncl hOlll010gy, we have



10 IAN HAMBLETON AND RONNIE LEE

Tbus we can shift the calculation of the hOlTIology H2 (U; ZG) to K 2 (ep) which
has thc advantage of beillg the only nonzero homology group of the relative chain
cOlnplex C* (ep).

The relative chain cOlllplex

can be calculateel by taking equivariant triangulations on iJl anel 8 1 A E anel cellular
lnaps between thenl. Since the cone points can be taken to be the vertices and
thc action are frec away form these points, we see that C* (ep) consists of finitely
generated free 7LG-nloelules for * =I=- 0 anel

Ca(~) = F ffi EB Inelg>. (7L)
..\#0,1

for sOllle finitely gencrateel free ZG-module F. Here Indg>. (7L) = Z ®ZG>. 7lG =
7l[G/ GA] stands for the induceel rcpresentation frolll the trivial GA-representation
7l to G , anel the indices in the surn go thl'ough all the cone points aA except for the
G-fixed points aa, a1.

Proposition 3.2. After stabilization, there is an isomorphism:

H2 (U; 7lG) :::: (71G)r E9 EB 0 2 Inc€>. (Z).
AfO,l

Here we use notation 0 2L to denote tbc fiTSt ternl in an exact sequence:

of finitely generated 7lG-nlodules with FI , F2 free over 7lG. Since tensoring with
7lG over ZGApreserves exactness, we have a stable isomorphisnl

A standard arguillent in hOlllological algebra proves that tbc O-construction is well­
defined up to stabilizing by free ZG-nloclules.

Corollary 3.3. After stabilization, the rank 01 H 2 (Uj QG) is divisible by 16 at
each sirnple lactor 01 QG.

Frao! 01 (3.3). After replacing U by a connected SUfi with copies of 8 2 x 8 2 if
necessary, we Inay assume that the r =0 (nlod 16) in tbe given expression for
H 2 (U; LEG). Since tbc nUlnber of boundary COlTIpOnents is divisible by 16, the .02_

slunmancls also have ranks =0 (nloel 16). D

Praolol (3.2). We have an exact sequence of ZG-modules

(3.4) 0 ---? Z2(CP) ---? C2(~) ---? C1(~) ---? F ffi EB Indg>.Z ---? 0
..\#0,1



so it follows that

ON THE SPHERICAL SPACE FORM PROBLEM

Z2('P) EB (ZG)l' ~ (ZG)l EB EB n2Indg). (Z).
'\#0\1

11

On the other hancl, C* ('P) with fllnclal1lental dass (U'] cau be viewecl as a PD chaiu
cOlnplex. Using the salne argurnent as in [20, p. 199], since Ki('P) = Hi(C*('P)) = 0
for i 2: 3 we can contract this cOl1lplex clown to a cOlllplex C~ ('P) concentratecl in
dinlensions * ::; 2 without changing the hOlnology. Then

K2 ('P) EB (ZG)r
f

I"V (Zer EB EB n2 Indg). (Z).
'\#0\1

Since K 2 ('P) = H2 (U; ZG), this proves (3.2). 0

Prool 01 Proposition 3.1. Wc must see how the symnletric bi linear form b' leads to
a suitable choice for the re-attaching map f. First we note that thc conclitions

H 3 (V; ZG) = H 3 (V, 8V; ZG)

H4 (V;8V;ZG) = Z

ancl thc non-singularity of the cup-product fOrIn are necessary for (V,8V) to be a
Poincare complex.

Re-attaching lnaps lTIay constructed as follows. First we nlap 8e4 to a weclge of
two 3-spheres 8e4

----7 8 3 V 8 3 by collapsing the bounclary of a 3-cell in 8 3 = ße4 to
a point. Then we 11lap 83 V 83 by sending thc copy 83 V * by the inc1usion 11lap
""(: 8e4

----7 U - e4 anel sending the copy * V 8 3 by a 111ap 8: 8 3
----7 U(2) froln 8 3 to

thc 2-skcleton U(2) = (U - e4 )(2) ~ (U - e4 ). In other worcls, f is the composite
111apping

I: 8e4
----7 8 3 V 8 3~ U - e4

.

The choice 8 = 0 jllSt gives the original complex (U,8U).
Since H 3 (U(2); ZG) = 0, it follows that 8 has uo effect on h0l1l010gy and, so as

far as hOilIOlogy is concernecl, f is the same as the original attaching map. As a
result, for any such Illap f thc cOlnplex (V, aV) is a finite Poincan~ pair provicled
that the cup-procluct forill is non-singular.

Variation of the nUtp 8 has an effect on thc cap product by thc fundamental
dass [V, aV] which in turn changcs the cup product pairing b: H 2 (U, au; ZG) x
H 2 (U, DU; ZG) ----7 Z. FrOlll the exact sequence in (3.4) we have

COlnparing with the expression for H2(U; ZG) 2::' H2(U, 8U; ZG) obtainecl in (3.2),
wc obtain

whcre F is a frcc ZG-Inoclulc givcn by thc inlage of the boundary operator from
thc cOlnplex C* ('P) l 8: C3 ('P) ----7 C2 ('P). Note that

1r"2(U(2)) = H2(U(2); ZG) = F ffi H2(U; ZG),
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and by a theorem of Whitehead 1T3(U(2») is just the space of symlnetric pairings
on Honlz (7r2 (U) 1 Z). In particular 1 WO can interpret 8 as a sylnmetric pairing on
F ffi H 2 (U, DU; ZG).

For any such pairing, the original cup product form

is changed by re-attaching the 4-cell to

(see [36 , pp. 240-241]' [12,§1]). Here g*8 is the translatc of the sylnmetric pairing
8 by thc action of thc group elenlent gE G, g*8(x,y) = 8(gx,gy), and 2:.9*8 is the
suru of these translates as we go through all the group elements in G. Given b' in
thc statement of Proposition 3.1, we need to find 8 so that b' - b = 2:. g*8.

Let H denote the ZG-nlodule H 2(U, DU; ZG), and SYln(H) thc space of syrnnlet­
ric pairings on H. Then b' - b is an elmncnt in SY111(H) which is invariant under the
ineluced group action. However, the quotient of the group of G-invariant pairings,
by those of thc fonn 2:. 9 *8 is just thc Tate COhOlllOlogy jjo (G; Sym(H) )1 which is
a torsion group of exponent Spq = IGI. But b': H x H ~ Z on H has the additional
property that b' =b (moel IGI). Thcrefore we can write b' = b+~ g*8 for sorne
sYlllmetric pairing 8. We then use thc associated map f = '"'( V 8, to construct a
Poincare complex (V, aV) with b' as its cup product pairing. 0

4. HERMITIAN MODULES

In this section we will consider the patching construction for Z[Q(8p, q)]-hennitian
modules by 111CanS of the arithnletic squcue:

ZG ) QG

(4.1) 1 1
ZG l QG

Here?lG is the product ni ?leG of the e-adic group rings and QG the corresponding
weak procluct of group algebras. Applying the hOlnology functor H*(U; -) to the
above diagraIll, we have

(4.2) ... ~ H*(Uj 7l.G) ~ H.(U; ZG) EB H.(U; QG) -+ H.(U; QG) ~ ...

To sinlplify our notation, we denote by H(ZG), H(QG), H(71G), H(ÖG) the degree
2 homology of U with thc corresponcling cocfficients in ZG, QG, 7lG, OI QG. In
particular, we can view the module H(ZG) as patching H(?lG) = H(ZG) ® 7l and
H(QG) = H(ZG) @ Q together over H(QG) = H(ZG) ® Q, with some isomor­
phisrns

(4.3) H(71G) ® Q --; H(QG) ~ H(QG) @ Z.
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In the same lnanner, we can elescribe the ZG-hermitian intersection pairing

h: H(U; ZG) x H(U; ZG) ---t ZG

13

as a pull-back. There are intersection pairings over H(71G), H(QG), H(QG) by the
puH-back

hz:H(71G) x H(71G) ---t ZG
hö:H(QG) x H(QG) ---t QG
~:H(QG) x H(QG) ---t QG

auel they are patcheel together by isometries

(4.4)
" 1/J A 4J A

(H(ZG), hz)0 <Q~ (H(QG), hÖ) f- (H(QG), h-Q) 0 Z.

We want to use this clcscription Inter in §5, Proposition 5.1 to construct a new
intereetion pairing on the saUle module H(7lG). Dur strategy is to keep thc pairing
anel isometry

A 1/J A

(H(ZG), hz)0 Q~ (H(QG), hÖ)

on the left of (4.4) unehangcd, vary the pairing (H(QG), l1Q) to a negative defi­
ni te one (H (QG) , hQ), anel then use loeal classifieation thcory to patch everything
together by a new iSOlllctry 4/

(4.5)
" 1f; A 4>' , A

(H(ZG), hz)0 Q~ (H(QG), hÖ) f- (H(QG, hQ ) 0 Z.

The new pairing (H(ZG), h') on H(ZG) is obtaineel by means of the puH back
cliagranl as in [38] 01' [20].

The first step involves only the rational intersection fornl.

Proposition 4.6. Let (H(QG), hQ ) be a non-singular form with

(a) hyperbolic rank 2:: 8,
(b) rank H(QG) 0 (moel 16), and
(e) sign ho == 0 (ITIocl16) at every simple factor ofQG.

Then there exists a hermitian pairing (H (QG), hQ) such that

(i) hQis negative definite at all 0/ thc real TepTe8cntations of QG,
(ii) (H(QG), hQ)0 Z:: (H(QG), 1l{J) 071 over QG,

(iii) det hQ= clct hQ, and
(iv) (H(QG), hQ) contains (-1) as an orthogonal summand.

Thc proof of Proposition 4.6 foHows from well-known techniques in quadratic
forms (see [28, eh. 10] for the existence of global forms with prescribed Ioeal
invariants). First, we reeall that S = Q[Q(8p, q)] is a semi-simple algebra anel heuee
can be deeoluposed into a produet Ox(QG)x of simple algebras (QG)x where X
goes through all thc irreeluciblcs of G. Since
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it follows that S = ndlpq S(d) where

8(d) = Q((d)t[X, Y IX 2 = y2 = (Xy)2]

is a twisted group algebra. Fl'Olll the presentation of G = Q(8p, q) given in (2.1) we
see that thc elelnent X 2 = (Xy)2 = y 2 is central of order two, s'o the group algebra
S = Q[Q(8p, q)] contains thc central idClnpotcnt ~(1+X2) and splits into a product
of two sitnplc algebras 8 = S+ x S_. The first factor S+ = Q[D(2p) x D(2q)] is thc
group algebra of the product of thc two dihedral groups sllbgrOllPS D(2p) = (A, X)
and D(2q) = (B, V). Froln thc representation theory of these groups, it follows
that

(4.7)

Therefore

while

anel

(4.8)

Q[D(2p)] = Q+ x Q_ x At[2[Q((p + (;1)]
Q[D(2q)] = Q+ x Q_ x AtI2 [Q((q + (;;1)] .

8(p)+ = AI2[Q((p + (;1)] @Q++ x A12[Q((p + (;1)] @Q+_

S(q)+ = NI2 [Q((q + (;1)] @ Q++ X AtI2 [Q((q + (;-1)] @ Q_+

Thc subscripts +, -, indicatc thc appropriate sign representations of Q(8p, q) anel
((p, (q are respectively prinlitive pth roots anel qth roots of unity (see [20, p. 211]).
There is a similar deC0l11position for the seconcl factor 8_ iuto sinlple algebras which
are non-split at all the real places:

(4.9)
8(1)_ = Q[i,j, k],
8(q)_ = Q((q)t[i,j, k]

8(p)_ = Q((p)t[i')l k]
8(pq)_ = A12 (Q((pq + (;/ )t[i,), k]) .

It is easy to see that an the factors in thc above dccomposition are preserved under
the canonical involution 0:: L: agg t---t 2: agg- 1 of the group algebra QG. As an
algebra with involution, an thc factors in S+ belong to thc type OK(IR) while thc
factors in S_ belong to the type SpD(IHI). Here we use thc classification of [15, p.
549). A sitnple algebra (D, a) of dilnension n 2 over its centre E has type 0 (resp.
8p) if E is fixed by 0' anel the fixeel set of a on D has diInension ~(n2 + n) (resp.
i(n2

- n)) over E. Vve further divide into

(i) type OI«IR) if (D, 0') has type 0, D = E and E has areal imbedding, 01'

(ii) type SpD(IHI) if (D ,a) has type Sp, D i= E, anel D is nonsplit at infinite
prinles.

We wish to reconstruct the pairing on (H(QG), hQ) so that it becomes negative
definite. In vicw of thc decomposition above, it is enough to construct a negative
definite pairing over eaeh of the sitnple factors (H(QG)x' h~) with the prescribed

loeal elata (H(QG)x' hx)'
For simple factors of type OK we will use the Hasse-rvIinkowski Theorelll. Its

proof can be found in lllany textbooks on quadratic forms (e.g. [28 , p. 225]).
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Theorem 4.10. Let E be a global field. For eaeh prime spot e of E let an 71,­

dirnensional f07m Wt. over Et. be given. Then there exists a form c/J over E w'ith
cPt. ~ ?/Jt. for all e if and only if the following eonditions are satisfied:

(i) There exists d E EX with cl = det(?/Jt.} in Er IEt 2 for all e.
(ii) The number of efor' whieh s(?/Je) = -1 is finite and even.

For the remaining silnple factors, of type SpD(lHI), we have the following version
of the local to global correspondence:

Theorem 4.11. Let D be an quaternion skew field with eentre E, and let (D, *)
be the eanonieal involution which fixes exactly the elements of E. Given a (D, *)­
hermitian form h: V x V ---t D over the vector space V J the formula x 1-------+ h(x, x)
defines a quadratic form known as the trace form qh: V ---t K 01 h

(i) Two hermitian forrns over (D, *) are isometrie if and only if their trace
forms aTe isometrie.

(ii) 1f Eisa P-adic fidd, then non-degenemte hermitian fOTms oveT D are
classified by their dimension.

(iii) 1/ E is an algebraic number field then non-degenerate herrnitian forms over
D are classified by their dirnension and their signatures at the real plaees
where D i8 definite.

Proo/. Thc proof of (i) is in [28, Tlun 10.1.7] and [28, 10.1.8(iii)]. Recall that the
canonical involution on Q[i, j, k] is the one which is type Sp (see [28, p. 75]). As
is weIl known, a nondegenerate quaclratic fonn q over an algebraic number field E
is completely determined by its rank, diIn(q), deternünant det(q), Hasse symbols
s(q), anel signatures sign(qt.) at all real places. For h = (aI, ... ,an), its trace fornl
qh is of the fOl'ln

qh = EB(ai' -aia, -aib,aiab )

where a, bare elelnents in E with D = (a, b). From this it is easy to see that

diIn(qh) = 4 dirn h, det(qh) = 1, sign(qh) = 4 sign(h).

These invariants are deternlined by the dinlension anel signature, and a short com­
putation shows that

Se(qh) = (a~br (-1, ~_l)n)
so the Hasse invariants are also deternlined. D

Proo/ 0/ Proposition 4.6. We will begin with the type OK factors (QG)x anel ex­
plain thc methocl by working out the sinlplest case. Let X be the trivial representa­
tion and (QG)x = Q++ = Q. Since the involution is trivial, the hermitian pairing
(H(Q++), hQ++) = (H(Q), b) is nothing but a non-singular syrnmetric bilinear fOrIn
over the rational vector space H(Q).

We will construct a new bilinear fonn (H(Q), b') with the salne loca.lizations
(H(Qe), bt.), P = 2,3, ... ,00 as thc given fOl'ln (H(Q), b) Over tbe real place, the
fonn (H (Qoo ), boo ) = (H (IR), bR) is not nccessarily negative clefinite but its rank
anel signature are multiples of 16 by Corollary 3.3. As a rcsult, we see that

S(bR) = (-1 )8(S-1)/2 = 1
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sinee s =0 (nlod 8) is the nUlllber of negative in a diagonal fonn equivalent to bR .

It follows that

If we replaee bR by a negative definite form bR, then the same equations aJ'e satisfied:

det(b~) = det(bR), s(b~) = s(bR ).

For the rest of the prilnes, we let bi equal be. Then the eollection {b~, ... ,b~} with
d = det b satisfies tbe eonditions of Theorenl 4.10to be the loeal data for aglobai
fonn. It follows that we have abilinear fonn (H(Q), b') whieh is negative definite
at the real plaee and is tbe sanle as (H(Ql), be) for all other prilnes.

For thc other sinlple factors (QG)x of type OK , thc Inodification of the hermit­
ian pairing (H(QGx )' h~) into a negative definite one can be achieved in the saUle
11lanner, after applying Morita equivalence to translate from forms over !vf2 (E) to
foruls over E.

Next we consider tbe case of siInple factar of type SpD (lHI), and we begin again
with thc simplcst case whcn (QG)x is a division ring. To reconstruct (H(QGx ), h)
we first express h as a diagonal fonn (aI, ... ,an) over thc division ring D = QGx
and definc h' = (-1, ... ,-1) where h' has thc sarne raJ1k as h. By Theoren14.11(ii),
the fonns hl r"'o.J h~ at all finite prinles P.. On the other hand, h' is negative definite
at the real places.

For a general type SpD(ll-ll)-factors, we have a matrix ring M2(D x ) over a clivision
algebra (Dx ' *) with an involution defined by the transpose-conjugation operation:

By Nlorita equivalence, the classifieation of hennitian fonns over such simple faetors
ean be recluced to the classification over Dx ' As a result the reconstruction problCIn
of (H(QGx ), hx ) ean be treated as the eorresponding problell1 over Dx , which
we have just consic1cred. We eOInplete thc proof of parts (i)-(iii) by putting an
the moclified hernlitian fonns (H(QGx), h~) together. For part (iv), we use the
aSsulllption that fann (H(QG), h) eontains a hyperbolic form of rank 2: 8, anel a
special case of the above construction: let L = (QG) 16, take b thc hyperbolic fonn,
and b' the diagonal (-1) farm of rank 16, Then (L, b) ® Z r"'o.J (L, b') ® Z. D

5. STRONG ApPROXIMATION

In Proposition 4.6, we constructed a negative definite hennitian fonn (H(QG), hQ)
such that its completion (H(QG), hQ) ® Z is iS0l11etric to thc adelic call1pietion

(H(QG), hö) of the original hernlitian farnl. In particular, this inlplies clet hQ=
det~ E K 1 (QG), Each choice of isoluetry

'" rjJ' '"
(H(QG, hQ)0 Z -----t (H(QG), hÖ)

gives risc to a form (H', h') on some Inodule over ZG by pull-back, but there are
many possible choices.
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Proposition 5.1. Let H = H 2 (U; ZG) and h denote the ZG-hennitian cup product
pairing 11,: H x H ~ ZG. Then there exists an isometry q;': (H(QG, hQ) ® Z ~
(H(QG), hÖ) and a hCT'1nitian pairing h/:H x H ~ ZG such that

(i) 11,' is the pull-back (hz, 1l, hQ)
(ii) 11,' _ h (nlod IGI), and

(iii) 11,' is negative definite at all of the real representations 0/ ZG.

vVhen the fonn satisfies the conditions of Proposition 5.1, we can use this data
as explained in Section 3 to construct a finite Poincare pair (V, aV) with negative
definite intersection form.

Proposition 5.2. There exists an attaching map f for V = (U - e4
) Uf e4 such

that the pair (V, 8V) is an oriented, finite, weakly simple, 4-dimensional Poincare
pair with 7rl(V) = G and orientation dass [V] E H 4 (V, av; ZG) Moreover the
non-singular 7lG-hermitian pairing

H 2 (V, av; 7lG) x H 2 (V, av; 7lG) ~ ZG

induced by cup product and the evaluation against the fundamental cycle [V] is
negative definite.

The condition ((weakly silnple" 111eanS that the Whitehead torsion of the Poincare
duality map is zero llleasured in Wh'(ZG) ~ Inl(Wh(71G) ~ Wh(QG)). This is
automatically true for Inanifolds and we will preserve this property in our construc­
tion of V frolll U using (4.6)(iv).

Over each sinlple factor of QG or QG, every module is a direct sunl of copies
of an irreclucible silnple module, so we can choose a basis (see [20, §2]), and then
cOlnputc thc determinant of an isolnetry. Over non-CODllllutative factors, the de­
terminant Inust be interpreted as the reduccd nonn. An isonletry of based forms
with cleternünant 1 is called a simple isonletry, and such fonns are thcn callcd
SU-equivalent.

Thc manifold (U, aU) has a basis for its chain complex given by its associated
piecewise srnooth triangulation. To express the Whitehead torsion of its sinlple
Poincare duality l11ap in terms of Reidelneister torsions, it is necessary to base the
homology groups. Let Q = {ei} denote a basis of H(ZG) 0 Q. Using the given
isomorphism

cI>; H(ZG) ® Q~ H(QG) 1S H(QG) ® Z
wc havc a corresponding basis cI> (Jl) = {<I> (ei )} on H (QG) 0 Z) nnder cI>. In par­
ticular, cI> is a sinlple isollletry of the given hernlitian fanns with respect to these
ba.ses.

Lemma 5.3. There exists an isornetry

such that the composite
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is a simple isometry with respect to the bases 12 and <1>(12).

Proof. It follows froin Proposition 4.6 (iv) that (H(QG), hQ) contains the fornl
(-1) on sonle basis element e E H(lQG) , in the given basis. This allows us to
pre-eOUlpose any 4>' with an isoinetry of thc fornl e I--t ue, where u E QG anel
uü = 1. This realizes all possible values of thc reduced norm for an isometry since
elet!LQ = det hQ. D

Proof 01 Proposition 5.2. Our new forIlI (H(ZG), h') is eonstrueted in Proposition
5.1by puH-baek using the simple isoilletry rj/ in Lenlma 5.3. We then apply Propo­
sition 3.1 to construet V from U. It follows that the based ehain eomplex used to
cOinpute the adelic Roidenleister torsion of (V, aV) is simple chain homotopy equiv­
aleut to the one for (U, DU). Therefore the iInage of the Whitehead torsion T(V, aV)
is zero in W h(QC) and thc Poincare cOIllplex (V, aV) is wcakly simple. D

To prove Proposition 5.1 we will neeel the following:

Lemma 5.4. There exist isomorphisms

1f;1: H (ZG) ----t H (ZG)

'lfJ2: H(QG) ----t H(QG)

such that <I> = ('lfJ2 @ id)-I 0 <P' 0 (1f;1 @ id).

Lemma 5.5. For every di'uisor I!. o/IGI, the reduction 0/1f;1 modulo e

is an isometry 01 the herrnitian rnodule (H(ZG), hz)@ Z/I!.

Proo1 01 Proposition 5.1. Assunling these two assertions (5.4) anel (5.5), we ean
eOIllplete the proof of Proposition 5.1. Let (H', h') be the pull-back of our original
f-adic fonn (H(ZG), h)@Z = (H(ZG), hz)ancI the new rational form (H(QG), hQ)
given by Proposition 4.6, pulled back using the iSOl1letry eI/ of Lemnla 5.3. This form
will satisfy (5.1)(i) anel (5.1)(iii) once wc provo that H' ~ H(ZG) as a ZG-l1lodule.
The remaining property (5.1)(ii) will follow froln Lemma 5.5.

Recall fronl (4.3) that the module H(ZG) is obtained by fornling the pull-back
of the diagrarn:

H(ZG) ~ H(ZC) @ lQ~ H(QG) @ Zf- H(QG).

LeIllma 5.4 givcs us a commutative diagram:

H(ZG) , H(ZG)®Q
<P , H(QG)®Z ( H(QG)

(5.6) I1P1 1 tP10id 11/J'J0id I1P 'J

H(ZG) i H(ZG) ®Q
4>'

) H(QG)®Z ( H(QG)

Fronl this, it follows that there exists an isonlorphisnl

W: H(ZG) ~ H(ZG)'
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between the pullback (H(71G) of the top row in (5.6) and thc corresponeling pullback
H(7l.G)' of the bottom row. Fllrthermorc, this isoillorphism '11 is cOlnpatible with
1./Jl after taking thc conlpletion

(5.7)

Now tbe pullback cliagranl

H(71G)

1~
H(7l.G)'

--ti H(ZG)

l 1JJ1

--ti H(ZG)

~ ~ ~I ~

(H(7l.G) ,hz) --+ (H(ZG), hz)~ Q -t (H(QG), hQ)0 Z ~ (H(QG), h'o)

gives risc to the desircd herrnitian pairing (H(71G)', h') over H(71G)'. In addition,
we have a hermitian pairing (H(7l.G)', h') 071/IGI after taking the tensor product
with Z/IGI.

Prom (5.7), we have a comlnutative diagraIn:

(H(71G), h) ® Z/IGI

1'IJ (Illod IC I)

(H(71G)', h') \3) tl/IGI

(H(ZG), hz)0 tl/IGI

l,pt (mod ICI)

(H(ZG), hz)0 tl/IGI

where the two horizontal arrows are isometries. Since 1./JI (mod IGl) is an isometry
by Lemlna 5.5, it follows that the isornorphism '11 is an isometry after reduction mod­
ulo IGI. 01' in other words, the pullback hernlitian pairing '11* (h') - h (nlod IGI).
This proves (5.1) (ii) anel thc proof of (5.1) is conlplete. 0

To prove (5.4) anel (5.5), we need the following version of the Strong Approxima­
tion Theorern for special linear groups duc to Eichler and Kneser (see [28, 10.5.1]).
Let R be a Dedekind dOlnain with the global fielel !( as quotient fielel. Let D be
a finite-dimensional skew field with centre I< and A = A1n (D) anel let r be an R­
order on A. The special linear group SL(r) i8 the subgroup of SL(n, D) preserving
r.
Theorem 5.8. Let s,p be a finite set 01 non-aTchimedean prirnes , T E SL(n, D)
and f > O. Then there exists T E SL(n, D) and S E 8L(t) such that T = To S-I,
and 118/J - Idll/J < f for all P E s,p.

Proof. Consider the elenlent T = {T/J : Sp E SL(n, D/J)} in the adelic special
linear group SL(n, D). Then, by definition, for all but finitely Inany primes s,po =
{Pb ... ,Pk} the conlponcnt T/J E SL(f'/J) for P i= PI, ... ,Pk. We enlarge s,p if
necessary to assume that it contains all priInes P E '.130'

Using [28, 10.5.1] (with q one of the infinite prirnes), and any given 8 > 0 we
have T E SL(n, D) such that

IIT - Tpill < 8

for Pi E {PI, ... ,Pk} anel T E SL(f p) elsewhere. In particular, by choosing 8 small
enough we can ensure that Tp: loT is in any given E-neighborhood of the ielentity.
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Since SL(f'pJ is open in SL(n,Dp)), it follows that for 8 > 0 sufficiently small
T;l 0 T = SPi is in SL(fpJ . Dcfine Sp = Tp- 1

. T for the other primes as weIl.

Then S = {Sp} is an integral adele, S E SL(f), and T = ToS-I. 0

Proo! 0/ Le1nma 5.4. To apply the above, we recall that 4>' 0 4>-1 is a sirnple
automorphisln of thc vector space H(lijG)0Z. Note that H(QG)0Z is decomposed
as a product rr H (QGx) 0 Zof simple modnIes over each of the simple factors (QG) x
of QG. In each factor we will take r x to be the iUlage of ZG in (QG)x' Since we
can apply the above theorelll to each of these factors and multiply them togcther,
we will not clistinguish between H(QG) 0 Z and its factors.

For all but a finite set of pritnes ~ = {PI, ... ,Pk}, thc autoillorphism .p' 0

4>-1 preserves thc lattice H(ZG). By enlarging this set ~ if necessary, we can
assunle that it contains a11 tbe prinle divisors of IG). By (5.8), there exist simple
autoillorphisins WI of H(ZG) anel W2 of H(fQG) such that

As usual "sirnplicity" of Wb 'l/J2 is 111easured by reduced norms with respect to our
fixed bases, after tensoring to H(ZG) ®Q or H(QG) 0Z. This establishes (5.4). 0

Proo! 0/ Lemma 5.5. Since cI> anel \l1' are iS0I11etries between the hermitian forulS,
by choosing E > 0 sI11all cnough we can conclude that Wl: H(ZG) --t H(ZG) induees
an iS0I11etry of the hennitian foru1 (H(ZG), hz)1110clulo IGI. Thus conelition (5.5)
is also satisfied. 0

In Section 8, we will need to vary the construction of (V, aV). Reca11 that the
attaching 111ap f for V = (U - e4

) U f e4 is determinecl by the hermitian form

(H(ZG), h' ), whieh is a pull-back of forms over H(QG) anel H(ZG) identified by
the siI11ple isolnetry cj/ given in Lenlma 5.3.

Proposition 5.9. Let cj/ be a simple isometry as in (5.3). For any unitary auto­
rnorphism ß E SU(H(QG), hÖ)J the Poincare complex (Vß ,8Vß) constructed /Tom

1>~ = ß 0 1>' is also weakly si1nple and has negative definite inteTsection form.

PTOOf. The itnage of the Whiteheacl torsion T(V, aV) in W h(OG) is COlllputed by
reeluced nonns. By construction, these values are the sanle as those for T(U, 8U).
Now we ean repeat thc proof of Proposition 5.2 using .pß = W0 (1)')~1 0 ß~I to
eonstruct a hermitian form hß, anel then re-attach the top cell to get Vß. 0

6. FOUR-DIMENSIONAL SURGERY

In Sections 2-5 we constructed a collection of weakly silnple Poincare cOlnplexes
(V, aV) with ?Tl (V) = G and negative definite intersectian farms. The boundary
av = au is the disjaint union ofHnear ancl non-linear space forols. These complexes
are paraI11etrizecl by eletnents ß E SU(H(QG), hÖ)' but this dependence will be
suppressed for the I110ll1ent. In this section, we will show that each of these Poincare
cOlllplexes achnits a degree 1 nornlal map from a Sll100th 4-manifolcl. We then begin
to study the surgery obstruction.
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Proposition 6.1. The Spivak normal fiber space ~ -t V is trivial. There exists a
trivialization p: E(~) -t IRl , e= dinl~ + 1, and an associated degree 1 normal map
f: (X, aX) -t (V, aV), b: Vx -t ~, such that

(i) (X, aX) is a compact, smooth, oriented 4-maniJold with 7fl (X) = G,
(ii) ax = av and (I, b) !ax = id, .

(iii) sign(X) = sign(V), and
(iv) the surgery obstruction A(/, b) lies in the Uweakly simple" surgery obstruc-

tion group L~(ZG).

Proo/. Note that av = au is a union of fralnecl manifolcls. Hence f, Iav has a
vector bundle reeluction anel in fact a frameel structure over av. This slnooth
structure can be extendeel to give a vector bundle recluction for ~ over V since the
first exotic spherieal eharacteristie dass is zero on oriented 4-dimensional Poineare
eomplexes. Then since W2(V) = W3(V) = 0 and V is homotopy equivalent to a
3-complex, we condude that ~ is thc trivial bundle. We fix a trivialization of ~ to
serve as 30 base-point for nornlal invariants.

Let p : E(~) -t IRe, e= dinl f, + 1 >> 0, be any fibre hOlnotopy trivialization of
f, exteneling the given trivialization of ~Iav. By Inaking P transverse to 0 E IRe, we
obtain a eonlpact, smooth 4-rnanifold Xe with aXe = av anel a clegree 1 normal
map le : XE. -t V covered by a bundle nlap bE. : v(Xe)-t f,

(6.2)

b~--....,., f,

1
Xf. f~) V

anel (fe, bf.) Iß..-Yf. = id.
By varying within the nornlal eobordisnl dass of (Ie, be) if neeessary, we may

assume that fe incluces an isomorphism oE fundamental groups, so 7fl (Xe) = G.
F'urthennore, since (V, aV) is a weakly siInple Poincan~ pair, the surgery obstruction
A(fe, bf.) for (6.2) lies in group L~(ZG) conlputed in [38]. As a shnply connected
surgery problenl, (6.2) has an obstruction given by the clifference sign(Xe)-sign(V)
of two signatures. However we ean get riel of this obstruction by the following
Inodifieation.

Consicler a degree 1 nla.p !.p : V / av -t 84
• FrOlll [18], it is known that 7f4 (G/ P L) =

Z anel its generator is representecl by a vector bundle Tl over 8 4 with a homotopy
trivialization p : E (1]) -t IRland ~PI (1])[8 4

] = -16. Pulling back this G/ P Ir
structure to V via !.p, we can add this to ( to get a new G/ P L-structure ~ ~ !.p*1].
Note that the relative Pontrjagin dass ~]Jl (f, ~ CP*1]) [V/8V] = ~Pl (1])(84

] = -16
with respect to our base-point trivialization on e. Therefore by repeating this eon­
struetion k- tiInes, k = sign(V) / 16, we arrive at a G/ P L-st1'uetU 1'e e over V/ av
with ~PI(e) = -sign(V). Using e instead of~, we obtain a corresponding surgery
problen1:

v(Xf.')
be le

1 1
Xe

Je lV
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Since we have
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. .
it follows that the simply connected surgery obstruction equals zero. 0

There are other surgery obstructions for OUT problem (!, b) : X ~ V 1 indepen­
dent of the siInply-connected signature obstruction. In fact, the relevant surgery
obstruction grollp L~(ZQ(8Plq)) has been conlputed by Madsen in [20} following
the methoels of Wall [38].

As in [20, p. 208], let

, { L;; (ZG,Q, 1) for n - 0 (moel 2), and
Ln("ZG) = y 0 1

Ln (ZG, D, 1)/(±I 0) for n - 1 (mod 2),

where the decoration Y = SKI (71G) EB (±g I9 E G).

Theorem 6.3. There is a natural splitting:

L~ (ZG) = LEB {L~ (ZG)(d) : d I pq}

such that

(i) for d =f. 1, L;; (71G)(d) = L-: (71G)(d) where the decoration X stands for
SK I (ZG).

(ii) L: (ZG)(d) ~ L: (71[71/d )1 Q(8)])(d)
(iii) for each d Ipq, there is a long exact sequence:

... ~ CL;+l (S(d)) ~ L~ (71G)(d) -t L: (T(d)) EB rr L: (Rl(d)) ...
ltd

where

R(d) = 7l[(d]tQ(8)

T(d) = IR 0 S(d)

S(d) = Q[(d]tQ(8)

ff.l(d) = R(d) 0 Zl

and
CL; (S(d)) = L;; (S(d) ~ S(d) EB T(d))

(iv) The K -theoT7J decorutions are given by

X(S(d)) = X(T(d)) = X(Rt(d)) = {O}, (f odd).

Since the calculations of L; (71G)) (d) for different d I pq are quite similar, Madsen
concentrated on the most difficult case when d = pq. For this he proved the
following [20, Thm. 4.16]:
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Theorem 6.4. There is an exact sequence

°~ CokerVh ~ L~CllG) (pq) ----+ Ker'ljJo ~ 0,

where K er1/Jo is the free abelian group detected by the signature invariants cor­
responding to real places 01 P = Q[(p + (;1, (q + (;;1]. The term Coker'ljJl is
deterrnined by the exact sequence

(6.5) °~ Ker;j;i ~ p(2) /P X2 ----+ HO((A/pq)X) ----+ Coker'l/Ji ----+ HO(f(P)) ~ 0,

where A = Z[(p + (;1, (q + (;;1L P = Q[(p + (;1, (q + (;;1], f(P) = I(P)/ px is the

ideal class group 01 P, I(P) = P){ /P~ . Ax is the ideal class group, and p(2) C px
consist.s of elements with even evaluation at all finite prirnes.

For a geonletrie surgery problein (1, b), the iInage of the surgery obstruetion
),.(/, b) in the group Kerwo can be interpreted as thc difference signa (V) -signo(X)
between the nlulti-signatures of X and V.

Proolol Theorern 6.4. The exaet sequence of (6.4) conles from the caleulation of
L-groups [38]: we substitute

II L{ (Al) = II HO(A;) x A/2,
lfpq lfpq

anel L? (Fee) = HO(F~) together with CL? (P) = HO(C(F)) into the commutative
eliagralll

lllfpq HO(A;) x A/2 x HO(P:O)

1~

tPl ) H O( C(P))

1~
VJl ) eLf (F)

1

1
--+ HO(A X) x HO(F~) x HO(F X ) --+ HO(F::) --+ HO(r(F)) --+ 0

1

1
(6.6)

where C(F) = ftx / px is the idele dass group and the vertical maps are induced by
the "change of decoration" Rothenberg sequences in L-theory cOlllparing LX with
L K . In describing the cokernel of 'ljJI, it is convenient to compare with the natural
hOlnonlorphisln

HO(A X) x HO(P~) x HO(P X)~ HO(P~)

whieh has kernel p(2) / p X2 and cokerncl HO(f(F)). Putting this infonnation to­
gether we have the cOlllInutative eliagraIn:

o ~ Ker ~r --+ HO (A.:, ) x HO (F~J x HO(F X
) --+ HO(F::) --+ Coker -J,f ~ 0

1

o --+ HO(A~) HO(A:)

Here HO(A;) = llllpq HO(A;) anel HO (A;, ) = lllfpq HO(A;). The snake lemlna
yields the exact sequence in (6.5). 0

We will now apply these calculations to study the surgery obstructions which
He in CokerWl' Let SUr(QG) clenote the group of unitary automorphisrns of the
hyperbolie fonn of rank r over QG.
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Lemma 6.7. There is a natural projection SUr(QG) ~ Coker'ljJt, for r 2: 3.

We will denote thc inlage of ß E SUr(QG) uuder this projectiou by (ß].

Proo/. Since
CL: (8(d)) = L~ (8(d) ~ S(d) EB T(d))

is actually a quotient of L~(S(d) EB T(d)) by [38).2] and Lr.(T(d)) = 0, we see
that CLr. (8(d)) anel hence eoker 'ljJl is.a quotient of Lr (S(d)). However, by defini­
tion Lr. UQG) is a quotient of thc stablized special unitary group SU(QG) and the
projection

is an epitnorphism for r 2: 3. D

Recall froln (5.9) that we can vary our Poincare conlplex (V, aV) to (Vß' aVß)
for any ß E 8U(H(QG), hÖ)' Exactly the same proce..'3S can bc used to vary any
algebraic quach"atic Poincare conlplex (as eiefined in [25]).

Any 4-dinlen.sional quaelratic ZG Poincarc conlplex C( 'ljJ) can be stabilized by
adding a hyperbolie form IHI(q(r)) = IHI(ZG)T of rank r over ZG (considered as a 4­
complex conccntratccl in thc midclle dinlension). This is just thc algcbraic analogue
of adding copies of 8 2 x 8 2 to the dOlnain of a geometrie surgery problenl_ Now
if C('ljJ(r)) = C('IjJ) EB IHI(q(r)) is the r-stabilization of C('IjJ) and ß E SU,(QG), we
can construct a new quach-atic Poincare conlplex C('ljJß(r)) by pulling back using
the same rational and e-adic pieees as C('IjJ) EB IHI(q(r)). The idcntification over QG
is altered by cOlnposing with ß (just as in Proposition 5.9).

Lemma 6.8. For any ß E SUr(QG), r 2: 3, and any 4-dirnensional quadratic
Poincare complex C('IjJ) over ZG, the surger1J 0 bs tT'lLction A(C ('IjJß(r ))) E Lb (71G) is
independent 0/ rand given by A(C('ljJß(1'))) = A(C('ljJ))) + [ß].

Proo/. Stabilization eioes not change the surgery obstruction of C( 'ljJ) so

A(C(7J;(r))) = A(C(1/;)).

Sinülarly, A(C (1/;ß (T) )) is indepenelent of r since r 2: 3. We can also assUllle that
the patching over QG useel to construet C( 'ljJ), anel the action of ß, take place in
orthogonal direct sununands of C(1/;(r )). Therefore

Since thc surgery obstruction is just the algcbraic Poincare' cobordism dass of
C ('t/Jß(r )), anel A(IHr (qß (r ))) = [ß] by definition, the given formula holds. 0

7. INDUCTION MAPS

This section contains an algebraic result we will need to handle the multisignaturc
surgery obstruction. Let R(G) denote tbe real representation ring of G, anel recall
that therc is a natural transfonnation [38, 2.2] of Mackey functors

(TC: L~(71G) ~ R(G)
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given by diagonalizing a hermitian fonn (H,h) over each irreducible representation
a of IRG (see [38, §2.2]) anel then taking the formal difference signa(H, 11,) of the
Inaxiulal positive and negative definite G-invariant subspaces.

In particular, thc homolllorphislllS (jH: LS(ZH) ~ R(H) for H = Q(8p),Q(8q),
and C(2pq) are compatible with the induetion 'lllaps betwccn the surgery obstrue­
tion groups, anel the eOlTesponding induetion hODloDlorpmsms:

i h : R(Q(8p)) ~ R(Q(8p,q))

i 2* : R(Q(8q)) ~ R(Q(8p,q))

i 3* : R(C(2pq)) ~ R(Q(8p,q)).

The reduced rcpresentation ring R(G) = ker(R(G) ~ R(l)) is generated by ele­
nlents of the fonn (a - diln 0: . 1) for all real G-representations 0:. This ideal of
R(G) is closed under induction and restrietion. The transformation (jG induces

a: L~(ZG) ~ R(G),

which is again eonlpatible with tbc Maekey strueture, and wo have the eomulutative
diagralll

LS(Q(8p)) EB LS(Q(8q)) EB LS(C(2pq)) [1*$/
2
*ffi

/
3*) LS(ZG)

lu lu
R(Q(8p)) EB R(Q(8q)) EB R(C(2pq)) i1* Efji2* Efji

3
*) R(G).

Tbc lllain result of this seetion is:

Proposition 7.1. The image of (j: LS(ZG) ~ H.( G) restricted to Im (Ih EBI2*ffiI3*)
contains the subgroup 16 . R(G) .

We will describe tbe splitting useel in [38, §4] anel Theoreul 6.3 , in order to stuely
thc ineluction hOlllolllorpmsllls bctween these groups.

Lemma 7.2. The map (jG has a direct sum decomposition (j = EBdlpq(j(d) where
(j(d): LS(ZG)(d) ~ R(G)(d). A similar splitting exists for the subgroup C(2pq),
and the induction map 13 : LS(ZC(2pq)) ~ LS(ZG) preserves the components.

Proof. Note that the gl'OUP algebra Q[C(2pq)] decomposes into the product of foul'
different fields !Q, !Q((p), Q((q), anel Q((pq). This incluces a corresponeling elecorn­
position on QG = Q[C(2pq)PQ(8) and hence on every functor of lQG. In fact,
for every covariant functor A(-) rrolll finite subgroups of G to abelian groups, an
analogons decolllposition exists for A(G). Let !P1 fq : C(2pq) -1' C(2pq) denote
the endonlorphislIlS which project onto C(p) anel C(q) respectively. They extencl
to enclomorpbislllS !P1 jq of Q(8p, q) by setting !p IQ(8) = jq IQ(8) = id. Since

i-; = iP1 i; = !q, we obtain idempotent enelolnorphislllS Fp = (!p)* anel Fq = (!q).
of A(G). Hence there is a elecomposition

A(G) = A(G)(l) EB A(G)(p) EB A(G)(q) EB A(G)(pq)
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A(G)(l) = FpFq(A(G))

A(G)(p) = Fp(l - Fq)(A(G))

A(G)(q) = Fq(l ~ Fp)(A(G))

A(G)(pq) = (1 - Fp )(l - Fq)(A(G)).

Applying this splitting to the surgery obstruction group L~(ZG), we have

L~(ZG) = L~(ZG)(l) EB L~(ZG)(p) EB L~(ZG)(q) EB L~(ZG)(pq).

Similarly for R(G), we have

R(G) = R(G)(l) EB R(G)(p) EB R(G)(q) EB R(G)(pq).

Since the splittings are given by idempotents, we get a cOITesponding elirect surn
decoluposition for a.

The idempotent endornorphisms jp, jq also exist on the subgroup C(2pq) anel
hence give the corresponding deconlpositions on L~(C(2pq)) and R(C(2pq)). The
cornnlutativity of the following diagrarn (d Ipq)

(7.3)

L~(ZC(2pq))(d)

1h.

L~(ZG)(d)

a ) R(C(2pq) )(d)

1i3 ..

R(G)(d)

lueans that the ineluction illaps froln C(2pq) preserve the COil1ponents. 0

There is oue more functorial fact which siInplifies our problen1. Both Q(8p, q)
anel C(2pq) contain a unique order 2 elen1ent X 2 = y2 = (Xy)2 in the centre. By
Schur's lernma thc action of this element on the irreducible are either +1 01' -1.
Accorelingly the representation rings decompose into two cOillponents:

R(Q(8p, q))(pq) = R(Q(8p, q))(pq)+ EB R(Q(8p, q))(pq)_

R(C(2pq))(pq) = R(C(2pq))(pq)+ EB R(C(2pq))(pq)_

anel the hOlnoillorphism i 3* prcserves these cleconlpositions.

Proposition 7.4. On the (-1) -cornponent the homomorphism

is sU1jectiveJ and on the (+1) -cornponent the image of the homornorphism

(i3 ) .. : R(C(2pq))(pq)+ ---t R(Q(8p, q))(pq)+

equals 2 . R(Q(8p, q))(pq)+

Proof. Rccall that the splittings on R(C(2pq)) anel R(Q(8p, q)) can be achieveel by
first applying the splittings to the group algebras Q[C(2pq)), Q[Q(8p, q)]. By (4.8)
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anel (4.9) we see that the rational representations in thc top components S(pq)+
anel S(pq)_ are induced up fron1 Q[C(2pq)], and become the twisted b'TOUP algebras
Q((pq)t[X, Y]± which have dinlension 4(p - l)(q - 1). In the regular representation
of QG, this factor elecomposes as the clirect surn of 4 copies (respectively 2 copies)
of the siInple lllodule for S(pq)+ = ]v[4(F) (resp. S(pq)_ = M2 (D)). Note that
Q((pq) C8JlR splits into (p-1) (q-1) /2 copies of the cOlnplex numbcrs C, and thc centrc
fielel F = (1)((p + (;1, (q + (;;1) splits into (p - 1) (q - 1) /4 copies of lR. By counting
clilnensions (over lR), we see that each one of these irreducible representations C
of C(2pq) incluces up to areal 8-dimensional representation. Since the irreducible
module L± for a silnple factor of M4 (F) 0lR (resp. M2 (D) o IR) has real eliulension
4 (resp. 8), we conclucle that the ineluceel real representations is L+ EB L+ in the
(+l)-colllponent anel L_ in the (-l)-componcnt. 0

Proof 01 Proposition 7.1. The endoIllorphisIll jp factors through the subgroup
Q(8p), anel we have the inclusion I111 Fp ~ Im i h . On the other hand, because

jp 0 i 1 = i 1 , we have (Fp-l)Im i 1* = Q. Sinülar relations hold for Fqand i 2*. Fronl
thc definition of the sumnlanels R(G) (d) in ternlS of these ideOlpotents, it follows
that

(7.5) R(G)(l) ffi R(G)(p) E9 R(G)(q) = Irn (i h ) + Im (i2*).

On the other hand, by Proposition 7.4, we have

anel we can conclude that

Moveover, it follows fronl the rcsults of [15], [38,2.2.1] on thc divisibility of thc
signature invariants, that

(j/1: L~(7lH) -t R(H)

has image containing the subgroup 8 . R(H) for H = Q(8p), Q(8q), 01' C(2pq). By
naturality of (j,

o

8. ALMOST SPHERICAL SPACE FORMS

We are llOW ready to consider thc surgery obstructions of the degree 1 normal
Inaps constructecl in Proposition 6.1.

Proposition 8.1. Let f,: (X, aX) -t (V, aV), b{: Vx -t ~ be a degree 1 normal

map satisfying the conditions in (6.1). Then there exists an ele1nent ß E SUr(QG),
r 2: 3, and a dcgree 1 norrnal map f e,ß : (X', aX' ) -t (Vß,aVß), be,ß : VX' -t ~ such
that

(1) f e,ß lax' is an intcf}1'al homology equivalence, and

(ii) A(/~,ß,b~ß) = 0 E L~(ZG).
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After giving the proof of this result, we will use it to construct thc smooth
4-111anifold (Y,8Y) described in thc Introduction.

Proof. VVe will first consider the lllultisignature obstruction signo(V) - signo(Xe)
given by irreelucible real representations a, a :f. 1, of G = Q(8p, q). Note that
this set of surgery obstructions "generates the group Ker '1/;0 anel so if signa (V) ­
signa(Xe) = 0 for all athen )..(fe, be) E Coker1./J1·

We begin with the p-invariant Pa (N) of a 3-rnanifolel N with a unitary represen­
tation a : 7f1 (N) ~ U(n). Suppose N = 8Ai anel a extends to a representation of
7f1 (lvI). Then

Pa(N) = n . sign(M) - signa(M).

As a consequence of this fonnula, we have

sigua(V) - sigua(X) = signo(V) - [n. sign(X) - Pa(8X)]

= signo(V) - [n . sign(V) - Pa(8X)]

01', in other worels, the vanishing of the obstruction signa(V) -sigua(X) is the same
as requiring that the following equation

(8.2) Po(8X) = n· sign(V) - signa(V)

is satisfieel by the elolnain (X,8X) of our degree one normal map. Note that
this equation, and the fact that sign X = sign V, inlplies that thc Inultisignature
difference elepends only on 8X = 8V.

In general, equation (8.2) 111ay not be satisfied anel so these are nontrivial ob­
structions for our surgery problenl. To get rid of these obstructions, the idea is to
replace copies of the spherical space fornlS S/Q(8p), S/Q(8q), 01' S/C(pq) on the
boundary 8X by ahnost spherical space fonns S' /Q(8p), S' /Q(8q), S' /C(2pq) anel
therefore change the p-invariants. After this process, our new nonnal map will no
langer restrict to the icientity on the boundary, but just to an integral homology
equivalence.

Olle way to construct an almost space form S' / H is to start with an element
0' E L~(ZH) anel apply the Wall realization theorem to construct a degree 1 nornlal
map

(/, b): (lv[4, 8oM 4 , 81!vI4 ) ~ (S3 / H X I, S3 / H x 0, S3 / H x 1)

such that )..(f, b) = o'. More explicitly, this SUl'gery problem is constructeel by rep­
resenting 0' by a quach'atic fornl on a free ZH-lllodule and using this algebraic data
as a prescription for attaching 2-handles to S3 / H x I. By construction, the lower
bounelary component 8olvI4 = S3 / H anel the restrietion of (f, b) is the identity.
The upper boundary component 81 M 4 = S' / H is an almost space fornl. On this
bounelary component the restriction f: S' / H ~ S3 / H is just an integral hOUIOlogy
equivalence, anel a surjection on fundanlCIltal groups. The fact that we have lost
SOUle control of 7fl (S' / H) is a typical problern with surgery in diulension 3, but at
lea."t S' is an integral hOlnology sphere.

Now suppose that we start with 0"1, 0'2, anel 0"3 in L~(Q(8q)), LS(Q(8q)), and
L~(C(2pq)) respectively. Then we COIlStruct 4-Inanifolcls MI, AtJ2 , AtJ3 whose bounel­
ary cOlllponents are the spherical space forms 8 3 / H i anel the almost space forms
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s' /Hi with H i = Q(8p), Q(8q), Of C(2pq) for i = 1,2 01' 3. Let g( S' / H i ~ S3 / H i ,

1 ::; i ::; 3, denote the integral homology equivalence obtained by restricting thc
degree 1 norlllal lllap (li, bd used to construct (l\1i ,ßl\1d to the top boundary
componcnt.

Next we attach these surgery problenls (li, bi ) to our degree 1 normal map X ~

V along the appropriate bounclary cOlllponents ofaX = ßV. :rvIore preciscly, wo
attach the 4-lnanifolcl Mi to a cOlllponcnt ofaX with bounelary S3 / H i anel extend
the degree 1 lnap by using the nornlal lnaps (li, bi) to collars S3 / H i X I on the
same conlponent of av. This produces a new degree 1 nornlal map (which we will
consider to be a relative surgery problenl);

(8.3)

where the dOlllain is

(f~, b~); (X', aX') -1 (V, aV),

anel I~ restricted to ax' is an integral homology equivalence.
Moreover, if we choose 0',0'2,0"3 to He in the reducecl surgery obstruction groups

Lb(Q(8p)), Lb(Q(8q)), or Lb(C(2pq)), then the simply-connected signature invari­
ants sign(Mi ) = 0 for i = 1,2 anel 3. It follows that sign(X') = sign(V).

'Ve can now cOlnpute the effect on the multi-signature obstruction

(8.4) signo(V) - signo(X') = Pa(i3X') - n· sign(V) + signo(V).

We have changed the p-invariants on the bounclary by thc formula:

Here /1*, /2*, /3* are the ineluction homolllorphisms bctween the surgery obstruction
groups:

/)-. : L~(Q(8p)) -1 L~(Q(8p,q))

/2* : L~(Q(8q)) -1 L~(Q(8p,q))

/3* : L~(C(2pq)) ~ L~(Q(8p, q))

alrcacly usecl in Section 7. Substituting (8.5) into (8.4), we have the equation

(8.6) Po(8X) + L signo[(/k*(O'k)] = n· sign(V) - signo(V)
1::;k::;3

as the requirenlcnt for vanishing of the lnultisignature obstruction for the surgery
problem of (f~, be). Therefore our goal is to choose (71, (72, 0'3 in such a manner that
the expression (8.6) is satisfied.

The nonsingular hermitian pairing (H, h) for H = H2 (V; ZG) gives us an eleluent
in R(G), whose a-coHlponent is signo(V). Therefore we ean interpret the expression
n . sign(V) - signo (V), n = dinl a, in (8.2) as thc a-colnponent of an elelnent
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a(V) E R(G). Shnilarly, we have a(X) E R(G). In addition, from the construction
of (V, aV) both a(V) and a(X) are divisible by 16, or in other words

a(V) - a(X) E 16· R(G) ~ R(G).

Sinee Pa(OJ\) = n· sign(X) - signa(X), we can rewrite (8.6) as an oquation in the
reduced representation ring:

(8.7) ac(11*(ad + l z*(az) + 13*(a3)) = a(V) - a(X) E 16· R(G) ~ R(G)

where
ac : L~(ZG) --+ R(G)

is the lnultisignature natural transformation fronl Seetion 7. But thc luain result
of that seetion, Proposition 7.1, states that equation (8.6) has a solution al, az,
a3. Vve may therefore use these elements to COllstruct a degree 1 norlllal lllap
(fe' b'e): (X', oX') --+ (V, av) as in (8.3) with )..(fe, b'e) E Coker 'lj;l. Since the mul­
tisignature Vluüshes, this sUTgery obstruction is independent of thc choke of normal
lnap (Le. depends only on the range (V, aV)).

To complete thc proof of Proposition 8.1, we pick ß E SUr UQG), for r 2: 3,
projecting to )..(fe,b~) E Coker'lj;l' This is possible by Lemnla 6.7(note that the
obstructions are now 2-torsion). Wo thon consider the new Poincare pair (Vß' aVß)
as constructecl in Proposition 5.9. By construction, the boundary aVß = av anel
the multisignature of (Vß' aVß) equals that of (V, aV). It follows from Proposition
6.1 that there is a degree 1 normal map (fe,ß, be,ß) onto (Vß,aVß) which is the
identity on the boundary. Since aVß = av

signa (ft.,ß, be,ß) = signa(fe, be)

anel we may use the salne eleluents al, a2, a3 to construct a modified norulal Ulap
(!e,ß' be,ß)' inducing an integral hOlnology equivalence on the bounclary, with zero
nUlltisignature 0 bstruction

The surgery obstruction )..(fe,ß' be,ß) is deternüned by the induced quadratic
structure [25] on the mapping cone conlplex C* (fe,ß):

o --+ C*(Xe,ß) --+ C*(Ve,ß) --+ C.(!e,ß) --+ O.

This sequence can be analysed as in §4 by Uleans of the arithmetic square. Again by
stabilizing our Poincare complexes, we can asSUlne that the new iclentificatian aver
QG given by ß takes place on SOUIO hyperbolie factors of (H(QG), hÖ) orthogonal
to those sunllnancl used in constructing thc map fe,ß' It follows that the quadratic
Poincare coulplex C* (fE. ,ß) can be constructed from the cxact sequence of chain
cOluplexes

o --+ C*(X') --+ C*(Vt.) --+ C*(f;) ~ 0

by re-nlixing the complexes C*(Ve) anel C*(f~) simulaneously with ß to produce
C*(VCß) --+ C*(!e,ß)' Prom Lemma 6.8, it follows that

).(fe,ß' b€,ß) = ).(!e, be) + [ß] = 0

and the proof is cOlnpletc. 0

The final result of this section is an application of (8.1):
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Proposition 8.8. Assume the existence of a nonlinear space 'L./Q(8p, q). There is
a framed, eompaet, oriented 4-manifold Y with the following properties:

(i) The boundary BY = N U BoY, whe1'e N is a eonneeted 3-manilold, and
7Tl(Y) modulo the normal closu1'e of 7Tl(N) is isomorphie to G = Q(8p, q).

(ii) H1(Y; IRG) = 0.' ~ ,
(iii) The boundary eomponents BoY of Y consist 0/ copies 01 the nonlinear space

form 'L. / G, spherieal spaee fOT1ns 8/Q (4pq) and almost spaee forms 8'/ H
fo1' H = Q(8p), Q(8q), 01' C(2pq).

(iv) The indueed homornorphism 7TI (BoY) ----? 7TI (Y) on the fundamental groups
sends 7T1Ci:)G), 7Tl(8/Q(4pq)), and 7Tl(8'/H) for H = Q(8p), Q(8q), 01'
C(2pq) onto the corresponding subgroups Q(8p, q), Q(4pq) 01' H ~ Q(8p, q).

(v) the induced Q (8p, q) -hermitian intersection pairing

h: H 2 (Yj ZG) x H 2 (Yi ZG) ----? 7lG

has radical 1m (H2(Nj ZG) 1----+ H 2(Yj ZG)) and is negative definite on the
orthogonal eornplement 01 this submodule.

F1'oolof (8.8). In Proposition 8:1 we have constructecl a surgery problClu

(f, b): (X, BX) -t (W, BW)

with J\(f, b) = 0, where we take (W, aW) = (Vß' BVß), X = X ß,{ and f = f ß,{'
Since the surgery obstruction (!, b) is zero, the intersection form on H2 (X; 7lG)

is the orthogonal direct sunl of the negative definite fonn (H2 (Wj ZG), h) and a
hyperbolic fornl H( (ZG)r) on a free ZG Inodule of rank 21'. By [9], [10] we can
represent this hyperbolic fonn geoluetrically by a topologicallocally flat ernbedding
of ~ 1'(82 x 8 2

) in the interior of X. Relnoving a dosed tubular neighbourhood of the
pairs of topologically ClnbecIded 2-spheres in this connected sum produces an open
4-lnanifold X" with one end proper homotopy equivalent to 8 3 x (0,00). Note
that 7rl(X") = 7TI(X) and H 2 (X";ZG) = H 2 (X;ZG). Now we pick a compact
subset C C X" such that ax" = BX c C and the cOillplelllent X" - C adnüts a
proper homotopy equivalence p: X" - C ----? 83 X (0,00). Let N = p-l(83 X to) be a
transverse pre-image for SOIne large value t = to 1 and set Y = X" - P-1 (83 X (to, 00).
We can asSUlne that Illap H 2 (Y; ZG) ----? H 2 (X"j ZG) induced by the indusion is
sllrjective. Then by attaching 2-handles to Y along N if necessary, we can assume
that H I (Y; IRG) = O. It also follows that 7rl (N) normally generates the kernel
of the classifying nlap c#: 7rl (Y) ----? Q(8p, q) and the indusion induces an injection
H 2 (N; ZG) ----? H 2 (Yj ZG). The subspace N = Im (H2 (Nj ZG) ----? H 2 (Y; ZG)) is the
null space or radical of the intersection fonn on H 2 (Y; ZG) and the induced form
on the quotient H2 (Yi ZG)/N is isollletric to (H2 (Wj ZG), 11,), hence is negative
definite. 0

9. AN EQUIVARIANT f\10DULI SPACE

In the previous sections, assll1ning the existence of a nonlinear space 'L./Q(8p, q),
we have constructed a fralned, cOillpact, oriented, Slllooth, 4-Illanifold Y with
boundary BY = N u BoY satisfying all the requireillents of Proposition 8.8. In
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this section we will describe the equivariant moduli space (M(P), G) of ASD con­
nections on a SU(2)-bunclle over a closely relatecl 4-manifolcl (Z, G). Analysis of
the Q(4pq) fixed-point strata in (M(P), G) will give the proof of OUT lnain result,
Theorem A.

Let Y be the Q(8p, q)-covering of Y,. ' Then~on Y_there is a free action of thc
group G = Q(8p, q), and on the bounclary ooY of Y we have a union of homo­
topy spheres (E, Q(8p, q)), standard 3-sphcrcs (S3, Q(4pq)), and integral homology
spheres (S', H) for H = Q(8p), Q(8q), 01' C(2pq) wbich are invariant under the free
action of the givcn ~lbgroups. In addition, we h~,ve a free G-orbit G x N of bound­
ary conlponents of Y where each copy of N in 8Y is invariant only under the trivial
subgroup {I} C G. Anlong these components, there are the copies (S3, Q(4pq)) of
a lineal' action of Q(4pq) on the standard sphere S3. For each of these copies, we
can extend the action to a corresponding linear act ion (D4

, Q (4pq)Lon the disks.
Let (Z, G) denote the 4-nlanifold with G-action obtained from (Y, G) by gluing

in equivariantly the above 4-clisks (D4 , Q(4pq)) to each of the boundary components
(S3, Q(4pq)). To each other boundary component S' 01' N we attach a cylindrical
end S' x [0, 00) 01' N x [0, 00) and extencl the G-action in thc obvious way (trivially
on the IR.+ = [0, 00) factor). The G-manifold (Z, G) is now non-colnpact and the G­
action on Z is frce except for isolated singular points at the centres of the attachecl
4-disks with isotropy subgroup Q(4pq). The cylindrical ends of Z are permuted in
G/ H-arbits where H = Q(8p), Q(8q), 01' C(2pq) for thc ends of thc fornl S' x [0,00)
and H = 1 for the ends N x [0,00).

Clearly this procedure does not affect the hOlllOlogy H* (Z) of degree * < 3.
Hence the condition (8.8)(v) on the interseetion form of H 2 (Y; ZG) inlplies that
b+ (Z) = O. Here we use the usual notation for the ranks b+ (resp. b-) of the
nlaxinlal positive (resp. negative) definite subspaces of H2 (Z; lR) with respect to
the intersection form. The rank b2 (Z) = rank H2 (Z; IR) is given by b2 = b+ +b- +bo,
where bO is the rank of the null space (Le. the radical) of the intersection farIn.

Our next task is to describe the equivariant nloduli space (M(P), G) of Yang
ivIills connections on Z. In [30], [32], C. Taubes constructed a moduli space
M(P) for a general 4-lnanifold M = Mo UEnd 1\1 with cylindrical ends End M r-v

81\10 X [0,00), but without considering possible G-actions. Here 1\10 is a cOlllpact
4-manifold with boundary. The data consists of a principal SU(2)-bundle P on M
with a fixed trivialization ((}, P I8AtJo X JR+) of this bundle p'over the end. This triv­
ialization provides us an integer k = C2(P, (}), known as the relative Chern nUlllber
[30, Lemma. 7.1]

C2(P, (}) = --;. Jtr(FA 1\ FA),
8n

and a trivial flat connection Ao over azo x IR+. Let T: Z --t IR be a Slllooth function
which is zero on Zo and tbe real paralneter on oZo x IR+. Fix this connection
Ao anel a constant 8 > 0 to be specifieel later, anel consider the space A(P, 8) of
connections on P which satisfy an exponential decay condition:

{

l

a E L~ loc (AdP 0 T* Z) }
A(P,8) = Ao + a fz e6r {1\7~oaI2+ 1\7A oal 2 + lal 2 } < 00 .

The corresponding gauge group Q(P, 8) acts snloothly on this Banach affine space
A(P,8), with quotient space B(P, 8) = A*(P,8)/Q(P, 8) a Coo-Banach manifolcl [30,
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§7}. For our application, we actually want to use the I'thickenecl" version of this
moduli space constructed in [24, Chap. 7] because of the presence of our exceptional
ends G x N X[0, 00). Since the trivial flat connection is isolated in the representation
variety of a hOlllOlogy 3-sphere [31, Lenulla 1.3], the thickened moduli space and the
one described above are the same over a11 of the other cylindrical ends S' x [0,00).

Let :=: denote the set of confonnal structure on A1 which extends the product
confornlal structures on the ends. Associated to a E M, the still' operation *
on 02(AdP) gives a splitting of 02(AdP) into its (±1)-eigenspaces n~(AdP).

From this decoluposition we have the anti-self-duality equation (FA )+ = 0 whose
solutions can be regarded as the zero set of a section A(P, 8) ---+ L~, loc(nt (Ad P)).
In addition to the perturbation of conformal structures, we can also per-fonn the
u\rVilson loop-perturbation" as in [9], [31], [6, §2(b)]. Let r(m) denote a set of m
franled, iInbedded circles I = {li} in !vIo,

111

,: TI sl X D 3
---+ Mo·

i=l

For each I E r(m), connection A, and v E D3, we have a map

IA (v): E(P, 8) ---t Lm = rr SU(2)/Ad SU(2)

clefinecl by thc collection of the holonolnies li,A (v), i = 1, ... ,m of the parallel
translation via the connection A along the i th loop. We let w be a 2-form on Z
supported in the product neighborhoocl ,i (SI X D 3 ) and pu11ed back from a fixed
2-form on D 3 . Then, for each smooth Ad-invariant vector field P = (Pi) on SU(2)m,
we have the adjoint-valued 2-fonn 7r(A) E O~ (M, Ad P) given by

(9.1) 7r(A) = LW+ C9 Pd'i,A(V)]
i

where w+ is t he projection of w on 0 t (M) . In this way, we 0 btain a set Il of
9(P, 8)-equivariant nlaps

7r: A(P, 8) ---+ L~,loc(O~ (Ad P))

and, cOlnbining with the confonnal perturbation a E 3, we have the perturbed
ASD equation

Proposition 9.2. Let M(P) denote the thickened moduli space oJ finite energy
ASD connections on P with asyrnptotic boundary value the trivial/lat connection ()
along the cylindrical ends. Then there exists a 80 > 0 such that Jor all 8 E (0, 80 ),

the Jollowing holds:

(i) a Baire set oJ perturbation data (a,7r) E =: x rr exists for which the rnoduli
space M(P, 8) = F~~(O) is a smooth maniJold oJ dimension

3 1
8k - "2(X(lvI) + sign(A1)) + "2(h 1 (8Mo) - hO(8A10 ))
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where k is the relative ehern number and hi (8Mo) = rankHi (8Mo;adB).
(ii) the mod'uli space M(P, 8) Ü; orientable and has a preferred orientation when

we fix an orientation on the homology H 1 (A1; IR) x H 2 (Af; IR) x Hi(A1; IR).

For the proof of (9.2), wo r~fer to [30], [9J and [24, 8.5.1].

Rernark 9.3. It is worthwhile to point out in the above perturbation of the ASD
equation, Pa7r = 0, the perturbation takes place in the cOInpact sub-manifold Mo
and so the equation remains the sanle over the cylindrical ends 8Mo x IR. In
particuhu over these ends, the solutions will be invariant nnder translation.

In addition, we can make the perturbations arbitrarily small and still have the
sanle effect. Therefore if we know that a one dimensional fiow of ASD connection
decays to a flat connection on End lI/I, the family of perturbed ASD connections
will still have the san1C decay property. 0

In our applicatioIl, lvI = Z was constructed from the manifold Y given by Propo­
sition 8.8 so b3 = rank HO(8Y; IR) - 1 and b1 (Z) = 0. Also b2 (Z) = b+ + b- + bO,
where b+(Z) = 0 and bO(Z) = rank H1(NjIRG). Note that rankHi(NjadB) =
3 . rank Ifi(N, IR), since B is the trivial flat conncctionl. and rank Hi(N; IRG) =
IGI . rank Hi(N; IR), since N is trivially G-covered by Y ~ Y. Now we substi­
tute these values into thc given dimension formula for Mk(P) in (9.1) and get
diInMk(P) = 8k - 3. In fact we will concentrate on the case when k = 1 and so
,ve get a 5-dinlCIlSional moduli space M (P).

For a closed 4-manifold lvI with finite group action (M, G), we previously con­
structed a moduli space (M, G) of ASD connections with G-action [13], [14]. The
techniques used there can be easily adapted to the non-compact case, to produce a
group action (M, G) on tbe nloduli space M (P,8) with decay condition.

First we fix areal analytie structure on M cornpatiblc with the group action
(A1, G) anel product-like along the cylindrical ends End M = olvIo x IR. With
respect to this analytic structure, we !lave areal analytic equivariant rnetric wmch
is again produet-like on the end. The existence of such analytic structure and
analytic nletric follows fronl a general argumcnt as in the c10sed manifold case.

Next we neeel an equivariant SU(2)-bundle P ~ A1 such that PI 8A10 X IR+ has
an equivariant trivialization (B, P I8lvIo X IR+) with ehern number C2(P, B) = 1. In
the prescnt situation, lvI = Z, this is taken eare of by the following:

Proposition 9.4. There exists a Q(8p, q)-equi'Variant SU(2)-bundle P o'Ver Z with
an equivariant trivialization (B, P I8Zo X JR+) such thai C2(P, B) = 1.

Proof. Fronl the construction, there exists a c1egree 1 lnap cjJ: Y ~ W senc1ing
the 3-manfold N to a point in Wand the alnlost space fornlS S' /Q(8p), S' /Q(8q),
S' jC(2pq) to the spherical space fonns SjQ(8p), SjQ(8q), SjC(2pq). Let W elenote
the universal covering space of VV with the free action (W, G). We can compactify
(W,G) by filling in the spherical bounc1ary con1ponents (S3,Q(4pq)), (S3,Q(8p)),
(83 , Q (8q )), (83 , C (2pq )) by the corresponding linear aetions on D4

. Over (~, G)
we attach a cone and extenel the action in an obvious nlanner to the cone point.
Thc result is a closecl 4-diIncnsional c0I11plex W which has a gl'OUP action (W, G)
witb isolateel singular points. Moreover, there is a c1egree onc, equivariant map
cjJ: Z ~ W seneling the cylinelrical ends oZo x JR+ to the various cone points in W.
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To prove (9.4), it suffices to construct an G-equivariant SU(2)-principal bundle
p ~ W over W with relative Chern nUll1bor C2 (P) = 1. For using rj; we can form
thc pull back bundle rj;* P which is equivariant and with pull back trivialization
4>* (P Icone points)) over the ends and C2 (P, 8) = 4>* C2 (P) = 1.

The proeluct bundle P . W x SU(2) over ur has aG-action only on the base
111anifold, and Chern nun1ber zero. Note that around a singular point, for example a
fixecl point Xc of Q (4pq), the action of thc isotropy subgroup on the fiber Xo x SU(2)
is trivial. Let (Q(4pq), D4

) be an invariant neighborhood of xo. Then there exists an
equivariant bundle structurc (Q(4]Jq), D 4 x SU(2)) on D 4 x 8U(2) with nontrivial
structure on the fibel' Xo x SU(2), nanlely thc diagonal action on thc base n4

and thc fiber 8U(2). When we restrict the above bundle (Q(4pq), D 4 x 8U(2))
to the bounelary 3-sphere (Q(4pq), 8 3 x 8U(2)), we have an equivariant blll1dle
isoD1orphism

a: S3 x SU(2) -t PI S3 = 8 3 x 8U(2).

Ta elefine this isomorphism, we identify the base 3-sphere 8 3 with 8U(2) and let
a(x, y) = (x, x-I. y). Using a as the c1utching isomorphislll, we can modify the
bundle (Q(4pq), P) to a new equivariant bundle (Q(4pq), P(a)),

P(a) = (p - PI D 4
) Uo n 4 x 8U(2).

After this modification, the Chern number c2(P(a)) = 1.
Note that the abave bundle P(a) is equivariant with respect to Q(4pq). Ta make

it equivariant with l'espect to the whole group G we have to lnake a col'responding
modification on the tl'anslate J Xo of Xo nnder the action of J E Q(8p, q) \ Q (4pq) ,
J =f id. Since thc abovc proeedure is loeal, wo can earry out the salne eonstruetion
at J Xo anel obtain a G-equivariant bundle P(a, Ja) over ur with Chern nUlllbcr
c2(P(a, Ja)) = 2.

Instead of using the orbit {xo, Jxo}, wc cau also carry out the salne construction
arolmd other singular orbits G/Go with isotropy subgroup Go = Q(8p) 01' Q(8q).
Each of these operations gives a new equivariant bundle with ehern number adding
or subtracting IG /Gol = q or p. Since (p, q) = 1 we can write 1 = kp + lq + 2
for sonle integers k, l. Then after lnaking the corresponding equivariant bunclle
moelifications al'ouncl korbits fixecl undel' Q(8q) and l orbits fixed under Q(8p), we

obtain a G-equivariant bundle P over Wwith C2(P) = 1. 0

With the equivariant trivialization givcn as above, we have thc spacc A(P, 8) of
connections with decay condition 8 along the boundary. Since we have an equivari­
ant trivialization, we can choose the salBe 0 for all the ends and obtain an action
of an extendeel gauge group by 9(P, 0, G) on this space

1 -t Q(P, 8) ~ Q(P, 8, G) ~ G ~ 1.

In particular, as we factor out thc action of 9(P, 8), we have an incluced action of
thc finite group G on M(P, 0).

Next we consider the set 3(G) of equivariant, real-analytic llletrics on Z which
are product-like over the end. Givcn such a llletric wc have a curvature section

F: A(P,o) --t L~,loc(n~(AdP))
A~FA



36 IAN HAMBLETON AND RONNIE LEE

which is eqllivariant with respcct to the action of Q(G, P,8).
As above, we let Zo be the compact, G-invariant submanifold obtained from Z

by deleting its cylindrical ends. Then by choosing homotopically trivial, fralneel,
loops in Zo/C, we have CL collection of fralnecl Ioops {g{'i li = 1, ... ,n, 9 E C} in
Zo which are disjoint from each other ancl~ pernulteel by the group action. Using
this collection of loops {9'i} we can perform thc previous Wilson loop perturbation
7r: A(P, 8) -; L~,loc(n~(AdP)) in an cquivariant 11lanner.

In [13], we stuclied a n1ethocl for pertm'bing the cm'vature section into equivariant
general position. Let '1': H 1 -; H 2 be an equivariant G-Fredholm map between
G-Hilbert spaces H 1, H 2 with '1' (0) = O. Then thore is a elecomposition H 1 =
Ker T EB H~, H2 = In1 T EB H~ where T = (d'1')o. Furthermore, thc map '1' is locally
eqllivalent to T + <1>, where 4>: H 1 -; H~, 4>(0) = 0, anel d4> 10 (c.f. [13, Lenuna
2.7]). Associated to 4>, we have a nlap

A W ,
<I>: Ker T C-.....? H 1 ------t H 2 -; Coker T

between the finite dimensional G-vector spaces. The key idea [13, Lemma 2.9]
is that defonning cI> to cquivariant general position amollnts to perturbing 1> to
Bierstone general position [2].

Suppose A is a connection in A(P,8) where the curvature section F: A(P, 8) -;
L~,loc(n~(AdP)) faUs to be in equivariant general position. Ey [8, Lemma 2C.1
anel 2C.2], Ker dFA = Ker DA is generateel by the holonomy of a collection of
frameclloops {g{'i} anel 1:1 finite cliInensional subspace of sections over these frameel
loops which lnaps onto the cokernel space Coker FA = Coker DA' . It follows that
there exists an equivariant map frOIlt Ker DA to Coker DA, which we can write in
the fonn 1f = L W+ Q9 Pd'Yi (v)). Then it is not difficult to see that there exists
a Baire set of perturbations (3 x 1f)G for which the perturbed curvature section
Fu(A) + 7f(A) is in general position with respect to the zero section. This is the
eqllivariant analogue of the first assertion in Proposition 9.2.

Remark 9.5. In [6, §2], Donaldson usecl a sinülar methocl to perturb away much
of the straturn Mo(P) of flat 5U(2)-connections on ]1,1[. This step is unnecessary in
our case, since connections in M (P) are product-like near the boundary anel 1fl (Z)
is nornlally generated by 1fl (8Z). For this reason, the holonomy 11lap p: 1fl (Z) -t

SU(2) for a linIiting Hat 5U(2)-connection is determined by its restriction p l1fl (8Z)
which is trivial. It follows that p is trivial anel so Mo(P) consists of one elmnent,
nanlely tbe trivial Rat connection.

10. THE PROOF OF THEOREM A

We will now use the equival'iant 11l0duli space (M(P), G) described in the last
section to prove our main result. Recall that on the four nlanifold Z the action of
Q(8p, q) is not free but has isolated singular points {xo} with isotropy group Q(4pq).
In [14, §3) we described the Taube's construction of concentrated connections in an
equivariant manner. Using D. Austin's work [1] on equivariant instantons on 54 anel
a background Rat connection on Z, we proeluce a 1-diInensional Q(4pq)-fixed point
stratum N = Fix(M(P), Q(4pq)) in M(P) (see also [3, §1]). One one end of N,
we have a particle-like connection enIitting from xo. This singular stratum N has
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an equivariant nornlal slice which is isolnorphic to t he linear action (Q (4pq), D4 )

on the 4-clisk arouncl xo.
Fronl this construction, it follows that N can be interpreted as I-paranleter fam­

ily of ASD connections At, invariant under the Q(4pq )-action (not just fixed modulo
thc gauge group transformations in A(P,\8)/9(P, 8)). As·we perturb this submoduli
space N, the resulting space still consists of connections which are invariant with
respect to the group action Q(4pq) on P and Z.

For each of the Q(4pq)-fixed point Xo E Fix(Z, Q(4pq)) we have a corresponding
I-paraIneter falnily N(xo) = {At} of ASD connections emitting from xo. Such a
fanüly N(xo) cannot concentrate itself again to becoIne a particle-like connection
at same other point Yo E Z. This is because Yo has to be a fixed point of Q (4pq) ,
anel we have the following "no-return" argunlent (compare [14, Lemnul 17]):

P roposition 10.1. The Q (4pq) -fixed stratum N (x0) cannot convcrge to a particle­
like connection at a Q (4pq)-fixed point Yo.

Proof 0f (10.1). Let J denote a fixed orcler 4 element in Q (Sp, q) which maps to
the nontrivial element in Q(8p, q)/Q(4pq) = 71./2. Note that J2 is the order two
eleInent in Q (4pq) . Giyen a Q (4pq)-fixccl point Xo E Fix(Z, Q (4pq)) t he action of
J brings Xo to another Q(4pq)-fixed point Zo = Jxo. If p: Q(4pq) ---? SU(2) denote
the isotropy representation of Q(4pq) on the normal slice of xo, then thc composite

pJ:Q(4pq) ~ Q(4pq) ~ SU(2),

where CJ denotes conjugation by J, gives us the isotropy representation at zoo In
our construction of Y, we have copies of the sphcrical space form S/ Q(4pq) with thc
sallle orientation. It follows that on Z the isotropy representation at any Q(4pq)­
fixed point Yo E Fix(Z, Q(4pq)) is isolllorphic to either p 01' pJ.

In orcler for the Inoduli space N(xo) eInitting froIn Xo to converge at some other
fixed point xo, the normal slice representations at Xo anel Yo have to cliffer from
each other by an orientation reversing isomorphisnl. FroIn representation theory,
it is impossible to have an intertwining operation between p and itself, or between
p and pJ, 01' between pJ anel itself, which is oricntation rcversing. D

We now neeel the fact that thc Inoduli space M(P,8) of (9.2) has a compacti­
fication M(P, 8) (see [11], [30]). To clescribe this cOInpactification, we consicler a
sequence {An} of ASD connections in M(P, 8) which fails to converge. Then there
are two possibilities: in thc first case, thc curvature can concentrate in the neighbor­
hood of a point, leading to a particle-likc connection at the point. In thc situation
of instanton nUluber 1 01' k = 1 in Proposition 9.2, we can havc at most a single
instanton bubbling off frolll the concentration at a point. This can be accounteel for
by provicling a cOPY of thc original lllanifolcl M in M (P, 8) and attaching this copy
to a neighborhood A1 x (0,.\) in M(P,8). In the sccond case a nontrivial alnount
of curvature FAn can conccntratc on a region in thc end End NI '"'J 8Mo x IR+.
The connection An over this region looks like an ASD connection 011 8Mo x IR+
asymptotic to flat connections a, b at two encls, 01' in other worcls, an element in
M(8NIo x lRj a, b) = M(a, b) in the notation of Floer. As the cormcction {An}
moves towarcls the boundary M (P, 8) \ M (P, 6), this region moves towarcls thc end
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of M. In tenns of M(a, b), this motion can be thought of as the natural action by
R+ on 8Mo x IR+. Thus to account for these phenolllena, we have a stratified space
structure in M(P, 8) \ (M(P, 8) UM) with thc strata consisting of products:

(10.2)

where M(ai' ai+d is the quotient of M(ail ai+d by the translation syrnlnetry.
The abovc theory of compactification can be easily extended to our equivariant

setting. For the stratum of particle-like connections and also those in (10.2) are
naturally endowed with group actions.

We return now to the situation where !v! = Z, and consider the I-dimensional,
Q(4pq)-fixed, subspace N in M(P, 8). Since this fixed subspace has a nontrivial
tangent space, it follows by equivariant general position that it cannot terminate
in the interior of M (P, 8) or in other words it has to move towards the boundary
M(P, 8) - M(P, 8). In (10.1), we havc eliminated the possibility that the other end
of N becollles a particle-like connection. Thus, as WB move along N, we have a
flow of ASD connection {At} with energy (curvature) concentrating on some of the
cylindrical ends (Q(8p), S' X IR+), (Q(8q), S' X IR+), (C(2pq), S' x IR+), (1, N x IR+),
or (C, E x IR+).

Proposition 10.3. As t --+ 00, the family 0/ connections {Ad = N has the energy
8;2 Jtr (FAt/\ *FAt) concentrated on one 0 f the cylindrical end (G, E x IR+) and for
the rest of the manifold Z \ E X IR+ the eneryy tends to zero.

Proof. Suppose on thc contrary a certain amount of the energy appears in an end
whose isotropy subgroup H =j:. G = Q(8p, q). For clefiniteness in thc arguluent,
let us asswne that this is the end (1, N x JR+) with the trivial isotropy subgroup
H = {I}. Since the family {At} is inveu'iant, under the subgroup Q(4pq), an equal
amount of the energy has to appeal' in the translation g(N x IR+) of N x IR+ for
every element 9 E Q(4pq). In terms of the equivariant cOlnpactification of (10.2),
the fanüly {At}, as t --+ 00, enters a neighborhood of the bounclary which has
the fornl M(Z, a) x (G x M(a, 0)) where a is some nontrivial flat connection of
S'. In fact, if we think of Q(4pq) x M (Cl:, B) as the product TI M (0, 0) of 4pq
copies of M (0, B), then {At} is contained in the diagonal of this product space.
Note each M(a, B) has an action of IR inclucecl by the translation symmetry of
N x IR, Le. M (a, 8) = M(a, 8) x IR. Their product TI M (Q, 8) has an action of

rr IR, Le. M (a, 0) = rr M(a, B) x rr IR anel the t-parameter of the family {At}
coincides with the diagonal action in TI IR. Thus, nonnal to the fanlily N = {At},
there is 30 representation of Q(4pq) on IR4pq-l. However, by the cOI1.'3truction of N
as a particle-like connection emitting from Xo, the normal slice representation of
Q(4pq) is a cOlllplex 2-climensional, faithful , representation. Since thc norlllal slice
representation can be expressecl as an equivariant index, this is thc same all the
way along the family. However, by a cliInension count, this complex representation
cannot contain IR4pq-I as a subrepresentation.

Thc above argument rules out the possibility that a nontrivial alllount of energy
of {At} is contained in the end (1, N x IR+). Sinlilar argunlents also rule out
the possibility that a certain anlount of energy of {At} goes down the cylinelers
(Q(8p), S' x IR+), (Q(8q), S' x IR+), 01' (C(2pq), S' x JR+). In each of these cases
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we exanüne the nonnal slice representation of N = {Atl and show that it is not
compatiblc with thc slice reprcsentation from the cylindrical ends.

Bince the nlanifold Z has two cylinelrical ends ±E x IR+ stabilizeel by C, thc pos­
sibility remains that the energy of {At} is spread out around these two ends. As E
is simply connected, a flat SU(2)-connection on Eis, up to a gauge transfonnation,
a prodllct connectiOll. It follows that the energy is an integer anel the slllallest of
such integers is 1. From the fact that the integral

for an ASD connectioll A, it follows that the energy can concentrate only on one of
the cylinelrical end (C,:E x JR+) and Oll the rest of Z it approaches zero as t -t 00.

This proves (10.3). D

Let :E = E x * be a slice of the cylindrical end (C, E X JR+), invariant nnder the
group action. Let x be a point on E ancllet {gx I9 E Q(4pq)} denote the orbit of x
nnder the translation of the subgroup Q(4pq). Let E = P X SU(2) C2 be the c0l11plex
2-plane bundle associated to the principal SU(2)-bundlc P and the the standard
SU(2)-representation on C2

• Then P has a G-bundle structure and so does the
corresponding 2-plane bundle E. In particular there exists an isonl0rphisnl

b(g): Ex -t Eg .x

which brings the fiber Ex over x to E g .x over 9 . x.
On thc other hand, for each t, the SU(2)-connection At on P gives rise to a

connection A~ on E. If we connect x to 9 . x by an are , cE, and parallel translate
from the fiber Ex to E g.x via A~, wc obtain another isorllorphisrll

By taking the cornposite, we obtain an autonlorphism

(10.4)

of the salne fiber Ex, yielding an elernent of SU(2).
In general, the above autoIllorphisIll r./>t (g) depends on the choice of the path ,.

In the prescnt situation, as t -t 00, thc connection At I:E x * is asymptotically flat
and we define r./>(g) by

4;(g) = linl4Jt(g) E SU(2).
t-co

Then

Lemma 10.5. The definition of cj;(g) is independent of the choice of path , joining
x to 9 . x. In addition, 4J(gg') = 4J(g) . r./>(g') for any g, g' E Q(4pq).

Proof. If " is another arc connecting x to g'X, then, because E is simply connected,
, . ( ,') -1 bounds a singular elisk .6. in E. By the generalized Gauss-Bonnet theoreIll,
the autolllorphisIll T(A t , ,) . T(A t , ,')-1 obtained by taking parallel translation
around thc loop , . (,/)-1 can be COlllpllted by integTating the curvaturc 2-forrn
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FA t over the disk 1:::... As t ---t 00, the curvature FAt I I:::.. tends to zero anel so
T(A tl ,) = T(A t , ,').

For g, g' E Q(4pq), let, be a path joining x to gx anel " a path joining x to
g' . x. Then g,' . , is a path joining x to (gg') . x, so

cP(gg') = T(A,g,'· ,)-lb(gg') = T(A,,)-lT(A,g,'·)-lb(g)b(g')

But, for any 9 E Q(4pq), the connection {At} is fixed under the action of g. There­
fore we have a COITlnlutative eliagranl

T(A,-/)
l?x ) l?glx

b(g)x1 1b(g)glx

T(A,g-/)----1>, l?gg l.X

and it follows that
4>(ggl) = 4>(g) . cP(gl).

D

This procedure for obtaining a representation

rjJ: Q(4pq) ---t Aut(l?x) = SU(2)

can be exteneleel to the Inanifold Z \ (2: X JR+) since the energy of {At} approaches
zero as t ---t 00. Note that

7fl(Z \ (E x JR+)) = 7f1(Z)

is not siInply connected and so this procedure leads to a representation

'IjJ:7fI(Z)<j Q(4pq) ---t SU(2).

On the other hand, aB explained in (9.5), 7fI (Z) is nornlally generated by the fun­
darnental gTOUp 7ft (N) of the 3-111anifold (1, N) on the boundary. Prom the con­
struction of M (P, 6) J the holonolny 'ljJ l7fl (N) restricted to 7fI (N) is trivial. Hence
'ljJ l7fl (Z) = 1 and so the representation 'ljJ: 7f1 (Z) )<j Q(4pq) ---t S U (2) in fact factors
through 4>:Q(4pq) ---t SU(2).

Lemma 10.6. The definition 01 'ljJ: 7fl (Z) )<1 Q(4pq) ---t SU(2) is independent 01 the
choice 01 base-point x E Z, up to equivalence of representations.

Proof. If x, x' E Z are any two base-points, we connect them by a path u and
obtain the relation

b(g)x' 0 T(A, u)x = T(A, gU)gx 0 b(g)x.

If, (resp. ,') are paths joining x to gx (resp. x' to gx'), then

T(A, ,)x = T(A, gur;x1
0 T(A, ,')x' 0 T(A, u)x'

Therefore

rjJx(g) = T(A, ,);;lb(g)x = T(A, u);;IT(A, ,');,1T(A, gU)gxb(g)x

= T(A, u);;lT(A, ,');,Ib(g)x'T(A, u)x = T(A, U);;I4>x' (g)T(A, u)x

and the two different base-points give equivalent representations. D

From this LOlnnw" wc can usc any convement Q (4pq)-01'bit {g . x I9 E Q (4pq)}
in Z \ (2: X JR+) anel we recover the representation 4>. This leads to the following
re.'5ult:
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Proposition 10.7. Let 1J: Q(4pq) ---+ SU(2) be defined as above. Then 1J is an
irreducible, faithful 2-dimensional representation of Q(4pq). This representation
does not extend to any U (2) representation of C.

Proof. To define 1J, we can take our ba~e-point x E Z to be the Q(4pq)-fixed point
Xo from which thc particle-like connection starts to emerge in the definition of
N == N(xo). FroIll the equivariant Taubes constructioll, it is not difficult to see
that 1J: Q(4pq) ---+ SU(2) is given by thc bundle autolllorphism of the equivariant
bundle (Q(4pq), E) over thc fixcd point xo.

Since J E C \ Q(4pq) has the property that J2 =I- 1 in Q(4pq), we see that
any extension of 1J to a U(2)-representation of C would also be fixed-point free.
But G has no fixed-point free U(2)-representations, hence 110 such extension of 1J
exists. 0

Since thc end .E x IR+ is stabilized by thc group C, the inlagc J·N = {J• .At} of
Nunder the action of J E C \ Q(4pq) has sitnilar property with respect to E x IR+.
More precisely, for J* At" the cnergy is also distributed in the cylinder :E x IR+
and becolnes zero elsewhere as t ---+ 00. In othcr worcls, the 1-paraIlleter fanüly of
connections {J* At} also enters the neighborhood M (~ x IR). In addition, using thc
bundle automorphism (Q(4pq)J, P) and parallel translation via J* At, we obtain a
representation 4>.1: Q(4pq) ---+ SU (2). Since

T(J* At ,,)-lb(g) = b(J)-lT(At ,,)-lb(J)b(g)

= b(J)-lT(A t , ,)-lb(JgJ-1)b(J)

== b(J)-11J(JgJ- 1 )b(J),

we see that the representation cjJ./ is equivalent in 8U(2) to thc COlllposition

Q(4pq) ~ Q(4pq) ~ SU(2)

of cjJ with thc self automorphisnl CJ givcn by conjugation by J.

To proceed further , wc need thc following rcsult of Taubes [30, Prop. 10.1]:

Proposition 10.8. Let 1\1 be a negative definite 4-manifold with a cylindrical end
EndA1 == 8Mo x IR+. Let M(P, 8) be the moduli space of ASD connections on
SU(2)-bundle P with decay condition 8 as defined be/ore. Then there is an open
set U c M (P, 8) with the property that for some Al > 0, U is diffeom01phic to
Mx (0, Al) and isotopic in B(P, 8) to the irnage of the Taubes rnap T: Mx (0, AI) ---+

B (P, 8). /f {An} c M (P, 8) \ U has no convergent subsequenceJ then for all a < 00

lim [sup{IFA n (x)1 : :1: E 8lvJo x [0, a]) ] == O.
n-oo

In our application, the fundalnental group of some of the boundary cornponents
of Z Illay have nontrivial SU(2)-represcntation. However, we have already shown
that we can restriet our attention to the end E x IR+ which is sirnply connectecl.
Applying Proposition 10.8 to this situation we see that for any a < 00 anel sonlC
sequence An == A tn of connections in N == {At} 1 we have

lin) {sup{IFAn (:];)1 : x E b X (0, a]) = O.
n-oo
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Since ~ is simply connected, any flat connection over ~ x [0, a] is a product con­
nection. In particular the family of connections {An} approaches thc product con­
nection 8 on ~ x [0, a] for any a > 0 anel approaches a 8-like connection at infinity.

It follows that over the conlpact submanifolds E x [0, a], the two faluilies of con­
nections An ancI .]* An converge to the same flat connection 8 with trivial holonomy.
\Ve can therefore find gauge transformations {an} on P such that the distance

tenels to zero as t --t 00. Since our representations 1; anel 1;) are clefined over a
cornpact space E x 8U(2), we may assunle without loss of generality that lüu an

n-oo
converges to a single gauge transfonnation a. Without loss of generality, we can
assllllle that a(xo) = id, where Xo is a Q(4]Jq)-fixed point in Z associated to N.

Let .l' = (b( .]) 0 a), consiclerecl as an extencled bundle autOluorphislu of E
covering the action of .l on Z. Consieler the representation 1;': Q(4pq) --t 8U(2)
clefineel by the fonnula

with respect to a given base-point x E Z.
Since a(xo) = id, wo have the süupler expre..'5sion

at the base-point xo. In this formula the right-hand siele is just the definition of
1;J, hence cj;~o is equivalcnt to the J -conj ugate rcpresentation 4> 0 CJ.

On the other hand, when we use a base-point x E E it follows that 1J~(g) = 1Jx(g)
for all 9 E Q(4pq), since (.lI)* An) converges to An.

Now by Lemma 10.6 the representations 1J~o anel 1;~ are equivalent. Therefore 4>
auel its .l-conjugate cj; 0 CJ are equivalent as U(2) representations.

Suppose B E U(2) is any matrix such that cj;(g) = Bif>(Jg.]-1 )B-1 for all 9 E
Q(4pq). Since B 2 COllunutes with the irreducible representation 4>, Schur's Lemma
implies B 2 = ±l. We can ensure that B 2 = -1 by multiplying B with thc centraJ
Inatrix (i . I) if necessary. As a resuIt, we have a U(2)-representation {1;, B} of C,
contradicting the representation theory of G by Proposition 10.7. 0
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