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ABSTRACT. We prove that the finite fundamental groups of closed, oriented three
dimensional manifolds are just the finite groups which act freely and linearly on S3.

1. INTRODUCTION

A well-known problem in three dimensional topology is to list all the finite groups
which occur as the fundamental group of some closed 3-manifold. So far, all the
known examples come from the finite subgroups I' C SO(4) which operate freely
on the 3-sphere. The associated 3-manifolds S$3/T" admit Riemannian metrics of
constant positive curvature, and are known as the (orthogonal) spherical space
forms. In this paper we prove that these examples exhibit all the finite fundamental
groups of oriented 3-manifolds.

The classification of orthogonal spherical space forms up to isometry was first
proposed by Killing in 1891, and the problem attracted the attention of famous
mathematicians of the time, such as Clifford, Hopf, Klein, and Poincaré. According
to H. Hopf’s 1925 paper [17], the following is a list of all finite fixed-point free
subgroups of SO(4):

(1.1) The cyclic group C(n), the generalized quaternion group Q(4n}, the binary
tetrahedral group 77(24), the binary octahedral group O*(48), and the
binary icosahedral group 7*(120).

(1.2) The semidirect product C(2n + 1) x C(2*) of an odd order cyclic group
with a cyclic 2-group. More explicitly C(2n + 1) x C(2*) is given by the
presentation {A, B : A?" = B2+l =1 ABA~! = B~1} where k > 2,n > 1.

(1.3) The semidirect product T*(24) x C(3*) of the binary tetrahedral group
T*(24) with a cyclic 3-group. More explicitly, T(24) x C(3%) is given
by the presentation {P,Q,X : P? = (PQ)? = @2, X3 = 1, XPX™! =
Q, XQX ™! = PQ)} where k > 1.

(1.4) The product of any of the above groups in (1.1)-(1.3) with a cyclic group
of coprime order.
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At first glance, the above list may appear to be random. In the forties and fifties,
efforts were made to interpret Hopf’s list using group cohomology [4] and it was
discovered that all these groups have periodic Tate cohomology of period four.
In general, a finite group has periodic cohomology if and only if it satisfies the
p?-conditions (“any subgroup of order p? is cyclic”) for all primes p. From the
viewpoint of group theory, this condition means that the odd Sylow subgroup is
cyclic and the 2-Sylow subgroup is cyclic or generalized quaternion. If the coho-
mology has period four then, in addition, the pg-conditions hold (“every subgroup
of order pq is cyclic”) for p and ¢ distinct odd primes.

The necessity of the 2¢-conditions was established by J. Milnor [23] in 1957,
when he showed that the dihedral group cannot operate freely on any Z/2-homology
sphere despite the fact that it has periodic cohomology of period 4. In this paper,
Milnor also compiled the following list of all finite groups, not in Hopf’s list (1.1)-
(1.4), but satisfying the restrictions known at the time on fundamental groups of
3-manifolds.

(1.5) The semidirect product @(8m,k,!) of the odd cyclic group C(kl) with the
generalized quaternion group Q(8n). More explicitly, Q(8n, k, [) has the pre-
sentation: {X,Y,Z: X2 =Y = (XY)2, Z¥ =1, XZX "' = Z",YZY =
Z~1}. Here n,k,! are all odd integers and relatively prime to each other,
n>k>1>1,and r satisfies r = —1 (mod k), r =1 (mod {}. If { =1, we
set Q(8n, k) = Q(n,k,1).

(1.6) The group Q(8n, k, ) with the same presentation as (1.5), but with n even.

(1.7) The semidirect product O(48;3*~1,1) of the odd order cyclic group C(3*~11),
3 11, with the binary octahedral group O*(48). More precisely, O(48; 3571, 1)
has five generators X, P, @, R, A and the following relations:

XSk — P4 — AI =1’ P2 =Q2 = R2| PQP—I =Q—l
XPX '=Q,XQX ' =PQ, RXR"'=X"!, RPR™! = QP
RQR!=Q~ !, AP=PA, AQ=QA, RAR" ' = A~

(1.8) The product of any of the above groups in (1.5)-(1.7) with a cyclic group
of coprime order.

Thus to establish our main result, it is enough to prove that groups in the above
list (1.5)-(1.8) do not act freely on homotopy 3-spheres.

In the late sixties, C. T. C. Wall asked whether Milnor’s result could be in-
terpreted using the new theory of nonsimply connected surgery. Ronnie Lee [19]
answered this question in 1973 by defining a “semicharacteristic” obstruction for
the problem. As well as recovering the previous result of Milnor, the semicharacter-
istic rules out the family of groups Q(8n, k,!), n even, in (1.6). Later in [35], C. B.
Thomas observed that this also eliminates the family of groups O(48, 351 1) in (1.7)
because groups of this type always contain a subgroup isomorphic to @(16,3%~1,1).
These results leave undecided only the groups Q(8n, k,!), n odd, in (1.5) and their
products with cyclic groups of coprime order in (1.8) from Milnor’s original list.

In this this paper, we settle the remaining cases by proving the following:

Theorem A. For p,q distinct odd primes, the group Q(8p,q) does not operate
freely on any homotopy 3-sphere.
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Remark. At the ICM in Zirich (August, 1994) J. H. Rubinstein [27] announced
that Q(8p, q) does not act freely on the standard 3-sphere $3. The methods outlined
seem completely different from those in the present work, but we have not seen the

details.

Notice that a group Q(8n,k,l) in the family (1.5} always contains a subgroup
of the form Q(8p,q). Hence Theorem A eliminates the family (1.7) in Milnor’s
list and also the corresponding products in (1.8). In other words, we establish the
following:

Theorem B. A necessary and sufficient condition for a finite group to be the
fundamental group of a closed, oriented 3-manifold is that it belongs to Hopf’s list

(1.1)-(1.4).

Remark: Orthogonal spherical space forms in dimension 3 were classified up to
isometry by Seifert and Threfall (in 1930), and the higher dimensional cases by Wolf
[39, Part III], completing the work of Vincent. The homeomorphism classification
is not yet known, even assuming the Poincaré conjecture, although partial results
have been obtained by J. H. Rubinstein and J. T. Pitts [26], [27] using 3-manifold
techniques. The possible homotopy types for $3/G were determined by C. B.
Thomas [33], [34). Another result in this direction was obtained by R. S. Hamilton
using methods from differential geometry: if a 3-manifold admits a metric of positive
Ricci curvature, then it is an orthogonal space form [16].

We will now outline some of the techniques involved in proving Theorem A. It
is useful to start with the analogous spherical space form problem in higher dimen-
sions: namely, the classification of finite group actions (G, ¥?"~!) on homotopy
spheres 2"~! of dimension 2n — 1, n > 3. This problem was both a motivation
and an important test case for the techniques of algebraic and geometric topology
developed in the period 1960-1985. P. A. Smith had already shown in 1944 that
the p? conditions were necessary for a G-action on any homology sphere Conversely,
Swan [29] proved that every group with periodic cohomology acts freely and simpli-
cially on a CW complex homotopy equivalent to a sphere, and asked whether there
was always a finite simplicial action. Throughout the 1970’s remarkable progress
was made on the higher dimensional space form problem, culminating in the pa-
per of Madsen, Thomas and Wall [21]. They used the surgery theory of Browder,
Novikov, Sullivan and Wall to show that any finite group G satisfying the p? and 2p
conditions (for all primes p) acts freely and smoothly on a homotopy sphere of some
odd dimension 2n — 1 > 3. The precise dimensional bounds were not determined
(although for G of period d, either n = d or n = 2d is realizable).

The next big step forward was the explicit calculation by Milgram [22] in 1979
of the finiteness obstruction for some of the period 4 groups G = Q(8p, g), following
the method of [37). In particular, Milgram showed that some of these groups are
not fundamental groups of 3-manifolds. After this followed a sequence of papers by
Milgram (see the survey in [5]), and independently by Madsen [20], aiming at the
calculation of the relevant surgery obstruction. Here the problem is to determine
which of the groups Q(8p, q) act frecly on L8+3 for k > 0, since they act linearly
on S8+7 for all k > 0. It turned out that the answer is computable in principle,
but depends sporadically on the number theory of the primes p, g.
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Despite these spectacular breakthroughs in high dimensions, virtually no further
progress was made using these methods on the space form problem in dimension 3.
On the other hand, since the mid-eighties a new method for studying the smooth
structure of a 4-manifold X has been developed by S. Donaldson and others (7],
using the moduli space M(P) of Yang-Mills connections on an SU(2)-bundle P over
X . Striking results {such as the existence of non-diffeomorphic, simply-connected,
h-cobordant 4-manifolds) follow from studying the geometry and topology of this
moduli space.

Our strategy for proving Theorem A comes in two parts. Assuming the existence
of a nonlinear space form ¥/G with fundamental group G = Q(8p,q), we will
construct a G-equivariant SU(2)-bundle P over a certain smooth 4-manifold (G, Z).
Then we will apply the theory of equivariant moduli spaces (M(P), G) developed
in [13], [14] to derive a contradiction.

Most of the work in the first part of our argument is to construct a suitable 4-
dimensional, framed, cobordism Y with a reference map ¢: Y — BG. The boundary
dY = 0pY U N, where N is a connected 3-manifold and the composite N —
Y 5 BG is null-homotopic. The remaining boundary components 8Y consist
of two copies of £/G with opposite orientation, spherical space forms S/Q(4pq),
and a number of copies of “almost space forms” S’'/H, for certain subgroups H =
Q(8p), Q(8q), C(2pq) of Q(8p,q). By an almost space form S’'/H we mean the
quotient of an integral homology sphere S’ by a free action of the group H. The
induced homomorphism cg on the fundamental groups 71 (8Y) — m(Y) — G maps
each 7, (S"/H) onto H C G. Furthermore, we require an epimorphism cg:m (Y) —
G , with kernel normally generated by 71 (N). For gauge theory, the key additional
property is that b*(f’) = 0, or equivalently, that H,(Y;ZG) contains no positive
definite subspaces with respect to the intersection pairing.

The construction of the above cobordismm Y occupies §§2-8 of this paper. Ba-
sically, we start with a framed cobordism (U,0U) — BG with boundary some
appropriate collection of linear and nonlinear space forms +3/G, and S/H for
H = Q(4pq), Q(8p), Q(8q), or C(2pq). By re-attaching the top dimensional cell,
we can modify U to a 4-dimensional Poincaré complex V with 8V = U such that
the cup product pairing on H?(V,8V; ZG) is negative definite. In this step, we use
the description of Z[Q(8p, ¢)]-hermitian forms by means of the “arithmetic square”
{38]. Associated to (V,0V), there is a surgery problem whose surgery obstruction
group L4(ZG) has been computed by Madsen [20]. Using this result, we describe
in §§7-8 how to eliminate the surgery obstruction. We modify V to construct a
new Poincaré complex W, together with a new surgery problem X — W where
some of the boundary components are changed to almost spherical space forms
S'/Q(8p), S"/Q(8q), or 8" /C(2pgq). The domain of the surgery problem is a com-
pact, smooth, 4-manifold (X, dX), such that X — OW is an integral homology
equivalence. ' ‘

Since the surgery obstruction is zero, , the intersection pairing on Hs(X;2ZG) is
the orthogonal direct sum of the pairing on W and some free hyperbolic summands.
In dimension four we may not be able to complete the smooth surgeries suggested
by this algebraic data. Instead, to get rid of the excess hyperbolic summands we use
the Disk Embedding Theorem of Freedman [9], {10] to represent these hyperbolic
summands by topologically embedded copies of $% x S? in the interior of X. Then
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we split open the manifold X along a suitable 3-manifold N. On one side of this
splitting, we have the manifold Y with dY = 9Y UN where )Y = 9X. In
addition, the intersection pairing Ho(Y;ZG) (modulo its null space) is negative
definite as required.

In §89, 10 of this paper, we consider the equivariant moduli space (M(P), G) over
the manifold Z constructed from the G-covering ¥ of Y by filling all the spherical
boundary components (Q{(4pq), S®) with linear 4-disks (Q(4pq), D*). Over (G, Z)
there is an equivariant SU(2)-bundle P with equivariant trivialization along 872
such that the relative Chern number c3(P,8Z) = 1. By using connections which
have L2-finite energy along the cylindrical ends 8Z, as in [30], [3, §1], or [24, Ch.
7], we obtain a 5-dimensional moduli space M(P) with an action of G. Notice that
the G-action on Z has singular points with isotropy subgroup Q(4pq) located at
the centres z; € D of the attached 4-disks. From this we deduce that the induced
G-action on (G, M(P)) has a 1-dimensional singular subspace with Q(4pq) as its
isotropy subgroup. Geometrically, this subspace of Fix(M(P), @Q(4pq)) represents
a l-parameter family of flows of ASD connections in Z, emitting from particle-
like connections at the singular points. By the Uhlenbeck compactness theorem,
this flow of instantons has to converge at one of the cylindrical ends of Z (see (8],
[31]), which by symmetry reasoning must be the end associated to (G,X). Then
we show that this process gives rise to a U(2)-representation of Q(8p,q), which
extends the inclusion of Q(4pg) into SU(2). Since this last statement contradicts
the representation theory of Q(4pq), we conclude that it is impossible to have a free
Q(8p, g)-action on the homotopy sphere X.

Acknowledgement: The second author would like to thank the Department of
Mathematics, Hong Kong University of Science & Technology, for its hospitality
and support while working on this project.

2. A FrRaMED COBORDISM

We will now start to change the 3-dimensional spherical space form problem into
a 4-dimensional problem. We begin by assuming the existence of a free Q(8p, q)-
action (Q(8p, g), L) on a homotopy 3-sphere ¥ where p and ¢ are two distinct odd
primes.

The group Q(8p, q) has the following presentation:

(2.1) Q8p,q) = <A,B,X,Y

AP=B1=1X?=Y?=(XY), XAX 1 =4"!
XBX~!=B,YAY ! =A,YBY~! =B~!

In other words, Q{(8p, q) is a semidirect product C(pg) x Q(8) of the cyclic group
C(pg) with the quaternion group @Q(8). Here the characteristic homomorphism
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@:Q(8) — Aut(C(pq)Y =Z/p—1x Z/q— 1 is given in the following table.

Zip—1 |Z[q—1

X | - 1
(2.2) Y 1 1
xy | 2 1

From this description, we see the following three maximal subgroups:
Q(8p) = (X,Y, A), Q(8¢) = (X,Y, B), Q(4dpq) = (XY, A, B).

Moreover, by sending the elements X, Y, XY to appropriate quaternions in {4, 7, k},
we see that Q(8p), Q(8p), Q(4pq) respectively are isomorphic to the following sub-
groups of the unit quaternions S%:

Q(Bp) = (+1,+i,+j, £k, e*™/P)
Q(8g) = {£1,4i,+j, £k, e2m/9)
Q(4pq) = { £ k,*™i/P9).

In particular, there exist free linear actions (Q(8p), %), (Q(8q), S%), (Q(4pq), S?)
on the 3-sphere S® and hence spherical space forms S/Q(8p), S/Q(8q), S/Q(4pq).

For our application, we also need the maximal cyclic subgroup C(2pg) gener-
ated by the elements A, B, (XY)?. By identifying C(2pq) with the cyclic subgroup
(£e27i/P) in SU(2), we obtain the free linear action (C(2pq), S°) on S which has
the lens space L(2pg,1) = §%/C(2pq) as quotient space.

Proposition 2.3. Assume the ezistence of a nonlinear space form L/Q(8p,q).
Then there exists a framed, compact, 4-manifold U with the following properties:

(i) m(U) = Q(8p,q).

(ii) The boundary OU of U consists of two copies of £/Q(8p, q) with opposite ori-
entation, a copies of S/Q(4pq), b copies of S/Q(8p), ¢ copies of S/Q(8p),
and d copies of S/C(2pq) where a,b,c,d are all non-zero and divisible by
48,

(iii) The induced homomorphism 7 (0U) — m(U) on the fundamental groups

sends m(X/Q(8p,q)) or m(S/H) for H = Q(4pq), Q(8p), Q(8¢), C(2pq)
to the corresponding subgroups Q(8p,q) or H C Q(8p, q).

Proof. As is well-known, the tangent bundle of an oriented 3-manifold is triv-
ial and hence can be provided with a framing. In particular, we can choose
a framed manifold structure for each of the linear and nonlinear space forms:
£/Q(8p,q), S/Q(4pg), S/Q(8p), S/Q(8q), S/C(2pq). As a result, we can view the
expression for QU in terms of these space forms as the following relation in the
framed bordism group Qgr(BQ(Sp, q)):

(2.4) al[S/Q(4pq)] + b[S/Q(8p)] + ¢[S/Q(8q)] + d[S/C(2pg)] = 0
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since the terms [2/Q(8p, q)] — [£/Q(8p, q)] cancel out. If we can find a solution of
(2.4) by nonzero integers a,b,c,d with a =b=c=d =0 (mod 48), then it follows
that there exists a framed 4-manifold U’ satisfying:

(iv) 0U" = E/Q(8p,q) U —L/Q(8p,q) U aS/Q(4pg) U bS/Q(8p) U c5/Q(8q) U
dS/C(2pq)

(v} the classifying map ¢: U’ — BQ(8p,q) restricted to dU’ gives the corre-
sponding classifying map on each of the boundary components.

Note that cg:m U’ — Q(8p,q) is a surjection. By framed surgery, we can kill the
kernel of ¢z and obtain a framed 4-manifold U satisfying (2.3) (i)-(iii).
To solve (2.4), we compute Q{r(BG) using the spectral sequence with Fy term
given by
EZ; = Hy(G; Q).

The coefficient groups are Q{r =7Z,Z[2,Z]/2,Z/24 for i = 0,1, 2, 3 respectively.
We first study the image of our relation under the Hurewicz map

(2.5) Qf"(BQ(8p, ) — Hs(Q(8p, q); Z).

Since H3(Q(8p, q); Z) equals Z/|Q(8p, q)] = Z/8pq, we have a congruence equation
in Z/8pq. In fact, by considering £/Q(8p, q) as the 3-skeleton of the classifying space
BQ(8p, q), we can deform the classifying maps for £/Q(8p, q),S/Q(8p),S/Q(8q),
S/Q(4pq), and S/C(2pq) to factor through 2/Q(8p, q):

fa: S/Q(4pg) — £/Q(8p, q)
fo:8/Q(8p) — Z/Q(8p,q)
fe:S/Q8q) — Z/Q(8p,q)
fa: S/C(2pq) — Z/Q(8p, q).

Then the contribution of [S/Q(4pq)], [S/Q(8p)], [S/Q(84)], [S/C(2pq)] to the factor
H3(Q(8p,q); Z) amounts to counting the degrees of the mappings deg f,, deg f,
deg f., and deg fy modulo 8pq.

From the theory of covering spaces, the maps f; and f, factor through the

coverings £/Q(8p) — £/Q(8p, q), £/Q(8q) — £/Q(8p,q).

fo: S/Q(8p) 2 E/Q(8p - £/Q(8p,q)
£::8/Q(8q) 25 £/Q(8¢) =% £/Q(8p, q)

Hence we have

deg fy, = deg f; - degm, = pdeg f;
deg f. = deg f; - degmy = qdeg f..

On the other hand, deg f} and deg f. can be taken to be units (mod 8pq) [29]. Since
(p,q) = 1, there exist integers r and s such that 1 = rgdeg f{ + spdeg f.. From
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this last equation it follows that given nonzero numbers a’, d’ there exist non-zero
integers b’ and ¢’ such that the expression

(2.6) a'[S/Q(4pg)] + V'[S/Q(8p)] + ¢[S/Q(8g)] + &'[S/C(2pg)} = 0

and so gives no contribution in H3(Q(8p, q))-
The E?;_; terms of the spectral sequence for i = 1,2 are given by:

Hy(Q(8p, q); 7)) = Ha(Q(8p, q);2/2) = Z/2 S Z/2,
H1(Q(8p,q); ") = Hi(Q(8p,q); Z/2) = Z/2 & Z/2,

and there is a splitting Q4" (BG) = Q47 (BG)@ Q. Since " = Z/24 and the first
summand is annihilated by 16, we obtain a solution of the bordism equation (2.4)
from (2.6) after multiplying the coefficients by 48. This completes the proof. 0O

The framed bordismm U constructed above represents only the first step of the
transition from dimension 3 to 4. To apply our equivariant gauge theory, we would
like for instance to have Z[Q(8p, ¢)]-hermitian intersection pairing

h: Hy(U; Z[Q(8p, 9)]) x H2(U; Z[Q(8p, 9)]) — Z[Q(8p, q)]

negative definite. To approach this condition, we will modify U in a number of
steps. This will be carried out in the next four sections.

3. A POINCARE COMPLEX

Let (U,0U) be a 4-dimensional, framed, cobordism satisfying Diagram 2.4 (i)-
(iii). Let G = Q(8p, q) and let

b: H*(U,0U; ZG) x H*(U,0U;ZG) — Z

denote the non-singular symmetric bilinear form induced by cup product and evalu-
ation against the fundamental class. Notice that b is a G-invariant form: b(gz, gy) =
b(z,y) for all g € G and all z,y € H*(U, 8U; ZG).
In this section we show how to modify U by removing a cell e* in the interior of
U and then re-attaching this cell e* by a map f: de* — U —e*. The result is a CW
complex
V=U-éeYyuse!

which contains 89U as a subcomplex, denoted by dV.

Variation of the attaching map of the top cell does not change the 3-skeleton,
and hence has no effect on the fundamental group and homology in dimensions < 2.
By Poincaré duality,

H*(U,0U; ZG) = H*(V,0V; ZG)

so we can identify these two groups.
The main result of this section is:
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Proposition 3.1. Let b': H*(U,0U;ZG) x H*(U,0U; ZG) — Z be a non-singular,
G-invariant, symmetric bilinear form, with b = b (mod |G|). Then there exists
an attaching map f such that the pair (V,0V) is an oriented, finite, 4-dimensional
Poincaré pair with 71(V) = G and cup product form b'.

We will first give a description of Hy(U;ZG) as a ZG-module. Note that the
framed cobordism U is not uniquely determined by (2.4) (i)-(iii). We can, for
example, alter the cobordism U by taking the connected sum with copies of 5% x 52
away from QU. This has the effect of changing Hy(U;ZG) by taking a sum with
a free ZG-module of even rank, and we will refer to this as “stabilization” of the
cobordism U. _

Let (U, 8U) be the universal covering space of (U, 8U). On U, there is a free ac-
tion of Q(8p, q) and hence an induced action on its homology Hg(l:j ). By definition,
the ZG-module structure on Hy(U) is the same as Hy(U; ZG).

Note that OU consists of a collection of homotopy 3-spheres. For each of these 3-
spheres, we form a cone and extend the G-action to the cone in an obvious manner.
In this way, we obtain a 4-dimensional Poincaré complex U’,

U'=UU (cones over boundary spheres)

where the action of G is no longer free. In fact, for each of the cone points ay, we
have an isotropy subgroup G, C G. The cone points, denoted by ag, aq, over the
components (G, X}, (G,-X) are somewhat special because they are G-fixed points.

The above construction of U’ can be compared with the following. Let $ x I
denote the product of ¥ with the interval I = [0,1]. Then on the two boundary
components £ x 0, £ x 1, we can attach two cones to get the suspension S* A L of
¥. The action of G on ¥ x I can be extended naturally to ' A © with the upper
and lower cone points as fixed points. From equivariant obstruction theory, there
exists a degree 1, G-equivariant map

e:U — STAT
which sends the free orbits to free orbits, ag to the lower cone point and all other

a) to the upper cone point.
Let K.(p) denote the kernel of the natural homorphism

K.(p) = Ker{p.: H,(U') —» H.(S' AE)}.
Then from the degree 1 property of ¢ there is an exact sequence

0 — K.(¢) — H (U) > H (S'AE) = 0
of ZG-modules. From this sequence it is easy to see that K. (@) = 0 for all but the
middle homology K,(y). Since adding points or deleting points does not affect the

seond homology, we have

Ka(p) = Ho(U') = Hy(U).
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Thus we can shift the calculation of the homology H2(U;ZG) to Ka(p) which
has the advantage of being the only nonzero homology group of the relative chain
complex C.(p).

The relative chain complex

C.(p) = Ker{p.: C.(U') = C,(S* AT)}

can be calculated by taking equivariant triangulations on U’ and S? AY and cellular
maps between them. Since the cone points can be taken to be the vertices and
the action are free away form these points, we see that C,(p) consists of finitely
generated free ZG-modules for * % 0 and

Cole) =F & (D Indg, (2)

A#£0,1

for some finitely generated free ZG-module F. Here IndgA(Z) = 7Z ®z¢, LG =
Z[G/G ] stands for the induced representation from the trivial Gy-representation
Z to G, and the indices in the sum go through all the cone points ay except for the
G-fixed points ag, az.

Proposition 3.2. After stabilization, there is an isomorphism:

Hy(U;2G) = (2G) & P Q*mdg,(Z).
AF#£0,1

Here we use notation Q2L to denote the first term in an exact sequence:
0—-QPL—-F—FR —L-0

of finitely generated ZG-modules with Fy, Fy free over ZG. Since tensoring with
ZG over ZGy preserves exactness, we have a stable isomorphism

Q*Indg (Z) = Indg (Q°Z).

A standard argument in homological algebra proves that the Q-construction is well-
defined up to stabilizing by free ZG-modules.

Corollary 3.3. After stabilization, the rank of Ho(U;QG) is divisible by 16 at
each simple factor of QG.

Proof of (8.8). After replacing U by a connected sum with copies of 5% x 52 if
necessary, we may assume that the » = 0 (mod 16) in the given expression for
Hy(U;ZG). Since the number of boundary components is divisible by 16, the Q-
summands also have ranks =0 (mod 16). O

Proof of (8.2). We have an exact sequence of ZG-modules

(3.4) 0 — Za(p) = Colp) = Ci(p) = F & @ Indgﬁ -0
A#0,1
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so it follows that

Za(p) @ (2G)* = (2G)* & €D Q*Indg, (2).
A#£0,1

On the other hand, C. () with fundamental class [5’ ‘| can be viewed as a PD chain
complex. Using the same argument as in {20, p. 199], since K;(¢) = H;(C.(p)) =0
for i > 3 we can contract this complex down to a complex C',{(¢) concentrated in
dimensions * < 2 without changing the homology. Then

Ka(p) @ (2G)" = (2G) & @ 0*Ind§, (Z).
A#0,1

Since K3(p) = Ho(U;ZG), this proves (3.2). O

Proof of Proposition 8.1. We must see how the symmetric bilinear form b’ leads to
a suitable choice for the re-attaching map f. First we note that the conditions

H3(V,ZG) = H*(V,0V; ZG)
Hy(V;0V,2G) = 7

and the non-singularity of the cup-product form are necessary for {V,8V) to be a
Poincaré complex.

Re-attaching maps may constructed as follows. First we map de* to a wedge of
two 3-spheres de? — §% v §° by collapsing the boundary of a 3-cell in $2 = de? to
a point. Then we map $% v S3 by sending the copy 52 V * by the inclusion map
v:0e* — U — e* and sending the copy * V §% by a map 6: 5% — U® from S° to
the 2-skeleton U?) = (U — ¢*)(? C (U — ¢*). In other words, f is the composite
mapping

i - LAVE CRALNY )

The choice § = 0 just gives the original complex (U, 8U).

Since H3(U®);ZG) = 0, it follows that § has no effect on homology and, so as
far as homology is concerned, f is the same as the original attaching map. As a
result, for any such map f the complex (V,0V)} is a finite Poincaré pair provided
that the cup-product form is non-singular.

Variation of the map é has an effect on the cap product by the fundamental
class [V,8V] which in turn changes the cup product pairing b: H2(U, 9U; ZG) x
H2(U,0U;ZG) — Z. From the exact sequence in (3.4) we have

Hy(UPZG) = 2o ().

Comparing with the expression for Ho(U; ZG) = H?(U, OU; ZG) obtained in (3.2),
we obtain

Hy(U®:2G) = F & Hy(U; 2G),

where F' is a free ZG-module given by the image of the boundary operator from
the complex C, (), 8: Cs(¢) — Ca(p). Note that

(U = Hy(UP: ZG) = F & Hy(U; Z2G),



12 IAN HAMBLETON AND RONNIE LEE

and by a theorem of Whitehead m3(U (2)) is just the space of symmetric pairings
on Homg(me(U),Z). In particular, we can interpret § as a symmetric pairing on
F & H*(U,0U; ZG).

For any such pairing, the original cup product form

b: H2(U,dU; ZG) x H*(U,0U; ZG) — Z
is changed by re-attaching the 4-cell to
b+ g'6): HX(V,0V;ZG) x H*(V,0V;ZG) — Z

(see [36, pp. 240-241], {12,81]). Here g*§ is the translate of the symmetric pairing
§ by the action of the group element g € G, ¢"6(z,y) = §(9z, gy), and >_ ¢*6 is the
suin of these translates as we go through all the group elements in G. Given ¥’ in
the statement of Proposition 3.1, we need to find § so that ¥ —b =" ¢*6.

Let H denote the ZG-module H?(U, 8U; ZG), and Sym(H) the space of symmet-
ric pairings on H. Then b’ —b is an element in Sym(H ) which is invariant under the
induced group action. However, the quotient of the group of G-invariant pairings,
by those of the form > g*§ is just the Tate cohomology H° (G;Sym(H)), which is
a torsion group of exponent 8pg = |G|. But b’: H x H — Z on H has the additional
property that b = b (mod |G|). Therefore we can write b’ = b+ )_ g*§ for some
symmetric pairing 6. We then use the associated map f = vy V §, to construct a
Poincaré complex {V, V) with b as its cup product pairing. O

4, HERMITIAN MODULES

In this section we will consider the patching construction for Z[Q(8p, ¢)]-hermitian
modules by means of the arithmetic square:

G — QG

(4.1) l l

726G —— QG

Here ZG is the product I, Z¢G of the f-adic group rings and QG the corresponding
weak product of group algebras. Applying the homology functor H,{U;—) to the
above diagram, we have

(4.2) o> HJ(UZG) — H (U 2G) & Ho(U;QG) = Ho(U;QG) — . ..

To simplify our notation, we denote by H(ZG), H(QG), H(ZG), H(QG) the degree
2 homology of U with the corresponding coefficients in ZG, QG, @G, or QG. In
particular, we can view the module H(ZG) as patching H(ZG) = H(ZG) ® Z and
H(QG) = H(ZG) ® Q together over H(QG) = H(ZG) @ Q, with some isomor-
phisms

(4.3) H(ZG)®Q — H(QG) — H(QG) ® Z.
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In the same manner, we can describe the ZG-hermitian intersection pairing
h: HU;ZG) x H{U;ZG) — ZG

as a pull-back. There are intersection pairings over H(ZG), H(QG), H(QG) by the
pull-back

hy:H(ZG) x H(ZG) — ZG
ho:H(QG) x H(QG) — QG
ho:H(QG) x H(QG) — QG

and they are patched together by isometries

(4.4) (H(2G), hz) ® Q - (H(QG), hg) <>~ (H(QG), ho) ® 2.

We want to use this description later in §5, Proposition 5.1to construct a new
interection pairing on the same module H(ZG). Our strategy is to keep the pairing
and isometry

(H(ZG), hz) ® Q 4 (H(QG), hy)

on the left of (4.4) unchanged, vary the pairing (H(QG), hg) to a negative defi-
nite one (H(QG), hg), and then usc local classification theory to patch everything
together by a new isometry ¢’

(45)  (HZE),hy) ©Q - (H(QG), he) <= (H(QG, hg) ® Z.

The new pairing (H(ZG),h') on H(ZG) is obtained by means of the pull back
diagram as in [38] or [20].
The first step involves only the rational intersection form.
Proposition 4.6. Let (H(QG), hg) be a non-singular form with
(a) hyperbolic rank > 8,
(b) rank H(QG) = 0 (mod 16), and
(c) sign hg =0 (mod 16) at every simple factor of QG.
Then there ezists a hermitian pairing (H(QG), hg) such that
(1) hg is negative definite at all of the real representations of QG,
(i) (H(QG),hg) ® Z = (H(QG), hg) ® Z over QG,
(iii) det hg = det hq, and
(iv) (H(QG), hg) contains (—1) as an orthogonal summand.

The proof of Proposition 4.6 follows from well-known techniques in quadratic
forms (see [28, Ch. 10] for the existence of global forms with prescribed local
invariants). First, we recall that S = Q{Q(8p, ¢)] is a semi-simple algebra and hence
can be decomposed into a product [], (QG)y of simple algebras (QG), where x
goes through all the irreducibles of G. Since

Q[C(pg)] = Q@ x Q&) x Q&) X Q(pq)
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it follows that S =[], S(d) where
5(d) = Q(G)'IX, Y [ X? =Y? = (XY)’]

is a twisted group algebra. From the presentation of G = Q(8p, ¢) given in (2.1) we
see that the element X2 = (XY)? = Y2 is central of order two, so the group algebra
S = Q[Q(8p, )] contains the central idempotent (1+X?) and splits into a product
of two simple algebras S = Sy x S_. The first factor Sy = Q[D(2p) x D(2q)] is the
group algebra of the product of the two dihedral groups subgroups D(2p) = (A, X)
and D(2q) = (B,Y). From the representation theory of these groups, it follows
that

W) QDR = Qs x Q- X Ma[Q(G + 6]
' Q[D(29)) = Q4 x Q- x My[Q(¢, + 7Y
Therefore
S(1)4 = Qi x Qi X Qi x Q-
while
S(p)+ = MaQ(Gp + ¢ ® Quy X My[Q(G + ¢ )] © Qo
S(g)+ = Ma[Q(Cy + (N ® Quy x Ma[Q(G + (N @ Qs
and
(4.8) S(pa)+ = Ma[Q(Gp + G G + ¢ Y

The subscripts +, —, indicate the appropriate sign representations of Q{8p,¢) and
(¢p, ¢, are respectively primitive p** roots and ¢** roots of unity (see [20, p. 211]).
There is a similar decomposition for the second factor S_ into simple algebras which
are non-split at all the real places:

(a9) - =QlJ K, S(p)- = Q(C) i, 5, k]
D Sl = QG g E S0 = MalQ(G + G i3 B

It is easy to see that all the factors in the above decomposition are preserved under
the canonical involution a: Y. a,g — Y a,g~! of the group algebra QG. As an
algebra with involution, all the factors in S; belong to the type OK(R) while the
factors in S_ belong to the type SpD(H). Here we use the classification of {15, p.
549]. A simple algebra (D, ) of dimension n? over its centre E has type O (resp.
Sp) if E is fixed by o and the fixed set of o on D has dimension 3(n? + n) (resp.
2(n? — n)) over E. We further divide into

(i) type OK(R)} if (D, o) has type O, D = E and E has a real imbedding, or

(ii) type SpD(H) if (D, «) has type Sp, D # E, and D is nonsplit at infinite

primes.

We wish to reconstruct the pairing on (H(QG), hq) so that it becomes negative
definite. In view of the decomposition above, it is enough to construct a negative
definite pairing over each of the simple factors (H(QG),, h},) with the prescribed
local data (H(QG)y, ).

For simple factors of type OK we will use the Hasse-Minkowski Theorem. Its
proof can be found in many textbooks on quadratic forms (e.g. [28, p. 225)).
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Theorem 4.10. Let E be a global field. For each prime spot £ of E let an n-
dimensional form 1y over Eg be given. Then there exists a form ¢ over E with
de = e for all € if and only if the following conditions are satisfied:

(i) There ezists d € E* with d = det(y) in E)/E;? for all £.
(ii) The number of £ for which s(1pe) = —1 is finite and even.

For the remaining simple factors, of type SpD(H), we have the following version
of the local to global correspondence:

Theorem 4.11. Let D be an quaternion skew field with centre E, and let (D, *)
be the canonical involution which fizes exactly the elements of E. Given a (D, x)-
hermitian form h:V x V. — D over the vector space V, the formula z — h(z, )
defines a quadratic form knoun as the trace form qn:V — K of h

(i) Two hermitian forms over (D, x) are isometric if and only if their trace
forms are isometric.
(i) If E is a f-adic field, then non-degenerate hermitian forms over D are
classified by their dimension.
(iii) If E is an algebraic number field then non-degenerate hermitian forms over
D are classified by their dimension and their signatures at the real places
where D is definite.

Proof. The proof of (i) is in [28, Thm 10.1.7] and [28, 10.1.8(iii)]. Recall that the
canonical involution on Q[i, j, k] is the one which is type Sp (see {28, p.75]). As
is well known, a nondegenerate quadratic form ¢ over an algebraic number field E
is completely determined by its rank, dim(q), determinant det(q), Hasse symbols
s(q), and signatures sign(ge) at all real places. For h = {0y, ... ,ay), its trace form
gn is of the form

qn = B{a;, —asa, —a;b, aab)

where a, b are elements in £ with D = (a,b). From this it is easy to see that
dim(gy) = 4dimh, det(gy) =1, sign{qgn) = 4sign(h).

These invariants are determined by the dimension and signature, and a short com-

putation shows that .
a,b —1,(-1)»
o= () (245)

so the Hasse invariants are also determined . O

Proof of Proposition 4.6. We will begin with the type OK factors (QG), and ex-
plain the method by working out the simplest case. Let x be the trivial representa-
tion and (QG)y, = Q44+ = Q. Since the involution is trivial, the hermitian pairing
(H(Q44), ko, ) = (H(Q), ) is nothing but a non-singular symmetric bilinear form
over the rational vector space H(Q).

We will construct a new bilinear form (H(Q),b") with the same localizations
(H(Q¢),be), £ = 2,3,... ,00 as the given form (H(Q),b) Over the real place, the
form (H(Qw),beo) = (H(R),br) is not necessarily negative definite but its rank
and signature are multiples of 16 by Corollary 3.3. As a result, we see that

s(br) = (<1072 = 1
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since s =0 (mod 8) is the number of negative in a diagonal form equivalent to bg.
It follows that
det(bg) =1 in R*/R*Z

If we replace br by a negative definite form bg, then the same equations are satisfied:
det(by) = det(br), s(bg) = s(br).

For the rest of the primes, we let b} equal be. Then the collection {85, ... b, } with
d = det b satisfies the conditions of Theorem 4.10to be the local data for a global
form. Tt follows that we have a bilinear form (H(Q), ') which is negative definite
at the real place and is the same as (H(Q), be) for all other primes.

For the other simple factors (QG), of type OK , the modification of the hermit-
ian pairing (H(QGy), k) ) into a negative definite one can be achieved in the same
manner, after applying Morita equivalence to translate from forms over M2(FE) to
forms over E.

Next we consider the case of simple factor of type SpD(H), and we begin again
with the simplest case when (QG), is a division ring. To reconstruct (H(QGy), h)
we first express h as a diagonal form (ay, ... ,an) over the division ring D = QG,
and define b’ = (—1,... ,—1) where A’ has the same rank as h. By Theorem 4.11(ii),
the forms he = hj at all finite primes £. On the other hand, A’ is negative definite
at the real places.

For a general type SpD(H)-factors, we have a matrix ring My (D,,) over a division
algebra (D, *) with an involution defined by the transpose-conjugation operation:

(aij) — (a};).

By Morita equivalence, the classification of hermitian forms over such simple factors
can be reduced to the classification over D,. As a result the reconstruction problem
of (H(QGy), hy) can be treated as the corresponding problem over D,, which
we have just considered. We complete the proof of parts (i}-(iii) by putting all
the modified hermitian forms (H(QGy), k) together. For part (iv), we use the
assumption that form (H(QG), k) contains a hyperbolic form of rank > 8, and a
special case of the above construction: let L = (QG)'?, take b the hyperbolic form,
and & the diagonal (—1) form of rank 16. Then (L,b) @ Z = (L,¥)®Z. O

5. STRONG APPROXIMATION

In Proposition 4.6, we constructed a negative definite hermitian form (H(QG), hg)
such that its completion (H(QG), hg) ® Z is isometric to the adelic completion
(H(QG), hg) of the original hermitian form. In particular, this implies det hg =
det hg € K1(QG). Each choice of isometry

(H(QG, hy) ® 2 %5 (H(QG), hy)

gives rise to a form (H', /') on some module over ZG by pull-back, but there are
many possible choices.
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Proposition 5.1. Let H = H*(U; ZG) and h denote the ZG-hermitian cup product
pairing h: H x H — ZG. Then there exists an isometry ¢": (H(QG, hg) ® 7 —
(H(QG), hg) and a hermitian pairing h': H x H — ZG such that
(i) h' is the pull-back (hy, ¢, hg)
(ii}) ' = h (mod |G|), and
(iii) A’ is negative definite at all of the real representations of ZG.

When the form satisfies the conditions of Proposition 5.1, we can use this data
as explained in Section 3 to construct a finite Poincaré pair (V,0V) with negative
definite intersection form.

Proposition 5.2. There exists an attaching map f for V.= (U — e*) Uy e* such
that the pair (V,0V) is an oriented, finite, weakly simple, 4-dimensional Poincaré
pair with w1 (V) = G and orientation class [V] € Hy(V,0V;ZG) Moreover the
non-singular ZG-hermitian pairing

H*(V,0V;ZG) x H*(V,0V;ZG) — ZG

induced by cup product and the evaluation against the fundamental cycle [V] is
negative definite.

The condition “weakly simple” means that the Whitehead torsion of the Poincaré
duality map is zero measured in Wh/(ZG) = Im{(Wh(ZG) — Wh(QG)). This is
automatically true for manifolds and we will preserve this property in our construc-
tion of V' from U using (4.6)(iv).

Over each simple factor of QG or QG, every module is a direct sum of copies
of an irreducible simple module, so we can choose a basis (see [20, §2]), and then
compute the determinant of an isometry. Over non-commutative factors, the de-
terminant must be interpreted as the reduced norm. An isometry of based forms
with determinant 1 is called a simple isometry, and such forms are then called
SU-equivalent.

The manifold (U, 9U) has a basis for its chain complex given by its associated
piecewise smooth triangulation. To express the Whitehead torsion of its simple
Poincaré duality map in terms of Reidemeister torsions, it is necessary to base the
homology groups. Let b = {e;} denote a basis of H(ZG) ® Q. Using the given
isomorphism

&: H(ZG) @ Q - H(QG) £ H(QG) 8 2

we have a corresponding basis (b)) = {®(e;)} on H(QG) ® Z) under ®. In par-
ticular, ® is a simple isometry of the given hermitian forms with respect to these
bases.

Lemma 5.3. There exists an isometry

such that the composite

o H(IC) @ Q 5 HOC) Y5 HOQC) o2
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is a simple isometry with respect to the bases b and ®(b).

Proof. It follows from Proposition 4.6 (iv) that (H(QG), hg) contains the form
(—=1) on some basis element ¢ € H(QG), in the given basis. This allows us to
pre-compose any ¢’ with an isometry of the form e — wue, where v € QG and

u@ = 1. This realizes all possible values of the reduced norm for an isometry since
det hg = dethg. O

Proof of Proposition 5.2. Our new form (H(ZG), ') is constructed in Proposition
5.1by pull-back using the simple isometry ¢’ in Lemma 5.3. We then apply Propo-
sition 3.1 to construct V from U. It follows that the based chain complex used to
compute the adelic Reidemeister torsion of (V, 9V') is simple chain homotopy equiv-
alent to the one for (U, dU). Therefore the image of the Whitehead torsion 7(V, 9V)
is zero in Wh(QG) and the Poincaré complex (V,9V) is weakly simple. [J

To prove Proposition 5.1 we will need the following:

Lemma 5.4. There exist isomorphisms
W H(ZG) — H(ZG)
Yo H(QG) — H(QG)
such that ® = (2 ®id)~! 0 &' o (Y, ® id).
Lemma 5.5. For every divisor £ of |G|, the reduction of ¥, modulo £
P H(ZG)® L)t — H(ZG) R L /¢

is an isometry of the hermitian module (H(ZG), hy) @ Z/L.

Proof of Proposition 5.1. Assuming these two assertions (5.4) and (5.5), we can
complete the proof of Proposition 5.1. Let (H', h’) be the pull-back of our original
¢-adic form (H(ZG), h)®Z = (H(ZG), hy) and the new rational form (H(QG), hg)
given by Proposition 4.6, pulled back using the isometry ¢’ of Lemma 5.3. This form
will satisfy (5.1)(i) and (5.1)(iii) once we prove that H' = H(ZG) as a ZG-module.
The remaining property (5.1)(ii) will follow from Lemma 5.5.

Recall from (4.3) that the module H{ZG) is obtained by forming the pull-back
of the diagram:

H(ZG) — H(ZG) ® Q 2 H(QG) ® Z — H(QG).
Lemma 5.4 gives us a commutative diagram:
H(2G) —— H(2ZG)®Q —2— H(QG)®Z «——— H(QG)
(5.6) lnbl lm@id l¢7®id l‘ﬁz
H(ZG) —— HZO)®Q —¥ H(QG)®Z —— H(QG)
From this, it follows that there exists an isomorphism

U: H(ZG) — H(ZG)
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between the pullback (H(ZG) of the top row in (5.6) and the corresponding pullback
H{(ZG) of the bottom row. Furthermore, this isomorphism ¥ is compatible with
1 after taking the completion

H(ZG) —— H(ZG)
(5.7) l“’ lwl
H(ZGY —— H(ZG)

Now the pullback diagram

(H(ZG), hy) — (H(ZG), hy) ® Q 2> (H(QG), hy) @ Z — (H(QG), k)

gives rise to the desired hermitian pairing (H(ZG)', }') over H(ZG)'. In addition,
we have a hermitian pairing (H(ZG)', k') ® Z/|G| after taking the tensor product
with Z/|G].

From (5.7), we have a commutative diagram:

(H(ZG),h) ®Z/|G| —=— (H(ZG),h;) ®Z/|G]
lw (mod |G1) lw (mod |G])
(H(ZGY,W)®Z/|G| —=— (H(ZG),hz) ®Z/|G]

where the two horizontal arrows are isometries. Since ¥; (mod |G}) is an isometry
by Lemma 5.5, it follows that the isomorphism ¥ is an isometry after reduction mod-
ulo |G|. Or in other words, the pullback hermitian pairing ¥* (k') = h (mod |GY).
This proves (5.1) (ii) and the proof of (5.1) is complete. O

To prove (5.4) and (5.5), we need the following version of the Strong Approxima-
tion Theorem for special linear groups due to Eichler and Kneser (see [28, 10.5.1]).
Let R be a Dedekind domain with the global field K as quotient field. Let D be
a finite-dimensional skew field with centre K and A = M, (D) and let I" be an R-
order on A. The special linear group SL(I") is the subgroup of SL(n, D) preserving
r.

Theorem 5.8. Let P be a finite set of non-archimedean primes , T € SL(n,ﬁ)
and € > 0. Then there exists T € SL(n, D) and S € SL(I") such that T =T o871,
and ||Sy — Id||p < € for all p € B.

Proof. Consider the element 7 = {T, : S, € SL(n,D,)} in the adelic special
linear group SL(n, f)) Then, by definition, for all but finitely many primes By =
{p1,... ,px} the component T, € SL(f"p) for p # p1,...,px. We enlarge P if
necessary to assume that it contains all primes p € Py.
Using [28, 10.5.1] (with q one of the infinite primes), and any given § > 0 we
have T' € SL(n, D) such that
1T — Tyl < 6

for p; € {p1,...,px}and T € S L(f’p) elsewhere. In particular, by choosing § small
enough we can ensure that Tp“;l o T is in any given e-neighborhood of the identity.
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Since SL([,) is open in SL(n, Dy)), it follows that for § > 0 sufficiently small
Tyl oT = Sy, is in SL(I'y,) . Define S, = T, ' - T for the other primes as well.
Then S = {S,} is an integral adele, S € SL(I"), and T =T oS~ O

Proof of Lemma §5.4. To apply the above, we recall that ® o ®~! is a simple
automorphism of the vector space H(QG)®Z. Note that H(QG)®Z is decomposed
as a product [ H (QGX)®Z of simple modules over each of the simple factors (QG)y
of QG. In each factor we will take 'y to be the image of ZG in (QG)y. Since we
can apply the above theorem to each of these factors and multiply them together,
we will not distinguish between H(QG) ® Z and its factors.

For all but a finite set of primes P = {p1,...,pr}, the automorphism &’ o
®~! preserves the lattice H (ZG) By enlarging this set P if necessary, we can
assume that it contains all the prime divisors of |G]. By (5.8), there exist simple
automorphisms 11 of H(ZG) and ¥, of H(QG) such that

P od ! = (e ® id) 0o ® o (31 ®7jd)_1 od L,

As usual “simplicity” of 11, 12 is measured by recltlcefl norms with respect to our
fixed bases, after tensoring to H(ZG)®Q or H(QG)®Z. This establishes (5.4). O

Proof of Lemma 5.5. Since & and ¥’ are isometries between the hermitian forms,
by choosing € > 0 small enough we can conclude that v: H(ZG) — H(ZG) induces
an isometry of the hermitian form (H(ZG), h;) modulo |G}. Thus condition (5.5)
is also satisfied. (1

In Section 8, we will need to vary the construction of (V,8V). Recall that the
attaching map f for V = (U — ) Uy e* is determined by the hermitian form
(H(ZG), k'), which is a pull-back of forms over H(QG) and H(ZG) identified by
the simple isometry ¢’ given in Lemma 5.3.

Proposition 5.9. Let ¢’ be a simple isometry as in (5.8). For any unitary auto-
morphism B € SU(H(QG), hg), the Poincaré complez (Vg, 8Vp) constructed from

¢:6 = B o ¢ is also weakly simple and has negative definite intersection form.

Proof. The image of the Whitehead torsion 7(V,8V) in Wh(QG) is computed by
reduced norms. By construction, these values are the same as those for (U, 9U).
Now we can repeat the proof of Proposition 5.2 using & = o (¢')" 1 o 71 to
construct a hermitian form hb, and then re-attach the top cell to get Vg. [

6. FOUR-DIMENSIONAL SURGERY

In Sections 2-5 we constructed a collection of weakly simple Poincaré complexes
(V,8V) with m1(V) = G and negative definite intersection forms. The boundary
JV = 0U is the disjoint union of linear and non-linear space forms. These complexes
are parametrized by elements 8 € SU(H(QG), hg), but this dependence will be
suppressed for the moment. In this section, we will show that each of these Poincaré
complexes admits a degree 1 normal map from a smooth 4-manifold. We then begin
to study the surgery obstruction.
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Proposition 6.1. The Spivak normal fiber space £ — V is trivial. There exists a
trivialization p: E(€) — Rf, £ = dim€ + 1, and an associated degree 1 normal map
f:(X,0X) — (V,0V), bivx — &, such that

(i) (X,8X) is a compact, smooth, oriented 4- manifold with 7 (X) = G,

(i) 8X = 0V and (f,b)10X =1id,
(iil) sign(X) = sign(V'), and
(iv) the surgery obstruction A(f,) lies in the “weakly simple” surgery obstruc-

tion group LG(ZG).

Proof. Note that OV = AU is a union of framed manifolds. Hence £ |9V has a
vector bundle reduction and in fact a framed structure over dV. This smooth
structure can be extended to give a vector bundle reduction for £ over V since the
first exotic spherical characteristic class is zero on oriented 4-dimensional Poincaré
complexes. Then since w(V) = w3(V) = 0 and V is homotopy equivalent to a
3-complex, we conclude that & is the trivial bundle. We fix a trivialization of £ to
serve as a base-point for normal invariants.

Let p: E(€) — R, £ =dim& 4+ 1 >> 0, be any fibre homotopy trivialization of
¢ extending the given trivialization of £/@V. By making p transverse to 0 € R?, we
obtain a compact, smooth 4-manifold X, with 0X, = 0V and a degree 1 normal
map fe : X¢ — V covered by a bundle map b; : v(X¢) — &

(Xe) —— ¢

02 L

X, L.

and (fE! b5)|6X5 =1id.

By varying within the normal cobordism class of (fe,b¢) if necessary, we may
assume that f¢ induces an isomorphism of fundamental groups, so m1{X¢) = G.
Furthermore, since (V, 3V) is a weakly simple Poincaré pair, the surgery obstruction

A(fe, be) for (6.2) lies in group Ly(ZG) computed in [38]. As a simply connected
surgery problem, (6.2) has an obstruction given by the difference sign(X¢ ) —sign(V)
of two signatures. However we can get rid of this obstruction by the following
modification.

Consider a degree 1 map ¢ : V/8V — S4. From [18], it is known that m4(G/PL) =
Z and its generator is represented by a vector bundle n over $* with a homotopy
trivialization p : E(n) — R’ and 2p;(n){S*] = —16. Pulling back this G/PL-
structure to V via ¢, we can add this to £ to get a new G/PL-structure £ § o™n.
Note that the relative Pontrjagin class ipi(€§¢ n)[V/8V] = 3p(n){S?] = —16
with respect to our base-point trivialization on £. Therefore by repeating this con-
struction k-times, k = sign(V)/16, we arrive at a G/P L-structure & over V/oV
with %pl (€') = —sign(V). Using &' instead of £, we obtain a corresponding surgery
problem:

ber
v(Xeg) —— €

! l

Jer

X&I ———
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Since we have
sign(X¢/) = %Pl (T(Xe D) Xe /0Xer) = —%m(&')[V/@V] = sign(V')

it follows that the simply connected surgery obstruction equals zero. [

There are other surgery obstructions for our problem (f,b) : X — V| indepen-
dent of the simply-connected signature obstruction. In fact, the relevant surgery
obstruction group Lg{(ZQ(8p,q)) has been computed by Madsen in [20] following
the methods of Wall [38].

As in [20, p. 208], let

LY(ZG,a,1) for n =0 (mod 2),and

LY(2G, e, 1)/( . 3) forn=1 (mod 2),

L,(ZG) = {
where the decoration Y = SK;(ZG) & (£g| g € G).

Theorem 6.3. There is a natural splitting:
LY (zG) Z {LY(ZG)(d) : d | pq}

such that

(i) for d # 1,LY (ZG)(d) = LX(ZG)(d) where the decoration X stands for
SK,(ZG).
(i) Ly (ZG)(d) = LY (Z[Z/d » Q(8)})(d)

(iii) for each d | pq, there is a long ezact sequence:

.= CLY 1 (S(d)) = Ly (ZG)(d) — Ly (T(d)) @ [ [ LY (Be(d)) . ..

£d
where
R(d) = Z[¢4)'Q(8) S(d) = Q¢d)*Q(8)
T(d) = R ® S(d) Re(d) = R(d) ® Ze
and

CLY(S(d)) = LY (S(d) — S(d) ® T(d))

(iv) The K -theory decorations are given by

X(8(d)) = X (T(d)) = X(Re(d)) = {0}, (£ odd).

Since the calculations of LY (ZG))(d) for different d | pq are quite similar, Madsen
concentrated on the most difficult case when d = pq. For this he proved the
following [20, Thm. 4.16]:
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Theorem 6.4. There is an exact sequence
0 — Cokery, — L())( (ZG)(pq) — Keriyy — 0,

where Kerig is the free abelian group detected by the signature inwvariants cor-
responding to real places of F = Q[¢, + (;1,¢q + ('], The term Cokert is
determined by the ezact sequence

(6.5) 0— Kergp{ — F®/F** — H°((A/pg)*) — Cokeryy{ — H(I(F)) — 0,
where A = 26+ G0 G+ ('] F = QUG+ G G+ G ), T(F) = I(F)/F* is the
ideal class group of F, I(F) = F{ /F} - A% is the ideal class group, and F(3) C FX
consists of elements with even evaluation at all finite primes.

For a geometric surgery problem (f,b), the image of the surgery obstruction
A(f, b) in the group Ker 1y can be interpreted as the difference sign, (V) —sign,(X)
between the multi-signatures of X and V.

Proof of Theorem 6.4. The exact sequence of (6.4) comes from the calculation of
L-groups [38]: we substitute

[T L (Ae) = [T HO(47) = A/2,
tpg tpq
and LY (Foo) = HY(FX) together with CL (F') = H°(C(F")) into the commutative
diagram
Y1
[Mepg HO(AF) x AJ2 x HNF) —— H°(C(F))

. a W1 .

where C(F) = F'* /F* is the idele class group and the vertical maps are induced by
the “change of decoration” Rothenberg sequences in L-theory comparing LX with
LY. In describing the cokernel of %, it is convenient to compare with the natural
homomorphism

HO(AX) x H(FX) x HY(F*) — HY(F)
which has kernel F()/F*2 and cokernel H°(T'(F)). Putting this information to-
gether we have the commutative diagram:

0 — Kergf — HO(AY)x HO(FX)x HO(F*) — HO(FX) — Cokergpl — 0

I ! | I

(6.6) 0 — FA/FX2 — HO(A®)x HOFX)x HO(F*) — HO(FY) — HYL(F)) — 0

0 — HYAY) — HO(AY)
Here HO(AY) = [Tejpq HY(AY) and HO(A}) = [etpq HO(AY). The snake lemma
yields the exact sequence in (6.5). O

We will now apply these calculations to study the surgery obstructions which
lie in Cokery. Let SU,(QG) denote the group of unitary automorphisms of the
hyperbolic form of rank r over QG.
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Lemma 6.7. There is a natural projection SUr(QG) — Cokerin, forr > 3.
We will denote the image of 8 € SU.(QG) under this projection by [8].

Proof. Since
CLy (5(d)) = Ly (S(d) = S(d) © T(d))

is actually a quotient of L5(S(d) @ T'(d)) by [38,1.2] and L$(T(d)) = 0, we see
that CL$(S(d)) and hence Coker 4, is a quotient of LS(8(d)). However, by defini-
tion L5 (QG) is a quotient of the stablized special unitary group SU(QG) and the
projection

SU(QG)/RU-(QG) — L7 (QG)
is an epimorphism for r > 3. [O

Recall from (5.9) that we can vary our Poincaré complex (V,dV) to (Vg;ﬁvﬁ)
for any 8 € SU(H(QG), hQ). Exactly the same process can be used to vary any
algebraic quadratic Poincaré complex (as defined in [25]).

Any 4-dimensional quadratic ZG Poincaré complex C() can be stabilized by
adding a hyperbolic form H(g(r)) = H(ZG)" of rank r over ZG (considered as a 4-
complex concentrated in the middle dimension). This is just the algebraic analogue
of adding copies of $? x §2? to the domain of a geometric surgery problem. Now
if C((r)) = C(¥) ® H(g(r)) is the r-stabilization of C(¢) and 8 € SU(QQ), we
can construct a new quadratic Poincaré complex C(g(r)) by pulling back using

the same rational and f-adic pieces as C() @ H(g(r)). The identification over QG
is altered by composing with 3 (just as in Proposition 5.9).

Lemma 6.8. For any 3 € SU,.(@G), r > 3, and any 4-dimensional quadratic
Poincaré complex C(3) over ZG, the surgery obstruction A(C(yg(r))) € Ly(ZG) is
independent of r and given by M(C(y5(r))) = MC))) + (4]

Proof. Stabilization does not change the surgery obstruction of C(3) so

AMC@(r)) = MC ).

Similarly, A(C(g(r))) is independent of 7 since 7 > 3. We can also assume that

the patching over QG used to construct C(¢), and the action of 3, take place in
orthogonal direct summands of C((r)). Therefore

C(p(r)) = C(¥(r)) @ H(gp(r))-
Since the surgery obstruction is just the algebraic Poincaré cobordism class of
C(g(r)), and A(H(gg(r))) = 8] by definition, the given formula holds. O
7. INDUCTION MAPS

This section contains an algebraic result we will need to handle the multisignature
surgery obstruction. Let R(G) denote the real representation ring of G, and recall
that there is a natural transformation [38, 2.2] of Mackey functors

oc: Ly(ZG) — R(G)
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given by diagonalizing a hermitian form (H, h) over each irreducible representation
o of RG (see [38, §2.2|) and then taking the formal difference signg(H, h) of the
maximal positive and negative definite G-invariant subspaces.

In particular, the homomorphisms oy: Li(ZH) — R(H) for H = Q(8p),Q(8¢g),
and C(2pg) are compatible with the induction maps between the surgery obstruc-
tion groups, and the corresponding induction homomorphisms:

i : R(Q(8p)) — R(Q(8p,q))
'R(Q(SQ)) — R(Q(8p, q))
« : R(C(2pq)) — R(Q(8p, q))-

The reduced representation ring R(G) = ker(R(G) — R(1)) is generated by ele-
ments of the form (o — dimea - 1) for all real G-representations c. This ideal of
R(G) is closed under induction and restriction. The transformation o¢ induces

o: L(ZG) — R(G),

which is again compatible with the Mackey structure, and we have the commutative
diagram

Ly (Q(8)) ® Ly (Q(8q)) @ Ly(C(2pg)) 12280, [ (zG)
R(Q(8p)) ® R(Q(8q)) ® R(C(2pg)) 2%, R(G).

The main result of this section is:

Proposition 7.1. The image of o Ly(2G) — R(G) restricted to Im (I}, @I, ®Is.)
contains the subgroup 16 - R(G).

We will describe the splitting used in [38, §4] and Theorem 6.3, in order to study
the induction homomorphisms between these groups.

Lemma 7.2. The map og has a direct sum decomposition 0 = @qp,0(d) where
o(d): Ly(ZG)(d) — R(G)(d). A similar splitting exists for the subgroup C(2pq),
and the induction map I3: Ly(ZC(2pq)) — Lo(ZG) preserves the components.

Proof. Note that the group algebra Q[C(2pg)] decomposes into the product of four
different fields Q, Q((,), Q({g), and Q((pq). This induces a corresponding decom-
position on QG = Q[C(2pg)]*Q(8) and hence on every functor of QG. In fact,
for every covariant functor A(—) from finite subgroups of G to abelian groups, an
analogous decomposition exists for A(G). Let fp, fq : C(2pq) — C(2pq) denote
the endomorphisms which project onto C{p) and C(q) respectively. They extend
to endornmplnsrns fp, fq of Q(8p,q) by setting fp |Q(8) = fqu(S) = id. Since
f2 fp, fq f2 = fq, we obtain idempotent endomorphisms Fj, = ( fp) and Fy = ( fq)
of A(G). Hence there is a decomposition

A(G) = A(G)(1) ® A(G)(p) ® A(G)(q) ® A(G)(pg)
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where
A(G)(1) = FpF(A(G))
A(G)(p) = (1—F)( (G))
A(G)(q) = Fy(1 - F,)(A(G))
A(G)(pg) = (1 - Fp)(1 — Fo)(A(G)).

Applying this splitting to the surgery obstruction group Ly(ZG), we have
Lo(ZG) = Ly(ZG)(1) @ Lo(ZG)(p) © Lo(ZG)(q) & Lo(ZG)(pa).
Similarly for R(G), we have
R(G) = R(G)(1) & R(G)(p) @ R(G)(q) ® R(G)(pg)-

Since the splittings are given by idempotents, we get a corresponding direct sum
decomposition for o. o

The idempotent endomorphisms fp, f, also exist on the subgroup C(2pg) and
hence give the corresponding decompositions on Ly(C(2pg)) and R(C(2pgq)). The
commutativity of the following diagram (d | pq)

Ly(ZC(2pg))(d) —— R(C(2pq))(d)
(7'3) ‘lla- lig.
Ly(ZG)(d) —— R(G)d)

means that the induction maps from C(2pq) preserve the components. O

There is one more functorial fact which simplifies our problem. Both Q(8p, q)
and C(2pq) contain a unique order 2 element X? = Y? = (XY)? in the centre. By
Schur’s lemma the action of this element on the irreducible are either +1 or —1.
Accordingly the representation rings decompose into two components:

R(Q(8p, 0))(rq) = R(Q(8p, 1)) (pa)+ ® R(Q(8p, q))(pq) -
R(C(2pq))(pg) = R(C(2pq))(pa)+ & R(C(2pq))(pq)-

and the homomorphism 23, preserves these decompositions.

Proposition 7.4. On the (~1)-component the homomorphism

(13)« : R(C(2pq))(pq)- — R(Q(8p,q))(pq)-

1s surjective, and on the (+1)-component the image of the homomorphism

(43)s : R(C(2pq))(pq)+ — R(Q(8p,q))(pq)+

equals 2 - R(Q(8p, ¢))(pg)+

Proof. Recall that the splittings on R{(C(2pg)) and R(Q(8p, q)) can be achieved by
first applying the splittings to the group algebras Q[C(2pq)], Q[Q(8p, q)]- By (4.8)
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and (4.9) we see that the rational representations in the top components S(pg)+
and S{pq)- are induced up from Q[C(2pq)], and become the twisted group algebras
Q(¢pq)*[X, Y]x+ which have dimension 4(p—1)(g —1). In the regular representation
of QG, this factor decomposes as the direct sum of 4 copies (respectively 2 copies)
of the simple module for S(pg)y = My(F) (resp. S(pq)- = M2(D)). Note that
Q(Cpq)®R splits into (p—1)(g—1)/2 copies of the complex numbers C, and the centre
field FF = Q((p + Cp_l, (gt gl) splits into (p —1)(¢g — 1)/4 copies of R. By counting
dimensions (over R}, we see that each one of these irreducible representations C
of C(2pq) induces up to a real 8-dimensional representation. Since the irreducible
module Ly for a simple factor of My (F) @R (resp. M2(D)®R) has real dimension
4 (resp. 8), we conclude that the induced real representations is Ly @ L4 in the
(+1)-component and L_ in the (—1)-component. [

Proof of Proposition 7.1. The endomorphism fp factors through the subgroup
Q(8p), and we have the inclusion Im F, € Imii,. On the other hand, because
fp oy =41, we have (F, —1)Im4;, = 0. Similar relations hold for Fy and %2.. From
the definition of the summands R(G)(d) in terms of these idempotents, it follows
that

(7.5) R(G)(1) @ R(G)(p) ® R(G)(q) = Tm (i1.) + Im (i2.).
On the other hand, by Proposition 7.4, we have
2- R(G)(pq) C Im (ia.)
and we can conclude that
2. R(G) CIm (1. B iou Diae) € R(G).

Moveover, it follows from the results of [15], [38,2.2.1] on the divisibility of the
signature invariants, that

o Lo(ZH) — R(H)
has image containing the subgroup 8 - R(H) for H = Q(8p), @(8¢), or C(2pq). By
naturality of ,

16 - R(G) C og(Im (I1. @ 2. @ [3.)) € R(G).

8. ALMOST SPHERICAL SPACE ForMS

We are now ready to consider the surgery obstructions of the degree 1 normal
maps constructed in Proposition 6.1.

Proposition 8.1. Let fe: (X,0X) — (V,0V), be:vx — £ be a degree 1 normal
map satisfying the conditions in (6.1). Then there ezists an element § € SU(QG),
r 2 3, and a degree 1 normal map f{ 5: (X', 0X') — (Vp,0Vp), b givx: — € such
that

(1) fi 18X’ is an integral homology equivalence, and

k)

(i) A(f¢ g be ) = 0 € Lp(ZG).
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After giving the proof of this result, we will use it to construct the smooth
4-manifold (Y, 9Y) described in the Introduction.

Proof. We will first consider the multisignature obstruction sign, (V') — sign, (X¢)
given by irreducible real representations «, o # 1, of G = Q(8p,q). Note that
this set of surgery obstructions generates the group Kery and so if sign, (V) —
signg (Xe) = 0 for all « then A(fe,bs) € Coker .

We begin with the p-invariant p,(N) of a 3-manifold N with a unitary represen-
tation a : m(N) — U(n). Suppose N = M and o extends to a representation of
m1(M). Then

pa(N) =n- Sign(M) - Signa(M)'

As a consequence of this formula, we have

signg (V) — signe (X) = signe (V) — [n - sign{X) — pa(0X)]
= signa (V) = [n - sign(V') — pa(0X))]

or, in other words, the vanishing of the obstruction sign, (V') —sign, (X) is the same
as requiring that the following equation

(8.2) PalX) = - sign(V) — signa (V)

is satisfied by the domain (X,0X) of our degree one normal map. Note that
this equation, and the fact that sign X = signV, implies that the multisignature
difference depends only on X = 9V.

In general, equation (8.2) may not be satisfied and so these are nontrivial ob-
structions for our surgery problem. To get rid of these obstructions, the idea is to
replace copies of the spherical space forms S/Q(8p), S/Q(8q), or S/C(pg) on the
boundary dX by almost spherical space forms S'/Q(8p), S'/Q(8q), S'/C(2pg) and
therefore change the p-invariants. After this process, our new normal map will no
longer restrict to the identity on the boundary, but just to an integral homology
equivalence.

One way to construct an almost space form S'/H is to start with an element
o € Ly(ZH) and apply the Wall realization theorem to construct a degree 1 normal
map

(f,0): (M4, 9oM*, M%) — (S3/H x I,8%/H x0,58%/H x 1)

such that A(f,b) = o. More explicitly, this surgery problem is constructed by rep-
resenting o by a quadratic form on a free ZH-module and using this algebraic data
as a prescription for attaching 2-handles to S®/H x I. By construction, the lower
boundary component doM* = S3/H and the restriction of (f,b) is the identity.
The upper boundary component &, M* = §'/H is an almost space form. On this
boundary component the restriction f: S'/H — S3 /H is just an integral homology
equivalence, and a surjection on fundamental groups. The fact that we have lost
some control of m1(S'/H) is a typical problem with surgery in dimension 3, but at
least S’ is an integral homology sphere.

Now suppose that we start with o1, o2, and o3 in Ly(Q(8¢)), Ly(Q(8¢)), and
Ly (C(2pq)) respectively. Then we construct 4-manifolds My, M3, M3 whose bound-
ary components are the spherical space forms S3/H; and the almost space forms
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S'/H; with H; = Q(8p), Q(8q), or C(2pq) for i = 1,2 or 3. Let g;: §'/H; — S*/H;,
1 € i < 3, denote the integral homology equivalence obtained by restricting the
degree 1 normal map (fi, b;) used to construct (M;,dM;) to the top boundary
component.

Next we attach these surgery problems (f;, b;) to our degree 1 normal map X —
V along the appropriate boundary components of 3X = dV. More precisely, we
attach the 4-manifold M; to a component of X with boundary S%/H; and extend
the degree 1 map by using the normal maps (fi,b;) to collars S3/H; x I on the
same component of 3V. This produces a new degree 1 normal map (which we will
consider to be a relative surgery problem):

(8.3) (fe, be): (X,0X") = (V,0V),

where the domain is
X' =XUM, UM,U Ms,,

and fé restricted to X’ is an integral homology equivalence.

Moreover, if we choose o, 09, 03 to lie in the reduced surgery obstruction groups
LH(Q(8p)), Liy(Q(8q)), or Ly(C(2pq)), then the simply-connected signature invari-
ants sign{M;) = 0 for 1 = 1,2 and 3. It follows that sign(X’) = sign(V).

We can now compute the effect on the multi-signature obstruction

(8.4) signg (V) — signga (X') = pa(8X’) — n - sign(V) + signa (V).
We have changed the p-invariants on the boundary by the formula:
(8.5) Pa(0X") = pa(0X) + signa[l14(01) + I24(02) + (I3.(03)]-

Here 1.4, I5., Is. are the induction homomorphisms between the surgery obstruction
groups:

N Ly(Q(8p)) — Lo(Q(8p,q))
It Ly(Q(8q)) — Lo(Q(8p,q))
Is. : Ly(C(2pq)) — Lo(Q(8p, q))

already used in Section 7. Substituting (8.5) into (8.4), we have the equation

(8.6) pa(0X) + Z signa [(Ik« (o)} = n - sign(V') — signa (V)
1<k<3

as the requirement for vanishing of the multisignature obstruction for the surgery
problem of (f;,b;). Therefore our goal is to choose 01, 02, 03 in such a manner that
the expression (8.6) is satisfied.

The nonsingular hermitian pairing (H, k) for H = Hy(V; ZG) gives us an element
in R(G), whose a-component is sign, (V). Therefore we can interpret the expression
n - sign(V) — signg(V), n = dime, in (8.2) as the a-component of an element
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o(V) € R(G). Similarly, we have o(X) € R(G). In addition, from the construction
of (V,8V) both ¢(V) and o(X) are divisible by 16, or in other words

o(V) - o(X) € 16 - R(G) C R(G).

Since po(0X) = n - sign(X) — signy(X), we can rewrite (8.6) as an equation in the
reduced representation ring:

(8.7)  oc(luloy) + Inu(02) + Isu(03)) = o(V) = 0(X) € 16 - R(G) C R(G)

where

oc : Ly(ZG) — R(G)

is the multisignature natural transformation from Section 7. But the main result
of that section, Proposition 7.1, states that equation (8.6) has a solution oy, o3,
03. We may therefore use these clements to construct a degree 1 normal map
(férbe): (X',0X") — (V,0V) as in (8.3) with A(f{,b;) € Cokery. Since the mul-
tisignature vanishes, this surgery obstruction is independent of the choice of normal
map (i.e. depends only on the range (V,9V)).

To complete the proof of Proposition 8.1, we pick § & SUT(QG’), for r > 3,
projecting to A(fg,b;) € Cokeryn. This is possible by Lemma 6.7(note that the
obstructions are now 2-torsion). We then consider the new Poincaré pair (Vg, 9Vp)
as constructed in Proposition 5.9. By construction, the boundary 0Vg = 0V and
the multisignature of (Vg, 3Vp) equals that of (V,dV). It follows from Proposition
6.1 that there is a degree 1 normal map (f¢ g,be g) onto (Vg,dVg) which is the
identity on the boundary. Since 0V3 = 9V

signg (fe,8, be,p) = signa (fe, be)

and we may use the same elements oy, 0, 03 to construct a modified normal map
( fé'ﬁ, b’e,ﬁ), inducing an.integral homology equivalence on the boundary, with zero
multisignature obstruction

The surgery obstruction A(fe g,b¢ g) is determined by the induced quadratic
structure [25] on the mapping cone complex C.(f¢ 5):

0— Cu(Xg g) = Cu(Veg) = Cu(fi 5) — 0.

This sequence can be analysed as in §4 by means of the arithmetic square. Again by
stabilizing our Poincaré complexes, we can assume that the new identification over
QG given by f takes place on some hyperbolic factors of (H(QG), hg) orthogonal
to those summand used in constructing the map fé,ﬁ. It follows that the quadratic
Poincaré complex C.( féﬁ) can be constructed from the exact sequence of chain

complexes
0 Cu(X) = Cu(Ve) = Cu(f) — 0

by re-mixing the complexes C.(V¢) and C.(f;) simulaneously with 8 to produce
Cu(Ve,) — Cu(f{ 5)- From Lemma 6.8, it follows that

M/fe g bes) = Mg, be) +[6] = 0
and the proof is complete. [J

The final result of this section is an application of (8.1):
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Proposition 8.8. Assume the existence of a nonlinear space L/Q(8p, q). There is
a framed, compact, oriented 4-manifold Y with the following properties:

(i) The boundary OY = N U OyY, where N is a connected 3-manifold, and
m1(Y) modulo the normal closure of m(N) is isomorphic to G = Q(8p, q).

(i) H.(Y;RG) =0. ) ‘

(iii) The boundary components &Y of Y consist of copies of the nonlinear space
form £/G, spherical space forms S/Q(4pq) and almost space forms S'/H
for H = Q(8p), Q(84), or C(2pg).

(iv) The induced homomorphism m(0pY) — m(Y) on the fundamental groups
sends m(2/G), m1(S/Q(4pq)), and =1(S'/H) for H = Q(8p), Q(8g), or
C(2pq) onto the corresponding subgroups Q(8p,q), Q(dpq) or H € Q(8p,q).

(v) the induced Q(8p, q)-hermitian intersection pairing

h: Ho (Y ZG) x Hy(YZG) — ZG

has radical Im (H2(N;ZG) — Hy(Y;ZG)) and is negative definite on the

orthogonal complement of this submodule.

Proof of (8.8). In Proposition 8.1 we have constructed a surgery problem
(f,0): (X,0X) — (W, 0W)

with A(f,b) = 0, where we take (W,0W) = (Vj,0Vp), X = Xj . and f = f ..

Since the surgery obstruction (f,b) is zero, the intersection form on Hy(X;ZG)
is the orthogonal direct sum of the negative definite formm (Ho(W;ZG),h) and a
hyperbolic form H({ZG)") on a free ZG module of rank 2r. By [9], [10] we can
represent this hyperbolic form geometrically by a topological locally flat embedding
of §7(5%x S?) in the interior of X. Removing a closed tubular neighbourhood of the
pairs of topologically embedded 2-spheres in this connected sum produces an open
4-manifold X" with one end proper homotopy equivalent to S x (0,00). Note
that m1(X"”) = m(X) and Ho(X";ZG) = H2(X;ZG). Now we pick a compact
subset C C X" such that X" = 8X C C and the complement X" — C admits a
proper homotopy equivalence p: X" —C — S% x (0,00). Let N = p~1(83 xt3) be a
transverse pre-image for some large value t = tg, and set Y = X" —p~1 (53 x (¢, 00).
We can assume that map Ho{(Y;ZG) — H2(X"”;ZG) induced by the inclusion is
surjective. Then by attaching 2-handles to Y along N if necessary, we can assume
that H,(Y;RG) = 0. It also follows that (N} normally generates the kernel
of the classifying map cg:m(Y) — Q(8p, ¢) and the inclusion induces an injection
Hy(N;ZG) — Hy(Y; ZG). The subspace N = Im (Ho(N; ZG) — Ho(Y; ZG)) is the
null space or radical of the intersection form on Ho(Y; ZG) and the induced form
on the quotient Hy(Y;ZG)/N is isometric to (H2(W;ZG),h), hence is negative
definite. 0O

9. AN EQUIVARIANT MODULI SPACE

In the previous sections, assuming the existence of a nonlinear space £/Q(8p, q),
we have constructed a framed, compact, oriented, smooth, 4-manifold ¥ with
boundary 9Y = N U 9yY satisfying all the requirements of Proposition 8.8. In
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this section we will describe the equivariant moduli space (M(P),G) of ASD con-
nections on a SU(2)-bundle over a closely related 4-manifold (Z,G). Analysis of
the Q(4pq) fixed-point strata in (M(P),G) will give the proof of our main result,
Theorem A. _

Let Y be the Q(8p, ¢)-covering of Y. ' Then on Y there is a free action of the

group G = Q(8p,¢), and on the boundary Y of Y we have a union of homo-
topy spheres (£, Q(8p, q)), standard 3-spheres (S®, Q(4pq)), and integral homology
spheres (S, H) for H = Q(8p), Q(8q), or C(2pq) which are invariant under the free
action of the given subgroups. In addition, we have a free G-orbit G'x N of bound-
ary components of Y where each copy of N in aY is invariant only under the trivial
subgroup {1} C G. Among these components, there are the copies (52, Q{4pq)) of
a linear action of Q(4pq) on the standard sphere S3. For each of these copies, we
can extend the action to a corresponding linear action (D%, Q(4pq)) on the disks.

Let (Z,G) denote the 4-manifold with G-action obtained from (Y, G) by gluing
in equivariantly the above 4-disks (D*, Q(4pq)) to each of the boundary components
(S3,Q(4pq)). To each other boundary component S’ or N we attach a cylindrical
end S’ x [0,00) or N x [0,00) and extend the G-action in the obvious way (trivially
on the Rt = [0, 0o) factor). The G-manifold (Z, G) is now non-compact and the G-
action on Z is free except for isolated singular points at the centres of the attached
4-disks with isotropy subgroup @(4pg). The cylindrical ends of Z are permuted in
G/ H-orbits where H = Q(8p), Q(8q), or C(2pq) for the ends of the form S’ x [0, co)
and H =1 for the ends N x [0, c0).

Clearly this procedure does not affect the homology H.(Z) of degree * < 3.
Hence the condition (8.8)(v) on the intersection form of H2(Y;ZG) implies that
bT(Z) = 0. Here we use the usual notation for the ranks b (resp. b~) of the
maximal positive (resp. negative) definite subspaces of Hy(Z;R) with respect to
the intersection form. The rank bo(Z) = rank Hz(Z;R) is given by by = b +b~ +46,
where b° is the rank of the null space (i.e. the radical) of the intersection form.

Our next task is to describe the equivariant moduli space (M(P), G) of Yang
Mills connections on Z. In {30], [32], C. Taubes constructed a moduli space
M(P) for a general 4-manifold M = My [ End M with cylindrical ends End M =
dMp % [0, 00), but without considering possible G-actions. Here M is a compact
4-manifold with boundary. The data consists of a principal SU(2)-bundle P on M
with a fixed trivialization (8, P | 8Mp x R*) of this bundle P over the end. This triv-
lalization provides us an integer k£ = c3(P,#), known as the relative Chern number
(30, Lemma 7.1]

ca(P,0) = — /tr(FA A Fa),

and a trivial flat connection Ag over 8Zo x Rt. Let 7: Z — R be a smooth function
which is zero on Zy and the real parameter on 8Z, x R*. Fix this connection
Ap and a constant 6 > 0 to be specified later, and consider the space A(P,§) of
connections on P which satisfy an exponential decay condition:

a€ L2 1oc(AdP & T Z)
S €7 {1V%,012 + [V a0/ + [af?} < oo

The corresponding gauge group G(P, §) acts smoothly on this Banach affine space
A(P, 8), with quotient space B(P,8) = A*(P, §)/G(P,§) a C*°-Banach manifold [30,

A(P,6) = {Ao +a
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§7). For our application, we actually want to use the “thickened” version of this
moduli space constructed in [24, Chap. 7] because of the presence of our exceptional
ends G X N x [0, 00). Since the trivial flat connection is isolated in the representation
variety of a homology 3-sphere [31, Lemma 1.3], the thickened moduli space and the
one described above are the same over all of the other cylindrical ends S’ x [0, 00).

Let = denote the set of conformal structure on M which extends the product
conformal structures on the ends. Associated to ¢ € M, the star operation x
on Q%(Ad P) gives a splitting of Q22(Ad P) into its (£1)-eigenspaces Q3 (Ad P).
From this decomposition we have the anti-self-duality equation (Fj)4 = 0 whose
solutions can be regarded as the zero set of a section A(P,§) — Lg, 10c( Q% (Ad P)).
In addition to the perturbation of conformal structures, we can also perform the
“Wilson loop-perturbation” as in [9], [31], [6, §2(b)]. Let I'(m) denote a set of m
framed, imbedded circles v = {v;} in Mp,

m
'y:HSil x D3 — M.

i=1

For each v € T'(m), connection A4, and v € D, we have a map

Ya(v): B(P,6) — Lm = [[ SU(2)/Ad SU(2)

defined by the collection of the holonomies v; a(v), ¢ = 1,...,m of the parallel
translation via the connection A along the i** loop. We let w be a 2-form on Z
supported in the product neighborhood 7;(S! x D3) and pulled back from a fixed
2-form on D3. Then, for each smooth Ad-invariant vector field p = (p;) on SU(2)™,
we have the adjoint-valued 2-form w(A) € Q2 (M, Ad P) given by

01) 7(4) = 3" ws i (o)

where w; is the projection of w on 3 (M). In this way, we obtain a set IT of
G(P, §)-equivariant maps

m A(P,8) = L} 1,.(QA(Ad P))

and, combining with the conformal perturbation ¢ € Z, we have the perturbed
ASD equation

Font A(P,6) = L% 100 (Q3(AAP)),  Fon(A) = F(A)s +7(A).

Proposition 9.2. Let M(P) denote the thickened moduli space of finite energy
ASD connections on P with asymptotic boundary value the trivial flat connection 0
along the cylindrical ends. Then there exists a b9 > 0 such that for all § € (0, 8p),
the following holds:

(i) a Baire set of perturbation data (o,7) € Z x I exists for which the moduli
space M(P,8) = F;1(0) is a smooth manifold of dimension

g,

8k — g(x(M) + sign{ M)) + %(hl((')Mo) — hP(OMy))
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where k is the relative Chern number and h'(8My) = rank H* (9 Mp; adb).
(ii) the moduli space M(P, 8} is orientable and has a preferred orientation when
we fix an orientation on the homology H'(M;R) x H*(M;R) x H% (M;R).

For the proof of (9.2), we refer to [30], [9] and [24, 8.5.1].

Remark 9.5. It is worthwhile to point out in the above perturbation of the ASD
equation, F,, = 0, the perturbation takes place in the compact sub-manifold My
and so the equation remains the same over the cylindrical ends My x R. In
particular over these ends, the solutions will be invariant under translation.

In addition, we can make the perturbations arbitrarily small and still have the
same effect. Therefore if we know that a one dimensional flow of ASD connection
decays to a flat connection on End M, the family of perturbed ASD connections
will still have the same decay property. [

In our application, M = Z was constructed from the manifold Y given by Propo-
sition 8.8 so by = rank HY(OY;R) — 1 and b;{Z) = 0. Also by(2) = b+ + b~ + 19,
where b+ (Z) = 0 and V°(Z) = rank H!(N;RG). Note that rank H*(N;adf) =
3 - rank H*(N,R), since 6 is the trivial flat connection, and rank H*(N;RG) =
|G| - rank H*(N;R), since N is trivially G-covered by Y — Y. Now we substi-
tute these values into the given dimension formula for Mg(P) in (9.1) and get
dim My (P) = 8k — 3. In fact we will concentrate on the case when k = 1 and so
we get a 5-dimensional moduli space M(P).

For a closed 4-manifold M with finite group action (M, G), we previously con-
structed a moduli space (M, G) of ASD connections with G-action [13], [14]. The
techniques used there can be easily adapted to the non-compact case, to produce a
group action (M, &) on the moduli space M(P,§) with decay condition.

First we fix a real analytic structure on M compatible with the group action
(M,G) and product-like along the cylindrical ends End M = 0My x R. With
respect to this analytic structure, we have a real analytic equivariant metric which
is again product-like on the end. The existence of such analytic structure and
analytic metric follows from a general argument as in the closed manifold case.

Next we need an equivariant SU(2)-bundle P — M such that P|dMy x R* has
an equivariant trivialization (6, P|dMy x R*) with Chern number co(P,6) = 1. In
the present situation, M = Z, this is taken care of by the following:

Proposition 9.4. There exists a Q(8p, q)-equivariant SU(2)-bundle P over Z with
an equivariant trivialization (0, P|0Zy x RY) such that c2(P,6) = 1.

Proof. From the construction, there exists a degree 1 map ¢:Y — W sending
the 3-manfold N to a point in W and the almost space forms S’'/Q(8p), S'/Q(8q),
S’ /C(2pq) to the spherical space forms S/Q(8p), S/Q(8¢), S/C(2pq). Let W denote
the universal covering space of W with the free action (W, G). We can compactify
(W,G) by filling in the spherical boundary components (5%, Q(4pq)), (5%, Q(8p)),
(S3,Q(8q)), (S, C(2pg)) by the corresponding linear actions on D*. Over (£,G)
we attach a cone and extend the action in an obvious manner to the cone point.
The result is a closed 4-dimensional complex W which has a group action (W G)
with isolated singular points. Moreover, there is a degree one, equivariant, map
AR (1% sending the cylindrical ends dZy x R to the various cone points in Ww.
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To prove (9.4), it suffices to construct an G-equivariant SU(2)-principal bundle
P — W over W with relative Chern number c2(P) = 1. For using ¢ we can form
the pull back bundle ¢*P which is equivariant and with pull back trivialization
¢* (P | cone points)) over the ends and cz(P,6) = ¢*co(P) = 1.

The product bundle P = W x SU (2) over W has a G-action only on the base
manifold, and Chern number zero. Note that around a singular point, for example a
fixed point zq¢ of @(4pq), the action of the isotropy subgroup on the fiber zg x SU(2)
is trivial. Let (Q(4pq), D?) be an invariant neighborhood of zg. Then there exists an
equivariant bundle structure (Q(4pq), D4 x SU(2)) on D* x SU(2) with nontrivial
structure on the fiber zo x SU(2), namely the diagonal action on the base D*
and the fiber SU(2). When we restrict the above bundle (Q(dpq), D* x SU(2))
to the boundary 3-sphere (@(4pq), S® x SU(2)), we have an equivariant bundle
isomorphism

@:§% x SU(2) — P| 83 = 5% x SU(2).

To define this isomorphism, we identify the base 3-sphere S with SU(2) and let
a(z,y) = (z,z7! - y). Using a as the clutching isomorphism, we can modify the
bundle (Q(4pq), P) to a new equivariant bundle (Q{4pq), P(a}),

P(a)= (P = P|D*) U, D* x SU(2).

After this modification, the Chern number ¢z (P(a)) = 1.

Note that the above bundle P(«) is equivariant with respect to Q{4pq). To make
it equivariant with respect to the whole group G we have to make a corresponding
modification on the translate J zo of £ under the action of J € Q(8p, q) \ Q(4pq),
J # id. Since the above procedure is local, we can carry out the same construction
at Jzo and obtain a G-equivariant bundle P(e, Ja) over W with Chern number
c(Pla, Ja)) = 2.

Instead of using the orbit {zg, Jzo}, we can also carry out the same construction
around other singular orbits G/Gq with isotropy subgroup Gy = Q(8p) or Q(8q).
Each of these operations gives a new equivariant bundle with Chern number adding
or subtracting |G/Gp| = ¢ or p. Since (p,q) = 1 we can write 1 = kp + lg + 2
for some integers k,l{. Then after making the corresponding equivariant bundle
modifications around k orbits fixed under Q(8¢) and [ orbits fixed under Q(8p), we

obtain a G-equivariant bundle P over W with ¢;(P)=1. O

With the equivariant trivialization given as above, we have the space A({P, §} of
connections with decay condition é along the boundary. Since we have an equivari-
ant trivialization, we can choose the same ¢ for all the ends and obtain an action
of an extended gauge group by G(P, 8, G) on this space

1 — G(P,6) = G(P,6,G) — C — 1.

In particular, as we factor out the action of G(P,§), we have an induced action of
the finite group G on M(P,§).

Next we consider the set Z(G) of equivariant, real-analytic metrics on Z which
are product-like over the end. Given such a metric we have a curvature section

F:A(Pa 6) _— L%,loc(Qi(Ad P))
Ar— Fy
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which is equivariant with respect to the action of G(G, P, §).

As above, we let Zy be the compact, G-invariant submanifold obtained from Z
by deleting its cylindrical ends. Then by choosing homotopically trivial, framed,
loops in Zy/G, we have a collection of framed loops {gvi|t =1,...,n,9 € G} in
Zo which are disjoint from each other and’ permuted by the group action. Using
this collection of loops {g7;} we can perform the previous Wilson loop perturbation
7 A(P,8) = L3 1,.(Q4 (Ad P)) in an equivariant manner.

In [13], we studied a method for perturbing the curvature section into equivariant
general position. Let ¥:H; — Hy be an equivariant G-Fredholm map between
G-Hilbert spaces Hy, Hy with ¥(0) = 0. Then there is a decomposition H; =
KerT® H, Hy = ImT & H), where T = (d¥)y. Furthermore, the map ¥ is locally
equivalent to T + ®, where &: H; — Hj, ®(0) = 0, and d®|, (c.f. [13, Lemma
2.7}). Associated to &, we have a map

b:KerT — Hy, — H} — Coker T

between the finite dimensional G-vector spaces. The key idea [13, Lemma 2.9]
is that deforming ® to equivariant general position amounts to perturbing ® to
Bierstone general position [2].

Suppose A is a connection in A(P, §) where the curvature section F: A(P,§) —
Lg,toc(ﬂi (Ad P)) fails to be in equivariant general position. By [8, Lemma 2C.1
and 2C.2|, KerdFa = Ker D4 is generated by the holonomy of a collection of
framed loops {gv;} and a finite dimensional subspace of sections over these framed
loops which maps onto the cokernel space Coker Fy = Coker D 4. . It follows that
there exists an equivariant map from Ker D4 to Coker D 4, which we can write in
the form © = Y w4+ ® p;[y:(v)l. Then it is not difficult to see that there exists
a Baire set of perturbations (= x 7)¢ for which the perturbed curvature section
Fy(A) + w(A) is in general position with respect to the zero section. This is the
equivariant analogue of the first assertion in Proposition 9.2.

Remark 9.5. In [6, §2], Donaldson used a similar method to perturb away much
of the stratuin Mo(P) of flat SU(2)-connections on M. This step is unnecessary in
our case, since connections in M(P) are product-like near the boundary and 7, (Z)
is normally generated by 71{3Z). For this reason, the holonomy map p:7,(Z) —
SU(2) for a limiting flat SU(2)-connection is determined by its restriction p| 71 (92)
which is trivial. It follows that p is trivial and so Mg(P) consists of one element,
namely the trivial flat connection.

10. THE ProOF OF THEOREM A

We will now use the equivariant moduli space (M(P),G) described in the last
section to prove our main result. Recall that on the four manifold Z the action of
Q(8p, q) is not free but has isolated singular points {z¢} with isotropy group Q(4pq).
In {14, §3] we described the Taube’s construction of concentrated connections in an
equivariant manner. Using D. Austin’s work [1] on equivariant instantons on $* and
a background flat connection on Z, we produce a 1-dimensional Q(4pg)-fixed point
stratum N = Fix(M(P), Q(4pq)) in M(P) (sce also [3, §1]). One one end of N,
we have a particle-like connection emitting from zg. This singular stratum A has
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an equivariant normal slice which is isomorphic to the linear action (Q(4pg), D*)
on the 4-disk around z.

From this construction, it follows that A/ can be interpreted as 1-parameter fam-
ily of ASD connections A;, invariant under the Q(4pg)-action (not just fixed modulo
the gauge group transformations in A(P;8)/G(P,8)). As we perturb this submoduli
space N/, the resulting space still consists of connections which are invariant with
respect to the group action Q(4pg) on P and Z.

For each of the Q(4pg)-fixed point z¢ € Fix(Z, Q(4pg)) we have a corresponding
1-parameter family AM(zg) = {A;} of ASD connections emitting from . Such a
family N (z¢) cannot concentrate itself again to become a particle-like connection
at some other point yo € Z. This is because yp has to be a fixed point of Q(4pg),
and we have the following “no-return” argument (compare [14, Lemma 17]):

Proposition 10.1. The Q(4pq)-fized stratum N (zo) cannot converge to a particle-
like conmection at a Q(4pg)-fized point yq.

Proof of (10.1). Let J denote a fixed order 4 element in Q(8p,q) which maps to
the nontrivial element in Q(8p,q)/Q(4pq) = Z/2. Note that J? is the order two
element in Q(4pq). Given a Q(4pq)-fixed point zo € Fix(Z, Q(4pq)) the action of
J brings zo to another Q(dpq)-fixed point z9 = Jzo. If p: Q(4dpq) — SU(2) denote
the isotropy representation of Q@(4pg) on the normal slice of z, then the composite

p’: Q(dpq) =5 Q(dpg) = SU(2),

where ¢; denotes conjugation by J, gives us the isotropy representation at zp. In
our construction of Y, we have copies of the spherical space form S/@Q(4dpgq) with the
same orientation. It follows that on Z the isotropy representation at any ((4dpq)-
fixed point yo € Fix(Z, Q(4pq)) is isomorphic to either p or p’.

In order for the moduli space N (zp) emitting from zo to converge at some other
fixed point zg, the normal slice representations at zg and yo have to differ from
cach other by an orientation reversing isomorphism. From representation theory,
it is impossible to have an intertwining operation between p and itself, or between
p and p”, or between p’ and itself, which is orientation reversing. O

We now need the fact that the moduli space M(P,6) of (9.2) has a compacti-
fication M(P, ) (see [11], [30]). To describe this compactification, we consider a
sequence {A,} of ASD connections in M(P,§) which fails to converge. Then there
are two possibilities: in the first case, the curvature can concentrate in the neighbor-
hood of a point, leading to a particle-like connection at the point. In the situation
of instanton number 1 or k£ = 1 in Proposition 9.2, we can have at most a single
instanton bubbling off from the concentration at a point. This can be accounted for
by providing a copy of the original manifold M in M(P,§) and attaching this copy
to a neighborhood M x (0, ) in M(P,8). In the second case a nontrivial amount
of curvature F4_  can concentrate on a region in the end End M = 9M; x R".
The connection A, over this region looks like an ASD connection on dMy x R
asymptotic to flat connections a, b at two ends, or in other words, an element in
MMy x Rya,b) = M(a,b) in the notation of Floer. As the connection {An}

moves towards the boundary M(P, §)\ M(P, §), this region moves towards the end
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of M. In terms of M(a,b), this motion can be thought of as the natural action by
Ry on My x R*. Thus to account for these phenomena, we have a stratified space
structure in M(P,8) \ (M(P,6) U M) with the strata consisting of products:

(10.2)  M(M, a0) x M(ag,a1) x R x M(ay,a2) x R x ... x M(ai_1,60) x R,

where M (as, az41) is the quotient of M(a;, a;41) by the translation symmetry.

The above theory of compactification can be easily extended to our equivariant
setting. For the stratum of particle-like connections and also those in (10.2) are
naturally endowed with group actions.

We return now to the situation where M = Z, and consider the 1-dimensional,
Q(4pq)-fixed, subspace N in M(P,§). Since this fixed subspace has a nontrivial
tangent space, it follows by equivariant general position that it cannot terminate
in the interior of M(P,8) or in other words it has to move towards the boundary

M(P,8) — M(P,8). In (10.1), we have climinated the possibility that the other end
of A becomes a particle-like connection. Thus, as we move along A, we have a
flow of ASD connection {A;} with energy (curvature) concentrating on some of the
cylindrical ends (Q(8p), S’ x R1), (Q(8q), ' x Rt), (C(2pg), S’ xR™), (1, N xR™),
or (G, x R*).

Proposition 10.3. Ast — oo, the family of connections {A;} = N has the energy
gox [tr(Fa,a* Fa,) concentrated on one of the cylindrical end (G, £ xR™) and for
the rest of the manifold Z\ L x R the energy tends to zero.

Proof. Suppose on the contrary a certain amount of the energy appears in an end
whose isotropy subgroup H # G = Q(8p,q). For definiteness in the argument,
let us assume that this is the end (1, N x R¥) with the trivial isotropy subgroup
H = {1}. Since the family {A;} is invariant, under the subgroup Q(4pq), an equal
amount of the energy has to appear in the translation g{(IN x R™) of N x R for
every element g € Q(4pg). In terms of the equivariant compactification of (10.2),
the family {A4,}, as ¢ — oo, enters a neighborhood of the boundary which has
the form M(Z,a) x (G x M(a,8)) where « is some nontrivial flat connection of
S’. In fact, if we think of Q(4pg) x M(e,f) as the product [[ M(«,8) of 4pq
copies of M(a, ), then {A,} is contained in the diagonal of this product space.
Note each M(q,#) has an action of R induced by the translation symmetry of

———

N x R, i.e. M(e,8) = M(a,8) x R. Their product [ M(«a, 8) has an action of
[IR, ie. M(a,8) = [[M(c,6) x [[R and the t-parameter of the family {4,}
coincides with the diagonal action in []R. Thus, normal to the family N = {A;},
there is a representation of Q(4pg) on R*9-!, However, by the construction of A/
as a particle-like connection emitting from zg, the normal slice representation of
Q(4pq) is a complex 2-dimensional, faithful, representation. Since the normal slice
representation can be expressed as an equivariant index, this is the same all the
way along the family. However, by a dimension count, this complex representation
cannot contain R%”9~1 as a subrepresentation.

The above argument rules out the possibility that a nontrivial amount of energy
of {A;} is contained in the end (1, N x R*). Similar arguments also rule out
the possibility that a certain amount of energy of {A;} goes down the cylinders
(Q(8p), S’ x RT), (Q(8q),S" x RY), or (C(2pq),S’ x R™). In each of these cases
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we examine the normal slice representation of ' = {4,} and show that it is not
compatible with the slice representation from the cylindrical ends.

Since the manifold Z has two cylindrical ends +3 x R* stabilized by G, the pos-
sibility remains that the energy of {A.} is spread out around these two ends. As &
is simply connected, a flat SU(2)-connection on ¥ is, up to a gauge transformation,
a product connection. It follows that the energy is an integer and the smallest of
such integers is 1. From the fact that the integral

1

W/fT(FA/\FA)ZO

for an ASD connection A, it follows that the energy can concentrate only on one of
the cylindrical end (G, X x Rt} and on the rest of Z it approaches zero as t — co.
This proves (10.3). O

Let 3 = £ X * be a slice of the cylindrical end (G, ¥ x R*), invariant under the
group action. Let z be a point on ¥ and let {gz | g € Q(4pq)} denote the orbit of =
under the translation of the subgroup Q(4pg). Let E = P X gy(3) C? be the complex
2-plane bundle associated to the principal SU(2)-bundle P and the the standard
SU(2)-representation on C2. Then P has a G-bundle structure and so does the
corresponding 2-plane bundle E. In particular there exists an isomorphism

b(g): Ex — Eg.p

which brings the fiber E; over z to E,.; over g- z.

On the other hand, for each ¢, the SU(2)-connection A, on P gives rise to a
connection A} on E. If we connect = to g-x by an arc v C I, and parallel translate
from the fiber E; to Ey.; via A}, we obtain another isomorphism

T(Ay,7): Ex — By
By taking the composite, we obtain an automorphism
(10.4) $e(9) = T(As, 7)™ 0 b(9): Bz — By

of the same fiber E,, yielding an element of SU(2).

In general, the above automorphism ¢,(g) depends on the choice of the path .
In the present situation, as £ — oo, the connection A; |Z x * is asymptotically flat
and we define ¢(g) by

#9) = lim $u(9) € SU(2).
Then

Lemma 10.5. The definition of ¢(g) is independent of the choice of path v joining
z tog-x. In addition, 9(gg') = #lg) - #g’) for any 9,9’ € Q(dpg).

Proof. If ' is another arc connecting z to g-z, then, because ¥ is simply connected,
v-(v')~! bounds a singular disk A in £. By the generalized Gauss-Bonnet theorem,
the automorphism T(A,v) - T(Ay,¥')~! obtained by taking parallel translation
around the loop v (¥)~! can be computed by integrating the curvature 2-form
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F4, over the disk A. As t — o0, the curvature Fy4, |A tends to zero and so
T(As,v) =T(Ae, 7).

For g,¢' € Q(4pq), let v be a path joining z to g2 and v a path joining z to
g - z. Then gv' -7 is a path joining = to (gg’) - z, so

$(99') = T(A, g7 - 7)7'0(gg") = T(A,~) 7' T(A,97") " 'b(g)b(g")

But, for any g € Q(4pq), the connection {A;} is fixed under the action of g. There-
fore we have a commutative diagram
T(A~')

E. Egy
b(g)zl 1&(9)9;,
T(A,gv")
Egz Egg'-z

and it follows that
d(g9/) = ¢(g) - d(g7)-
a
This procedure for obtaining a representation
¢ Q(4dpq) — Aut(E,) = SU(2)
can be extended to the manifold Z \ (£ x RY) since the energy of {A;} approaches
zero as t — 0o. Note that
m(Z\ (£ xRT)) =m(Z)
is not simply connected and so this procedure leads to a representation
P:m(Z) x Q(4pg) — SU(2).
On the other hand, as explained in (9.5), m1(Z) is normally generated by the fun-
damental group 71(N) of the 3-manifold (1, N} on the boundary. From the con-
struction of M(P,6), the holonomy v | w1 (N) restricted to m1(N) is trivial. Hence
Y| m1(Z) =1 and so the representation ¥: m1(Z) X Q(4pg) — SU(2) in fact factors
through ¢: Q(4dpg) — SU(2).
Lemma 10.6. The definition of 1: w1 (Z) » Q(4dpq) — SU(2) is independent of the
choice of base-point = € Z, up to equivalence of representations.

Proof. If z,2’ € Z are any two base-points, we connect them by a path u and
obtain the relation

b(g)e 0 T(A,u)e = T(A, gu)gz © b(g)a-
If v (resp. ') are paths joining = to gz (vesp. z’ to gz’), then
T(A,7)z =T(4,gu);, o T(A,7)w o T(A,u)s.
Therefore
¢s(9) = T(A,7); ' b(9)z = T(A,u)7 T(A,7) ' T(A, gu) gzb(9)a
= T(A,uw); ' T(A,Y) 7' 0(9)e T(A,u)z = T(A,u);  ¢or (9)T(A, v)y
and the two different base-points give equivalent representations. [

From this Lemma, we can use any convenient Q(4pg)-orbit {g -z |g € Q(4pq)}
in Z\ (£ x R*) and we recover the representation ¢. This leads to the following
result:
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Proposition 10.7. Let ¢: Q(4pq) — SU(2) be defined as above. Then ¢ is an
irreducible, faithful 2-dimensional representation of Q(4pq). This representation
does not extend to any U(2) representation of G.

Proof. To define ¢, we can take our base-point € Z to be the Q(4pg)-fixed point
zo from which the particle-like connection starts to emerge in the definition of
N = N{zg). From the equivariant Taubes construction, it is not difficult to see
that ¢: Q(4pg) — SU(2) is given by the bundle automorphism of the equivariant
bundle (Q(4pq), E) over the fixed point zg.

Since J € G \ Q(4pq) has the property that J? # 1 in Q(4pq), we see that
any extension of ¢ to a U(2)-representation of G would also be fixed-point free.
But G has no fixed-point free U{2)-representations, hence no such extension of ¢
exists. [

Since the end ¥ x R" is stabilized by the group G, the image J-N = {J*- A;} of
N under the action of J € G\ Q(4pg) has similar property with respect to & x Rt.
More precisely, for J*A,, the energy is also distributed in the cylinder £ x R
and becomes zero elsewhere as £ — 00. In other words, the 1-parameter family of
connections {J*A.} also enters the neighborhood M(X xR). In addition, using the
bundle automorphism (Q(4pq)”, P) and parallel translation via J*A;, we obtain a
representation ¢7: Q(4pq) — SU(2). Since

T(J* A, 7)™ 0(g) = b(J) ™ T (A, v) " 0(J)b(g)
b(J)T T (Au, ) "M o(Tgd Hb(J)
b(J) " d(JgJ (),

I

we see that the representation ¢’ is equivalent in SU(2) to the composition

Q4pg) <5 Qdpg) - SU(2)
of ¢ with the self automorphism c¢; given by conjugation by J.
To proceed further, we need the following result of Taubes [30, Prop. 10.1]:

Proposition 10.8. Let M be a negative definite 4-manifold with a cylindrical end
EndM = 0My x RT. Let M(P,6) be the moduli space of ASD connections on
SU(2)-bundle P with decay condition § as defined before. Then there is an open
set U C M(P,6) with the property that for some Ay > 0,U is diffeomorphic to
M x (0, A1) and isotopic in B(P,8) to the image of the Taubes map T: M x (0, A1) —
B(P,6). If {An} C M(P,8)\U has no convergent subsequence, then for all a < co

lim [sup{|Fa,(z)|: 2z € OMp x [0,a]}] = 0.

In our application, the fundamental group of some of the boundary components
of Z may have nontrivial SU(2)-representation. However, we have already shown
that we can restrict our attention to the end ¥ x R which is simply connected.
Applying Proposition 10.8 to this situation we see that for any a < oo and some
sequence A, = A, of connections in N' = {4,}, we have

n@{snpﬂFAn(mﬂ ;2 € ¥ x [0,a]} =0.
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Since I is simply connected, any flat connection over £ x [0, a] is a product con-
nection. In particular the family of connections { A, } approaches the product con-
nection 8 on T x [0, a] for any a > 0 and approaches a §-like connection at infinity.
It follows that over the compact submanifolds £ x [0, a], the two families of con-
nections A, and J*A, converge to the same flat connection § with trivial holonomy.
We can therefore find gauge transformations {@,} on P such that the distance

| (J7An) = A ||

tends to zero as t — oo. Since our representations ¢ and ¢’ are defined over a

compact space £ x SU(2), we may assume without loss of generality that lim a,
n—o0

converges to a single gauge transformation a. Without loss of generality, we can
assume that a(zg) = id, where xg is a Q(4pg)-fixed point in Z associated to M.

Let J' = (b(J) o @), considered as an extended bundle automorphism of E
covering the action of J on Z. Consider the representation ¢": Q(dpq) — SU(2)
defined by the formula

¢z(g) = lim T((J')" An, )7 b(9)z

with respect to a given base-point z € Z.
Since a(zg) = id, we have the simpler expression

Pzo(9) = tElBoT(J‘Am’Y)_lb(Q)

at the base-point zg. In this formula the right-hand side is just the definition of
¢’ , hence ¢., is equivalent to the J-conjugate representation ¢oc;.

On the other hand, when we use a base-point 2 € ¥ it follows that ¢7.(g) = ¢(g)
for all g € Q(4pg), since (J')*A,,) converges to A,,.

Now by Lemma 10.6 the representations q‘);o and ¢! are equivalent. Therefore ¢
and its J-conjugate ¢ o ¢y are equivalent as U(2) representations.

Suppose B € U(2) is any matrix such that ¢(g) = Bg(JgJ 1)B~! for all g €
Q(4pq). Since B? commutes with the irreducible representation ¢, Schur’s Lemma
implies B? = 1. We can ensure that B? = —1 by multiplying B with the central
matrix (i - I) if necessary. As a result, we have a U(2)-representation {¢, B} of G,
contradicting the representation theory of G by Proposition 10.7. (I
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