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Introduction »

In two important papers (18], (19] Waldspurger showed that under the Shimurs
correspondence between Hecke eigenforms of weight k% and weight 2k the square of the
nﬂ‘ l'bgr:le: coefficient (m squarefree) of a form of hslf-integral weight is essentiall
proportional to the value at s=k ?(cenier of the critical strip) of the L-series of
the cﬁmspmdinz form of integral weight twisted with the quadratic character of
UV(-1)"m).

The main purpose of the present paper is to give a formula for the product
c(m)c(n) of two arbitrary Fourier coefficients of a Hecke eigenform g of half-integral
weight and of level 4N with N odd and squarefree in terms of certain cycle integra;s
of the corresponding form f of integral weight. This includes as a special case ('nésn]
Waldspurger's result for odd squarefree level and also generslizes [6],where for level
1 the constant of proportionality between the values of the twists and the squares
of the Fourier coefficients in Waldspurger’'s theorem was given explicitly.

As corollaries we obtain results already proved for level 1 in (6], e.g. the
non-negativity of the values of the twists at s=k or the fact that the square of the
Petersson nora of g divided by one of the periods of £ is algebraic (the latter result
was also obtained by Shimura [15]). As snother corollary we also deduce that
c(-)-ot-"’ 210; -j and so in particular c(m)=0( k., 2") for every €>0. The latter esti-
mate has been pr‘yiomly proved by different methods, namely by combining Waldspurger':
theorai with estimates for L-series on the critical line & 1a Phrageén-Lindel8f (cf.
the remark in [2),Introd.). Note that the usual Hecke estimate for g gives only



k/2+1/4

c(m)=0(m ), while the Ramanujan-Petersson conjecture for modular forms of half-

integral weight would predict c(n)-O[mk/2°1/4+t).

Our method of proof is roughly speaking the follbiing; We first construct the
holomorphic kernel functions for the Shimura and Shintani liftihgs (Theorems 1 and 2;
this is done for arbitrary odd level). Combined with a "multiplicity 1 theorem" as
proved in [5) for odd squarefree level one easily deduces a formula for c(n)é?gi‘of
the above-mentioned type (Theorem 3). We remark that for level 1 and m=1 this formula
was already obtained in the author's thesis {4], and that for level 2 and m a prime
a similar identity has been independently proved by Niwa {10].

Some of our methods and results have interesting implications for Heegner points
on modular curves, when combined with the recent work of Gross and Zagier on Héegner

points and derivatives of L-series of mcdular forms at the center of the critical

strip [3]. This will be discussed in a later joint paper with Gross and Zagier.

Notations

X__xlogz

For zet™ and xeC we put z' =e » where logz=log|z] + iargz and the argument is

ariz

determined by -m<argzgx. For z in the upper half-plane H we set g=e . For integers

x,y with y$0 we also write ey(x) instead of 92'1x/y.

The symbol (%) defined for c,dsZ, de0 is used as in {14],[4]. We extend the de-
finition to all pairs (c,d)¢22~(0,0} by requiring'(ﬁi'to be #1 or O according as ¢
is ¢1 or not. ‘

By N we understand a natural number. We let rO(N) = {(: :)¢8L2(2)| YEO(N) } snd
write I(1) for SL,(2). | |

If keZ we write M, (N) (S, (N)) for the space of modular forms (cusp forms) of
weight k on ro(N). For N odd we denote by sk*l/Z(N) the space of cusp forms of wei&ht'

k+1/2 on ro(4N), which have a PFourier expansion c(n)qn with c(n)=0 unless
n2l

(-1)%n10,1(mod4) (c£.C53).



If £ and g are cusp foras of‘wéizh’t’ {:‘é‘%ﬂ' on some subgroup I of ﬁnite index in

I'(1) we denote by

< £,8> = ﬁﬁ%ﬁ r{u f(»:)ﬁﬂy""?flx&y ~ (x=Rez,y=Inz)

their Petersson product.

1. Statement of results

We let T'(1) act on integral binary quadratic ‘forms (a,b,c)(x,y) = ax2+bxy+cy2 b
(1) ' [:,b.c}q :)(x.y) = [a,b,c] (ax+By,yx+8y).
For an integer D with D#0,1(mod4) and a form Q=fa,b,c) whose discriminant b2-4ac is
divisible by D we put

o ‘R (a,b,c,D)>1
.D(Q) i {(—2—) if fa.b.c.b)sl. where Q represents r, (r,D)=1.

If Q represents both r and s, then 4rs may be‘ written as xz-nzyz for some x,y,z¢7.
Therefore (%)-(25 so that uD(Q) is well-defined. Note that the value %(Q) depends
only on the l‘(l)-equivaleaco class of Q.

For integers k22. N21 and integers D,D' with D.D'=0 1(mod4) and DD'>0 we set

@) £, q®D,0) = T w(ab,c)(az’ebzec) ¥ (z6H).

’ ‘ a,b,ce?

b ~4ac=DD*
Nfa
The soriés converges sbsolutely uniforaly on compact sets, and fk.u(:;n.n') is a cusp
form of weight 2K on Ty(N) (identically zero for (-1)¥D<0). For De1 these functions
were introduced by Zagier ([20],App. 2) in connection with the Doi-Naganuma 1ifting.
For k=1 the series in (2) is not absolutely convergent. However, according to
"Hecke's convergence trick" put
£ .(2,5;0,0') = y* I » (a.h.c)a(uzvbvc)'l luzwz*cl"
2 » ’“
b"-4ac=DD'
N]a

(2sH; 8¢€, Res>0),



We shall prove that for every z¢H this function has a holomorphic continuation to s=0
and that
fl’N(z;D.D') - fl’N(z,O;D,D')
is a modular form of weight 2 on I’O(N) (it tuns out to be a cusp form for N cubefree,
but not in general).
Now let N be odd, k an integer 21 and let D be a fundamental discriminant (i.e.

D is 1 or the discriminant of a quadratic field) with (-l)kD>0. For z,e¢H put

-1 k-1/2 D, k-1

2, y(z,t3D) = i(N) E n I u(t)@Dt

k,N “k,D ! ( tIN t
(-1)"==0,1(4)

3)

£ /e (€230, (D) -)) orint

with

D" -nl 2]lm"‘"’ zw(ztji)z' k2 i) = [ru):ro(u‘)‘j.

Then “k N( ,t;D) is in MZk‘(N) and is in SZk(N) if either k22 or if k=1 and N is
]
cubefree.
For meN with (-1)":-20,1(-044) let Pk,N,n be the P Poincaré series in Sk+1 /Z(N)

characterized by

-1 rk-1/2
() <BPy g > = 1N (e;f)-;—%)- W Ve T s mdes,,, 00

Theorem 1. The function nk’N(z,x;n) defined by (3) is for each fixed w¢H a cusp form

in sk*l IZ(N) with réspéct to tv. More precisely one has

iy g(200) = 1006} ﬂ’;&r}?‘& (o ek
(5) @M=
Pk."’nz'n",dz(f) ) . o2vinz
Note that Theorem 1 is the precise analogue of the main theorem in [20]“for;ioduljr
forms of half-integral weight.
Let D be a fundamentsl discriminant with (-1)D>0. We defins the D'M Shimurs

lifting of a function g= I c(n)q"e Sbl/z(u)' by
n2l



D, k-1 .2 .. .2 ..n
6 = giSy ypn® = 2 4" “cn®|D|/d°) - .
. Ls.g,.u’n w21 ( dln % c 17d%) ) q '

‘ - (d,N)=1
For feS,, (N) and D and m as above set
(7) rk N[f;n, ('l)kl) = z : “D(Q) j f(z)dq kz
. Q wmod ro(N) cQ s
1Ql= |DIm,Q(1,0)=0(N)

where Q={a,b,c] runs through a set of l‘o(N)-inequivalent integral binary quadratic

 forms of dis‘criu’iﬁani |Ql= {plm and with N|a, CQ is the image in I‘O(N)\ll of the semi-

cicle ajz|?+bRez+c=0 (oriented from left to right if >0, from right to left if a<0
and from -'-'-:- to iw if #=0) and dQ. zy(azz+bz+c)k'1dz.

For f082km) we now define the Dth
® fig, @ 1 (= vt n i ented) ) 2

=l tiN
(-1)"m=0,1(4)

Shintani lifting of £ by

% .
Theorem 2. The mappings §k,N,D and §k.N,D defined by (6) and (8) map skfllz(") to
MZR(N) (o SZR(N) if either k>2 or if k=1 and N is cubefree) and map SZR(N) to

Sia1 /2 (N), respectively. They are adjoint on cusp forms with respect to the

Petersson product. More precisely, one has

o < g.'nkm(-'z, DD = glSy n,p(®) (VgeS,,, ,,00)
and
(10) <8, (B0 = A5\ () (N £e5,, (N)).

Lifting maps from modular forms of half-integral weight to integral weight were °
first introduced by Shimura [14] and later studied by Niwa [9] who gave a non-holo-
morphic kernel function for them and showed that forms of level 4N are always mapped
to level 2N. By Theorem 2 the subspace Sk‘\1 /z‘"); is mapped all the way down to level N.

Lifting maps fron integral to half-integral weight were first introduced by
Shintani [16]. In the special case N=1, D=1 Theorems 1 and 2 were proved in (4).

That ak.N( »1;D) for k=1 in general is not a cusp form reflects the fact that for

weight 3/2 the Shimura 1iftings as defined in (14] map precisely the orthogonal com-



plement of the "space of theta functions" (cf. [14]) to cusp forms; this was coﬁjec-
tured by Shimura and proved later by Cipra, Kojima, Sturm a.o. Note that the "space
of theta functions" is zero either for squarefree level and arbitrary character or

for cubefree level and trivial character.

We now come to the main result of the paper. Let N be squarefree. We proved in
{5] that in this case one can set up a theory of newforms & la Atkin-Lehner-Li-

. new
Miyake for Sk+l/2(N)’ there is a canonically defined subspace Sk+l,1(N)c sk+1/2(N)’
new new

and sk+1/2(N) and S2k (N) (subspace of newforms ip Szk(N)) are isomorphic as modules

over the Hecke algebra. The lifting map_§k N.p Preserves old- and newforms and
E A

commutes with all Hecke operators. If f= a(n)qne S;:"(N) is a normalized Hecke

n21
eigenform (a(1)=1) and g= L c(n)q"e SE:Y/Z(N) a corresponding form of half-integral

nzl
weight, then the Fourier coefficients of f and g are related by

(11) ol = o)) & w@ @ aa
n
(d,N)=1

for every fundamental discriminant D with (-l)kD>0.

Theorem 3. Let m and n be positive integers with (-l)kn,(-l)knso,l(nodA) and_suppose

that (-l)kn is a fundamenta; discriminant. Then

[k/2] k
(12) =@l . LU (D 0t

with the period integral defined by (7).
’

Remarks. i) If (-l)kn is not fundamental, then the formula becomes
emi® , VA (
(d,N)=1

D d,
£ u(t) ) 69

t] (d,h%/0) tf ket
NS YIS

where (-l)kn-th with D fundamental and ¢ X defined as follows (cf. (21]). Write
(-1)'m

n-mos2 with (-l)km0 fundamental. Then for any xe¢2



Io

k .
. ("l) -0 2
{ —) R if X=Xot"s lls,(z‘-,xo)-l
(1] if (x.sz) is not a perfect square.
This can be derived from the Theorem by considering the action of the Hecke operators
Ty (1), r|h. |
ii) Let x be a quadratic Dirichlet character mod N with conductor £ and denote by
Sk .1 IZ(N.x) the space of cusp forms of weight k+1/2 on rO(m) with character (ﬂ-(:y-)x

which have a Fourier expansion I c(n)q" with c(n)=0 unless x(-1)(-1)*nz0,1(mod4)
n21

(cf. £5)). Then the map U(f) which replaces the nthPourier coefficient by the _ifnth
one gives an isomorphism between s'l::‘l' lz(N) and S:f:lz(ﬂ,x) and converseley, where
S:::/z(}l.x) is an appropriateley defined space of newforms in S‘l"1 /2(N.x) ()P
Using this 1Sonorphisl and the multiplicative relations for the Pourier coefficients

one can obtain a formula analogous to (12) for a Hecke eigenform in s::'; IZ(N’X)'

For each prime & dividing N we let l'l be the Atkin-Lehner involution on s'z‘:“'(m

associated to ¢ and defix_ned by
1,2 o 2 -

fln‘ = f'Zkﬁ (N 18) (a,BeZ,2 8-Nast),

where as usual for (: g)»QSLZ(R) we put
8 -2k azes.

£l ) = 20 TEGED.
For every prime £ with £|N we define wzt{tl} by

flll = w,f.
For D a fundamental discriminant with (D,N)=1 we denote by

L(£,D,8) = I ’(;l'!)a(i.)n" (Res>>0)
n2l1

the L-series of £ twisted by the quadratic character (9-). Recall that L(f,D,s) has a
holomorphic continuation to € and that

" (£,0,5) (20)"*0%)*/2p(s) (2,0, 5)
satisfies the functional equation



(£,D,s) = (-1)“(:;3)1." (£Im,.D,3),
where

1,0 -1
eiw, = sl T W = €], —=( ~).
N LIN” 2kwN0

Note that L(£,D,k)=0 for (-1)*(=-1.

More generally, for an arbitrary non-zero discriminant D we may define

L(f,D,s) = I eD(n)a(n)n‘s

nx1

(Res>>0)

with eD(n) defined after Theorem 3 (cf.[6]). Then L(f,D,s) equals I (2-).&(11)1;'3

n2l

if D is a fundamental discriminant and differs from L(f,Do,s) by a finite Buler product

over the prime divisors of h if D=Doh2 with DO a fundamental discriminant.

Corollary 1. Let D be a discriminant with (-l)kD>O and suppose that for all prime

divisors ¢ of N we have (%)-w’.. Then

, .
Ic”DI“ _ o,v(N) (k-1)! k-1/2 L(£,D,k
(13) s> '(;Tc)—"" _(Z'fLIfL>)' ’

where v(N) denotes the number of different prime divisors of N.

For N=1 this the main result of [6]).

For the proof, assume first that D is a fundamental discriminant. Then by (12)

N L ) ks
<88 (£,£0

rk,N(f;D’D)

with

r, .(£f;D,D) = L w, (Q) £(z)d, .z.
kN Q mod To(N) D E(Q Q.k

1Ql= 101 2,Q(1,0)=0(N)

!
Now a set of PO(N)-representatives of quadratic forms Q with discriminant Dz and with'

Q(1,0)=0(modN) is given by
{ Q';Ntlu(modD).th,vO},



where Qu-[b,n,u], wt-‘V' Hi and 'L Bperates on integral binary quadratic
it

forms according to

[a.b,c]o'z = (a,b,c]O\-/-—E. (;’ l.:) (a,BeZ, zZB-No-z)
A

and (1).
One easily checks that uD(Q-wt) = (%)uD(Q) for any form Q. Since
uD(Q”) = (%) and fllt - (%)f by assumption we get -
vy N(£50,D) = £ I w (QeN) (£]W ) (2)d, (¥ z)
k,N tIN u(D) D'yt é. ' t Qu’k t
io ¥
=1z & [ £kl
tIN - w( % /D

2V (N) (pyyk-14 ( : (ij( sit) ek 1ae
( £ .5, GG+

"M k-1 (B2 2 [ 1 (Rya(n)e k-1,
0 n2l n

2*® A oy K rag o XY 20e,0,1),

where in the last line we have used analytic continuation, and (13)
follows.

If D is not fundamental, identity (13) can be proved along
the same lines (cf. Remark i) after (12)). However, it seems easier to
exploit that (13) has already been proved for fundamental discriminants

and to apply the same arguments as in [6],p.188f.

Remark. If for some prime divisor 2 of N we have 'L'°(%)’ then Ty N(f;D,
=0 and so the left-hand side of (13) is zero, too. This checks with (s).

where it was shown that c(|D])=0 if w‘--(%) fpr some £.

Corollary 2. Under the same assumptions as in Corollary 1 we have

L(£,D,k)20.

If we square both sides of (12) and then apply (13) we get
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Corollary 3. Let D and D' be two fundamental discriminants with (-l) D (-1) D'>0 and

(—) (z )=w, for all primes & dividing N Then

p)*" Y2y (£, b, )L (£,D,K) = —2-‘-'1-— 2 2"(")|r §(£:D,0)] 2
x-1)12

with T N(i";D,D') defined by (7).

As in (6] for level 1 formula (13) also gives information about the algebraic
nature of <g,g>. In fact, by Manin (8] and Shimura [13) one can attach to £ two real
numbers w_ and w_ such that the values of rr-sL(f,D,s)/mt (s¢2,0<Res<2k,(-l)s(-_—'ll)-tl)
are contained in the field generated over Q by the Fourier coefficients of £ and NIDI' .
On the other hand, by (11},[21] (£, f> is an algebraic multiple of w,w_. Combining

this with (13) gives (cf. also [15)):

Corollary 4. Assume g has algebraic Fourier .oefficients. Then <(g,g> is an algebraic

multiple of one of the periods w_,w_ attached to f.

We mention that by applying Rankin's method to g one can show using (13) (analo-
gous argument as in [6]) that the mean value of L(f,D,k) (DeZ, (-I)kD>0,(%)=wz for all
primes £ dividing N) essentially equals {f,f) .

Finally we would like to apply (12) to estimate the size of the Fourier coeffi-
cients of g. For a fundamental discriminant D we denote by

D, -s
L.(s)= I (<)n : (Res>0)
D nz2l 7 -

its L-series. We put
(14) C(f) = max yklf(z)l .

zeH

Corollary 5. Let D and D' be two different relatively prime fundamental discriuinants5

with (%S(%')'"z for all prime divisors £ of N and (-l)kD,(-l)kaO. Then the following

estimates hold:

1) letd)l Je(p1)l s 2

kv *le ey £BE2 oon 2, (1);



11
a2p% 2,0 1/2 2
(k-1)1 ‘
Here C(f) is defined by (14) and v(N) denotes the number of different prime divisors
of N.

Taking into account that LbD' (1)<3logDD' (cf. e.g. [17],Hilfssatz 4) and the fact
that there always exists D' with c(|D'] ) (resp. L(f,D',k)) different from zero we

deduce:

Corollary 6. Let D be a fundamental discriminant with (-l)kD>O and (%)zwl for all
primes 2 dividing_ N. Then

(1s)  cqot) = ooy ¥/ ?10g10})
and
(16)  L(£,D,k) = o(ip) /%10g%i0)) .

Using Deligne's theorem (previously the Ramanujan-Petersson conjecture) for f (actuall
a weaker estimate would be sufficient) and the relation (11) one can show that (15) ar
(16) hold for arbitrary Dez with (-1)*0>0, (D)=w,for all 1IN, For the connection with

the Ramanujan-Petersson conjecture we refer to the remarks in the Introduction.

To prove Corollary 5,i) we write for Q a quadratic form with {Q]=DD’
le@ac, ¥ el = yieel Q-1 Kl

and observe that

]g(z;ln = {Dp* (for all z on CQ)’

and that the hyperbolic length of CQ equals

‘ 2
&f J%EL = log cpns
Q

where ¢ is the fundamental unit of Q(YDD" ) (cf. (12)). Therefore

DD'
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)(k-l)/2 2

Iéf f(z)dq’kz < C(f) (D! lochD,._

Q
Since the number of ro(N)-inequivalent primitive binary quadratic forms Q with [Q|=DD'

and Q(1,0)=0(N) is Zv(N)h(DD'), where h(DD') is the number of primitive I (1)-inequiva-
lent forms of discriminant DD', and since mD(Q) vanishes if Q (}Q}=DD') is non-primitiv
we obtain

I r g(E:0,001 5 220

Taking into account (12) and
h(DD')logeDD,
o) /2

C(f)(no')(k'l)/zh(nn')logeon, .

= Lppe ()

we obtain i). Then ii) follows by squaring both sides of i) and applying (13).

2. Proofs of Theorems 1 to 3

2.1. Proof of Theorem 1

We shall prove Theorem 1 by applying the method of [20), i.e. we will expand both
sides of (5) in a double Fourier series and then compare Fourier coefficients. We

begin with

Proposition 1. For any integer k21 the function fk N(z;D.(-l)km) is a modular form of

weight 2k on PO(N). It is a cusp form if either k>2 or if k=1 and N is cubefree.

Proposition 2. The function fﬁ N(z;D,(-l)km) has the expansion
’

2winz

(17) fk.N(z;D.(-l)km) = ck,N(n;D.(-l)km) e

I
n2l
with

k
c 30 (0% = 220 2 ipymy *71/2 [ S L B

S 10172+ T 0 iim 4
12 L_w_mz] .
z a s ( D , J :
az1,Nla a,D, (-1)*n Y N waa
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here
{ 1 (xe2)
§(x) =
Lo m,
: 2
(18) s x (Ita,n) = z op(a,b, 2R o) (mb)

a,D, (-1)¥n b(2a) ,b%= |D| m(4a)

is a finite exponential sum and
2r

. « (5k-1/2 r (t/2
Tk-172(8) = P oy Y Sy

is the Bessel function of order k-1/2.

Proof. The calculations are essentially the same as those in £20),App. 2. We shall
. k
abbreviate fk,N(z) = fk,N(z’D’('u m).
First suppose k2. Then the assertions of Proposition 1 are obvious. As for (17),

noticing uD(-a,-b.-c)s(-?-:l-)mn(a,b.c) and (-?—1—)“(-1)k we write

fk,N(z) = f:,u(z) +2 I f‘,N(z)

a21,N|a k

with

£ () =2 T w (0,b,c) (bz+c) ¥

k,N b>0,c62,b%=1Djn  ©
and

2 ‘ 2
£ LT oy (2,5, 2R (5,20p, B iDimy k|
» beZ,b’z) Dy m(4a) a

If lDllarb2 is a square, then since D is a fundamental discriminant we must have Dib, s
ll-lblt‘2 for a positive integer £f. Then observing wD(O,b.c)-(%) we have
@ =2 1 Qumze)™

ce2
D. -k g -k
=2 I () L (fz*—r-r +n) = .
r(D) ¥ neZ D
Using Lipschitz's formula
-Tis/2 s
L (tﬂl)-s = L_I'TYLZIL 13 ns'lemm (te H,36¢€,Res>]1)
ne? | s nz1

with t=f2+r/ID} and s=k and the value of the Gauss sum
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; (B)e2minz/ 1Dl
r(D) T

we obtain

k
a9 £ @) = (pVA k2 2

- &&Y 2

nk-ngﬂinfz

¥ o

The sum f: N(z) we write as

( a(z+n) 2+b(z+n)+——7-!'-)-'—5 )

2
T w,.(a,b ELJLU&JE

2 p(®brgg ) I *
b(2a),b = IDI m(4a)

£ (2) =
k,N ned

The nth Fourier coefficient (n21) of the inner sum is

o+3iC 2

I (azzwz*—h—;m)"‘ o -2minzy, (©>0)

~+iC 2
Ctio

= (1 )k§li winb/a ." (at +,D‘m) -k dt (t='i(z"‘22))
C-iw 2
(20)
K,k¢1/2 k1 k-1/2 .
. (- 1) 2 J @oVibin’, winb/a (€11,29.3.57)
" anmK Vg gy k120 s

Equation (17) for k22 follows from .this and from (19).
Now let us suppose k=1. In the same way as above we break up the sum fl N(z,s)
»

1 N(z s;D,-m) as

£ n(28) = £ ((2,8) + 2 E £](2,9)

a2l,Nja
with
fg’N(z’SJ " b>o,c07fb2-|Dlm wp(0,b,)¢ (bz+c)
and
RN O T P SRR 1 . LR LY
’ bez,b“z1Dim(4a)

where we have used the abbreviation

4, (2) = 2701zl

-S



1§

Setting l-lDIfz with fiN we obtain ‘

=2 ¢ e o) E e (fzel )
LN r(D) ‘ neZ lm

. 8 D ) o
= 2y r!(:D) (;JOS(SDl)[Qs(fZ*W} +

+ I {¢ (f“TT +n) 0¢ (fztrr lDl -n)} .:] .

nz1
The series in square brackets is absolutely convergent for s=0 and at s=0 equals

weotn(fze—) = -wi-2yi I lein(fur/\m)'
ol n21

SO
i =21 O e [-siorn x QZein(fzer/ID) ]
r(D) n21
=i01" Y2 4y (;‘q)eZmnfz
n21

(note that (P!;) = 0 since (2) is a non-trivial character).
r(D)

For the sum f; N(z,s) with azl we have
2
f: N(z:8) = y® 2k wD(a.b.Lag—) I ¢ (a(zen) +b(z+n)
' b(2a) ,b = 1D} m(4a) ne?

, -IDlll
4a ).

The inner sum has a Fourier expansion

(21) L cs(n.y)oz'im (y=Imz)
nel
with |
w+iC
cg(niy) = _g ¢, (az +bz'——m-) -winz,, (c>0)
T et
Ceie
(22) - i.‘liﬂb/‘ S ’ (atZ’_ﬂ_!_) e2!nt
' C-i

As is oasy to see, the integral converges absolutely, is holomorphic and satisfies a

uniform estimate for Ros:-;- which suffices to make the series (21) absolutely conver-

gent for all s with Res>-3 1 . Thereforethis series has a limit at s=0 which is obtained
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by setting s=0 in each term. Now the poles of the integrand in (22) are on the ima-

ginary axis, to the left of the line of integration; therefore for n<O we can deforn

the path of integration to the right up to « without crossing any poles and obtain
coniy) =0 (n0).

For n>0 we can use equation (20) which is valid also for k=1 to get

-23/2-,2,, 1/2 -nn\IIDIm') e'trinb/a

comiy) = m 1/2 — (n>0).

Summarizing we have shown that

(z) = 1im £, (2z,5)
1,N 0 1,N

exists, is holomorphic in z and has a Fourier expansion given by (17).

To see that'fl N is holomorphic at all cusps, note that for (: :)&r(l) we have
»

23) (v2+8)"%f) @5 = lim z 0y (4, (QA(z,1))

s+0 Q
1Ql=1D}m,Q(1,0)=0(N)

with the sum over all quadratic forms Q with discriminant {Q}=|Djm and Q(1,0) divi-
sible by N. Since w(Q) depends only on the T'(1)-equivalence class of Q the sum in (’

is equal to

L wp(Q¢,(Q(2,1)),
Q
1Qi= 1D m, (Q=A" ") (1,0)=0(N)
and from this by the same type of argument as above one deduces that

(vae8) %, (B

2wiz/w

has a Pourier expansion in e (with a certain welN) with no negative powers and

convergent for all z<H.
Since by definition

£, yCED) = (re0)’fy () (NG Derg)

we have shown that f is a modular form of weight 2 on PO(N). Moreover, the consts”

1,N
term in the Fourier expansion of (23) is easily seen to be equal to the constant tert
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in the Fourier expansion of

lim I D

$+0 \QI-\Dl-,(goA'l)(,l.O)'O (m)Os(Q(z,l)).-
and this can be evaluated in the same manner as above using the partial fractional
decomposition of the cotangent and the identity

Tcotyz = -wi-2ei I e2ViNZ (zeH).

n21

From this one can conclude that f vanishes at all cusps for N cubefree. (This is

1,N
not true for general‘ N, for example let p=3(4) be a prime, and let D=-p, ths.

A -

Our next task will be to compute the Fourier expansion of the Poincaré series

Py KN, ¢ k+1/2m) ((-1) rO 1(4)). Let us first recall some definitions ((14,0D).
Let Ekd /2 be the group consisting of pairs (A,¢(z)), where As(Y 6)cs(;l.z(]!) and ¢(z)
is a complex valued holomorphic function on H satisfying

16l = ( det»”-k/z.quh o1 k*V2
with group law defined by -

(A#(2) (B,#(2)) = (AB,$(Bz)¥(2)).
The group algebra of gk +1/2 OVeT € acts on functions g:H+€ dy
‘ -1
xif’c,,(A\,.o\,) - Ec $,(2) "g(A2).

We have an injection T (4N)¢-. Sxe1/2 given by

AP’(A,(?(" k-llz( *&)hl/z
If there is no confusion we shall write A* for the image of A.

Denote by S 2(4!!] the space of cusp forms of weight k+1/2 on ro-(-m) ([14)).

~k+1/
Then, as was shown in [5]. the orthogonal projection pr from S, . ,2(4N) S, ,z(N)
is given by

) (k+1)/2)_1 - * | L1
zpr-(-l)[ —_— (I gled” )
' N w4) A, 0 +58
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where

£ = (@ DBV, A - G D,

Clearly we have

Pk,N,m * -k,N,nlpr

where Bk,N,m is the m'" Poincare series in §k+1/2(4N) characterized by
’ .-1 Ir(k-1/2

<8P > =1 173 2 (n) (V g=

k,N,m 4N (4"n)k 1/ g .

Proposition 3. Put a=(:%9 and set

£ a (n)q"es (4&) ).
o1 & € Sr41/2

n('a/N) = ((-u; 2),(-0"2+1)k+1/2), n(l/ZN) = ((2; 2),(2NZ+l)k+1/2).
Let gesk*1/2(4N) and write
gz) = & a(m)q",
n21
sM @) = 1 2l Ny
n21
gl'a(l/ 2N) (z) = a(1/2) (n)q"/4

ngl,(-l)knsl(4)

(expansions of g at the cusps iw=, -a/N and 1/2N, respectively). Then

gera) =3[ = (amea-n¥2? iV Cem ) ot
n21,n=0(4)
(24) k-1,(-13%n,_(1/2N) n}
I TN (a2 1 (VM gy g |,
Proof. Since
o - 8 .1 (520 2
we have
glEAS + g)EAY = gle + gle”!
- e-(2k+1)fi/4g(z+al_) . e(2k+1)vi/4g(z%)
a(n)q"

-(-

[ (k+1)/2] T
n ﬁ(n?_l, (-1)¥nz0,1(4)
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- a(m)q" ) ;
nzl.(-i?)"‘nsouu) e )

thus

(/A L

w ( tIEA; + SIEA; ) *—;x = ~§- a(n)q".

m,(-Bk,.so, 1(4)
Next from

A% = (P . BT gy /2y

Gh? &L,
.( 2 ) (-a/N) ( 16 1 g2kl (2k+1)ri/4)
N2e3aN  aN+4

we obtain

0D/ L o Ly ko2l (/M) ) Zwin(162+1)/4

s\Z' -« 6 n>1
- %(1_ (-l)ki)ZZk'l L ina(-m/hl) (n)q4"
n21

Finally

. ((4(1+aN) L, 2K VITI/L 4 ) k41/2)

(lmul (lm} -aN+1 \#
—2 N = sy 8 1, ,-k-1/2 (2k+1)wri/4
= n (0 2) »2 e

2aN(N+1)~4N ~aN+2

and therefore

(-l)f(kol)/ﬂ_}_ gIEA: - %ﬂ-(-ﬂki)zkﬂﬂ L/ (n)e'i““q'

Wz ne1, (B %n1(4)

k
. .25 2k-1 Ty (_(;yz_g),u/zu) .y
n21, (-1) n=1(4)

Using (24) we will now prove
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Proposition 4. Let m21,(-1)¥n=0,1(4). Then

@5) P g p(®) = n;l,(-l)k:EO,l(‘i) g N,n(™ o2¥inz
with
tna® =3 [6n+ (O pzamb/2t4 1y @ma ,(%wrﬁm]
S
Here Gm,n is the Kronecker delta,
(26)  H (n,m = (1-(-D*1) 1+ D)z oo AR l2 o (nsens™

(6 Y 2,66 121(4c))

is a finite exponential sum (the star in the summation sign shall indicate that &

runs through a primitive residue system med 4c) 229-“k-1/2 is the Bessel function

of order k-1/2.

Proof. Write P =P . With the notation of Proposition 3 let us set

k,N,m

P(2) = £ g (n)q",
n>1

Pt o g gla/Migygn/4

n>1
p I/ () . s g (1/2N) (1 /4.
- nal,(-1)*nz1(4) ™
Let us first suppose k2. Then Pm is given by
nt 7 I I emaz) (e(2)=e?"1%)
- AeT \T, (4N)
(= PIned; =@ ED V2 (r206) /2 for as(¥ Herg(an).

We shall use the following

Lemma. Let A=(? ‘;)eSLzm). Let c>0,y>0 and keZ,kz2. Then

I (c(zer)+d) K12 ¢ a(zir)+b,

reZ c(z+r)+d
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@ e @ A0k L 2 et g e
AL
cc(ya+nd) qn (zeH).

Proof. The proof (see also {20]) is a standard application of the Poisson summation

formula. It suffices to treat the case Aa(g °é), i.e. to show that

(20) 1 (ze1) K12 -k ,-¥i/4 X/2-1/4,

re?2

e(g;)-z:i L (n/y)

aNEy) q°
1 k-1/2( ny') q

since (28) follows from this after replacing z by z+%~and Y by y/c2 and multiplying

the resulting equation with ck-1/2

ec(ya).
Now observe that for k22 the series on the left-hand side of (29) converges
absolutely uniformly on compact subsets of H to a holomorphic function, which has

period 1i and vanishes at infinity. It therefore has a Fourier expansion

I c(m)q"
n21
with
ic+1
e = § T (5 eV )a (C>0)
ic Ted
Ctie

‘-Ztinzz-k-llze-ZIiy/z dz .

C-i=
After substituting z=i{y/n’'s we obtain

k-wi/4, . k/2-1/4 1 c?" k=12 2007 (s-s"1)

c(n) = 2wi” (/) =g I

- Zri'ked'1’4(n/1)k/2'1/4Jk_1/2(41(57‘)

(the integral is evaluated in [1),29.3.80; the function t> (t/u)k/2-1/4J l(zdiﬁ?)
k-2
is the inverse Laplace transform of s v s'k'llzc'"/s). This proves (28).

We shall now first compute g.(n). We break up the sum in (27) into the terms

with c=0 and twice the terms with ¢>0 (note j(-1,z)=1). Then we get
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-k-1/2 az+h

4Nc, -4.k+1/2
(30) P (2) = e(mz) + )3 (== (4Ncz+d) () ,
" ¢>0,ad-4Nbc=1 d d ' ,~e Wez+d® >
(d,4Nc)=1

where the sum extends over all pairs (c,d)ez2 with ¢>0, (d,4Nc)=1 and to each such

pair we have associated a and b in Z with ad-4Nbc=1. Since (ﬁﬂE) and (359 have

period 4Nc, we may write

4Nc, -4.k+1/2 -k-1/2

P (2) = e(mz) + T == I (4Nc(z+r)+d)
" cz1, d(4Nc)' d d re2
ad-4Nbc=1

( a(z+r +b)
¢ 4Nc(z+r)+d’"’

The Fourier expansion of the inner sum is now given by the Lemma, and we obtain

G0 g ) = 8+ o (-1 D2 ki) nymy*/2-1/4

’

.!L'—*ﬂ
cfl H4‘lNc("’m)‘]k-llz(Nc mn” ),

vhere for u,veZ we define

Hyw) == = E9HEp

k+e1/2, ane(u8+vs™h) (6" Yez,86" 151 (aNc))

Next we compute gi-Q/N)(n). From (30) and the identity

4Nc z 4N, 4c-ad /2

A% Cavzen V2 (aNeFrr sy V2 = () A2 (n(4c-ad)zea)! (c>0)
we obtain
P InCM o) o (e * V2 p (2
k-1/2_ 2 4N, dc-ad, -4.k+1/2
BT T RPN, R AT
ad-4Nbc=1

(N(4c-ad) z+d) ¥~V 2°("i§m—"%;z_$) .

After a substitution 4c-ad v c,a-baN » a in the sum we see that

- -k- - 1
L h M) o anzey * 2ol z Aoy

c.dsl.cs-ad(4),é>-ad
{(4Nc,d)=1,ad-bNe=1

(ch+d)-k-1/2 e(nN%%;%J.
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l_le now break up the sum over ¢ into the sup over the terms with c>0 and the sum ove:

the terms with ¢<O and then in the latter sum replace a,b,c and d by their negative:

Then we obtain after a short calculation

(~a/N) -k-1/2 4Nc k+1/.
(!) s (-aNz+1) e(m———r- b =)
' ‘ “Nz+1 c>0,d,c#-ud,c5-ud(4) d d
(d,4Nc)=1,ad-bNc=1
(ch+d)-k-1/2 e(lﬁ%§E%9
4Nc, ~-4.k+1/2 -k-1/2 az+b
= z (—= )( ) (Ncz+d) (lﬁ—'—— ,
¢>0,d,c=1(2) ,d=-Nc(4) d cz+d
(d,4Nc)=1,ad-bNc=1
and by the periodicity of ( ) and (-) we get
P 1n(*My . (=4yk+1/2 z s
-m c2l,e21(2) NS d(4Nc)* ,d=-Nc(4) 9

ad-bNc=1

3 -k-1/2 a(z/4+r) +b/4, .
rfz (4N°(4 +1) +d) e(4 4Nc(z/4+r)+d ’°*

the Fourier expansion of the inner sum is given by the Lemma, and we see that we

pick up a sum
() Lk : A e, (E+ams™) 6"k z,86"2z10nc)).

8(4Nc)* ,82-Nc(4)
t

In (32) replace & by 48-Nc. Then after a short calculation we find that (32) is

equal to

g-q 40 -4, -k-1/2 £
(-Nc)( ) s Nt

(N %) ey Jmeva ey (lez, a0 e .

We thus conclude
; k
(3%) gs‘nlﬂ)(,,) e o @ (&N 4ok o0 g-14) L (n/am)/2-V/4

(n,4" -) J ( ‘F").
cz2l, c§1(2) ﬂ" k-1/2'N

where for u,veZ we have put
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k-1/2 o )e (u6+v6°1).

' =
B (Y = (5D &2 8 (Nc)*

Finally we have to compute 3(1/2N)(")- Arguing analogously as above we obtain
E,ln(l/ZN)(z) = £ ( )( )k+1/2(2ch+d)k+1/2 e( 2:z+?d)
c¢>0,c21(2),d, (d,4Nc)=1 cz
ad-2Nbc=1

and from this

8,£1/ZN) ) = 2@ (1) (D231 1351y (nyamy*/2-1/4

(34)
L H ,4m)J ) .
exl,cx1(2) ane (M 4mdy g /5 Gy Yam)
By (31), (33) and (34) and Proposition 3 we must still cﬁeck thaf
0 if ¢c20(2)
(35) Hy (n,m) = E«mc(“’“‘) + (1-(-1) i)——L— ch(4,4 m) if c=1(2),n=0(4)
7 (——12-“—) Haye (1 4m) if e=1(2),
- 1) nz1(4).

For ¢=0(2) there is nothing to prove. Assume c¢ odd. First observe that if (4c1,Nc =1

2)
we have

(36) Bae e, (u,v) = H,_ (u variesh?) Bie @ ver?)

«1 -1 - -1 _ -1.. -1 _
(c1 N »€y ez.cl c1=1(ch),N N:c2 c2=1(4c1)). For the proof one writes

d-4c1d2+Nc2d1.dl mod4c1.d mochz,(qpﬁcl)-(dz,ch)-l and uses the identity

4Nc <,
(lé d *Nc, 6‘) (4c d *Nc, d )

k+1/2 4ec, (-4 k+1/2 ¢ -4 \ -k-1/2 d2

Now suppose ¢ odd. Then we have by (36)
(37) Hp (n,m) = H,(n,m) By (n,m47%)
and

(38) Hgy (n,m) = H(n,m) HY (n,md™>),

and for n,mso,(-l)k(mod4) one easily checks that
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(39 B m = n™asent
Hy(nm) = oir 35 (1+(-1%D).
Let n=0(mod4). Then
D n-(‘—‘)- 1y 34w
= (1-(-1) 1)-(-'—’-’—§N (n,4"%m)

= (1-(-1) 1)3-}?-1?::-—1;-{ Heye (0) (by (37) and (39))

= mnc(nl.)l
which proves (35) in this case.
Next let (-1)%nz1(mod4). Then

-‘-17—’1) Hee (ns40) = W‘ (—‘)-—"- 7 EP a0 ) By 0w oy

- m
=7 ('L;)—n') (mgn)(l"( -1)71 )1_%%)1%1 mc(n,n) (by (3
»

= ﬂmc(n»n) »
which proves (35).
This completes the proof of Proposition 3 in the case k22. Finally we have to
consider k=1, where the series (27) does not converge absolutely. By '"Hecke's con-

vergence trick"” (in the same manner as in the proofs of Propositions 1 and 2) we ca

show, hdwever. that gl.",l is given by
1 -3 -4s
(Z) 'y I j (A: z) j (An z) e(m) »
L g AST_\T, (48) .2

and that its Fourier expansions at the cusps i=, -a/N and 1/2N are given by formula
(31), (33) and (34), respectively. We do not carry out the details. This completes
the proof of Proposition 4.

We now proceed to the proof of (5). If we put in identity (17) into the left-
hand side of (5) and identity (25) into the right-hand side of (5) we see that for
all n21 and w1 with (-1)¥820,1(mod4) we have to show that
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k - -

X A Okt Zipm D72 vz [y len/z)_ 0y

t
;(n/tﬁnﬂﬁ‘)lm"/ 2s 2@ ¥ fmmtt 2 Jay M2 LSS

ax1 : Na/t D, (- l) ]

IDim” .
k 1/2( Na/t )] =
-t F sent o z & wark [ v (i 2h e

din, (d,N)=1 0%/t ,m

(maZ/n?|p} )/ 2-1/4 3 Hy (m,p?/d%) 1)) Jk_llz(ﬁ%\/(nz/ainmm)]‘
c2

or equivalently

0t myop*/2 ( k/2-1/4

r w@)Sm/m ) + 502 (-n¥ @10
n/ﬂm? iﬁ]‘) tIN n :

S IO L oDy g AnCIDIE,

1/2
n Na
azl tiN Na/t,D,(—l) m

(40 =

™D r o Qaats, , en @ nk@onM

din, (d,N)=1 n” D} /d*,m

Eﬂd-

172
(d

n L
dln, (d,N)=1

2
172 n n
Hye 7101 Iy q /5 Qg ¥ 101,

We look at the first terms on both sides of (40). They are zero unless ns‘lez
for some f¢lN with fln, and in the latter case the first term on the left-hand side

equals
v/2] oA (Do g e
oA Dok 2 -

t!(n/£,N) ) ' otherwise,

and clearly this is then equal to the first term on the right-hand side of (40).

In the second term on the right-hand side of (40) we substitute cd=a to get

T enf@optE R g z pa? (25100
’ a1 (dl(a,n),(d,n)=1 "Na/d 2

Ty-1/2 5 TOT™) )
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We conclude that for the proof of (5) it is sufficient to show that

1/2

I u(e)@s Hyg/q 2101 /d2).

D a
e, = = ) )

L
Na/t,D,(-1)"m di(a,n)
(d,N)=1

Inverting we see that we must prove the following

Proposition 5. Define S X (IDim,n) by (18) and Hc(n,n) by (26). Then for
.’D’ (“1)_ ll

all a21, n21 and m>1 with (-1)¥n=0,1(mod4) we have

D 1/2 2 2
(41) s (1Dim,n) = z (3) (a/d) H_ ,,(m,n“{D} /d°).
a,D, (-1)*a di(a,m) ¢ a/d

Proof. As functions of n both sides of (41) are periodic with period 2a, so it will
besufficient to show that their Fourier transforms are equal, i.e. we must show

that for every heZ we have
1

-— I e. (-hn) S v (\Dlm,n)
28 [ (2a) 28 a,D, (-1)*a
(42) 1 | D 1/2 2, .2
= —= b e, (-hn) I (<) (4a/d) H_ ,,(m,n"|D}/d%).
T8 ey 28 iy @ a/d

By definition the left-hand side of (42) equals

L

2
e,  (-hn) I mD(a,b,P—'—'—QE
n(2a)

) e
b(2a) b= IDIm(4a) 7 ) °2

: 25 mn(a,b,hfilglgi b
b(2a),b°z 1D} m(4a) a n(2a)

2
h -1Djm, if h%z D) n(4a)

un(a,b, 4a
0 otherwise.

We now must compute the right-hand side of (42). Call it CD’.(a.h).Then

(nb)

~N
£ [

N
Y [

055 ((®>-1)n)

1 D 1/2 4 2
C, (a,h) ==— I (F)(4a/d)" "' "(1+(—7)) b e (-hn)H_, .(m,|DIn").
p,m'® 8 ga 9 ald’ | aray 28/ a/d

Putting in the definition
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k+l/2 ¢!

22y (k12 6o 1DIn?

2 k 4 --7-1
Hyya(® 10107 = (1--D" DU+ Gr) 7373 §(4a/a)¥

and making the substitutions nw» én, § » (-l)ks, nme (-l)kn we obtain

1 D 1/2
CD,m(a’h) = -4_3' z (a') (4a/d) F4a/d(Q) ’

dla
where Q(n) = Dn2-2hn+(-l)km and for every integer c21 we have put

1 4 4c -4
F, (Q = =(1+(3)) z =) -(=1i) e, (6Q(n)).
4c 4c ¢ n{2c),8(4c) § § dc

Using the quadratic reciprocity law one checks that

Fe@ = F (@ Fe, (@ (e = coehs c4 odd);

here for c odd we have put

= 124y-1/2 $
Fl@ = GETE 1 Q) e (s,

Further_more, for c odd one has the multiplicative property
F@ = F (@ F, (@ (c = ¢ e}, (cpc])=1).
From this we see that

43) ¢, (ah) = . W ¢,  p',p";h)
D,m p\)" a,pu“ 4 D,m

where the product extends over all primes p dividing 4a, pv is the exact power of p
dividing a (pvlla), u is 0 or 2 according as p is odd or even (p"“ 4) and where we
have set

Cp a® B = & (B ptN/2

- Fon@-.
osxs\’ p\’ pu +A

Put 4 = hz-(-l)knm and let us compute cD m(p“,p";h) first for p an odd prime,
piD. By definition

-1/2 ]
NG «p? =4 I (= e . (5Q(n)).
p* p sepH* P n(p") P

Since piD we may write
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Q) = Dn®-2hn+(-1)%n = D ((On-W)2-8) (modp®)

1

where D " is an integer inverse to D modulo pa, s$0 the sum over n equals

ex(-cn'ln z eA(GD.lnz)
p n(@*) p

-1, $D. -4.1/2 N2
=e (-6071a) Y Y2 V2
P P P

the latter equality being standard. Thus

-2, D -1
F (@ =p VD Z. . e (-607'a)
P Mot P
) (P18)
- Y -
-2 ! @)
P
0 (otherwise).
Therefore
c, p%ph) =pV & (=29 %
p,u'P P ok BN P px(Q)
oY) ("12)
03Agv
VD
P £ e(p) - p° (P°l) B.0<v),
Ogdsp
i.e. we obtain
D \'/
- (p'14)
@) cp 'p"im) = P’ (p odd, piD).
0 (otherwise)

Next assume p odd, p|D. In this case

z e . (8Q(n))
aph) P

1

29

is zero unless plh, as one sees by replacing n with n+p*' . Thus suppose plh and

and put ho-h/p, Db-D/p. Then
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2] -
FL@ =@ s e 6en'n e sopimm.

P P 6(p‘) P n(P ") p

In the same way as above the sum over n equals

1/2 (A -1)/2

o 0 l28) (52 = 1)( D (g« 2. 05'0p=1e* ),

so
D,
Y -4,-1/2 - 1/2 ( A+1)/2 8 k -1
F,Q = (0 ) = > ) e, (&(-1)"m-D h))
. 1 > ,\ 1 sty P op o Mo
D
0, -4.-1/2 -4 .1/2 ( M1)/2 8
= () (=) ) =) e ((-54/p).
pop P! sy PP
Replacing § with é+p we see that F )(Q)=0 unless p*lA, so let us assume that p*lA.
P
Then the sum over § equals
-1 5 2
P pX (=) e_ (-3a/p")
sy PP
- A
. P12 (__0 1/2 (Agg ).
From this we obtain
\ 1 (A even)
F L@ = p 7l A 1
P P ) () 0dd). | |

If we write D = ﬁfD/p“ as a product of two fundamental discriminants with p*-!p

we obtain using quadratic reciprocity

F L@ = p? (—1’-—) L,

P a/pt pY
Thus
* ”
(25 & @"12)
(45) Cp.n@-Pim) =4 4P P | (p odd, piD)..

0 (otherwise)
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Now suppose p=2. Then we havg to compute
Vogny o p(-2)/2 4
CD"(Z .4.h) 2 (1*(zv)) sz+2(Q)-
By definition
-2 2d 4
F (Q =2 Z G (1-CPL) e ,(5Q(M)).
2} eyt T e e Tl

First assume Dz1(mod4). Then

-1 -1.2 -1
L, e .(5QMm)) =e (-6D71a) = e (6D 'n%) (0 pz102%)
a2l TP A et S Nt
,le?(m m(xng)”zuﬁn”{
Therefore
| -3/2,D -1
Fo@=2"4) & e (-6D"'a),
2* 2 syt
and as in the case of an odd prime we obtain
: (23,2) 2"*?1a)
“e) ¢y @".4:m) = (24D),
0 {otherwise)

Next suppose D=4(mod8) (so D/4z3(mod4)). First assume A24. Then replacing n

2)"3

by n+ we see that

r e .(8Q(n)) = O
¥y 2

unless 4lh, so iet us assume the latter condition. Then

I

§0,
: ,(cqcnn = 2o CO5leam) 2 €7V eV
n

A

and so



32

-1/2+1 Db -4
F (Q =2 (-i)( ) I (—) e _(84/4).
2* 272 syt 8 g

Clearly this is zero if 2 A, and for ZXlA we get

N2- 1. -4 N
sz(Q) =2 ( - 5) (-1) 62 (—5) e, (88/2%)
(4)
2
22Uy =ty
2 a/2
Therefore for v22
-D/4 v+2
SR = v+2) 2" %y
@7 ¢y (2°,45h) = 8/2 (D=4(8)).
0 (otherwise)

One checks that (47) is also true for v=0,1. Finally, in the same way as above

(L8 (B

Vo, an 2v+2 v+2) 18)
(48) O .(27,4;h) = (p=0(8)),

v+2

0 (otherwise)

where 8*=18 is determined by the condition D/8* is a fundamental discriminant.

Summarizing (43) to (48) we obtain

T ey 2 if n%z1p)m(4a)

p’llaa  p’ (wP-1pym)/p¥

C, (a,h) =
D,m 0 otherwise,

where for every prime p we define p*¢Z by the condition that p* is the exact power
of p dividing D and D/p* is a fundamental discriminant. Thus to prove (42) we are

left with showing

Proposition 6. Assume a,b,ceZ, a>0, b2-4ac=lDlm. Then

(49)  wp(a, b = T (B2,
plla p’ ac/p’

Proof. Clearly both sides of (49) are zero if and only if (a,b,c,D)>1. Therefore
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assume (a,b,c,D)=1, Then by definition

wpy(ab,c) = D),
where r is any integer represented by [a,b,c] with (r,D)=1. If [a,b,c) (x,y)=r, the
(50) 4ar-(2ax#by)2-|D|ny2, 4cr=(2cx+by)2-|njmy2.
From (50) we see that cr is a square modulo every odd prime divisor of D; further-
more, since D is a fundamental discriminant we see that for cr odd we must have
crsl(mcga) if D=4(mod8), and crz1(mod8) if D=0(mod8). Since by (50) also dar is a

square modulo D, it follows that (49) is equivalent to

]T (2[2:)(_22__9 =1,
’ig"") p'llar p’ ar/p

and that it is sufficient to show that for any ne2~{0} such that n is a square

modulo D we have

6D G ST A -1

signn Phn . p n/p

We shall prove (51) by induction on the number of prime discriminants dividing

D. If D=1, there is nothing to prove. Suppose D=D'q* with q a prime.

i) qin. We must show that

[(si::m pv.l‘)-rn (._ﬁl’.:)(j;—)] [(signn v"n (L)]

The expression in the first square-bracket is 1 by induction, while the expression

) *
in the second one equals (%—) which is 1 since n is a square mod q* by assumption.

ii) qin. Suppose qxl n. Then we must prove that

D' D/p*, P* . q*, D' q* . D'y 9%
( )v()(){( @.E&. T @& & )]
[smm Pin P "/P-J sign’ p‘g" Poq P":,“ P 9 n/q
piD'q P

=],

Again the expression in the first square-bracket is 1 by induction, and the express
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in the second one equals

o Ep -1
n/q n/q

Therefore (51) and Proposition 6 is proved. We thus have completed the proof of

Theorem 1.

2.2. Proof of Theorem 2

Let g¢S 2(N). Then by (4) and (5)

k+1/

k-1 k

2 sen* :oa z (P (n/4)

- -1
<&y y p-E ) = iy (-1 k-1)T nx1 din, (d,N)=1

2rinz
<8Py N.n?ipysa?” ©
= 8ISy x,p(?)

(note that i4N=iN{ro(N):ro(4Nﬂ =6i, since N is odd). This proves (9).

For every divisor t of N the map Q» Q-(g 2) gives a bijection between the
set of integral binary quadratic forms (a,b,c] with discriminant 1Dim and azO(N/t)
and the set of integral forms [a,b,c) with discriminant IU\mtz and az0(Nt). Moreove
if the discriminant of Q is divisible by D we have

(Q'(0 1)) = (= 2)«» Q.
Therefore

D, k-1 D, k-1
th w® @t £ e (t2:0,(-1) *n) = th' O] ¢ L N G2 ) “ut

)

and to prove (10) it suffices to prove the following

Proposition 7. For any fészk(N) we have ‘

2k-2, ,-2k+2

(520 <EF 00D = iln G 27 om0

with T N(f;D,(-l)km) defined by (7).

Proof. The proof is given in [4] and 7], cf. also {16]. For the reader's conve-
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nience we will briefly repeat the short argument given in [7]). We shall restrict to
the case where |DIm is not a perfect square. First suppose k2. We have

£ @0, -1k - Eoaph) f (i)

where the sum is over the finitely many PO(N)-classes A of forms Q with discriminant

)D]m and Q(1,0)=0(N) and

-k
£, ,(z;A) = & Q(z,1) .
k,N QeA

Clearly fk N( ;A)eSZk(N), so it is sufficient to compute <ff,fk N( 3A)> . By the
» ]
usual unfolding argument

W<EE A = T @aE@n ey 2y
’ r\H AerQ\P

- J tweEn 2y,
I \H
Q
where Q is any element of A, r-rocu) and rQ
6 = argffs-. where a and 8 are the roots of Q(z,1)=0, with a<8. Then 0<6<w and

is the stabilizer of Q in I'. Let

0 is invariant under T',.. Also

Q

do = d[In 10g(2-8) - log(z-8)]
-« In [(?%? - 'z—fi) dz)
SO
dzde = (102 @z, 1)"! dxdy

and
Ayz

1
jQz, )2 10w

Therefore

sinze.

-k 2k-2

£02)QGE, 1) ¥y?*2axdy = (01m) Y2 % £(2)Q(z,1)% Lsin®* 28 d2d6.

Set
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( -;-(t—bu) -cu )
AQ -%-(tﬂm) ’

where Q={a,b,c) and (t,u) is the smallest positive solution of Pell's equation

t2_ {0} mu2=4. Then AQ generates FQ/{tl}. For each 6¢(0,7) the integral of
z . -B

f(z)Q(z,l)k'ldz from z, to Aon, where zoeH is any point with arg 20 =0, is
_f f(z)d, ,z , independent of 6. Hence
C Q,k
Q
1 1/2-k ( .2
CEE LAY = 13 qom 2R sin%* %00 § £(2)d, 2,
k,N N 3 Q,k
C
Q
and (52) follows.
For k=1 we write
fl’N(z,s;D,-m) = i mD(A) fl.N(z,s;A)
with
£, 458 =yS T Qe e, ) 78 (zell,5¢€, Res>0),
’ QeA
and in the same way as above we find
1 1 H
<6 80D = itanm) 2 ( sin%ean (£ e
» 0 C 2
Q
Therefore
-1 -
CEE oA = it (oim VY c.( OTIRS
Q
and this proves (52) for k=1.
2.3. Proof of Theorem 3
We use the same arguments already used in {6) and (4}, Let S X -
“(-1)'n

k .
Ek,n, (- l)kn be the Shimura 1ifting associated to (-1) 'n (equation (6)) and S*

-
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its adjoint (equation (8)). By (11) we have

(53) glS = cmf,
(-1)'m

and because of the "sultiplicity 1 theorea" valid for s::‘; 1200 (£5))
f’§f k ‘-‘Xg
(-1)'n
for some )e@. Denoting by C(f,m,n) the nth Fourier coefficient of f|S*

we
“-1%n

therefore get

C(f,m,n) <g,g> Ac(m) < 2,8

c(m)  f]s*
-1

x *8D
n

cm)< f,g}sS
-1k

C(I)(;E;) < f,f) »

where in the last line we have used (53). To prove (13) we thus have to show that
cttmm = 0B 2% 1 ek, n¥e).

Because f is a newform, its scalar product against fk N /t(tz; (-l)kn.(-l)kn) is
zero for every divisor t of N, t>1, so by (3) and (10)

ctmm) = ol Vi< £ Cien ' D,

and the desired equality follows from Proposition 7.
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