Max-Planck-Institut fur Mathematik
Bonn

Splitting of operations, Manin products and Rota-Baxter
operators

by

Chengming Bai
Olivia Bellier
Li Guo
Xiang Ni

Max-Planck-Institut fir Mathematik
Preprint Series 2011 (35)






Splitting of operations, Manin products and
Rota-Baxter operators

Chengming Bai

Olivia Bellier
Li Guo
Xiang Ni
Max-Planck-Institut fir Mathematik Chern Institute of Mathematics & LPMC
Vivatsgasse 7 Nankai University
53111 Bonn Tianjin 300071
Germany China

Laboratoire J. A. Dieudonné
Université de Nice

Parc Valrose

06108 Nice Cedex 02
France

Department of Mathematics and Computer
Science

Rutgers University

Newark, NJ 07102

USA

MPIM 11-35






SPLITTING OF OPERATIONS, MANIN PRODUCTS AND ROTA-BAXTER
OPERATORS

CHENGMING BAI, OLIVIA BELLIER, LI GUO, AND XIANG NI

AsstrAcT. This paper provides a general operadic definition for thenmf splitting the opera-
tions of algebraic structures. This construction is prawelde equivalent to some Manin products
of operads and it is shown to be closely related to Rota-Bafierators. Hence, it gives a new
effective way to compute Manin black products. The presenttoecton is shown to have sym-
metry properties. Finally, this allows us to describe tlgehtaic structure of square matrices with
codficients in algebras of certain types. Many examples illtistiais text, including the case of
Jordan algebras.
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1. INTRODUCTION

Since the late 1990s, several algebraic structures withipteibinary operations have emerged:
first the dendriform dialgebra of Loday [34], then the defadm trialgebra of Loday and Ronco
[38], discovered from studying algebraic K-theory, opsradd algebraic topology. These were
followed by quite a few other related structures, such agjtiaeiri-algebra [3], the ennea-algebra,
the NS-algebra, the dendriform-Nijenhuis and octo-alg¢d®, 30, 31]. All these algebraic struc-
tures have a common property of “splitting the associafliyite., expressing the multiplication
of an associative algebra as the sum of a string of binaryatipers. For example, a dendriform
dialgebra has a string of two operations and satisfies thvieena, and it can be seen as an asso-
ciative algebra which multiplication can be decomposead iwb operations “in a coherent way”.
The constructions found later have increasing complexittheir definitions. For example the
guadri-algebra [3] has a string of four operations satigfyiine axioms and the octo-algebra [30]
has a string of eight operations satisfying 27 axioms. Aswha [14], these constructions can be
put into the framework of operad (black square) productstmrsymmetric operads [14, 35, 47].
By doing so, they proved that these newer algebraic strestcan be obtained from the known
ones by the Manin black square product.
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It has been observed that a crucial role in the splitting sbamtivity is also played by the
Rota-Baxter operator which originated from the probapgiudy of G. Baxter [8], promoted by
the combinatorial study of G.-C. Rota [42] and found manyligapons in the last decade in
mathematics and physics [1, 4, 5, 15, 20, 21, 44], espedraltile Connes-Kreimer approach
of renormalization in quantum field theory [10, 17, 18, 24].40The first such instance is the
fact that a Rota-Baxter operator of weight zero on an asseeialgebra gives a dendriform
dialgebra [1, 2]. Further instances were discovered I&et3, 29, 30, 31]. It was then shown
that, in general, a Rota-Baxter operator on a class of bipaagratic nonsymmetric operads gives
the black square product of dendriform algebra with theszangs [14].

More recently, analogues of the dendriform dialgebra, geeldebra and octo-algebra for the
Lie algebra, Jordan algebra, alternative algebra and ¢loialgebra have been obtained [2, 6,
26, 32, 41]. They can be regarded as “splitting” of the openatin these latter algebras. On
the other hand, it has been observed [47] that taking the Mialaick product with the operad
PreLieof preLie algebras also plays a role of splitting the operatiof an operad. For example,
the Manin black product dPreLie with the operad of associative algebras (resp. commutative
algebras) gives the operad of dendriform dialgebras (iZsybiel algebras).

Our goal in this paper is to set up a general framework to megege the notion of “splitting”
any binary algebraic operad, and to generalize the aforeomed relationship of “splitting” an
operad with the Rota-Baxter operator and Manin black prodife achieve this through defining
and studying thesuccessor®of binary algebraic operads defined by generating opesatioml
relations. Thus we can go far beyond the scope of binary @tiadronsymmetric operads [14]
and can apply the construction for example to the operads$eodlgebras, Poisson algebras and
Jordan algebras. This gives a quite general way to relatevkraperads and to produce new
operads from the known ones.

We then explain the relationship between the three corgingapplied to a binary operad
#: taking its bisuccessor (resp. trisuccessor) is equivdtetaking its Manin black produot
with the operadPreLie (resp.PostLig, when the operad is quadratic. Both constructions can be
obtained from a Rota-Baxter operator of weight zero (regm-zero). This is summed up in the
following morphisms of operads.

PreLiee P = Su(P) — RBy(P)

and
PostLiee P = TSu(P) — RBy(P) .

Notice that this provides arffective way to compute Manin products for operads.

The space of squared matrices with fmgents in a commutative algebra carries a canonical
associative algebra structure. We generalize such a nesinlj the notion of successors: we
describe canonical algebraic structures carried by squagdrices with cofficients in algebras
over an operad. Finally, the present notion of successatsfised in such a way that it shares
nice symmetry properties.

The following is a layout of this paper. In Section 2, the agpis ofsuccessorare introduced,
together with examples and basic properties. The reldtiprsf the successors with the Manin
black product is studied in Section 3, establishing the ectian indicated by the left-hand side
in the above diagram. We apply these results to the studygebahic properties of square ma-
trices in Section 4. The relationship of the successors th#hRota-Baxter operator is studied in
Section 5, establishing the connection indicated by that+ingind side in the above diagram. In
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Section 6, we prove symmetric properties of iterated swsmres Further examples are provided
in the Appendix.
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2. THE SUCCESSORS OF A BINARY OPERAD

In this section, we first introduce the concepts of the bisasor and trisuccessor of a labeled
planar binary tree. These concepts are then applied to defitikar concepts for a nonsymmetric
operad and a (symmetric) operad. A list of examples are gealifollowed by a study of the
relationship among an operad and its successors.

2.1. The successors of a tree.

2.1.1. Labeled trees.

Definition 2.1. (a) LetT denote the set of planar binary reduced rooted trees tageitte
the trivial tree| . If t € T hasn leaves, we call ann-tree.

(b) LetX be a set. For an-treet in 7, lett(X) denote the set of decorationstam its vertices
by elements inX and of distinct decorations oon its leaves by elementsiy Let T(X)
be the set of planar binary rooted trees whose vertices amated by elements i and
leaves are distinctly decorated by elementiinThus

(1) 7(X) = | | ).
teT

If T € t(X) for an-treet, we callr a labeled-tree.

(c) Fort € T(X), we let Min(7) (resp. Lin(r)) denote the set of labels of the vertices (resp.
leaves) ofr.

(d) Letr,, 7, € T(X) with disjoint sets of leaf labels. Lab € X. Thegrafting of r, and 7,
along w is denoted by, v, 7. It gives rise to an element iR(X).

(e) Forr € T(X) with |[Lin(7)| > 1, we letr = 7, vV, 7, denote the unique decompositionrof
as a grafting ot, andr, in T7(X) along w € X.

Let V be a vector space, regarded as an arity graded vector spacentated in arity 2:
V = V,. Recall that the free nonsymmetric opef@gV) onV is given by the vector space

Tos(V) 1= EH V],
teT
wheret[V] is the treewise tensor module associatet this module is explicitly given by

t[V] = ® V|In(v)| ,

veVin(t)
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wherel|In(v)| denotes the number of inputs of the venegee Section 5.8.5 of [39]. A basig of
V induces a basig§V) of t[V] and a basig (V) of 7,{V). In particular, any element ¢fV] can
be represented as a sum of elementgly).

2.1.2. Bisuccessor.

Definition 2.2. LetV be a vector space with a basis
(a) Define a vector space

2) V=Veok<aks>),

where we denoted ® <) (resp. ® >)) by{‘” (resp.| ™ |), for w € V. ThenV x {<, >}

w
>

is a basis o¥/. N N
(b) For a labeledh-treer in T(V), defineT in 7,( V ), whereV is seen as an arity graded
module concentrated in arity 2, as follows:

e whenn > 2,7 is obtained by replacing each decoratienc Vin(r) by

-

We extend this definition t@,s(V) by linearity.

w w

+

< >

Definition 2.3. Let V be a vector space with a basis Letr be a labeled-tree inT(V). The
bisuccessorSy(r) of T with respect to a leak € Lin(r) is an element off,(V) defined by
induction onn := |Lin(7)| as follows:

e Su(l)=1;
e assume that S(r) have been defined far with |Lin(7)| < k for ak > 1. Then, for a
labeled k + 1)-treet € T(V) with its decomposition, Vv, 7, we define

7., xeLin(r),

w

<

Su () v{

(3) Su(r) = Su(r¢ Vo, 1) = _
Su(ry), xeLin(r).

w

Ty v[

Form > 1, them-th iteration of Su is denoted by 3u
We have the following description of the bisuccessor.

Proposition 2.4. Let V be a vector space with baslg, r be inT(V) and x be inLin(r). The
bisuccessoBuy,(7) of T is obtained by relabeling each vertexmadccording to the following rules:

(a) we replace the labely of each vertex on the path from the root the the leavexixf

(i)

“’] if the path turns left at this vertex,
<

(ii) {“’] if the path turns right at this vertex,
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(b) we replace the labelv of each vertex not on the path from the root the the leavenbgf

[a) : w + w
* < >
Proof. By induction on|Lin(7)| > 1. m|
1 2 3 4
N S N S
w1 w3
Example 2.5. Sy ~. =
w2
|
1 2 3 4 1 2 3 4 1 2 3 4
AN v AN / AN / AN / AN / N\ /
w1 w3 w1 w3 w1 w3
> * > < > >
\ / _ \ / + \ /
w2 w2 w2
7 ] <
! | |

Lemma 2.6. Let V be a vector space with basid, = be a labeled n-tree iff(V) and x be in
Lin(t). Then the following relation holds

SU-19(77) = Su(r) 7 ,Yo € S, .
Proof. By inspection of the action of the symmetric group on a tree. O
2.1.3. Trisuccessors.

Definition 2.7. LetV be a vector space with a basis
(a) Define a vector space

(4) V=Ve(k<ok>aok-),

where we denoted ® <) (resp. w® >), resp. w ®-)) by[“’ (resp. ) for

w
>

, resp.

w

w € V. ThenV x {<,>, }isabasisoV/. R
(b) For a labeledh-treer in T(V), definer in 7,5(V), whereV is regarded as an arity graded
module concentrated in arity 2, as follows:

—

e whenn > 2,7is obtained by replacing the label € Vin(z) of each vertex ot by

wl., |w
*

We extend this definition t@,«( V) by linearity.

w w

+7[+]7|.

>

Definition 2.8. Let V be a vector space with a bas§s Letr be a labeledh-tree inT(V) and let
J be a nonempty subset ofri(r). ThetrisuccessorTSu;(r) of T with respect tal is an element
of 7,s(V) defined by induction on := |Lin(7)| as follows:
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o TSw(1)=1;

e assume that TS(r) have been defined farwith |Lin(7)| < k for ak > 1. Then, for a
labeled k + 1)-treet € T(V) with its decomposition, Vv, 7, we define

TSu(7) V[ ]’ﬁ, J C Lin(ty),
TV, \TSu , J c Lin(r,),
(5) TSw(r) = TS(r vo 1) ={ g hize) ()
TSWnLing,)(Te) V[w TSWaLin,)(Tr), otherwise

Form > 1, them-th iteration of TSu is denoted by TSu
We have the following description of the trisuccessor.

Proposition 2.9. Let V be a vector space,be inT(V) and J be a nonempty subsetloh(r).
The trisuccessorl Suy(7) is obtained by relabeling each vertexoficcording to the following
rules:

(a) we replace the labelv of each vertex on at least one of the paths from the root to the
leafs x in J by

(i) |“|if all such paths turn left at this vertex;

<

(i) |“|if all such paths turn right at this vertex;

>

(iii) |“|if some of such paths turn left and some of such paths turt aigthis vertex;

(b) we replace the labely of each other vertex t{;‘/’ =+ + |
* < > .
Proof. The proof follows from the same argument as the proof of Psitjom 2.4. O
1 2 3 4
X/ X/
1 2 3 4 w1 w3
\w 4 \w < { < ] { < ]
1 3
Example 2.10.TSuy 3 ~. =
o \ B /
l )
!

Lemma 2.11. Let V be a vector space with baslg r be a labeled n-tree if (V) and J be a
nonempty subset &in(r). Then the following relation holds

TSL[-,rl(J)(T a-) = TSUJ(T) T Yo € S,.
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2.2. The successors of a binary nonsymmetric operadNote that the definition of the succes-
sors extends linearly from(V) to 7,(V) and to7,5V), whenV is a linear basis o¥.

Definition 2.12. Let V be a vector space arid be a basis oY.
(a) An element
;
ri= Zcm, G ek, e T(V),
i=1
in 7,s(V) is calledhomogeneou®f arity nif |Lin(r))| = nfor1 <i <r.
(b) A collection of elements

i

in 7hs(V) is calledlocally homogenousif each elements, 1 < s < k, in the system is
homogeneous of a certain arity.

Definition 2.13. Let P = 7,4(V)/(R) be a binary nonsymmetric operad with a bagisf V = V..
In this case, the space of relatidRss the vector space spanned by locally homogeneous elements
of the form

(6) rs= Z CoiTsi € Tns(V), Csi €K, 76 € T(V), L<s<kk>1

() Thebisuccessowof # is defined to be the binary nonsymmetric operad

SufP) := Tns(V)/(SUR) .

where the space of relations is the vector space spanned by

(7 SuR) := {Su((rs) = Z CsiSW(7si) ‘ x € Lin(tgj), 1< s< k}

Note that, by our assumption, for a fixexiLin(zg;) are the same for ail The N-th
bisuccessor(N > 2) of £, which is denoted by SI(P), is defined as the bisuccessor of
the (N — 1)-th bisuccessorof the operad, where tHest bisuccessorof the operad is just
the bisuccessor of the operad.

(b) Thetrisuccessorof # is defined to be the binary nonsymmetric operad

TSuP) = ToslV)/(TSUR)) ,
where the space of relations is the vector space spanned by

(8) TSUR) := {TSuj(rs) = Z CsiTSW(7si) |0 # J C Lin(rgj), 1 <s< k}

The N-th trisuccessor (N > 2) of £, which is denoted by TS\{P), is defined as the
trisuccessor of theN — 1)-th trisuccessorof the operad, where tHest trisuccessor of
the operad is just the trisuccessor of the operad.

Proposition 2.14. The definition of the successors of a binary non-symmeticaapdoes not
depend on the basis of the vector space of generating opesati

Proof. Let ? := 7:((V)/(R) be a binary non-symmetric operad. This proposition isigiitéor-
ward from the linearity of the successors and from the treewensor module structure @p(V)
and on7,¢(V). O
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We give some examples of successors.

Example 2.15. The dendriform dialgebra of Loday [34] is defined by two bilinear operations
{<, >} and relations:

(X<y)<z=x<(Y*x2, (X>y)<z=X>({Y<2, (Xxy)>z2=X%X>(Yy> 2,

wherex ;=< + >. Itis easy to check that the corresponding opddaddis the bisuccessor of
Ass Similarly, the operadQuadof quadri-algebras of Aguiar and Loday [3], is the bisucoes$
Dend Furthermore, the operddcto of octo-algebras of Leroux [30] is the bisuccessoQofad
ForN > 2, theN-th power ofDenddefined in [14] is theN-th bisuccessor dDend

Example 2.16.Similarly, the trisuccessor & ssis the operadriDend of dendriform trialgebras
defined by Loday and Ronco [38]. The opeladneaof Ennea-algebras of Leroux [31] is the
trisuccessor offriDend. For N > 2, the N-th power of TriDend defined in [14] is theN-th
trisuccessor ofriDend

2.3. The successors of a binary operadWhenV = V(2) is anS-module concentrated in arity 2,
the free operad (V) is generated by the binary trees “in space” with verticesliad by elements
in V. So we have to refine our arguments.

More precisely, the free operad(V) on anS-moduleV = V(2) is given by theS-module

T(V) = P vl

whereT denotes the set of isomorphism classes of reduced binay, see Appendix C of [39],
and wherd[V] is the treewise tens@-module associated to ThisS-module is explicitly given
by
V] = (X) V(In(W) ,
veVin(t)
see Section 5.5.1 of [39]. Notice tha(V) is a set. For any finite s&f of cardinaln, the definition
of V(X) is given by the following coinvariant space

@V(n)] ,
Sn

f:n—-X

V(X) =

where the sum is over all the bijections fram= {1, ..., n} to X and where the symmetric group
acts diagonally.

To represent a tren T with a planar tree ifT” consists in choosing a total order on the set of
inputs of each vertex af We define an equivalence relatisron 7 as follows: two planar binary
trees inT are equivalent if they represent the same trek. itt induces a bijectiof = 7/ ~.
Moreover, by Section 2.8 of [25], we hat@/] = t[V], for any planar binary treéin 7 which
represents the binary treen T. Therefore, we have

T(V) = Hv],
teR
whereR is a set of representatives of ~.
Example 2.17.For instance, one set of representatives@f ~ is the set of tree monomials

defined in Section 2.8 of [25]. See also Section 3.1 of [12]othler example is a generalization
of the trees I, Il and Il given in Section 7.6.3 of [39].
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Lemma 2.18. LetR be a set of representatives @f/ ~ and V = V(2) be anS-module concen-
trated in arity 2, with linear basisV. ThenR(V) := {r € t(V) |t € R} is a linear basis of the free
operad7 (V).

Proof. According to Section 2.1, whdrnis a planar binary tre¢(V) is a basis of[V]. m|

Definition 2.19. Let? = 7 (V)/(R) be a binary operad on ttfemoduleV = V(2), concentrated
in arity 2 with ak[S;]-basisV, such thaR is spanned, as atmodule, by locally homogeneous
elements of the form

(9) R:= {I’SZ: ZCSJTSJ ’Cs,i € k,Ts,i € {t((V),tEgR}, 1<s<kk> 1} 5

where is a set of representatives of ~.

(@) Thebisuccessoof £ is defined to be the binary operad B)E& 7 (V)/(Su®) where the
Sp-action onV is given by
12) (12)

(10) {w - {wmz) - {w(lz)
< > <

and the space of relations is generated, a$-arodule, by

¢ , w eV,

s
>

(11) SuR) := {Sux(rs) = Z CsiSu(ts;) ‘ x e Lin(ts;), 1 <s< k}

Note that, by our assumption, for a fixedl Lin(ts;) are the same for all. The N-th
bisuccessolN > 2) of £, which is denoted by N{P), is defined as the successor of the
(N —1)-th bisuccessorof the operad, where tHest bisuccessorof the operad is just the
bisuccessor of the operad.

(b) Thetrisuccessorof # is defined to be the binary operad T®)E 7 (V)/(TSuR)) where
the S,-action onV is given by

(12) (12) (12)
w2) = -
< >

(12) (12) 12)
= w w , w - w L we \/’
> < - .

and the space of relations is generated, a$-arodule, by

(13) TSuR) = {TSuj(rs) = Z Csi TSU(ts;) ‘ 0 #JCLin(ty), 1<s< k}

The N-th trisuccessor (N > 2) of £, which is denoted by TS\{P), is defined as the
trisuccessor of theN — 1)-th trisuccessorof the operad, where tHest trisuccessor of
the operad is just the trisuccessor of the operad.

Proposition 2.20. The successors of a binary oper&gd= 7 (V)/(R) depends neither on the
K[S2]-basisV of V nor on the set of representativBf T/ ~ .

Proof. Notice that if'V is ak[S,]-basis ofV then the setV’ ® S, is a linear basis of.

The independence with respect to the choice &$]-basis ofV is a consequence of the
linearity of the successors and of the treewise tensor necgtulicture.

Next letV be ak[S;]-basis ofV. LetR andR’ be two sets of representativesif ~. Letr in
t(V®S,) andr int/(V®S,), wheret € R andt’ € R’, be two labeled planar binary trees which
arise from the same element M(V), through the bijections given previously in this section.
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Then, for alli € Lin(r) = Lin(7’) (resp. for any nonempty subsgt Lin(r) = Lin(7’)), we have
Sy(r) = Su(r’) (resp. TSu(r) = TSu(7’)). Finally, we conclude the proof using Lemma 2.18
and the linearity of the successors. O

2.4. Relations with the non-symmetric framework. We denote byOp (resp. byNs Op) the
category of operads (resp. of non-symmetric operads).€lisex forgetful functor
Op — NsOp
P > P ,
where®, := P(n). In other words, we forget th&,-module structure.
This functor admits a left adjoint
NsOp — Op
P — RedP) ,

whereRedP)(n) := P,®K[S,]. Such operads are calleegular operadssee [39, Section 5.8.12]
for more details. Notice that a presentation of the regufmrad associated to a binary non-
symmetric opera® = 7,4V)/(R), whereT (V) is the free non-symmetric operad Un= V(2)
andR = {Ry}nen, IS given by

Red?) = 7(V @ K[S2]) /(R @ K[Sp],n € N) .
Proposition 2.21. Let® = 7,{V)/(R) be a binary non-symmetric operad. We have
SuRedP)) = RedSu(P)) .

Proof. As S,-modules, the space of generating operatiorisef#) is spanned by, so the space
of generating operations of SR¢d#)) is spanned by. As S-modules, the space of relations of
Red®) is spanned by, so the space of relations of R&d#)) is spanned by S&). O

2.5. Examples of successorsWe give some examples of successors of binary operads.
LetV = V(2) be anS,-module of generating operations. Then we have
TNV)3)=(V®s, (Vokak®V))®s, k[Sg].

7 (V)(3) can be identify with 3 copies of ® V. We denote them by o, V,V o, V andV oy, V,
following the convention in [47]. Then, as a vector spaféy)(3) is generated by elements of
the form

(14) w o V(e XwY)v2), w oy v(e (YD) wX), w oy v(e (zZvX)wy),Yw, v € V.

For an operad where the space of generafassequal tok[S,] = u.k & u’.k with u.(12) = ¢/,
we will adopt the convention in [47, p. 129] and denote the [EMents of7 (V)(3) by v, for
1 <i <12 in the following table.

Vi| pojpe (XYZ | Vs | oy pu< (ZXY | Vo | oy u < (Y2X
Vo | woyue XY |Ve| tojue XY | Vio| 1 om < Y(ZX
V| ogp & X2y | V7 | o o Z(yX) | Var | W o (e Y(X2)
Va|pomp & (XY |V | oy’ < (ZYX | Viz | pou < (YXz
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2.5.1. Examples of successorRecall that gleft) Zinbiel algebra [34] is defined by a bilinear
operation and a relation

(X-y+y-x)-z=x-(y- 2.
Proposition 2.22. The operad Zinb is the bisuccessor of the opeard Com.

w

Proof. Let w be the generating operation of the ope@ain Set<:= and>:=

w 0
<

Sz-module by

“]. Since
>

(12)
w

, we have<?=x. The space of relations dtomis generated as an
>

Vi—Vg= wWo w-—woj w.
Then we have
Su(Vi—Vg)=z>(Y>X)—(Y>Z+Z>Y) > X
Sy(vi—Vvg) =z> (X>Yy)—X>(z2>Y);
SUu(Vi —Vg) =(X>y+y>X)>z—-Xx>(y> 2.
Replacing the operation by -, we get SuCon) = Zinb. m|
Also recall that aight pre-Lie algebra is defined by one bilinear operatioand one relation:

X-y)-z-x-(y:-9=(x-2-y-x-(z-y).
The associated operad is denotedPgLie

Proposition 2.23. The operad PreLie is the bisuccessor of the operad Lie.

Proof. Let u be the generating operation of the opetad. Set<:= |“| and>:= |”|. Since
o < >
{Z] = “(:2)] = —’:, we have<®?= — > The space of relations dfie is generated as an
Sz-module by
Vi+Vs+Vo=popu+poyp+pmoyp.
Then we have
Su(Vi+Vs+Vg) = (X<Y)<zZ-(X<2)<y-x<(y<z-2z<Yy);
SuMWVi+Vs+Vg) = —(Y<X)<Z-y<(—X<Z+Z<X)+(y<2 <X
SU(Vi+Vs+Vg) = —-Z<(-y<X+X<y)+(@Z<X)<y-(z<y) <X
Replacing the operatior by -, we get Sul(ie) = PreLie O

A Poisson algebrais defined to be &-vector space with two bilinear operatiofig ando
such that, } is a Lie bracket and is a product of commutative associative algebra, and they ar
compatible in the sense that

{X,yoz} ={X,y}oz+Yyo{Xz.

A (left) pre-Poisson algebraof Aguiar [2] is defined as two bilinear operationsnd- such
that= is a product of (left) Zinbiel algebra ands a product of (left) pre-Lie algebra and they are
compatible in the sense that

(X-y—y-X)*z
(Xxy+y=*X)-2

X-(Yx2)—y=*(X-2),
Xx(Y-2)+y=(X-2).
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By a similar argument as in Proposition 2.22, we obtain
Proposition 2.24. The bisuccessor of the operad Poisson is the operad Pre#iss
Proof. Straightforward by computation. m|

2.5.2. Examples of trisuccessordVe similarly have the following examples of trisuccessdrs o
operads.

Example 2.25. A commutative tridendriform algebra [36, 38] is a vector spacA equipped
with a product and a commutative associative produsatisfying the following equations:

(X<y)<z=X<(y<Z+z<Yy+Yy-2,
(x-y)<z=x-(y<2.
Proposition 2.26. The operad ComTriDend is the trisuccessor of the operad Comm

A PostLie algebra[46] is a vector spac@ with a producte and a skew-symmetric operation
[,] satisfying the relations:
[[xyl.2d + [z Xyl +1[y.4.X] =0,
(15) (Xoy)oz—Xo(yo2)—(Xxo2)oy+Xo(zoy)—-Xo[y,Z =0,
[X.y]oz=[Xozy] - [XyoZ =0.
If (A, o,[,]) is a PostLie algebra, thed([,]) and (A, {, }) are Lie algebras, where the operation
{,}is defined by
{X,y} :=Xoy—yox+[Xy], VYxyeA
Moreover, it is easy to see that if the operatiohHappens to be trivial, themA(o) becomes a
prelLie algebra.

Proposition 2.27. The operad PostLie is the trisuccessor of the operad Lie.

Proof. Let 4 be the generating operation of the opekéal Set<:= ||, >:= [“|and- := [|. Since
(12) 12) (12) 12) ) :
{’: = "> ] = —’: and’f =" = —[" , we have<(®= — > and-*? = — ., The space of
relations ofLie is generated as ay-module by
Vi+Vs+Vo=puopu+poyu+poyp.
Then we have
TSuxy(Vi +Vs+Vg) = (X<Y)<zZ-(X<2<y-Xx<(Yy<z-z<y+Yy-2),
TSuy(i+Vs+Vg) = —(Y<X) <Z-Yy<(-X<Z+Z<X+Z-X)+(Y<2 <X
TSuz(Vi+Vs+Vg) = —-Z<(-Yy<X+X<Yy+X-Y)+(Z<X)<y-(2z=<y)<X
TSuyxy(1+Vs+Vg) = (X-Y)<zZ-(X<2) -y-x-(y<2;
TSUya(Vi+Vs5+Vg) = —(Y<X)-z2-y-(Z<X)-(Y-2) <X
TSuxz(V1+Vs+Vg) = -Z-(X<Y)+(Z-X)<y—-(z<Y):X
TSUxya(Vi+Vs+Vg) = (X-y)-z2+(Z-X)-y+(y-2-x
Replacing the operationsby o and- by [, ], we get TSul.ie) = PostLie O

2.6. Properties. We study the relationship among a binary operad and its ssocg
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2.6.1. Operads and their successors.

Lemma 2.28.Let V be anS-module concentrated in aritg with linear basisV. For a labeled
planar binary n-treer € T(V), the following equations hold i (V):

(16) D, Sw@ =T,
xeLin(t)

(17) Z TSw(7) = 7.
JeLin(7)

Proof. We prove Eq. (16) by induction ghin(z)|. When|Lin(7)| = 1, we have
D sum)=1=*

xeLin(r)
Now assume that Eq. (16) holds for alle T(V) with Lin(r) < k for ak > 1 and consider a
(k + 1)-treer in T(V). Sincer = 7, vV, 7, for somef,r < kand w € V. Then by the definition
of the bisuccessor of a planar binary tree and the inductypothesis, we have

DUSu@) = DL SuE) Vv \T+T V) D, Sl
xeLin(t) xeLin(ry) ] xeLin(tr)
This completes the induction. The proof of Eq. (17) is simila O

Proposition 2.29. Let® = 7 (V)/(R) be a binary operad.

(a) There is a morphism of operads frdto Su(P) which extends the linear map from V to
V defined by

(18) wH{w], w €eV.

*

(b) There is a morphism of operads frafhto TSuP) which extends the linear map from V
to V defined by

*

(19) wH{“], weV.

(c) ThEre is a morphism of operads frgfto TSu(P) which extends the linear map from V
to V defined by

(20) w - [‘”] w eV.

Proof. We assume tha is given by (9).
(a) It is easy to see that the linear map defined in Eq. (19)-squivariant so it induces a mor-
phism of operads fromi (V) to Su(P). Moreover, by Lemma 2.28, Eq. (16) holds. Hence we

have
Z CsiTsi = Z Z CsiSU(7s), 1 < s< k.
i )

i xeLin(rgj
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SinceLs := Lin(ts;) does not depend anwe have

chi?si ZZSUX[Z CsiTsi):O, 1<s<k
i xelg i

and this ends the proof.

(b) Similar to the proof of Item (a).

(c) Itis easy to see that the linear map defined in Eq. (28)4squivariant so it induces a mor-

phism of operads frori (V) to TSu(P). Moreover, by the definition of a trisuccessor the follo-

wing equations hold:

Z CsiTSu_in(Tsi)(Ts,i) =0, 1<s<k
Note that the labeled tree TSy, ,)(7s;) is obtained by replacing the label of each vertex gf
say w, by{

w

. Hence the conclusion holds. O

If we take® to be the operad of associative algebras then we obtain tlogviing results of
Loday [34] and Loday and Ronco [38]:

Corollary 2.30. (a) Let (A, <, >) be a dendriform dialgebra. Then the operation=< + >
makes A into an associative algebra.
(b) Let (A, <,>,-) be a dendriform trialgebra. Then the operatian:= < + > + - makes A
into an associative algebra.
(c) Let (A, <,>,-) be a dendriform trialgebra. The(A,-) carries an associative algebra
structure.

2.6.2. Relationship between bisuccessors and trisuccessorsiobaytoperad.

Lemma 2.31.Lett be a labeled n-tree iff (V). If the operation{ “’] lw € V} are trivial then,

for any xe Lin(r), we have
(21) TSuy(7) = Su(r) in T(V)..
Proof. There is only one path from the root the the leaféxpof = so, by Proposition 2.4 and by

Proposition 2.9, if the operatior{%w lw € V} are trivial then the bisuccessor and the trisucces-

sor with respect tx coincide. m|
The following results relate the bisuccessor and the tasssor of a binary algebraic operad.

Proposition 2.32. Let® = 7 (V)/(R) be a binary algebraic operad.

(a) Ifthe operations{ “’] lw € V} are trivial, then there is a morphism of operads fr&u)

to TSu(P) which extends the inclusion bfin V.
(b) There is a morphism of operads fronBu) to Suf) which extends the linear map
defined by

e [J=F =) [l wev
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Proof. We assume thétAis given by (9).
(a) The inclusiorv — V is S,-equivariant so it induces a morphism of operads froifV) to
TSuP), which kernel is the ideal generated by Rupy Lemma 2.31.

(b) The linear map defined by Eq. (22)Sg-equivariant hence it induces a morphism of operads
¢ : TSufP) — SuP), andy ({“’]) = {“’] . Then, we have

*

P(TSUx(7si)) = SW(7si) , VX € Lin(zs;)
and
@(TSuy(rsi)) =0, VI C Lin(rg), 1> 1.
O

If we take® to be the operad of associative algebra, then we obtain tleeving results of
Loday and Ronco [38]:

Corollary 2.33. (a) Let (A, <,>,-) be a dendriform trialgebra. If the operationis trivial,
then(A, <, >) becomes a dendriform dialgebra.
(b) Let(A, <, >) be a dendriform dialgebra. Theg, <, >, 0) carries a dendriform trialgebra
structure, where 0 denotes the trivial product.

3. SUCCESSORS AND M ANIN BLACK PRODUCT

We now identify the bisuccessor (resp. trisuccessor) oharyj quadratic opera# with the
Manin black product oPreLie (resp.PostLig with .

Definition 3.1. ([19, 47) Let® = 7 (V)/(R) andQ = 7 (W)/(S) be two binary quadratic operads
with finite-dimensional generating spaces. Define th&nin black product by the formula

PeQ:=T(VeWeksgn,)/(¥(R®S)),
whereV is defined in Section 4.3 of [47].

According to Proposition 25 of [47], notice that the Maniradk product is symmetric and
associative. Moreover, it is a bifunctor.

3.1. Bisuccessors as the Manin black product byreLie

Theorem 3.2.Let® be a binary quadratic operad. We have the isomorphism ofaujser
SufP) = PreLiee P.

Proof. Denote the generating operation BifeLie by 4 and continue with the notations, for
1 <i < 12 of the table given in Section 2.5 with = v = u. The space of relations éfreLieis
generated as a vector spacevoy Viy1 + Viyo — Vigs, 1 = 1,5,9.

We define an isomorphism 8b-modules by

n: PreLig2)® P(2)®k.sgn, — SuP)(2)

(23) w
U w ®1l - {
<

which induces an isomorphism 8§-modules:
1 : 3(PreLie(2) ® P(2) ® k.sgn,)®* — 3Su(P)®*.
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Then we just need to prove that, for every relatoof R, we have

(24) (P ((v1 — V2 + V3 = Vg) ® 7)) = Su(y),
(25) n(P((Vs — V6 + V7 = Vg) ®y)) = SW(y),
(26) (P ((Vo — Vo + V11 — V12) ® ) = SU/(y).

If EQ. (24) holds, by lemma 2.6, we have

T(P((Vs — Vo + V7 — Vg) ® %)) = (P((V1 — V2 + V3 = Vi) ® Y"1 )™) = Suy(y)
and
TP (Ve — Vio + Vi1 — Vi2) ® ) = n(¥((V — V2 + V3 — Vi) ® ¥72 )?) = Su,(y),
for every relationy of R, whereo; = (132) 0, = (123). Thus we only need to prove Eq. (24) for
everyy € 7 (V)(3).
By Section 2.5, we only need to prove Eq. (24) for every 7 (V)(3) in Eq. (14). To do this,
we notice that, for allw and v in V, we have

27) Su(w e v) = |“[o {]
28) Su(w o v) = |“|en {]
(29) Su(w o v) = [“]ou {]

Then we obtain
nP((vi — V2 + V3 = Vg) @ (w o) v)))

Ao ) @ (0 o ) =i w oo e v o) =|“||]
= Suy(w o v).

In the same way, we prove that equation (24) holds for the mm&is w o, v and w oy v.
So, we conclude with

n(P((vi — V2 + V3 — V4) ® 7))
N(P((Ve — Vo + V3 = Vg) @ oy — ' oy p+ ' oy pt' — oy 1))
Sw(y) -

O

Repeated application of the theorem give$(B) = PreLiee PreLiee £ and, more generally,
SU'(P) = PreLie™ o £. Thus we have an action 65 on S#(P) by exchanging the twereLie
factors and, more generally, an actionSafon SU(#) by exchanging the PreLiefactors. See
Section 6 for symmetries on more general operads.

In the nonsymmetric framework, the analogue of Theorems3t&e following result.

Theorem 3.3. Let £ be a binary quadratic nonsymmetric operad. There is an igphiem of
nonsymmetric operads
Su(P) = Dendm P,

wherem denotes the black square producfia, 47]
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Proof. The proof is similar to the proof of Theorem 3.2. O

Examples of bisuccessoisote that Theorem 3.2 gives a convenient way to compute #kbl
Manin product of a binary operad with the operactLie as we can see from the following
corollary. Further examples are given the Appendix A.

Corollary 3.4. (@) ([47]) We have PreLi® Com= Zinb and PreLies Ass= Dend.
(b) ([45]) We have PreLie Poisson= prePoisson.

Proof. Item (a) follows from Proposition 2.22 and Theorem 3.2 whikm (b) follows from
Proposition 2.24 and Theorem 3.2. O

Remark3.5. Notice that the Manin black product does not commute withfainetor of regulari-
zation, defined in Section 2.4, whereas the bisuccessor doesrding to Proposition 2.21.

3.2. Trisuccessor and Manin black product byPostLie
Theorem 3.6.Let% be a binary quadratic operad. We have the isomorphism ofaujser
TSuP) = PostLiee P.

Proof. The sketch of this proof is similar to the one of the proof oedlem 3.2.
Denote the generating operationsdndo of PostLieby 8 ande respectively. Thep’ = —3. The
space of relations dPostLieis generated as a vector space by

(30) BoB+BonB+pLonp,

(31) €oje—€oje+eoye —€of—€eoye€,
(32) eoyf—PBone +Poye,

(33) €oj€ —€ oy € —€oje+eoyet+eoyf,
(34) €oj€e —€ o€ —€eoye+teoe—€of,
(35) —€eoyf—PBone+Ppo €,

and

(36) —€oyB—Boje+PBoy€ .

We define an isomorphism 8b-modules by
n: PostLi€2)eP(2)®@k.sgn, — TSuP)(2)
@7) powel - |
ERWwl - {w] ,

which induces an isomorphism 8§-modules:
1 : 3(PostLig2) ® P(2) ® k.sgn,,)** — 3TSu(P)*.
Then we just need to prove that, for every relatjoof £, we have

(38) n(P((B o1 B+BouB+Bon B)®Y)) = TSUxyz(¥),
(39) nW((eoje—€oye+€ o€ —€oyB—e€oy €)®y)) =TSuy(y),
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(40) N(P((eoi € —€ oy € —€oy €+ € oy €+ € oy B)Ry)) = TSuy(y),
(41) N(P((eon € —€ o€ —€oy e+€ 0 e—¢€ 0 f)®Y)) = TSuy(y),
(42) n(P((€ o1 B—Bon € +Boy € ®Y)) = TSUxy (7).

(43) nY((—eonB—Bomwe+PBo€)®y)) = TSUyz(»).

(44) N(P((—€om B—Boie+ Loy €)®y)) = TSuyzy(y).

By Lemma 2.11, the same argument as in the prelLie case inthh¢sve just need to prove
Eq. (38), Eq. (39) and Eq. (42).

By Section 2.5, we only need to prove Eq. (24) for every 7 (V)(3) in Eq. (14). To do this,
we notice that, for alko and v in V, we have

45) TSt(w o V) =[*| o[’} TSUn(w o1 1) =[“]or[*] TSwate o1 1) =[] [']

(46) TSyxy(w oy v) = [w]on [V, TSUxy(w on v) = w o {:] TSUxyz(w oy v) = [w]% {V]

> *

(47) TSyy(won v) = [j]om[v . TSuxy(wom v) =1 o,”{:], TSUxyz(won v) = [M]Om{f]-

>

Then, we have
o (¥((BorB+Bonp+pBoup)®(w o v))=TSuxya(w o v),
o N(P((eore—€oje+eoye —€oyf—€oy€)®(wo v))=TSuy(w o v),
o N(P((eor B—PBom € +Boy€®(w o v)))=TSUxy(w o v).
In the same way, we prove that the equations (38), (39) andh@d for the monomialsv o, v
and w oy v, which ends the proof. O

Remark3.7. Notice that we could derive Theorem 3.2 from Theorem 3.6qusie following
diagram:

TSuP) — PostLiee P

|

SuP) PreLiee P

The above proof implies that the top isomorphism presetvegéernels of the two vertical maps.
Then, one just needs to check that the vertical maps arectuge

The analogue of Theorem 3.6 in the nonsymmetric framewattkeigollowing proposition.

Theorem 3.8. Let P be a binary quadratic nonsymmetric operad. There is an igphiem of
nonsymmetric operads
TSufP) = TriDendm P .

Proof. The proof is similar to the proof of Theorem 3.6. O
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Examples of trisuccessoras in the case of bisuccessors, Theorem 3.6 makes it easyrto co
pute the black Manin product &ostLiewith any binary opera®. Others examples are given in
the Appendix A.

Corollary 3.9. We have PostLie Ass= TriDend.

Proposition 3.10. The trisuccessor of the operad PreLie is the operad encotfiagollowing
algebraic structure:

(X<y)<z—-x<(yx2
X>y)<z-x>(y<2
xX-y)<z-x-(y<2

(X<2)<y—x<(zxYy),
(X*x2)>y—-Xx>(z>Y),
(xX<2-y-x-(z>Y),
X>y)-z—x>(y-2 (X>2)-y—x>(z-y),
(x-y)-z=x-(y-2 (X-2)-y—-x-(z-y),
where xx y = X <y+ X>y+ X-V. Itis also the bisuccessor of the operad PostLie.

4. ALGEBRAIC STRUCTURE ON SQUARE MATRICES

One knows that the vector space of squareatrices, fom > 1, with codficients in a commu-
tative algebra carries an associative algebra structuagurhlly, one can wonder what happens
when the space of céiicients is endowed with another algebraic structure. Ingbidion, we
answer this question.

Proposition 4.1. Let# be an operad and let A bef-algebra. Then, the vector spagd,(A),
forn > 1, of (nx n)-matrices with coicients in A, carries a canonicé-algebra structure given
by the family of maps, : £ = Hom(M,(A)*™, M,(A)) defined by
m
()M @@ M™);; = Z aa(W)(Mb ..., M ), ¥1<i,j<nV¥m>0,
Ki,....km-1

wherea, : P — End, is the structure ofP-algebra on A.

Proof. We denoten,(u) by ii. Letu ® vi ® --- ® vg be inP(d) ® P(c1) ® - -- ® P(cy), With
Ci+---+Cq=m, andletM!, ..., M™be in M,(A). We have

a(vi(MY, . M), vg(M M)

n n n
= > D D, @@ Mis - ME ) a0 (M gee - M)
S A N SIS . ‘
n n n

I
M
M
M
3
=
=
*
&
=<
=
=
=G
g

oM LMT )
1

o o qds e
Ka-1.17 cg-1

= yg(,u;vl,...,vd)(Ml,..., Md)i,j ,V1< I,j <n,

wherey, = y; denotes the composition maps. So, these maps endg{#) with aP-algebra
structure. O
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Now, we have to describe the oper@dFor instance, sincBom= As, we recover the classical
associative structure of the space of matrices witHfaments in a commutative algebra. More-
over, in [43], in [7], and in [11], the authors prove respeely that the non-symmetric operads
Lie andPreLieare free. Thus, on the space of matrices withflécients in a Lie algebra (resp.
preLie algebra), there is, in general, no relations amoa@gerations defined in Proposition 4.1.

It is a non-trivial problem to describe the non-symmetriex@u® associated to a symme-
tric operad®P. However, wherP turns out to be the bisuccessor of some operads, we have the
following result.

Theorem 4.2. Let  be a non-symmetric binary operad acdbe a symmetric binary operad.
And let A be an algebra ove8U‘(0), for k > 0. Any morphism from Ré§) to O induces a
morphism of non-symmetric operads

SU(P) - SUt(©),
which endowsM,(A), for n > 1, with aSU(#)-algebra structure.

Proof. Let A be an algebra over §@). By Proposition 4.1M,,(A) carries a structure of an alge-
bra overSu‘(0). By functoriality of the bisuccessor, a morphism fr&tad®) to O gives rise to a
morphism from S(Red®)) to SI(O). Then, the following composite induces a@)-algebra
structure onM,(A):

SU(P) - RedSU(P)) = SU(RedP)) — SU(0),

where the left hand-side map is given by the unit of the adjandetween the forgetful and the
regularization functors and where the isomorphism is aegmsnce of Proposition 2.21. 0O

Corollary 4.3. Let A be an algebra oveBU{(Com), k > 0. ThenM,(A), n > 1, carries a
functorial structure of algebra over Defitl
More precisely, this structure is given by the following @eting operations

*Gg,ait) - Mn(A) ® Mi(A) — My(A) ,
with (i1, ..., i) € {0, 1}, defined by

..........

t(M ®(iq,...ik) N) = tN *(1-ig,...,1-ik) t|\/| 5 V(il, ceey Ik) € {O, 1}k,VM, N e Mn(A) .

..........

Proof. Applying Theorem 4.2, sinc€om = As M,(A) carries a structure of algebra over
Su(A9), which is isomorphic t®end“m As = Dend™, by Theorem 3.3.
We denote by and= the generating operation of the ope@ddmandAsrespectively. Then,
the space of generating operations of(®om) and of Sl(A9) are respectively spanned by
*(ilﬁ---,ik) =AU R Qg

and by
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with iy = 0 if u; =< andi; = 1 if y; =>. When we explicit the composite of the maps given in
Proposition 4.1 and in the proof of Theorem 4.2 on the spageérating operations, we have

SU(AY, — Hom(M,(A)%2, Mn(A))
n
Hrdl) 7 ¥y - MON (Z M *i....i6) N.,j)
1<i,j<n

The last result is a consequence of 8jeaction on the space of generating operations of the

operad St(Com), that is
12
*Eil,.)..,ik) = *(1_il ----- 1_ik) .

O

Notice that fork = 2, according to Proposition 2.22, the space of matrices eadficients in
an Zinbiel algebraA, .) carries a natural structure of dendriform algebra givethegyfollowing

operations
n
M <« N:(ZMU'NL] ,
=1 1<i,j<n
and
n
Mp> N = (ZNH . Mi’|
=1 1<i,j<n

And, these operations satisfy
‘M <N)='N>M.
It would be interesting to add the transpose to the generaperations oDend™ and to study
this operad.

5. Successors AND ROTA-BAXTER OPERATORS ON OPERADS

In this section, we establish the relationship between igieclessor, respectively the trisucces-
sor, of an operad and the operads of Rota-Baxter algebrasightwzero, respectively of non-zero
weight. We work with operads, but all the results hold for sygmmetric operads as well.

5.1. Bisuccessors and Rota-Baxter operators of weight zero.

Definition 5.1. LetV = V(2) be anS-module concentrated in arity 2.

(a) LetVp be theS-module concentrated in arity 1 and arity 2, definedvpyl) = span(P)
andVp(2) = V, whereP is a symbol. They (Vp) is the free operad generated by binary
operations/ and a unary operatioR # id.

(b) DefineV by Eq. (2), regarded as &amodule concentrated in arity 2. Define a morphism
of S-modules fromV to 7 (V) by the following correspondence:

&

w]H wo(ideP), {j]H w o (P@id),

<

whereo is the operadic composition. By universality of the free rapleé induces a
homomorphism of operads that we still denotetby

£:7NV) - T(Vp).
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(c) Let® = 7(V)/(Rp) be a binary operad defined by generating operatibaad relations
Rp. Then we define theperad of Rota-Baxter#-algebra of weight zeroby

RBo(P) := 7 (Vp)/ (Rp, RBp),
where
RBp :={w o (P®P)—Po wo(P®id)—Po wo(id®P)| w €V},

called the set of Rota-Baxter relations. We denote@py7 (Vp) — RBy(P) the operadic
projection.

Interpreting Theorem 4.2 of [45] at the level of operads gy binary quadratic operad
P=TMV)/R),

there is a morphism of operads
PreLiee ¥ — RBy(P) ,

defined by the following map
PreLig2) @ P(2) — RBy(P)
U w +— wo(deP)
Q®w - wo(Peid) ,

whereu denotes the generating operation of the opénadie By Theorem 3.2, this induces the
following morphism of operads

SufP) — RBo(P)
[w] — w o (id®P)
[“’] - wo(Paid)
If we take® to be the operad of associative algebras or the operad addtoagebras then we

obtain the following results of Aguiar [2]:

Corollary 5.2. (a) Let (A, o) be an associative algebra and let:FA — A be a Rota-Baxter
operator of weight zero. Define two bilinear products on A by

X<y:=XoP(y), Xx>y:=P(X)oy, XYyeA

Then(A, <, >) becomes a dendriform dialgebra.
(b) Let (A, 0,{, }) be a Poisson algebra and let PA — A be a Rota-Baxter operator of
weight zero. Define two bilinear products on A by

X-y:=P(X)oy, Xx=xy:=XoP(y), XyeA

Then(A, -, x) becomes a pre-Poisson algebra.
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5.2. Trisuccessors and Rota-Baxter operators of non-zero weigh In this section, we esta-
blish a relationship between the trisuccessor of an operddRata-Baxter operators of a non-zero

weight on this operad. For simplicity, we assume that theyitenf the Rota-Baxter operator is
one.

Definition 5.3. LetV = V(2) be anS-module concentrated in arity 2.

(a) DefineV by Eq.A(4), seen as d@tmodule concentrated in arity 2. Define a morphism of
S-modules fromV to 7 (Vp) by the following correspondence:

— w o (ideP),

n.

w
<

“:]H w o (Paid), {“f

= W,

whereo is the operadic composition. By universality of the free ragen induces a
homomorphism of operads:

n: T V) - T(Vp).

(b) LetP = 7(V)/(Rp) be a binary operad defined by generating operatibasd relations
Rp. Then we define theperad of Rota-Baxter#-algebra of weight oneby

RB1(P) := 7 (Vp)/ (Rp, RBp),
where
RBr i={w o(P®P)—Powo(P®id)—Powo(ild®P)-Po w | w €V},

called the set of Rota-Baxter relations of weight one. Wentiehyp, : 7 (Vp) — RB1(P)
the operadic projection.

Theorem 5.4. Let P be a binary quadratic operad.
(a) There is a morphism of operads
PostLiee P = TSufP) —» RBy(P) ,

which extends the mapgiven in Definition 5.3.
(b) Let A be aP-algebra. Let P. A — A be a Rota-Baxter operator of weight one. Then the
following operations make A into@ostLiee P)-algebra:

X<jy:=XojP(y), X>jy:=P(X)ojy, X-:jy:=Xojy, VojeP(2), XyeA

Proof. (a) First, we prove by induction ghin(r)| > 1 the following technical results hold
for anyr € T(V) with Lin(r) = n:
(i) We have

(48) Pon() =70P* mod (Rp, RBp).

(i) For 0 # J C Lin(r) with |Lin(7)| = n, let P®™ denote then-th tensor power oP but
with the component frond replaced by the identity map. So, for example, denoting
the two inputs oP?2 by x; andx,, thenP®?>*} = Pgid andP®?*} = id®id. Then
we have

(49) n(TSw (1)) = 7o (P*™) mod (Rp, RBy) .
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Let Rrsy) be the relation space of T3R). By definition, the relations of TS#) are
generated by TSyr) for locally homogeneous = }’, ¢iti € Rp, where® # J C Lin(ry),

the latter independent of the choiceioBy the aforementioned results (48) and (49), we
have

"(Z CiTSUJ(Ti)] = cn(TSu(m) = ) ¢rioP™ = (Z Ci‘ri)o P*™ =0 mod (Rp, RBy).

Hencen(Rrsugp)) < (Rp, RBp) andy induces a morphism of operads
n: TSu@P) — RB.(P) .
(b) Itisthe interpretation at the level of algebras of thepiism
PostLiee # — RBy(P) .
O

If we take® to be the operadss resp. the operaBend then we derive the results [13, 14]
that a Rota-Baxter operator on an associative algebra, resp@ dendriform algebra, gives a
dendriform trialgebra by Corollary 3.9, resp. an algebrardkie operadPostLiee Dend

6. A SYMMETRIC PROPERTY OF SUCCESSORS

There are symmetries in the iterations of successors. T$taristances of such phenomena
were discovered in quadri-algebras [3] and then in ennesbedg [31]. These instances were
shown to also follow from symmetries of Manin black squareveis of binary quadratic non-
symmetric operads [14]. Similar symmetries were recemtiyntl in operads, such as those from
L-dendriform algebras [6] and L-quadri-algebras [32]. sTtime the symmetries can also be de-
rived from symmetries of Manin products of binary quadraperads, as we can see in Section 3.
We now show that a symmetry hold for the iterated succesd$a@syobinary operad without the
guadratic condition.

6.1. A symmetric property of successors.

Definition 6.1. LetV be a vector space amcd> 1.
(a) We define the vector spawe" by

V' =Ve(k <ok >)*".

The vector spac¥™" is generated by elements of the foim® u; ®. .. ® uy, with w € V
andy; € {<, >}. Itis obtained by iteration of defined by (2).

(b) Leto be inS,. We define the mag,. : 7 (V™") —» 7 (V™") to be the uniqgue morphism of
operads which extends the following morphisnfafinodules

(50) V"o TV

WOUIR...QUy P W OU)® ... LUy(n)

Theorem 6.2.Let® = 7(V)/(R) be a binary operad. For any in S,, there exists an automor-
phism®,,. of the operadSu'(#). This induces a morphism of groups

Sn — AULSU(P)) .
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Proof. Using the interpretation of the bisuccessor given in Pritjoos2.4, when we compute the
bisuccessor of a labeled treen 7 (V) we do not change the underlying tree but only the labels
of the vertices. So, by symmetry and by associativity of @msor product, we have

Su(r(l) .- 'Suo’(l)(T) = ¢O'(Su1 ce Su|(T)) s

whereo € S, and whera,, ..., i, € Lin(r) are not necessarily distinct.
Assume thaR s given by (9). Then, we obtain that

¢ (SU(R)) = {chi%(sul .S (ts), in.... ik € Lin(rs;) \ 1<s< k,} - SU(R).
j

Thus the composite™" % T (V™") » SU'(P) induces a morphisnb,, : SU(P) — SU'(P). And,
by definition, we have

bobor = Poos Yo, o’ € Sh .
and we deduce from this the rest of the theorem. -

When#® is taken to beAss the involution®;, : SufP) — Su(P) of Theorem 6.2 gives the
following result of Aguiar and Loday [3]:

Corollary 6.3. Let(A, N, ./, ./, \\), be aquadri-algebra. Thenits transpae\!, /%, 7, \)
is also a quadri-algebra, where

NN A=, =, e

Proof. This is clear since, in terms of bisuccessors, we IQuadri = StP(As9 by Example 2.15
and

w w w

\:<, ./:<, /':>, \:>,

< > < >

where w denotes the binary operation of associative algebras. m|

Next, we provide an example of symmetric property when thebt successor functor is
applyied to a non-quadratic operad, namely, the operadrdadcalgebra.

Definition 6.4. We now assume that the characteristik a neither two nor three.
(a) AJordan algebra[27] is defined by one bilinear operatiorand relation:

(xoy)ou)oz+((yoz)ou)ox+((zox)ou)oy = (xoy)o(Uo2)+(yoz)o(UcX)+(zox)o(uoy).

(b) A pre-Jordan algebra[26] is defined by one bilinear operatioand relations
(xoy)-(z-u+(yoz - (x-u)+(Zox) - (y-u) z-(xoy)-u+x-(yo-u)+y-((zo X - u),
X-(y-(z-w)+z-(y-(x-u)+((xogoy)-u = z-(xoy)-U)+x-((yoz-u)+y-(zox) -u),

wherexoy:=X-y+y- X

It is easy to obtain the following conclusion:
Proposition 6.5. The bisuccessor of the operad Jordan is the operad PreJordan

Moreover, we have the following results.
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Proposition 6.6. The operadSt?(Jordar) = SuPreJordan is generated by two bilinear opera-
tions< and> that satisfy following relations:
(X<y+y>X)<(Zz-U+(Yo)>(X<U)+(z>X+X<2)<(y-u)
= Z>((X<y+y>X)<u)+x<((yo2)-u)y+y>((z> x+x<2) <u);
Xoy)>(z>U)+(yo2) > (X>U)+(zoX) > (y>u)
= Z>((Xoy)>W+x>((yo2) >u+y>((zox) > u);
X<(y-(z-u)+z>y>XxX<u)+((x<z+z>X)<y+y>(X<z+z>Xx)<u
= z>((X<y+y>X)<Uu)+x<((yo2-w+y>((z>x+x<2<u);
X>{yY<(@zu)+z>yY<X-u)+((Xez)>y+y<(xo02)<u
= z>((X>y+y<X)<u+x>((y<z+z>y)<uw+y<((zox-u);
X>(>@Z<u)+z<(y-(X-u)+((x>z+z<X)<y+y>(X>z+z<Xx)<u
= z<((Xoy)-u)+x>({(y>z+z<y)<u+y>((z<x+x>2 <u);
X>(y>Z>u)+z>(y>X>u)+((Xo2)oy)>u
= Z>((Xoy)>wW+x>((yo2) >u+y>((zox) > u),
where xy:= X<y+X>Y,Xoy:=X-y+VY-X. The operationsatisfies the relations defining a
preJordan algebra and the operatiersatisfies the relations defining a Jordan algebra.

Proposition 6.7. The mapy that sends< to <(*?, <12 to < and leaves the other operations of
Si¢(Jordan) invariant induces an involution of the oper&df(Jordan).

Proof. It is a corollary of Theorem 6.2 with the following identifioans:

w w

<l <=

w w

L 12)_ <u2)_

< > s >:>9

< > < >

where w denotes the generating operationJofdan m|
6.2. A symmetric property of trisuccessors.

Definition 6.8. LetV be a vector space am> 1.
(a) We define the vector spawé" by

Vii=Vek <ek>ak- ).

The vector spac¥’" is generated by elements of the foin® u; ®. .. ® up, with w € V
andy; € {<, >, - }. Itis obtained by iteration of defined in (4).

(b) Leto be inS,. We define the map,, : 7 (V") — 7 (V"") to be the unique morphism of
operads which extends which extends the following morptas8rmodules

V/\n N T(V/\n)
(51)
WOUIR...QUy P W OUF)® ... LUy(n)

Theorem 6.9.Let® = 7(V)/(R) be a binary operad. For any in S,,, there exists an automor-
phism¥,, of the operadl SU'(#P). This induces a morphism of groups

Sn — AUTSU(P)) .
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Proof. This proof follows the same arguments as the proof of Thed@&n O

When# is taken to beAss the involution¥ () : TSufP) — TSu(P) of Theorem 6.9 gives the
following result of Leroux [31]:

Corollary 6.10. Let(A,N, ./, <, ./, \., >, T, |, o) be an ennea-algebra. Then its transpO&e\ !
0 <E 0N > T LY oY) is also an ennea-algebra, where

NN A=, <B=1, A=, NN, >hi=l, th=<, L=, ofi= o

Proof. In fact, in this cas€Ennea= TSWP(As9 and in our terminology, the products éfare
reformulated as follows:
, 1= { o= [ :

where w denotes the generating operationAsis m|

w w w w w w w
\: < |/: < <=|< ) /‘: > s \4: > s >= > s T: : 5
. <

< > < >

APPENDIX A. EXAMPLES OF SUCCESSORS

A.l. L-quadri and L-dendriform operads. An L-dendriform algebra [6] is defined to be a
k-vector spacé with two bilinear operations;, >: A® A — A that satisfy relations

X<y)<z+y>(X<2=x<(y-2+(¥y>X <z
X-Y)>z+y>X>2=x>yY>2+(y-X) >z
where: =< + >.
Proposition A.1. The operad LDend is the bisuccessor of PreLie, equivalently
PreLiee PreLie= LDend.

u u

Proof. Letu be the generating operation@feLie Set<:=|"|and>:=

]. The space of relations

< >

of PreLieis generated as &-module by
V1 — V2 — V12 + V11.

Note here we use the left Pre-Lie algebra. The space ofsaRbfLDendis generated, as an
Ss-module, by
ri: = X<y)<z+y>xX<2-x<{y-29-(y>x <z
rr: = (Xy)>z2+y>X>2—-x>(y>2-(y-X) >z
Then we have
Su(Vi—Vo—Vio+V11) = (X<Y)<z2-X<{<z+y>2)-(Yy>X)<z2+y> (X<2);
SW(vi—Vo—Via+Vvi)) = (X>Y)<Z-X>({Y<2)-(Y<X)<Z+y<(X>Z2+X<2),
Su(Vi—Vo—Vio+Vi)) = (X>Y+X<Y>Z-X>({Y>2)-(Y<X+y>X)>z+y> (X>2).

Rewriting the relations with the operatior8?, >12 and then, replacing these operations<by
and> respectively, we get SB(eLie) = LDend O



28 CHENGMING BAI, OLIVIA BELLIER, LI GUO, AND XIANG NI

An L-quadri-algebra [32] is a vector space endowed with four binary operatighs\, ,”
and>\ that satisfy the following relations

XNYND-(XNY)NZ-YyN X/ Z+XNZ+ X Z+ XN D)+ (YN X \Nz=0;
XNY/D-(XNY+XSY) /2=y (XNZ+X D+ (Y /" x+yN\N X 2=0;
XNV D)-(XNY+HX VNS 2=y (XN Z+HX D+ (Y X+YN X)) 2=0;
X/SWZ24yN)-(X /" YNzZ-y/ (X 2+ xN )+ (Y, XN \Nz=0;
XNYND)-(X/Y+XNY+XY+XNY) N\ 2Z
“YNXND+ Y X+HYNX+Y L X+Y N X))\ z=0.

Let LQuaddenote the operad of L-quadri-algebras.
Proposition A.2. The bisuccessor of LDend is LQuad, equivalently
PreLie®® = LQuad.

Proof. By Theorem 3.2, the operdereLie’”, for n > 2, is given by therf — 1)-th bisuccessor
of PreLie By Proposition A.1, we obtaifPreLie> ~ LDend So we just need to prove that
Su(Dend = LQuad

To prove this previous statement, we continue to use theionsin Section 2.5. Let us denote
the two generating operatiorsand > of LDend by ¢ and v respectively. Then the space of
relations ofLDendis generated as ay-module by

roi=porp+vonu —poyu—p oy v—pory

and by
ro:=voyv+vou+voyv —voyv—vou —vov.
Under the notationS. ;= {"] = ["] /=" and\,:= [V , we have
< > < >
Su(ry) r r
Sy Nor(N = N+ N\ oy N2 -\ @D o |/ oy(< = >1)+ D oy 2 - 1D 6y
Sw No( /= )+ B2 oy A2 - 212, < Sty (rz)*?
Sus oA = v+ N2 o 12— A02) o > | N o (x — x(12)+ \[1D o 1D — \[(12) o) N\

where<:=/ + \,>=\ + .,V =\ + /, A=+ Nand* =/ + \_+ 7 + \..
Finally we get

Su(Dend = LQuad.
O
A.2. Alternative and pre-alternative operads. We next assume that the characteristicka$

not two. Analternative algebra[28] is defined to be &-vector space with one bilinear operation
o that satisfies the following relations

(xoy)oz+(yox)oz = Xo(yod +yo(Xod),
(xoy)oz+(xo2oy = Xo(yod+Xo(zoy)
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A pre-alternative algebra[41] is defined to be &-vector space with two bilinear operations
< and> and that satisfy the following relations

(Xoy+yoX) >z
(X>2)<y+(z=<X <y

X>y>2+y>(X>2,
X>(z<y)+z<(Xoy),

(YoX)>z+(y>2) <X

y>(X>2+y>(z<X),

(z<X)<y+(z<y) <X Z<(Xoy+YyoX),

whereo =< + >,

Proposition A.3. The bisuccessor of the operad Alter is the operad PreAltgrivalently
PreLiee Alter = PreAlter.

And the trisuccessor of the operad Alter is the operad emgptifie following algebraic structure:

X*xy+yxX)>z2 = X>(y>2+y>(X>2,
X>2)<y+(@Z<X)<y = X>(@2Z<y)+z<(xxYy),
YxX)>z+(yYy>2)<X = y>(X>2+y> (z<X),
Z<X)<y+(@z<y)<X = z<(X*xYy+yx*xX),

X-yY)<z+(y-X)<z = X-(y<2+y-(x<2,

N
Il

X<y)-z+(y>X)- X-(y>2+y>(X-2),
X-Y)<z+(X<2):y = X-(Y<2D+X-(z>Y),
X>y)-z+(X>2)y = Xx>(-2+x>(z'y),
X-y)-z+y-¥-z = x-(y-2+y-(x-2,
(X-y)-z+(x-2-y = X-(y-2+x-(z-y),
where xx y = X<y+X>y+X-Y.

A.3. Leibniz and pre-Leibniz operads. A Leibniz algebra [33] is defined to be &-vector
space with one bilinear product [] satisfying the Leibniz identity

[[x 1.2 =[[x.2Z.y] + [x[y.2] -

Proposition A.4. The bisuccessor of the operad Leibniz is the operad encdtmdollowing
algebraic structure:

(X<y)<z = X<2<y+x<(y>z+y<2,
X>y)<z = X>z2+X<2>y+x>(Yy<2,
X>y+X<y)>z = (X>2<y+x>(y> 2.

And the trisuccessor of the operad Leibniz is the operaddingahe following algebraic struc-
ture:

(X<y)<z = (X<2<y+x<(yx2,
X>y)<z = (X*x2)>y+x>(y<2,
X*xy)>z2 = (X>2)<y+Xx>(y>2,
X-y)<z = (X<2-y+x-(y<2,

(X-2) <y+x-(y>2,

(x<y) 2
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xX>y)-z = (X>2-y+x>(y-2,
(x-y)-z (X-2)-y+x-(y-2),

where xx y = X<y+X>y+X-Y.

A.4. The operad Poisson A (left) post-Poisson algebras ak-vector spacé\ equipped with
four bilinear operations (], ¢, -,>) such that A, [,], ¢) is a (left) post-Lie algebra A, -,>) is a
commutative tridendriform algebra, and they are compaiibthe sense that (for anyy, z € A)

[xy-2 =[xy]-z+y-[x7Z,
[X.z>yl =z>[xy] -y-(z0X),
Xo(y-2)=(Xoy)-z+y-(X¢2),
(Y>z+z>y+y-20ox=2>(YyoX)+Y> (ZoX),
Xo(z>y)=z>(Xoy)+(Xoz—zoX+[X7Z]) >V.
Let PostPoissonlenote the operad encoding the post-Poisson algebras.

RemarkA.5. Let (A, [,], ¢, -, >) be a post-Poisson algebra. If the operatiafnapd- are trivial,
then it is a pre-Poisson algebra.

Proposition A.6. The trisuccessor of the operad Poisson is the operad Pas®oj equivalently
PostLiee Poisson= PostPoisson
A.5. The operadJordan Assume that the characteristiclofs neither two nor three.

Proposition A.7. The trisuccessor of the operad Jordan is the operad encaitiedollowing
algebraic structure:
(x<y)<u) <z+x<((y*2*xu+((x<2)<u <y
= X<Y)<UxD+(X<U)<Y*xD+(X<2<(UxYy),
U<(X*xy)<z+U<(Yy*x2)<X+U<(zxX)<Yy
= U<2<X*xY+U=<2)<(yYy*x2+U=<Yy)<(zxX),
(x-Y<w=<z+({(y<2<u)-x+((x<2)<u-y
= (X Y)<UxD+(Y<2 - X<uw+(x<2-(y=<u),
((x<y) - Wy<z+U<Y*x2) - x+((x<2-u<y
= (X<yY)-U<2D+U-X)<Y*xD+(x<2- -(u<y),
((x-y) <w-z+((y-29 <u)-x+(z- 9 <u)-y
= (Xy)-@Z<w+y-9-x<u)+(z-x)-(y<u),
((x-y)-u) <z+((y<2-u)-x+((x<2-u)-y
= (Xy)-U<)+(y<2 - (U-X+(x<2)-(u-y),
((x-y)-u)-z+((y-2-u)-x+(z-¥)-U)-y
= (Xy)-U-)+y-2-U-X+(z-X-(u-y),

where xky = X<Yy+y <X+ X-V.
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Concluding remark. Despite the generality of the approach in this paper, weebelthat this
study provides a new starting point, rather than the endhersplitting of operads. There are
many other ways to split the associativity than the onesigeal/by the dendriform dialgebra
and trialgebra alluded above, for instance given by theadiedt CABQR operads [16]. What are
their generalizations to the general operads? The rastriof Manin black product to binary
guadratic operads calls for its generalization to non-catadoperads, so that the successors of
the operads of Jordan and pre-Jordan algebras, for exataplee viewed in terms of the Manin
black product. On the other hand, the well-known Koszul iy aif Manin black product sug-
gests a possible duality for the successors and Rota-Bapé&rators, maybe to flierential type
operators [5, 22, 23]. For some recent progress see [37, 44].
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