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§1. Introduction. Let

on the upper-half plane

be the modular group acting

~ = {z E ~ I Im z > o}

in the standard way and let 1 be the corresponding well~known

tesselation of 1l into black and white triangles with angles
TI

2'
TI

3
and o. There is a good deal of number-theoretic interest in

the study of the subgroups of finite index in r. A useful method

of obtaining ihformation about a subgroup is to construct a -"good"

fundamental domain for it. In principle such a fundamental domain

may be constructed out of the tiles of:T. See e.g. Gunning [4]

ch. 1, Schoneberg, [12] ch. 4 for some pictures of such fundamental

polygons. A general reference on fundamental polygons for Fuchsian

groups is Lehner [8], ch. IV and VII. L. Keen [5] has justified and

made more precise an older method due to Fricke for constructing

fundamental polygons for arbitrary finitely generated Fuchsian

groups. However if one applies her method to a subgroup of r

the associated fundamental polygon usually would not be a union of

the ti les in J. Moreover to appIy this me"thod one already needs

6')
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a canonical system of generators for the subgroup. Our present

concern is closer to that of Rankin [11] pp. 47 - 69. We consider

a special type of polygons, here called 'admissible ll
, cf. (2.2)

below, and construct an admissible fundamental polygon for each

subgroup of finite index in f. Moreover for schematic purposes,

to admissible polygons we associate certain s-diagrarns which are

certain types of finite trees all of whose internal vertices have

valence 3. Frorn its s-diagram, one can quickly obtain the geometrie

invariants of a subgroup, and in fact the classes of s-diagrams

with respect to a certain equivalence relation actually classify

the conjugacy classes of subgroups.

Let p be an odd prime. If one replaces 3 by P in the definition

of an s-diagram then the equivalence classes of these modified

S-diagrams would classify the conjugacy classes of subgroups of

f ini te index in the Hecke group ~ 2Z 2 *2Z p . In fact, the rnethod

generalizes to all finitely generated fuchsian groups of genus zero

and one cusp. But since it.is most transparent in the case of

the modular group, and possibly of wider interest we have restricted

to this special case in the paper.

In an earlier paper [7] we had introduced certain "thickened diagrams"

for the subgroups of a non~pact fuchsian group which also

classify their conjugacy classes. The s-diagrams of this paper

are obtained essentially by cutting these thickened diagrams for

subgroups of f, thinning them, and inserting. the relevant infor­

mation at the cuts. In fact the notion of an s-diagram suggested

itself while trying to correlate the thickened diagrarns to tesse-
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la tions.-

For other and earlier methods of studying subgroups of the modular

group we refer to Atkin and Swinnerton-Dyer [1], Rankin [11],

Millington [9], Singerman [13], Stothers [14], Brenner and Lyndon

[3] and the referenees there. (For.a more extensive list of refer-

enees see section FOS of the Reviews in Number Theory, ed. by

R.K. Guy, Amer. Math. Soc.). These methods are various eombinations.

of algebraic and geometrie techniques and have different advantages.

An advantage in the present method appears to be in its possible

intuitive appeal and facility in obtaining a minimal system of

generators for a subgroup in terms of Möbius transformations.
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§2. Admissible Polygons and s-diagrams

(2.1) First some terminology. All geometrie notions in Je refer

to hyperbolic geometry. Let i = /-1

are two r-orbits of the vertiees in ~

and p = exp(ni/3). There

The vertiees in fi

(resp. fp) will be referred to as 2-vertiees (resp. 3-vertiees).

The set of edges in ~ is denoted by ~. The subset of edges of

finite length is denoted by ef . It forms a single f-orbit. Among

the edges of infinite length there are two f-orbits, namely ~2

and ~3 eonsisting of those ineident with 2-vertiees and 3-vertiees

respeetively. The elements of ~2' C;, Ef will also be referred

to as 2-edges, 3-edges and f-edges respectively. Throughout this

paper, unless otherwise stated, a polygon wil~ always mean a connee­

ted, simply eonneeted elosed subset of j{ u'{:IR U {co}} wi th non-empty

interior, finite hyperbolie area and bounded by finitely many geo-

desic ares. These ares are called the sides.of the polygon.

(2.2) An admissible polygon is a polygon P with the following

structure. First

(2.2.1) P = P U T1 U T2 U ... U Tb' b > 0
0

where i) Po is a polygon wi th all vertices in lR U {co} and eaeh

side of Po is a union of a pair of 2-edges, ii) Eaeh T. is a
J

triangle. Two of its vertices are in JR U {co} and the side joining

them ealled the diagonal of T.
J

is a union of a pair of 2-edges.

The third vertex of T. is a 3-vertex joined to the other two
J

vertiees by 3-edges subtending an angle 2n/3, iii) Eaeh T.
J

is

attached externally along its diagonal to a side of PO.
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Secondly we need to specify the sides of P. The sides of Po not

attached to any T
j

are called the free sides of PO. A side of

P is either a 3-eg.ge of seme T
j

, or a free::side of PO' (in

which case it will be called a free side ef. P) er a 2-edge con-

tained. in a free side ef PO.

Thirdly P comes equipped .with a side-pairing satisfying the follow-

ing rules:

side of Po

i) The 3-edges of each T. are paired, ii) If a free
J

is divided into a pair of 2-edges which are considered

as sides of P then they are paired, iii) A free side ef P is

paired toanother such free side.

(2.3) Geing te the disk-model for oe U IR U {(X)} an admissible

polygon will have the sh~pe as shown in figure 1.

Notice that an adrnissible polygon is automatically convex. Also

if two sides are paired then geometrically they are to be considered

as identified by an element cf

reversing way.

r (necessarily) in an orientation-
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(2.4) We now introduce two notions of equivalence among admissible

polygons. These equivalence relations are denoted by (strong

equivalence), and (weak equivalence). Let P1" P 2 be two

admissible polygons. The ~ is easy to describe.

(2.4.1) P1:;:;: P2 iff there exists et E r. s.t. etP1 = P 2 .

Next suppose that two non-adj"acent vertices of P 1 can be joined

by a geodesie y which. is a union of a pair of 2-edges, and y

separates two paired free sides. et,B of P1. We can then cut P1

along y and attach the component containing et externally to

the second component attaching a along B, thus obtaining a new

polygon P3. In this process the sides a,B of P1 have become

a single geodesie in the interior of P3 , and there has arisen a

new pair 'Y1'Y2 of free sides corresponding to the cut along y.

We now pair with and other side-pairs remain the same as

thus turning P
3

into an admissible polygon. We shall

say that P3' is obtained from P1 by an elementary rnove. Now

we are in a posi~ion to define the weak equivalence:

(2.4.2) P1 - P 2 iff there exists an adrnissible polygon P

such that P2 ~ P and P is obtained frorn P1 by a

finite sequence of elernentary rnoves.

(2.5) We 5hall now describe another clas5 of objects which are

convenient for schematic purpose5. Recall that a vertex in a

graph i5 called terminal if it has valence 1; otherwise it i5

called internal.
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A subgroup-diagram, or an s-diagram for short, is a finite tree all

of whose internal vertices have valence 3, and the terminal vertices

are divided into two subsets the elements of which will be called

2-vertices and 3-vertices respectively together with i) a cyclic

order of the edge5 incident with each internal vertex and ii) an

involution on the set of 2-vertices. Moreover to avoid degenerate

cases we also assume iii) there are at least two vertices, and if

there are exactly two then at least one of them is a 3-vertex.

(2.6) We shall picture an s-diagram by a tree considered as embedded

in the plane of the paper so that the cyclic order of the edges

at an internal vertex agrees with the anticlockwise orientation of

the plane. Moreover a 2-vertex (resp. a '3-vertex) will be denoted

by a 0 (resp.• ), and a pair of distinct 2-vertices paired by

the involution will be labelIed by the same integer. Of course

different pairs will have different labels. See the appendix (A.2)

for some pictures together with their relevance to the subgroups of

r.

(2.7) We shall now again introduce two notions of equivalence among

the s-diagrams, denoted by (strong equivalence) and - (weak

equivalence) . Let L
1

, L2 be two s-diagrams.. Firs t

(2.7.1) L
1

z L
2

iff there exists an isomorphism of underlying

trees preserving the extra structure imposed in the

definition of an s-diagram.

Next suppose that v 1 ,v
2

are the 2-vertices of L
1

which are

paired by the involution and the shortest pa th TI joining v 1
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to has fB
3 that contains internal verticesv 2 le!1g th > so TI two

say w1 and w2. Now insert a new vertex .u on the edge (w1w
2

) ,

cut E1 at u and join the component conta~ning v 1
to the other

identifying v 1 with thus obtaining a new tree, say

We shall delete the vertex (of valence 2) in E
3

obtained by the

identification of with So in the process we have lost a

pair of 2-vertices, but we have created.twa new terminal vertices

say and corresponding to the cut at u. We consider

u 2 as 2-vertices of E
3

and pair them thus defining an involution

on all terminal 2-vertices of E
3

(w~ich agrees with that on all

the terminal 2-vertices ~ {v
1

,v
2

} of E
1
). This makes E

3
an

s-diagram. We say that E
3

is obtained from E
1

by an elementary

~, and set

(2.7.2) iff there exists an s-diagram E such that

and E ±s'obtained from E1 by a finite

sequence of elementary moves.

(2.8) Proposition. There is a natural 1-1 correspondence between

the strang equivalence classes of admissible polygons and these of

s-diagrams.

Preof. Let P be an admissible polygon. Let E be the union of

all the f-edges contained in P. Let int P and ap denate the

interior cf P and the boundary cf P respectively. We make E

inta a graph as fallows. Its vertices are all the vertices of ~

lying in ap and all the 3-vertices of -':} lying in int P. An

~ Each edge in the graph is supposed to be of unit length.
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edge of E is either a union of a pair of f-edges joining two

3-vertices of 'J' lying in P or an f-edge joining a 3-vertex of

:J lying in int P and a 2-vertex of ~ lying on dP. Since P

is connected and every point of P can be joined to an f-edge
within a tile

by an arc/i t follows that E"" is connected. Now it is well-known

that the f-edges of :J, not counting the vertices of valence 2

as vertices, has a structureof the so-called universal 3-regular

tree. It follows that E is a finite tree all of whose internal

vertices have valence 3. The terminal vertices of E are those

lying in dP. We call a terminal vertex in E a 2-vertex resp.

a 3-vertex if i t is such as a ver tex of 'J. The involution on

the 2-vertices of E is induced by the side-pairing of P in an

obvious way. This makes E an s-diagram.

Conversely given an s-diagram E we embed$ it in the f-edges of

~ so that the internal vertices and the 3-vertices of E are

mapped into 3-vertices of ~ and so that the cyclic order among

the edges incident with ah:internal ver tex of E agrees with that

among the edges incident with the corresponding 3-vertex induced

by the standard orientation of :J{; moreover the 2-vertices of E

are mapped into those of 3 Let E be the image of E under

the embedding. The involution on the 2-vertices of Einduces one

on the terminal 2-vertices of f. Let P be the polygon bounded

by the 2-edges which are incident to the terminal 2-vertices of f

and also the 3-edgeswhich are incident to the terminal 3-vertices

of E and make an angle n/3 with the corresponding f-edges.

$we have used here the non-degeneracy condition iii) in the
definition of an s-diagram.
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(Since E is finite, P is indeed a po+ygon ! ). The sides of

P are taken to be the 3-edges incident with a terminal 3-vertex

of E, er. the 2-edges incident with a terminal 2-vertex of E

fixed by the involution, or the'unions of 2-edges incident with a

terminal 2-vertex not fixed by the involution. The side-pairing

for P is now defined in an obvious way and it is easy to make P

into an admissible polygon.

The map P + E defined in the first paragraph clearly induces the

map on their strong equivalence classes. The second paragraph

shows that this induced map is onto. Finally observe that two

embeddings of L into ~ as described above, which agree on one

edge, must agree everywhere. This shows that the induced map on

the strong equivalence classes is also injective. This finishes

the proof.

q.e.d.

(2.9) Proposition. There is a natural 1-1 correspondence between

the weak equivalence classes of admissible polygons and those of

s-di~grams.

Proof. Consider the map P + E defined in (2.8). It is easy to

see that corresponding to an elementary move.on P there is a

canonical elementary move which can be perfermed on E, and con­

versely. Further details rnay be 1eft to the reader.

q.e.d.
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§3. Main.Theorem:

(3.1) Theorem. Each subgroup of finite index in r admits an

admissible fundamental polygon. Moreover the conj~gacy classes of

subgroups of finite index in r are in a natural 1-1 correspondence

with the weak equivalence classes of admissible polygons (and so

also in a natural 1-1 correspondence with the weak equivalence

classes of s-diagrams by (2.9).)

The proof will be divided into several steps.

(3.2) Let ~ be a subgroup of finite index in r. First we

describe the nature of all the fundamental polygons for ~

r'f ..fg def :--...1.1are made up of the tiles of v . Let p: ~ ~ S~=== ~~~

which

be the

canonical projection. Since ~ preserves ~, we have an induced

tesselation:r~ of S~. Using the notation in (2.1) we also write

p(t) = E~, p( C. 2) = E 2 ,41' p( E3 ) = 'E3,~ etc. An image by p

of a 2-vertex, 2-edge etc.will also be called.a 2-vertex, 2-edge

etc. in '1 ~. Notice however tha t there are two types of 2-vertices

(resp. 3 vertices) in ~~, namely ~ 1: those which are inci-

dent to a single f-edge and ~2: those which are incident to 2

f-edges (resp. 3 f-edges) . Now if P i5 a fundamental polygon for

~ made up of the tiles of , then s~ = p (P) , P i5 1 -1 on int P

and p identifies the side5 of P in pairs. Conversely let A

be a subset of E~ and let PA = {S~ cut along A}. If PA is

connected and 5imply connected then developing PA along the tiles

of J we obtain a polygon P, and some translate of P by an

element of r serves as a fundamental polygon for ~.
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(3.3) Starting with S~ we now construct an admissible polygon.

Let T be a maximal tree in Ef,~. Since Ef is connected so

is e f ,~ • Hence T contains all vertices of 'J~ . Let A ~ E~

be the subset of 2- resp. 3-edges incident with the 2- resp. 3-

vertices of type 1. which are the terminal vertices in T, together

with the pairs of 2-edges incident with the 2-vertices of type 2

which are also terminal in T. Let .PA be. S cut along A.

connected and
vJe claim tha t PA is/ simply connected·a Indeed since each tile in

~ can be continuously retracted onto its f-edge we easily see

that S~ can be retracted onto Ef'~. To see the effect of cutting,

it is convenient to consider S1>-~~~~ def int PA' It

suffices to show that int PA is~simply connected. Since int-PA

S~ -A continuously retracts into E4> - (the terminal vertices

---_._---~---- --- -------------



in T) ~_n<f>
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it suffices to show that is simply connected.

Now an e~ge of Ei<f> not in T joins a 2-vertex (necessarily) of
1-

type 2 which is terminal in T~ to some 3-vertex. This 2-vertex

is removed while passing to n~-- so one eireuit is broken. Sinee

T is chosen to be a maximal tree in ~,~ ~e see that T is-a

deformation retraet of n~ so n~ is eonneeted and simply eonnee-

ted. So T)

..LA also is conneeted and simply eonneeted.

Sinee PA is simply eonnected we.may develop it into j!. In fact

onee one tile in PA is developed onto a tile of ~, PA develops

uniquely into a polygon P.

(3.4) We now show tha t P can be turned into an admissible j?8lygon in the sense

of (2.2). One has to consider various eases depending on the

nature of the terminal vertiees in T. In the following v denotes

a terminal vertex in T.

ease 1. v is a 2-vertex of type -1 : There is a unique 2-edge incident

~ö v in S~. Corresponding to it we obtain a pair of 2-edges in

P whieh form a single complete geodesie. These'form two sides

of P which are paired.

case 2. v is a 2-vertex of type 2: There is a pair of 2-edges

ineident to v in S<f>. These form a si~gle complete geodesie.

Corresponding to it there are two free sides of P whieh in turn

are paired.

case 3., v is a 3-vert-ex- of 'type" 1: There is a unique J-e~ge

incident to v in S<f>. Correspondi~gly we obtain a pair of 3-edges
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at a 3-vertex. These 3-e~ges are two

sides of P which are paired.

Now let w be the unique 2-vertex joined to. v by an edge ,in T.

subcase 1 .. w is to type 1: Then v,ware the only vertices in

T, hence also in c:J <p and so T =t..reIl.
I

As in case 1.corresponding

to the 2-edge incident to w there is a side of P which is a

.Of course,this happens precisely when

complete geodesic.

and 21T
T

So p in fact is a triangle with angles

eIl = r.

0,0

subcase 2. w is to .type 2: Then the pair of 2-edges incident

to w form a complete geodesic say y .
v

Clearly S -ycp v

consists of two components for the vertex

to any other vertex without intersecting

v

y •v

cannot be connected

So corresponding to

the component of S~ cut along yv which contains v, we again

have a triangle T
V

wi th angles 0,0,
21f
T in P which is attached

to ?-T v along .its diagonal.

If we cut Scp along all y' 's
v

for each terminal 3-vertex of type

1 in T, correspondingly we obtain a decomposition of P as

(b = the number of such v lS ) which has all the properties mentioned

in 2.2).
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From the remarks in (3.2) we have now shown that every subgroup of

finite index admits an admissible fundamental polygon.

(3.5) Conversely let P be an admissible polygon~ If the sides

are paired there exists a unique element in r carrying one side

onto the other. Identifying the paired sides via such maps we

obtain aspace 8 which has a canonical tesselation, and so has a

canonical projection p: 8~r~ which is an isometry on each tile.

It follows that there exists a subgroup ~ of r necessarily of

finite index and determined upto conjugacy such that there is a

tile-preserving isometry of ~\~ onto 8.

(3.6) If P is an admissible polygon, and P1 is obtained from

P by an elementary move, and 8,81 the spaces obtained as in

(3.5) by identifying the paired sides, clearly there is a tile­

preserving isometry of 8 ento 81 . So 8,81 define the same

conjugacy class ef subgroups. In particular there is a surjective

map of the weak equivalence classes of admissible polygons onto

the conjugacy classes of subgroups of finite index in f.

(3.7) Finally we have to show ·that the map described at the end

of (3.6) is 1-1. For this purpose it is perhaps best to interpret

it in terms of the s-diagrams. Given an s-diagram E let 0 be

the graph obtained by identifying each pair of 2-vertices paired

by the involution to a single. vertex. Then cr has the following

structure: i) all internal vertices of 0 have valence 3 and there

is a cyclic order prescribed among the edges incident with each

internal,vertex, ii) the terminal vertices of 0 are. divided into

two subsets, one of "2-vertices", and the other of "3-vertices".
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We call such a a redüced s-diagram. Conversely E is obtained

from cr by cutting a minimum number of edges so that E is a

(connected) tree, and pairing the two new vertices obtäined from

each cut. Equivalence of the graphs satisfying i) and ii) noted

above is defined in Lhe obvious way. The injectivity of the map

described at the end of (3.6) now arnounts to an easily verified

fäct that two s-diagrams are weakly equivalent iff the associated

reduced 's-diagrams are equivalent. This finishes the proof of the

theorem.
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§ 4'. Two properties of the admissible p01ygons

(4.1) Let ~ be a supgroup of finite index in rand P an

admissible polygon associated to it as in ,§2. Suppose that the

boundary of P contains b 3-vertices and 2r+a + 2 b sides so

that the pairing on precisely a - sides is made by dividing them

into two halves. It readily follows from surface topology that

~ is Z a free product of a free group of rank r, and a resp. b

copies of ZZ 2 resp. ~3. In particular by Grushko's theorem

the minimum number of generators for ~ is r+a+b. Now if Q

is any fundamental polygon for ~ such that {nQ}, n E ~ forms

a locally finite tesselation of j{, and Q has 2s sides then

~ is generated by s side-pairing transformations, cf. [2] theorem

9.2.7. It follows that s > r+a+b. In other words we have shown

that

(4.2) Proposition. An admissible polygon associated to a conjugacy

class of a subgroup ~ of finite index has least number of sides

among all fundamental polygons for ~ whose ~-translates give a

locally finite tesselation of j{ . Also ~ is isomorphie to the

free product of the cyclic groups genera ted by the side-pairing

transforma tions.

(4.3) The second property of admissible polygons which we wish to

point out is a curious connection among the vertices of admissible

polygons and partial Farey sequences. By a partial Farey sequence

we mean a finite sequence

(4.3.1)
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b.
~

such that
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are reduced fraetions and a O = 0, bo = a = b = 1,
n n

(4.3.2)

(4.4) Proposition. An admissible polygon"with at least three

vertices lying in E U {oo} is strongly equivalent to one with 00

as a vertex so that the remaining vertices whieh lie in m u {oo}

form a partial Farey sequence.

Proof. First note that if y is any hyperbolic geodesie whieh is

a union of a pair of 2-edges of J then ei ther one of i ts end-points

is 00 (and the other end-point an integer) or else its end-points

are of the form with lad-bel = 1.

Let P be an admissible polygon. Deeompose P in the form

b > 0

as in (2.2). The vertiees of P which lie in m U {oo} are exaetly

the vertiees of PO· Let La be the union of the f-edges lying in

PO· We consider LO as an s-diagrarn as explained in (2.8) . All

terminall vertiees of LO are 2-vertiees. Notiee that at least two

termina-} vertiees of La, say u and. v, are eonneeted to the

same internal vertex eaeh by a single edge. (lf it were not so,

remove all the terminal vertiees and the eorrespondi~g incident

edges from La· In the remaining graph eaeh vertex would have

valence > 2. But then La would not be a tree - a contradietion.)

Now we may choose 0 in r such that. o (u) = i, 0' (v) = i+1 .

Evidently oPO lies within the strip 0 < x < 1 and its boundary
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contains the lines x = 0 and x = 1. Moreover it is easy to see

from the earlier remarks that crP -- p has the stated properties.

q.e.d.
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§5. Reading the geometrie invariants from an s-diagram

(5.1) Let E be an s-diagram and. ~ a representative of the

associated conjugacy class. The, geometrie invariants of ~ include

(5.1.1) d = the degree of the branehed eovering ~\M ~ r\1t

(5.1.2)

(5.1.3)

e 2 = ~ {branch points of

e 3 = 4F {branch points .of

with branchi~g index 2}

with branching index 3}

(5·.·1 -.-4) 9 = the genus of ~\:rt

(5.1.5) t = =IF {cusps of ~\:Jt }.

(5.1.6) w
k

= eusp-width at the k-th cusp, k = 1,2, ... ,t.

\':e nr::JjJ. briefly shChl hChl to read these invariants fran E. v.?e set also

(S.1.7) r = 2g+t-1.

The fundamental group cf ~\~ is a free group, and its rank is r.

(S.2) Let a (resp. 2a) be the number of 2-vertices of E whieh

are fixed by the involution, (resp. not fixed by the involution).

Let ß be the number of internal vertices of E, and b the

nurnber of 3-vertices of E. If P is the associated admissible

polygon it has 6ß+2b tiles. It follows that

(S.2.1) d = 3ß+b.

Also

(S.2.2) . e 2 = a.

(S.2.3) e 3 = b.

Let 5 be the space obtained from P by the identification cf

paired sides. It is clear from surface topology that TI 1 (S) is a

free group of rank a. 50

(S.2.4) i: = a.
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So by ( 5 • 2. 1) - (5. 2. 4) and (5 . 1 . 7)

(5.5.2) d = 3ß+b = 3e
2
+4e 3+12g+6t-6

which is a form.of the Riemann-Hurwitz formula.
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It is more subtle ta earnpute t (ar g) and wk ' but one ean

easily formulate the rulesfrom the assoeiated P.

(5.3) The terminal vertiees' of L have a eanonieal eyelie order.

(Imagine a traveller walking very elose to L but always keeping

it to the left). Let vO,v1 , ... ,vs _1 ' (s = a+2a+b) be the terminal

vertiees of E in a eyelie order. Let ~. be the shortest path
~

of edges from v.
~

to (i counted mod s) . Consider the

following equivalence relation on the set If v.
~

is ei ther

a 3-vertex or a 2-vertex fixed by the involution we let

If v.
~

is paired to v.
J

by the involution and. i #: j

1T. 1 .... 1T ••
~- ~

then we let

Then

(5.3.1) t = ::fF {equivalence classes in {TT.}}.
~

Then g ean be read f~orn (5.3.1) and (5.2.4), thanks to (5.1.7),

namely

(5. 4)

1
g = 2 (0.+ 1-t) ·

We attach the weight 1
2

(resp. 1) to an edge of if it

is incident with a 2-vertex (resp. otherwise). To each 7T. we
1.

attaeh the weight W(TT.) = the surn of the weights of the edges in
1.

7T ••
1.

Finally the width of a cusp is the SUffi of w(-rr.)
1.

where 7T.
1.

runs over, the equivalence elass defining the cusp.

(5.5) The SUffi of vertex-valenees in any graph equals twice the

number of edges. For. E this surn is 3ß+a+2~+b. Also L has

ß+a+ 2~+b ver ti ces . Since Z is a tree we have =#= vertices

~edges = 1, which allows one ta solve for ß namely,

(5.5.1) ß = a+b+2~-2.
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§ Appendix

(Ae 1 ) In this appendix we reprove some kno\-ln resul ts by. the methads

af this papere We first give a new proof of Millington's theorem

ef e [9] based on a direet eonstruetion of ·an admissible polygone

Millington l s proof used permutationse In [7] we gave another proof

based on thiekened diagrams, which also extends to a situation not

eovered by this papere The following proof however is perhaps the

simpleste

Theoreme (Millington) e Let a ~ 0, b ~ 0, 9 ~ 0, t ~ 1 be

defintegers s.t. d ~ 3a+4b+12g+6t-12 > 1. Then there exists a

subgroup /t) in r of index d, genus g, =ß=.eusps = t, =#= the eon-

jugaey elasses of ellipties of order 2 (respe 3) = a (respe b)e

Praof. The case d = 1 is trivial so assume d > 2e

It is easy to eonstruct a polygon Po with
defs =- 2 ( 2g+ t -1 )

+a+b sides, say A1 ,e.e,A
s

in eyelie order, so that all angles

are zero and eaeh side is a union of a pair of 2-edgese The con-

dition d > 2 implies s > 3. Divide each of A1 ,e .. ,A a at

the 2-vertex it eontains and pair the two halveSe Attach externally

2iTa triangle T j , with angles o,o':r along its diagonal to Aj ,

a+1 ~ j < a+b so that the other two sides of T. are 3-edges
J

meeting at a 3-vertex and making an angle 2iT/3 and these two

sides are paired off. Now pair off the sides in the next eonseeu-

tive t-1 pairse There still remain 4g sides, whieh are to be

-1 -1paired off in the well-known a 1b 1a 1 b 1 .e. fashion. If either

of a,b,g,t-1 are zero the eorresponding identifieations are

absent. The polygon so obtained is admissible and it is easy to
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see"that the correspondi~g subgroup has the required invariants.

q.e.d.

(A.2) Conjugacy classes of subgroups of index< 6: In view of

(5.2.1) we have only to list the s-diagrams with ß internal

vertices and b black vertices with 3ß+b 2 6, and check for the

Possible weak equivalences. The list is easily cornp~ by inspec-

tion:

(A. 2. 1 ) d = 1 o~-·.

(A.2.2) d = 2 • •

(A.2.3) d = 3 i) Y ii) 1y
(A. 2. 4 ) d = 4 i) Y ii) 1Y
(A.2.5) d = 5

(A.2.6) d = 6 i) Y ii) >-< iii) :>-<
iv) .1>--<.1 .1>-<1 1>--<2v) vi)

j 2.1>-<1 1>---<2vii) viii)
2 2 1 1
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It is easy to check that there are no further weak equivalences

arnong these s-di~grams.

(A.3) Perhaps an advant~ge of the method developed in this paper

over the previously available methods is the facility with which

one can construct subgroups of finite index minimally generated by

an explicit set of Möbius transformations. We illustrate this

point on subgroups of index 3.

An admissible polygon corresponding to (A.2.3) i) is

c

c.

o 1.

The ?l3 -symrnetry of the s-diagram, and of the polygon shows that

there is a unique normal subgroup corresponding to this s-diagram.

(cf. also the comments below). This subgroup is

<z -+- -
1
2 ' z -+-

i-1
2""Z=1

z-2
z -+- z-1 >

Now consider the case (A.2.3) ii). The s-diagram clearly shows

that the corresponding subgroup is not normal. Moreover fix an

f-edge e o in J. If E is any s-diagram then for each edge e

in E there are at most two embeddings of E in Ef so that the

image of e contains e O. Clearly these embeddings (as evaries
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over all edges of E) determine all the subgroups of r in the

corresponding conj~gacy class. Applying these considerations to

the case in hand we see that there are three subgroups in the

cO,njugacy class corresponding to this s-di~gram, and their admissible

fundamental polygons are

i)

o :1

The corresponding subgroups are

i) 1
< z -+ - z

z -+
2z-1

z

-z
ii) <z -+ z-1 I z -+ z-2

z-1 > =

iii) < z -+ z+1 I
z-1z-+-->=

2z-1
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