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§1. Introduction. Let F5=PSL2(E) be the modular group acting

on the upper-half plane

ﬂ={zeﬂl|1mz>0}

in the standard way and let :T be the corresponding well=known
tesselation of j{ into black and white triangles with angles g,

g and O. There is a good deal of number-theoretic interest in
the study of the subgroups of finite index in TI. A useful method
of obtaining information about a subgroup is to construct a "good"
fundamental domain for it. 1In principle such a fundamental domain
may be constructed out of the tiles of fT. See e.g. Gunning [4]
ch. 1, Schoneberg, [12] ch. 4 for some pictures of such fundamental
polygons. A general reference on fundamental polygons for Fuchsian
groups is Lehner [8], ch. IV and VII. L. Keen [5] has justified and
made more precise an older method due to Fricke for constructing
fundamental polygons for arbitrary finitely generated Fuchsian
groups. However if one applies her method to a subgroup of T

the associated fundamental polygon usually would not be a union of

the tiles in:j . Moreover to apply this method one already needs

—_
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a canonical system of generators for the subgroup. Our present
concern is closer to that of Rankin [11] pp. 47 - 69. We consider

a special type of polygons, here called "admissible", cf. (2.2)

below, and construct an admissible fundamental polygon for each
subgroup of finite index in [. Moreover for schematic purposes,

to admissible polygons we associate certain s-diagrams which are
certain types of finite trees all of whose internal vertices have
valence 3. From its s-diagram, one can guickly obtain the geometric

invariants of a subgroup, and in fact the classes of s-diagrams

with respect to a certain equivalence relation actually classify

the conjugacy classes of subgroups.

Let p be an odd prime. If one replaces 3 by p in the definition
of an s-diagram then the equivalence classes of these modified
s-diagrams would classify the conjugacy classes of subgroups of
finite index in the Hecke group = Z *mp . In fact, the method
generalizes to all finitely generated fuchsian groups of genus zero
and one cusp. But since it is most transparent in the case of

the modular group, and possibly of wider interest we have restricted

to this special case in the paper.

In an earlier paper [7] we had introduced certain "thickened diagrams"
for the subgroups of a non—cocampact fuchsian group which also

classify their conjugacy classes. The s-diagrams of this paper

are obtained essentially by cutting these thickened diagrams for
subgroups of T, thinning them, and inserting. the relevant infor-
mation at the cuts. 1In fact the notion of an s-diagram suggested

itself while trying to correlate the thickened diagrams to tesse-



lations..

For other and earlier methods of studying subéroups cof the modular
group we refer to Atkin and Swinnerton-Dyer [1], Rankin [11],
Millington [9], Singerman [13], Stothers [14], Brenner and Lyndon
[3] and the references there. (For.a more extensive list of refer-
ences see section FO5 of the Reviews in Number Theory, ed. by

R.K. Guy, Amer. Math. Soc.). These methods are various combinations.
of algebraic and geometric techniques and have different advantages.
An advantage in the present method appears to be in its possible
intuitive appeal and facility in obtaining a minimal system of

generators for a subgroup in terms of M8bius transformations.



§2. Admissible Polygons and s-diagrams

(2.1) First some terminology. All geometric notions in.je refer

to hyperbolic geometry. Let i = V-1 and p = exp(mi/3}. There
are two I'-orbits of the vertices in :T . The vertices in Ti

(resp. Tp) will be referred to as 2-vertices (resp. 3-vertices).
The set of edges in ﬂ is denoted by E . The subset of edges of
finite length is denoted by ‘Ef. It forms a single T-orbit. Among
the edges of infinite length there are two TI-orbits, namely ELZ

and 2i3 consisting of those incident with 2-vertices and 3-vertices
rYespectively. The elements of Ez, Ez, Ef will also be referred

to as 2-edges, 3-edges and f-edges respectively. Throughout this

pPaper, unless otherwise stated, a polygon will always mean a connec-
ted, simply connected closed subset of H UIR U{»}} with non-empty
interior, finite hyperbolic area and bounded by finitely many geo-

desic arcs. These arcs are called the sides. of the polygon.

(2.2) An admissible polygon is a polygon P with the following

structure. First

(2.2.1) P=PyjUT,UT,U... 01, b>0
where 1) Py is a polygon with all vertices in R U {»} and each
side of Py is a union of a pair of 2-edges, ii) Each Tj is a

triangle. Two of its vertices are in IR U {»} and the side joining
them called the diagonal of Tj is a union of a pair of 2-edges.
The third vertex of Tj is a 3-vertex joined to the other two
vertices by 3-edges subtending an angle 2n/3, iii) Each T is

attached externally along its diagonal to a side of PO'



Secondly we need to specify the sides of P. The sides of PO not

attached to any Tj are called the free sides of PO' A side of

P is either a 3-edge of some Tj, or a free:side of P

ol' (ln

which case it will be called a free side of P) or a 2-edge con-

tained. in a free side of PO.

Thirdly P comes equipped with a side-pairing satisfying the follow-

ing rules: i) The 3-edges of each Tj are paired, 1ii) If a free
side of P0 is divided into a pair of 2-edges which are considered
as sides of P then they are paired, iii) A free side of P is

paired to another such free side.

(2.3) Going to the disk-model for ;je UR U {»} an admissible

polygon will have the shape as shown_;n figure 1.

Figure i

. ’ -*—_—-“-—" -
Notice that an admissible polygon is automatically convex. Also

if two sides are paired then geometrically they are to be considered
as identified by an element of I' (necessarily) in an orientation-

reversing way.



(2.4) We now introduce two notions of equivalence among admissible
polygons. These equivalence relations are denoted by - ¥ (strong

gquivalence). and ~ (weak equivalence). Let P,,P be two

1772
admissible polygons. The = is easy to describe.

(2.4.1) P, 5 P2 iff there exists a € T. s.t. aP, = Pz.

Next suppose that two non-adjacent verficesNOf P1 can be joined
by a geodesic Yy which is a union of a pair of 2-edges, and Yy
separates two paired free sides. a,8 of P,. We can then cut P,
along Y and attach the component containing a externally to
the second component attaching o along B8, thus obtaining a new

polygon P3. In this process the sides «,B of P have become

1

a single geodesic in the interior of Pa, and there has arisen a

new pailr 'Y1,Y2 of free sides corresponding to the cut along Y.

We now pair Y4 with Y, and other side-pairs remain the same as
in P, - thus turning P3 into an admissible polygon. We shall
say that Ps is obtained from P, by an elementary move. Now

we are in a position to define the weak equivalence:

(2.4.2) P, ~ P, iff there exists an admissible polygon P

such that P, ~ P and P is obtained from P

2 by a

1
finite sequence of elementary moves.

(2.5) We shall now describe another class of objects which are
convenient for schematic purposes. Recall that a vertex in a
graph is called terminal if it has valence 1; otherwise it is

called internal.



A subgroup-diagram, or an s-diagram for short, is a finite tree all

0of whose internal vertices have valence 3, and the terminal vertices
are divided into two subsets the elements 5f which will be called
2-vertices and 3-vertices respectively together with i) a cyclic
order of the edges incident with each internal vertex and ii) an
involution on the set of 2-vertices. Moreover to avoid degenerate
cases we also assume 1iii) there are at least two vertices, and if

there are exactly two then at least one of them is a 3-vertex.

(2.6) We shall picture an s-diagram by a tree considered as embedded
in the plane of the paper so that the cyclic order of the edges

at ah internal vertex agrees with the anticlockwise orientation of
the plane. Moreover a 2-vertex (resp. a 3-vertex) will be denoted

by a 0 (resp. @ ), and a pair of distinct 2-vertices paired by

the involution will be labelled by the same integer. Of course
different pairs will have different labels. See the appendix (A.2)

for some pictures together with their relevance to the subgroups of

r

(2.7) We shall now again introduce twc notions of equivalence among
the s-diagrams, denoted by ~ (strong equivalence) and ~ (weak

equivalence} . Let 21,22 be two s-diagrams. First

(2.7.1) L = 22 iff there exists an isomorphism of underlying
trees preserving the extra structure imposed in the

definition of an s-diagram.

2 are the 2-vertices of 21 which are

pPaired by the involution and the shortest path 7 joining v

Next suppose that VeV

1



to v, has lengthGa > 3 so that 7 contains two internal vertices

say w and w,. Now insert a new vertex 'u on the edge (w1w2),

1 2

cut I, at u and join the component containing v, to the other

identifying V4 with Vg thus obtaining a new tree, say 23.
We shall delete the vertex (of valence 2) in 23 obtained by the

identification of V4 with Vo So in the process we have lost a

pair of 2-vertices, but we have created.two new terminal vertices

say u, and u, corresponding to the cut at u. We consider Uy,

u, as 2-vertices of 23 and pair them thus defining an involution

on all terminal 2-vertices of 23 (which agrees with that on all

the terminal 2-vertices # {v1,v2} of 21). This makes 23 an

s-diagram. We say that 23 is obtained from 21 by an elementary

move, and set

(2.7.2) E1~'22 iff there exists an s-diagram I such that

22: I and I 15 obtained from 21 by a finite

sequence of elementary moves.

(2.8) Proposition. There is a natural 1-1 correspondence between

the strong equivalence classes of admissible polygons and those of

s-diagrams.

Proof. Let P be an admissible polygon. Let I be the union of
all the f-edges contained in P. Let int P and 03P denote the
interior of P and the boundary of P respectively. We make I
into a graph as follows. 1Its vertices are all the vertices of J

lying in 8P and all the 3-vertices of':r lying in int P. An

® Each edge in the graph is supposed to be of unit length.



edge of I 1is either a unidén of a pair of f-edges joining two
3-vertices of T lying in P or an f-edge joining a 3-vertex of
J 1ying in int P and a 2-vertex of J lying on 3P, Since P
is connected and every point of P <can be joined to an f-edge
within a tile
by an arc/it follows that I~ is connected. Now it is well-known
that the f-edges of :J , not counting the vertices of valence 2
as vertices, has a structure.of the so-called universal 3-regular
tree. It follows that I 1is a finite tree all of whose internal
vertices have valence 3. The terminal vertices of I are those
lying in 3P. We call a terminal vertex in ¥ a 2-vertex resp.
a 3-vertex if it is such as a vertex of j'. The involution on
the 2-vertices of I 1is induced by the side-pairing of P 1in an

obviocus way. This makes I an s-diagram.

Conversely given an s-diagram I we embedGa it in the f-edges of
:r so that the internal vertices and the 3-vertices of I are
mapped into 3-vertices of :j and so that the cyclic corder among
the edges incident with an:internal vertex of I agrees with that
among the edges incident with the corresponding 3-vertex induced
by the standard orientation of j{,; moreover the 2-vertices of I
are mapped into those of J . Let & be the image of I under
the embedding. The involution on the 2-vertices of I induces one
6n the terminal 2-vertices of I. Let P be the polygon bounded
by the 2-edges which are incident to the terminal 2-vertices of £
and also the 3-edges which are incident to the terminal 3-vertices

of I and make an angle 7/3 with the corresponding f-edges.

GBWe have used here the non-degeneracy condition iii) in the
definition of an s-diagram.



(Since I is finite, P is indeed a podlygon ! ). The sides of
P are taken to be the 3~edges incident with a terminal 3-vertex
of £, or. the 2-edges incident with a terminal 2-vertex of I

fixed by the involution, or the unions of 2-edges incident with a
terminal 2-vertex not fixed by the involution. The side-pairing

for P 1is now defined in an obvious way and it is easy to make P

into an admissible polygon.

The map P + I defined in the first paragraph clearly induces the
map on their strong equivalence classes. The second paragraph
shows that this induced map is onto. Finally observe that two
embeddings of I into J as described above, which agree on one
edge, must agree everywhere. This shows that the induced map on
the strong equivalence classes is also injective. This finishes
the proof.

g.e.d.

(2.9) Proposition. There is a natural 1-1 correspondence between

the weak equivalence classes of admissible polygons and those of

s-diagrams.

Proof. Consider the map P » I defined in (2.8). It is easy to
see that corresponding to an elementary move.on P there is a
canonical elementary move which can be performed on I, and con-

versely. Further details may be left to the reader.



§3. Main .Theorem,

(3.1) Theorem. Each subgroup of finite index in I admits an
admissible fundamental polygon. Moreover the conjugacy classes of
subgroups of finite index in [ are in a natural 1—1-correspondence
with the weak equivalence classes of admissible polygons (and so
also in a natural 1-1 correspondence with the weak eguivalence

classes of s-diagrams by (2.9).)
The proof will be divided into several steps.

(3.2) Let ¢ be a subgroup of finite index in T. First we
describe the nature of all the fundamental pdlygons for ¢ which
are made up of the tiles of :7 . Let p:J{ -+ S¢g§§ fQR be the
canonical projection. Since ¢ preserves :T , we have an induced

tesselation fJQ of S Using the notation in (2.1) we also write

o
p(E) = Eq,, p(Ez) = E2,¢, p(E3) =E3’¢ etc. An image by p
of a 2-vertex, 2-edge etc.will also be called.a 2-vertex, 2-edge
etc. in ‘j.¢. Notice however that there are two types of 2-vertices
(resp. 3 vertices) in fj¢, namely type 1: those which are inci-
dent to a single f-edge and type 2: those which are incident to 2
f-edges (resp. 3 f-edges). Now if P 1is a fundamental polygon for
® made up of the tiles of :J then S¢ = p(P), p 1is 1-1 on int P

and p identifies the sides of P in pairs. Conversely let A

be a subset of E¢ and let P, = {8S cut along A}. If P is

A o] A
connected and simply connected then developing PA along the tiles
of :j we obtain a polygon P, and some translate of P by an

element of T serves as a fundamental polygon for .



(3.3) Starting with Ss We now construct an admissible polygon.
Let T be a maximal tree in Ef,q;' Since Ef is connected so
is Ef'q). Hence T contains all vertices of 'jq). Let AC E¢
be the subset of 2- resp. 3-edges incident with the 2- resp. 3-
vertices of type 1 which are the terminal vertices in T, together

with the pairs of 2-edges incident with the 2-vertices of type 2

which are also terminal in T. Let _PA be. § cut along A.

connected and
We claim that PA is/simply connected. Indeed since each tile in

J can be continuously retracted onto its f-edge we easily see

that S¢ can be retracted énto Ef,¢. To see the effect of cutting,
it is convenient to consider S,-A = P_ 3P Qgg? int P,. It

® connecdd and® A

suffices to show that int PA isx@imply connected. Since int-PA =

SQ—A continuously retracts into €, - (the terminal vertices




in T):%%: N it suffices to show that Mg is simply connected.

Fh

Now an edge of E¥¢ not in T Jjoins a 2-vertex (necessarily) of
’ 7
type 2 which is terminal in T. to some 3-vertex. This 2-vertex

is removed while pass$ing to -— s0 one circuit is broken. Since

Mo
T is chosen to be a maximal tree in §,¢ we see that T is.a
deformation retract of Ng SO TNy is connected and simply connec-

ted. So PA also is connected and simply connected.

Since PA is simply connected we .may develdop it into H . 1In fact

once one tile in PA is developed onto a tile of 9’, Py develops

uniquely into a polygon P.

(3.4) We now show that P can be turned into an admissible polygon in the sense
of (2.2). One has to consider various cases depending on the
nature of the terminal vertices in T. 1In the following v denotes

a terminal vertex in T.

case 1. v is a 2-vertex of type 1: There is a unique 2-edge incident

&6 v in S¢. Corresponding to it we obtain a pair of 2-edges in
P which form a single complete geodesic. These form two sides

of P which are paired.

case 2. Vv 1s a 2-vertex of type 2: There is a pair of 2-edges

incident to v in SQ. These form a single complete geodesic.
Corresponding to it there are two free sides of P which in turn

are paired.

case 3. v__is a 3-vertex of type 1: There is a unique 3-edge

incident to v in S¢. Correspondingly we obtain a pair of 3-edges



in P making an angle %; at a 3-vertex. These 3-edges are two

sides of P which are paired.
Now let w be the unique 2-vertex joined to. v. by an edge in T.

subcase 1., . w 1s to type 1: Then v,w are the only vertices in

T, hence also in °j¢ and so T =E£¢. As in case 1.corresponding

to the 2-edge incident to w there is a side of P Wwhich is a

complete geodesic. So P in fact is a triéngle with angles 0,0
21

and 5 - .0f course . this happens precisely when ¢ = T.

subcase 2. w is to .type 2: Then the pair of 2-edges incident
to w in S¢ form a complete geodesic say Yo Clearly S¢_Yv

consists of two components for the vertex v cannot be connected
to any other vertex without intersecting Y, So corresponding to
the component of S¢ cut along Yv which contains v, we again
2T

have a triangle Ty with angles 0,0, 5 in P which is attached

to P-TV along its diagonal.

If we cut S, along all YG'S' for each terminal 3-vertex of type

1 in T, correspondingly we obtain a decomposition of P as

(b = the number of such v'S) which has all the properties mentioned

in ( 2.2).



From the remarks in (3.2) we have now shown that every subgroup of

finite index admits an admissible fundamental polygon.

(3.5) Conversely let P be an admissible polygon. If the sides
are paired there exists a unique element in T carrying one side

onto the other. Identifying the paired sides via such maps we

obtain a space S which has a canonical tesselation, and so has a
canonical projection p: S-+P9£ which is an isometry on each tile.
It follows that there exists a subgroup ¢ of T necessarily of
finite index and determined upto conjugacy such that there is a

tile-preserving isometry of ¢¥Wﬂ onto S.

(3.6) If P is an admissible polygon, and P, is obtained from

P by an elementary move, and §,S the spaces obtained as in

1
(3.5) by identifying the paired sides, clearly there is a tile-

preserving isometry of S ontoe S,. So S,S define the same

1 1
conjugacy class of subgroups. In particular there is a surjective
map of the weak equivalence classes of admigssible polygons onto

the conjugacy classes of subgroups of finite index in T.

(3.7) Finally we have to show that the map described at the end

of (3.6) is 1-1. For this purpose it is perhaps best to interpret
it in terms of the s-diagrams. Given an s-diagram I 1let ¢ be
the graph obtained by identifying each pair of 2-vertices paired

by the involution to a single vertex. Then ¢ ha§ the following
structure: i) all internal vertices of o have valence 3 and there
is a cyclic order prescribed among the edges incident with each
internal vertex, ii) the terminal vertices of ¢ are divided into

two subsets, one of "2-vertices", and the other of "3-vertices".



We call such 0 a reduced s~diagram. Conversely I 1is obtained

from ¢ by cutting a minimum number of edges so that I 1is a
(connected) tree, and pairing the two new vertices obtained from
each cut. Equivalence of the graphs satisfying i) and ii) noted
above is defined in the obvious way. The injectivity of the map
described at the end of (3.6) now amounts to an easily verified
fact that two s-diagrams are weakly equivalent iff the associated
reduced s-diagrams are equivalent. This finishes the proof of the

theocrem.,



§4. Two properties of the admissible polygons

(4.1) Let ¢ be a subgroup of finite index in I and P an
admissible polygon associated to it as in §2. Suppose that the
boundary of P contains b 3-vertices and 2r+a+2b sides so
that the pairing on precisely a - . sides is made by dividing them
into two halves. Tt readily follows from surface topology that

® is * a free product of a free group of rank r, and a resp. b
copies of Zz resp. Z3 .
the minimum number of generators for ¢ 1is r+atb. Now if Q

In particular by Grushko's theorem

is any fundamental polygon for ¢ such that {nQl, n € ¢ forms

a locally finite tesselation of .fﬂ, and Q has 2s sides then

¢ is generated by s side-pairing transformations, cf. [2] theorem
9.2.7. It follows that s > r+a+b. 1In other words we have shown
that

(4.2) Proposition. An admissible polygon associated to a conjugacy

class of a subgroup ¢ of finite index has least number of sides
among all fundamental polygons for ¢ whose ®¢-translates give a
locally finite teSsSelation of H . also ¢ is isomorphic to the
free product of the cyclic groups generated by the side-pairing

transformations.

(4.3) The second property of admissible polygons which we wish to
point out is a curious connection among the vertices of admissible

polygons and partial Faréy sequences. By a partial Farey segquence

we mean a finite sequence

a a a a
O _ "0 1 2 n_1
(4.3.1) T 5 ‘5 g < - g7
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a,

l 3 f— — = =
where bi are reduced fractions and ag = 0, bO an bn 1,
such that

(4.3.2) la.b

i i+1—ai+1bi[ =1, i=0,1,...,n=1.

(4.4) Proposition. An admissible polygon with at least three

vertices lying in R U {»} is strongly equivalent to one with =
as a vertex so that the remaining vertices which lie in R U {=}

form a partial Farey sequence.

Proof. TFirst note that if vy is any hyperbolic geodesic which is
a union of a pair of 2-edges of ‘j then either one of its end-points
is © (and the other end-point an integer) or else its end-points

are of the form {g, g} with |ad-bc| =1,
Let P be an admissible polygon. Decompose P in the form

p=P U1, UT., U ... UT b >0

bl‘

as in (2.2). The vertices of P which lie in R U {«»} are exactly

the vertices of PO' Let ZO be the union of the f-edges lying in

Po. We consider EO as an s-diagram as explained in (2.8). All
terminal vertices of ZO are 2-vertices. Notice that at least two

terminal vertices of I say u and. v, are connected to the

ol

same internal vertex each by a single edge. (If it were not so,

remove all the terminal vertices and the corresponding incident

edges from ZO' In the remaining graph each vertex would have
valence > 2. But then I, would not be a tree - a contradiction.)
Now we may choose ¢ in T such that. ¢(u) = i, o(v) = i+1.

Evidently cPO lies within the strip O < x < 1 and its boundary
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contains the lines x =0 and x = 1. Moreover it is easy to see

13

from the earlier remarks that oP P has the stated properties.

g.e.d.



§5. Reading the geometric invariants from an s-diagram

(5.1) Let I be an s-diagram and. ¢ a representative of the

associated conjugacy class. The geometric invariants of ¢ include

(5.1.1) 4 = the degree of the branched covering 5¥w » T\

(5.1.2) e, = 3 {branch points of ¢®\#  with branching index 2}

(5.1.3) e, = # {branch points of ®\X with branching index 3}
g = the genus of ¢\}£

(5.1.5) t = =F {cusps of a\H 1.

(5.1.6) w

(5+1.4)

k = cusp-width at the k-th cusp, k =1,2,...,t.
¥e now briefly show how to read these invariants fram I. Ve set also
(5.1.7) r = 2g+t-1.

The fundamental group of ®\Q{ is a free group, and its rank is r.

(5.2) Let a (resp. 20) be the number of 2-vertices of I which
are fixed by the involution, (resp. not fixed by the involution).
Let B Dbe the number of internal vertices of ¥, and b the
number of 3-vertices of I. If P 1is the associated admissible

polygon it has 6f+2b tiles. It follows that

(5.2.1) d = 3B+b.

Also
(5.2.2) e, = a.
(5.2.3) ey = b.

Let S be the space obtained from P by the identification of
paired sides. It is clear from surface topology that ﬂ1(S) is a

free group of rank a. So

(5.2.4) r

]
e



So by (5.2.1) - (5.2.4) and (5.1.7)
(5.5.2) d = 3B+b = 3e2+4e3+12g+6t—6

which is a form of the Riemann-Hurwitz formula.



It is more subtle to compute t (or g) and wy, but one can

easily formulate the rules from the associated P.

(5.3) The terminal vertices of £ have a canonical cyclic order.
(Imagine a traveller walking very close to I but always keeping
it to the left). Let VarVyrseesVo_qs (s = a+20+b} be the terminal

vertices of I 1in a cyclic order. Let L be the shortest path

of edges from v, to v..4 (i counted mod s). Consider the
following equivalence relation on the set {Wi}. If vy is either
a 3-vertex or a 2-vertex fixed by the involution we let Mg T Ty
If v, is paired to vj by the involution and i # j then we let
ﬂi_1 ~ “j+1' ﬂi+1 ~ Wj-1' Then

(5.3.1) t = #F {equivalence classes in {ﬂi}}.

Then g can be read from (5.3.1) and (5.2.4), thanks to (5.1.7),

namely g = %(a+1—t).

(5.4) We attach the weight % (resp. 1) to an edge of I 1if it
is incident with a 2-vertex (resp. otherwise). To each T, we
attach the weight w(ﬂi) = the sum of the weights of the edges in

Ty. Finally the width of a cusp is the sum of w(ﬂi) where U

runs over. the equivalence class defining the cusp.

(5.5) The sum of vertex-valences in any graph equals twice the
number of edges. For. I this sum is 3f+a+20+b. Also I has
B+a+20+b vertices. Since I is a tree we have FF vertices -

3 edges = 1, which allows one to solve for 8 namely,

(5.5.1) B = a+b+20-2.



§ Appendix
(3.1) In this appendix we reprove some known results by the methods

of this paper. We first give a new proof of Millington's theorem
cf. [9] based on a direct construction of .an admissible polygon.
Millington's proof used permutations. In [7] we gave another proof
based on thickened diagrams, which also extends to a situation not
covered by this paper. The following proof however is perhaps the

simplest,

Theorem. (Millington). Let a >0, b >0, g >0, t > 1 be

integers s.t. 4 g%é 3a+4b+12g+6t-12 > 1. Then there exists a

subgroup ¢ in I of index d, genus g, 4kcusps = t, ##the con-

jugacy classes of elliptics of order 2 (resp. 3) a {(resp. b).

Proof. The case d =1 is trivial so assume d > 2.

It is easy to construct a polygon P, with s:gg; 2(2g+t-1)

+a+b sides, say k1,...,ls in cyclic order, so that all angles
are zero and each side is a union of a pair of 2-edges. The con-

dition d > 2 implies s > 3. Divide each of A P A at

qreeerhy
the 2-vertex it contains and pair the two halves. Attach externally
2n
3
a+1 < j < a+b so that the other two sides of Tj are 3-edges

" a triangle Tj, with angles 0,0, along its diagonal to Aj’
meeting at a 3-vertex and making an angle 2m/3 and these two
sides are paired off. Now pair off the sides in the next consecu-
tive t-1 pairs. There still remain 4g sides, which are to be
paired off in the well-known a,b a;1b_1

171 1 "7

of a,b,g,t-1 are zero the corresponding identifications are

fashion. If either

absent. The polygon so obtained is admissible and it is easy to



see"that the corresponding subgroup has the required invariants.

(A.2)

g.e.d.

Conjugacy classes of subgroups of index < 6 : 1In view of

{(5.2.1) we have only to list the s-diagrams with 8 internal

vertices and b black vertices with 38+b < 6, and check for the

Possible weak equivalences. The list is easily compiled by inspec-

tion:

(A.2.1)

(A.2.2)

(a.2.3)

(a.2.4)

(A.2.5)

(A.2.6)

1
Y
1
i1) 1Y
1



It is easy to check that there are no further weak equivalences

among these s-diagrams.

(A.3) Perhaps an advantage of the method developed in this paper
over the previously available methods is the facility with which
one can construct subgroups of finite index minimally generated by
an explicit set of MObius transformations. We illustrate this

point on subgroups of‘index 3.

An admissible polygon corresponding to (A.2.3) i) is

a [ =
. N
1
il [
b b
o 1

The Zy3-symmetry of the s-diagram, and of the polygon shows that
there is a unique normal subgroup corresponding to this s-diagram.

(cf. also the comments below). This subgroup is

1 . z-1 z-2
ET T3 PV gt BTN

Now consider the case (A.2.3) ii). The s-diagram clearly shows
that the corresponding subgroup is not normal. Moreover fix an
f-edge €4 in TT . If T is any s-diagram then for each edge e

in I there are at most two embeddings of I in Ef so that the

image of e contains eq- Clearly these embeddings (as e varies



over all edges of 1I) determine all the subgroups of I in the
corresponding conjugacy class. Applying these considerations to

the case in hand we see that there are three subgroups in the
conjugacy class corresponding to this s-diagram, and their admissible

fundamental polygons are

a b a
' . 2
i) T T -
miﬂﬂm ~ unﬁlllll
| b Jl'
, )
(] 1 1

The corresponding subgroups are

i) <z > -1, 24 2i:1 > =T,
.. -2z z=2 _ 0
ll)<2+m, Z"E-_-T>—T(2)
ii1) <z » 241 , z + =2V s =T (2)
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