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A.5 Zum Gradienten

A.5 Zum Gradienten
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Wir zeigen: Sei U ~ Rn offen und zu je zwei Punkten P und Q gebe es einen
Weg c : (a, b] - U mit c(a) =P und c(b) =Q. \Veiter seien ft, f2 : U - R zwei
Funktionen mit grad /I = grad h. Dann gibt es ein k E R mit !I =f2 + k.

Beweis. \Vir definieren eine Funktion h : U - R durch h := /1 - h. Dann
gilt wegen der Voraussetzung grad h = O. Zu zeigen ist, das h == k rur
ein k E R gilt. Dazu betrachten wir zwei beliebige Punkte P, Q" E U und
einen Weg c : [a, b] - U in U zwischen P und Q. Die Kettenregel liefert
wieder

(h 0 c)' (t) ={grad h(c(t )) , c' (t) ).

\Vegen grad h = 0 ist nun (grad h(c(t)), c/(t») = 0, also hoc konstant.
Daraus folgt, daß h(P) = h(c(a)) = h(c(b» = h(Q) gilt. Also ist rur
beliebige Punkte P, Q E U gezeigt, daß h(P) = h(Q) gilt, also ist h
konstant.

A.6 Stammfunktionen zu Vektorfeldern

Es sei U eine Teilmenge des Rn und F : U - Rn ein gegebenes Vektorfeld.
Eine Funktion ,p : U - R mit grad,p =F heißt Stammfunktion zu F.

Uns interessiert nun, wann es solch eine Stammfunktion gibt. Dazu betrach
ten wir zunächst folgenden Spezialfall:

• Es sei n = 2 und F gegeben durch die Funktionen /, 9 : U - R. Nehmen

"wir an, es gebe eine Funktion ,p mit grad if> = F, also F = (It, it) .
Dies bedeutet, daß gerade f =~ und 9 = aalP ist. Dann ist aber

~ Z2

81 = " 8

2

{JP und ~ =~. Wenn nun ,p von der Klasse Cl ist, danna;; .t'1 Z2 ~.t'~ ~
• _{J~.p 1L . ~ k
1st~ = ~, also gilt dann Br'; = {J.t'1·

Analol zei~t man allgemein: Wenn es ein <P E Cl mit F = grad,p gibt, dann
gilt ~ =~ für alle i,j.

Wir können uns nun fragen: \Venn umgekehrt ~ =~ gilt, gibt es dann
eine Stammfunktion ?

Die Antwort liefert der folgende

Satz. Es sei ,U ein Rechteck im Rn J d'h( i~n)kartesiSChes Produkt von offenen

Intervallen in R. Weiter sei F = ;, :U - Rn mit fi : U - Reine

differenzierbare -Funktion mit u:- = ~. Dann gibt es eine Stammfunk
tion <P : U - R mit F = grad4J.

Beweis. \Vir führen den Beweis ftir den Fall n = 2 mit ft = fund h = g. Im
allgemeinen Fall schließt man ganz analog.
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ABSTRACT
In this short expository article we review various applications of some ~eo

metrie methods whieh have been recently devised to investigate the long tIme
behaviour of classieal solutions to certain semilinea.r almost-periodie reaction-

-diffusion equations on IRN . As a consequence, we also show how to construct
almost-periodie attractors for such equations and how to investigate their stabi
lity properties. The class of problems whieh we analyse here contains in parti
cular well known equations of population genetics.

1. Introduction and Outline

In this expository article we discuss variOUB applieations of some geometrie
methods whieh have been recently devised to investigate the long time behaviour
of classieal solutions to semilinear parabolic Neumann boundary value problems
ofthe form

..
• "..,.. I

.~ .

[

u t (x, t) = 4u(x, t) + s(t)g(u(x,t))

Ran( u) ~ (uO'u1)

~ (x,t) = 0

, (x,t) E. nxlR+ }

, (x,t) E. onx IR+

(1.1)

In Eqs. (1.1) n denotes an open bounded connected subset of IRN with compact

closure n , smooth boundary on and N e. [2,m) nIN+ , while 4 stands for

+
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Laplace's operator in the x-variables. Furthennore s: IR+ ---+ IR is the re

striction to ~+ of a Bohr almost-periodic function on IR wbich we shall also
denote by s, while g: IR --+ IR is sufficiently smooth and possesses two zeroes
Uo and u1 such that g(u) > 0 for every u E. (uO'u1) and g' (uO) > 0 ,

g' (u1) < 0 . Finally, Ran(u) denotes the range of u and JA stands for the nor

malised outer normal vector to 80.

Problems of the fonn (1.1) occur in various fields of sciencea, such as the

theory of nerve pulse propagation and population genetics 1, 2, 3, 4 . In the
latter CaBe, eqs. (LI) model for instance the space-time evolution of the fraction
u of one of two alleles in the population of a migrating diploid species located in
n , when the so-called selection function stakes almost-periodic seasonal

variations into account 5, 6 . It is then natural to ask whether there exist
conditions on the function s, and perhaps additional restrictions concerning the
nonlinearity g, such that every classical solution (x,t) ---+ u(x,t) to Problem
(1.1) wbich exists globally in time stabilizes toward a stable almost-periodic
attractor as t ---+ m .

It is the purpose of tbis article to show that tbis is indeed possible, upon

using the geometric theory developed in 7, 8 for the analysis of some hyperbolic

problems, and further adapted and refined in 9, 10 witbin the realm ot nonauto
nomous parabolic equations. In Section 2 we assume that the primitive of B is
not almost-periodic and moreover that the time average of 8 satisfies
/i3(s) < 0 (resp. /iJ(s) > 0) .Under further restrictions on 8 and g and upon

combining our geometric arguments with the parabolic maximum principle, we
can then prove that~ classical solution to Problem (1.1) wbich exists glo
bally in time converges to Uo (resp. u1) exponentially rapidly as t ---+ m ,

with the rate ofdecay run = g'(uo)/i3(s) < 0 (resp. r
UI

= g'(u1)/i3(s) < 0).

In this case, we can thus conclude that Uo-(res~ .. uI ) ia an ex.Ponentially stable

global attractor, and moreover that the stabilization phenomenon of the classical
solutions of (1.1) is primarily governed by the reaction process in Eq. (1.1). Tbia
is in sharp contrast to the results of Section 3, in wbich we review the situation
where the primitive of s is itself almost-periodic. In tbis case, we can prove that
for every classical solution u to (1.1) which exists globally in time, there exists

A

a non constant almost-periodic attractor u, thereby neither equal to Uo nor

equal to u1 ' which captures u in an appropriate iopology as t~ m • For cer

tain particular solutions to Problem (1.1), we can mor..eover p_rpye that the latter
.!!abilization pro:c~s .a~80 tak~_pla~~_,e.~n~n~ially~a~idly,but with a rate of de
cay now deternuned by the largest negatIve eJ.genvalue of Laplace's operator. We
can thus conclude that in those particular situations the stabilization pheno
menon of the classical solutions to (1.1) is primarily governed by the diffusion
process. ~inally, Section 4 is devoted to the formulation of~ openproblem. _

We should like to emphasize the fact that we have deliberately avoided too



technical a presentation of our main results. The interested reader will therefore
only find outlines or very brief sketches of their proof in these notes. More com
plete details were given to the panicipants in this school during the lectures.
Those details can be found in references 9, 10, 11

2. The Two Equilibria '1l and u1 as Global Exponential Attractors: Tbe

Role 01 the R.eaction Process.

Consider Problem (1.1); the following hypotheses concerning g will be re
peatedly used in the sequel:

We have g e. '6(5)(IR,IR) and there exist uo ' u1 e. IR such that

g(uO) = g(u1) = 0 J g' (uO) > 0, g' (u1) < 0 and g(u) > 0 for

every u e. (uO'u1) .

If G denotes any primitive of u ----+ b on the open interval
g\uJ

(uO'u1) ,then I im G(u) = - m and I im G(u) = + Q).

u~uO u~ul

Now consider the selection function s in (1.1) and assume that
8 : IR --+ IR be almost-periodic 12, 13, 14, 15 . Write

for its time-average; in tbis section we shall &Bsume that the following two hypo
theses hold:

J
t A

(SI) We have li3(s) f 0 and t ----+ 0 des(e) = 0(1) &B Itl ----+ m ,

A

where s = s - J1.B(s) .

(S2) The restriction oI 8 on IR+ is Hölder continuous.

A

Remark. If 8 J S are periodic, then it follows immediate1y that

J
t A A

t ----+ 0 d{s(e) remains bounded on IR since 113(8) = 0 . However, this is not

any longer automatically true in the general almOBt-periodic caBej for instance,



m

with the property that
N

(x,t) ----t DOz(x,t) e. 'e(TT x IR+,IR) for all ° e. INN such that l 0j ~ 1 . Now

j=l
fix p e. (N,m) j in the simplest case we then have the following

;(t) = l k-2exp [ik-2t] haB a zero time average but its primitive is unboun-

k=l
ded. Finally, we proceed to give the definition of classical solution which we shall
use throughout this article. Let [N/2] be the integer part of N/2 i in the re-
maining part of this paper we shall &Saume that 11 has a ~5+ [N/2J -boundary

in the sense of 16 , in such a way that {} lies only on one aide of its boundary,
and that it satisfies the interior ball condition for every x e. on . We denote by
~2,1 (11 x IR+ ,IR) the set consisting of all functions z E' ~(11 x IR+ ,IR~ such that

(x,t) ----t 8t1Doz(x,t) e. '6(11 x IR+ ,IR) for all ° = (al' ... ,ON) e. IN , 1 e. IN ,
N

satisfying l °j + 21 ~ 2 . In a similar way we define ~1,0 (IT x IR+ ,IR) as the

j=l

set consiating of all

Definition 2.1. A function u e. '62,1({}xlR+ ,IR) n ~(ITXIRÖ ,IR) n '61,O(ITx~+ ,IR)

is said to be a classical solution to Problem (1.1) if the following conditions hold:

(Cl) There exists c e. LP(l1,lR) such thai Iu(x,t) - u(x,t') I ~
c(x) It - t' I for every x e. {} and every t,t' e. IR+ .

(C2) x ----t u(x,t) e. ~(2) (IT,IR) for every t e. IR+ .

(C3) (x,t) ---+ ut(x,t) e. ~(rr x IR+ ,IR) and t ----t ut(x,t) ~ ~(IR+ ,IR)

uniformly in x.

(C4) u satisfies relations (1.1) identically.

The main result of this section is then the following

Theorem 2.1. Consider Problem (1.1) where g satisfies hypotheses (GI) and

(G2); assume moreover that s satisfies hypotheses (51) and (52). Set

ru = g' (uO)Ji3(s), ru = g' (ul )Ji3(s) and let u be ä!!I classical solution to
o 1

Problem (1.1) in the sense of Definition 2.1. Then there exists Co e. (O,m) ,



(2.1)

(2.2)

(2.4)

(2.3)

t E. (0,(1)) , a positive constant c depending only on N , p and the geometry
Co

of n , such that the following statements hold:

(1) H Ji3{s) < 0 , then the exponential decay estimates

sup Iu(x,t) - Uo I 5 c CO exp [r
uo

(t - t
co

)]
xe.IT

sup IVu(x,t) I ~ c Co exp [ru (t - t c )]
xEn 0 0

sup Ix-yl-ß1u(x,t) -u(y,t)1 5 CEOexp[ru (t-tc )J
x,y.E.n 0 0
xfy

sup Ix-y I-ß IVu(x,t)-Vu(y,t) I ~ CEOexp [ru (t-t )]
x, yE.n 0 CO

XfY

hold for every t E. [t ,m) and every ßE. (0,1 - P-IN] .Co

(2) H li3{s) > 0 , a completely similar statement holds provided that we re
place Uo by u1 everywhere in relations (2.1) - (2.4).

Remarks. (1) Upon invoking the more or less standard terminology of the theo
ry of dynamical systems, we can say that under the hypotheses of Theorem 2.1,
Uo (reep. ui ) becomes an exoonentially global attractor OI simply a global ex-

nen ial attractor for Problem (1.1). It is interesting to note that because of hy
potheses GI)' G2) and (81), the constants Uo and u1 are the only almost-

-periodie solutions to the problem

'" '"

{

U I (t) = s( t)g(u(t)), t E. IR}

Ran(u) ~ [uO' u1]
(2.5)

(2) There are two contributions to the right-hand aide of the first equation
in (1.1), which model two very different physical phenomena: the diffr,Sion Jerm
represented by ~u, and the nonlinear reaction term represented by B t)g(u . It
is then natural to ask which one of the two is primarily responsible for the stabili
sation properties of the classical solutions to (1.1). As we shall see the answer
strongly depends on the properties of s ; for inatance, in Theorem 2.1 where hy
potheses (SI) and (82) hold, the stabilization phenomenon is entirely governed by

the reaction t~rm. I!1.,!ac~, the s~.tral properties of Laplace's o~rat~r play 00

role in the proof of relations (2~1) - (2.4), and the rates of decay are uniquely J- -'



determined by g I (uO)1'ß(s) (resp. g I (u1)1'ß(s)) . To illustrate how irrelevant
A

the diffusion process is in tbis C&Se, for each JI E. (uO'u1) we consider the

function defined by

(2.6)

for every t E. IR ,where G-1 denotes the monotone inverse of G . Then ~ is a
classical solution to the problem

A A

{

U I (t) = s( t )g(u(t)), t E. IR }

Ran(u) t7. [uO' u1]
(2.7)

A

Since u is independent of x, it is then a fortiori a non diffusive classical
A

solution to (1.1). However, according to Theorem 2.1, we still have u(t) ---i Uo
A

or u(t) ---i u1 aB t ---t m , depending on whether J;J(s) < 0 or liJ(s) > 0 .

(3) Consider for instance the problem

{

Ut (x, t)=&u(x,t)+(cos(w1t)+cos(w2t):l:1)u(x,t)(1-u(x,t)) ,(x,t)t7.{l)(!R+ 1
Ran (u) ~ (0 , 1)

~ (x,t) = 0 ,(x,t)e.8Ux lR+

(2.8)

where {wl'w2} ( IR/{O} is rationally independent. Problem (2.8) ia of the form

(1.1) with 8:1:(t) = C08(W1t) + cos(w2t):I: 1 and it is easily verified that all of

the hypotheses of Theorem 2.1 are satisfied. If 8 = 8 , we conclude that every

classical solution to Problem (2.8) converges exponentially rapidly toward
Uo= 0 with run = -1 . H 8 = s+ the same conclusion holds true fOI u1 = 1

and I = - 1 . In the conten cf population genetics, tbis result means that onlyu1
one of the alleles will eventually survive in the population.

We devote the remaining part cf tbis section to outlining the prco! cf Theo

rem 2.1, and we refer the reader to 9, 10, 11 for complete details. We write

H2,P(() = H2,P(11,() for the usual Sobolev spa.ce consisting of all complex

LP - functions z on 11 with LP - distributional derivatives netz for



101 €. [0,2] , and equipped with the usual norm 11-11 2 16. H2,P(IR) then de-,p
notes the real component in H2,P((). We also write t4'1,ß (() = ~1,ß (IT,()

for the Banach spare of all complex Hölder continuoUB functions on n with

Hölderian derivatives DOz of exponent ß for IalE. [0,1] , with respect to the
usual pointwise oPerations and the usual norm 16. Hudenotes any classical
solution to Problem (1.1) in the sense of Definition 2.1, and if we define

u(t)(x) = u(x,t) for every (x,t) E. n )( 1R6 ' it is then clear that u(t) E H2,P(()

for every t E. IR+ (compare with condition (C2) of Definition 2.1). On the other

hand, since there exists the continuous embedding H2,P(() -----i ~1,ß (() , it is
sufficient to prove that

A

lIu(t) - uoll2 P ~ C Co exp [ru (t - t~ )]
, 0 ~o

(2.9)

. ,
,

'"for some positive constants c, Co and t , in order to obtain estimates (2.1) -
Co

(2.4). We can then reduce the prcof of inequality (2.9) to proving the following
three statements:

Statement (A): u( t) -----i Uo strongly in H2,P(() as t -----i m : this is already a

statement which proves that Uo ia a global attractor, but which fails to provide

the corresponding rate of stabilization.

Statement (B): In H2,P(IR), there existe a Banach manifold of classical solu

tions t -----i u(t) of emaIl norm to Problem (1.1), such that the estimate
o

(2.10)

holdB for Bome Co > 0 and every t E. 1R1; .

In contrast to Statement (A), Statement (B) _ provide the appropriate
exponential rate of decay, but the validity of estimate (2.10) is limited to certain
classical solutions of small norm. However, we shall see below that we ca.n in fact
combine Statement (A) with Statement (B) to obtain

Statement (C): Given u(t) and the Co of Statement (B), there exists t > 0
Co

and a small norm solution as in Statement (B), BUch that the equality

u(t) = u(t - t )
Co (2.11)



holda for every t E. [t ,m).Co

It is then clear that the combination of (2.10) with (2.11) gives (2.9).

The proofs of the above statements are all very geometric; we begin with
the following

Sketch 01 the Prool 01 Statement (A) . Given u(t) , it is possible to define an

auxiliary function v(t): n --t IR such that (x,t) --t v(x,t) possesses the
same re~arity as (x,t) --t u(x,t) , and which satisfies the linear parabolic
differentIal ineguality

{

~(x, t) ~ I1v(x,t), (x,t) E f1xlR+ }

7Jji (x,t) = 0 , (x,t) E af1xlR+

This function may in fact be chosen as

v(t) = cp(t) exp [a G 0 u(t)]

(2.12)

(2.13)

"'-

for some fixed J1 E. (uO'U1) . Upon exploiting the properties of u(t) along with

the parabolic maximum principle applied to Problem (2.12), we then infer the
existence of a constant cl > 0 such that the estimate

II v(t)lI mn= max Iv(x,t) I ~ cl (2.15)
, x€.IT

holds uniformly in t E. IRÖ . From relations (2.13) and (2.15) it then follows that

c
Ilexp [0 G 0 u(t)] II m,n 5~--+ 0 (2.16)

as t --t m ,since li3(s) < 0 implies that ~t) --t mast --t CD • This, com

bined with Hypothesis (G2), shows that



lIu(t) -uallm,II ---+ 0 (2.17)

aB t ---+ m . Finally, if A % denotes the LP(()-realization of Laplace'sp,

operator on the domain H 2,p - { Z E. H2,P(() . IJz (x) - 0 X €. on} we ean..A" - '7Jß - , ,
prove that

tJ. fl(t) ---+ 0p, (2.18)

stron~y in LP(() as t ---+ m • This is exactly here that the geometry comes in:
in order to obtain relation (2.18), we invoke the existenee of on ntial . ho
mies for the diffusion semigroup generated by A f' Relations 2.17 and (2.18)p,
then imply that u(t) ---+ Uo strongly in H2,P(() , by standard elliptie theory.•

Sketch 0/ the Proo/ 0/ Statement (B). Here we invoke the geometrie techniques

devised in 7, 8 for the analysis of some hyperbolie problems to construet a
smooth loeal stable manifold of classical solutions to Problem (1.1) around uO '

aatisfyjng estimate (2.10). While it is not posBible to give the details of thiB con
atruction here, it ia however important to point out that our method provides a

manifold of solutions in H2,P(IR) aimilar to an open ball, and not merely a lower
dimensional manifold. This is beca.use of the fact that the exponential diehoto
mies whieh we need to earry out our eonstruetion are valid on the whole of

H2,P(IR) when JL:B(s) < 0 , and not merely on a lower dimensional subspace.

This point is essential if one wants to eombine Statements (A) and (B) in order
to obtain Statement (C). •

Sketch 0/ the Proo/ 0/ Statement (C).· Let u(t) be as in Statement (A), and let
""e and Co be as in Statement (B). Since we already know that u(t) - Uo---+ 0

strongly in H2,P(IR) as t ---+ m , there exists t > 0 such that
Co

""Ilu(t) - uol12 P ~ eEO for every t ~ tc . The crucial point is that this implies
, 0

that the function u(t ) lies on the stable manifold construeted under (B).
EO

What this means is that if we consider the initial boundary value problem



, (x, t) ~ aox(tc ,00)
o

w(x,t) = &w(x,t) + s(t)g(w(x,t)), (x,t) ~ (}x(tc ,00)
Ran(w) ~ (u O' u1) 0

w(x,t c )= u(x,t ) ,x~no Co
ij- (x,t) = 0

(2.19)

then there exists a classical solution t --+ u( t) of small norm as in statement

(B), such that w(x,t) = u(x,t - ti ) provides a solution to Problem (2.19). But
o

from the third condition in (2.19) and the fact that g is smooth and s is boun
ded, it follows from the parabolic maximum principle that w(x,t) = u(x,t) for

every t ~ t.:- . Hence u(x,t) = u(x,t - t ) for every x ~ n , which implies re-vo Co
lation (2.11).

•
Remarks. (1) The basic geometrie idea in the above argument is the following:
since we already know that u(t) --+ uo as t --+ 00 , we just have to wait long

enough until u(t) hits the stable manifold of statement (B) at time t = t ; weCo
then proceed to identify u(t) for t ~ tc with a small norm solution of the type

o
u , for which estimate (2.10) holds. However, the technical details of the proof of
Statement (C) are not as elementary as it seems, since Problem (2.19) is non-

autonomoUB. We refer the reader to 11 for complete details.

(2) The reason for which we have formulat~d Problem (1.1) as a dynamical

system on H2,P(G:) is that H2,P(() becomes a commutative Banach algebra
with respect to the usual pointwise operations and the norm 1I-112,p' when

p > N 16. This underlyjng Banach algebra structure is an essential ingredient of
our theory, both in the hyperbolic and in the parabolic case 7, 8, 9, 10, 11 .

(3) Within the BCOpe of our method, the regularity hypothesis

g ~ ~(5) (IR,IR) is nea.rly optimal for the validity of the results of this paper. We
do not know whether our resu1ts still hold if g satisfies only weaker differentia
bility propertiea.

(4) We leave it to the reader to prove Statement (2) of Theorem 2.1.

In the next section we review the situation where Pß(s) = 0 and

t
t --+ f0 d{s({) = 0(1) as ItI --+ CD • As is perhaps expected, the nature of



the stabilization phenomena then changes radically.

3. Asymptotic Alm08t-Periodicity for Classical Solutions 10 Problem (1.1):
The Rale of the Diffusion Process.

Throughout this section the hypotheses (GI)' (02) and (52) remain un

altered, whereas Hypothesis (51) is replaced by the following:

t
We have I;l(s) = 0 and in fact t --<Jd!sW = 0(1) aB

o
Itl---tCD •

Finally, the notion of classical solution to Problem (1.1) is still the same as in
Section 2. It is then clear that one cannot any longer expect the classical solu
tions of (1.1) to stabilize around Uo or u1 . For instance, since it follows from a

classic criterion of Bohr that the boundedness of t --< J: d!s(!) is equivalent

to its almoat-periodicity 12, 13, 14, 15 , the non diffusive classical solutions to
Problem (1.1) given by relation (2.6) are now all almost-periodic, and remain

A

uniformly bounded away from Uo and u1 because of Hypotheses (G2) and (51)'
In fact, the latter property remains true for m:m. classical solution to Problem

(1.1)9. 1t ia then natural to wonder whether those classical solutions can stabilize
at all. The anawer is fortunately positive, and it tums out that it is precisely the
almost-periodic functions (2.6) which now play the role of attractors. The precise
result is the following

Theorem 3.1. Consider Problem (1.1) where g satisfies Hypotheses (GI) and
A

(G2)j aBsume moreover that s satisfies Hypotheses (81) and (82), and let u be

any classica.l solution to (1.1) in the sense of Definition 2.1. Then there exists an
A

almost-periodic solution u given by relation (2.6) such that

A

}im sup Iu(x,t) - u(t) I = 0
t--+CD xEn

Moreover, the given classical solution satisfies the relations

lim sup IVu(x,t) I = 0
t--+CD xEn

and

(3.1)

(3.2)



(3.3)

(3.4)

lim sup Ix-y I-ßIu(x,t)-u(y,t) I = 0
t-~ (D x , y. En

x~y

lim sup Ix-y I-ßIVu(x, t)-Vu(y,t) I = 0
t-~(D x,y.EO

x1Y

for every ßE (O,l-p-IN] . Finally, every Fourier exponent of ~ is a finite li
near combination with integer coefficients of the Fourier exponents of s .

Remarks. (1) In contrast to the statements of Theorem 2.1, it is not possible to
~ A

claim that u is a global attractor; in fact, u depends on u in general. Thus,
A

every classical solution to (1.1) stabilizes around some u, but Theorem 3.1 says
A

absolutely nothing about the stabilitl properties of such u's. It might even be a

priori conceivable that for a~ u of the form (2.6) there exists no classical
solution u to Problem (1.1) satisfying relations (3.1H3.4). Fortunately, we
shall see below that this is not the case.

(2) Theorem 3.1 provides no rate of decay for the stabilization of classical
solutions. It is therefore impossible to infer !rom it whether the stabilization phe
nomenon described in Theorem 3.1 is govemed by the diffusion process, or by the
reaction process in (1.1). We shall see below that the solution to this problem is
much more subtle than in Section 2.

(3) Consider for example the problem

u t (x,t)=

=äu(x, t) + (C08(W1t)+cos("'2t))u(x,t)((1-u(x,t))exp [-u(x ,t)]
, (x, t) E 8{lxiR+

Ra n ( u) ~ ( 0 , 1)

~ (x, t) = 0 , (x, t) E OfllClR+

(3.5)

where {"'1''''2} ( rR/{O} is rationally independent. Problem (3.5) is still of the

form (1.1) with s(t) = cos(w1t) + COS("'2t) and g(u) = u(I-u)exp[-u] , and it

is easily verified that all of the hypotheses of Theorem 3.1 are verified. We con
clude that every classical solution to Problem (3.5) stabilizes around a quasi-

A

periodic attractor of the form u which oscillates between the equilibria Uo= 0
A

and u1 = 1. Moreover, every Fourier exponent A of u is of the form



/

A = k1""1 + k2w2 ,where k1 2 E 1l. • In the context of population genetics, this,
result means that both alleles will persist in the population for all times, and that
the fractions of the two alleles will eventually evolve quasiperiodically in time
with oscillation properties entirely controlled by those of the seasonal variations.

Sketch 0f the Proof 0f Theorem 1.1. As in Section 2 let u(t ) be defined by

u(t)(x) = u(x,t) for every (x,t) EnxlR+ . Then u(t) EH2,P(() , and it is suffi-
'"cient to prove that there exists a u of the form (2.6) such that

'"Ilu(t)-u(t)112 ---i 0 as t --+ CD • But the proof of this is essentially the same,p
as that of Statement (A) in Section 2. Finally, the very last statement of Theo-

rem 3.1 follows from relation (2.6) and a classic criterion of Favard 15.

•
We shall now see that it is only for certain particular classical smaIl norm solu
tions to Problem (1.1) that one can ex~ct an exponential stabilization. More

specifically, given any almost-periodic u of the form (2.6), we can prove that
there aIways exists a sIDooth manifold of classicaI solutions to (1.1) which stabi-

'"lize around u exponentially rapidly by diffusion. The precise result is the folIo-
wing

Theorem 3.2. Consider Problem (1.1) where g satisfies Hypotheses (GI) and

'" '"(G2); assume moreover ihai s satisfies Hpotheses (S1)' (S2) and let u be any

non diffusive almost-periodic solution of the form (2.6). Final1y, let Al be the

largest negative eigenvalue of Laplace's operator realized on the domain

Dom(~."y.) = {z EH~P(() : ~ r EH~P(()} of the Bana.ch space H~P(().

Then there exists in H ~P(IR) a sIDooth codimension--Qne manifold of classical

Bolutions u to Problem (1.1) such that the following estimates hold for every

t E1R6 ,every ßE (O,l-p-IN] and for some c, EOE IR+ :

N '" NN

sup Iu(x,t)-u(t) I ~ c Co exp [Alt] (3.6)

xEn

SUp IVu(x,t) I ~ ceoexp [Alt] (3.7)

xEn



sup Ix-y I-ßIVu{x,t)-Vu{y,t) I ~ ceoexp [~1t] (3.9)
x,yEO
xfy

Remarks. (I) Estimates (3.6) - (3.9) clea.rly play the role of inequalities (2.1) 
(2.4) of Theorem 2.1, with the crucial difference that it is now the largest nega
tive eigenvalue of Laplace's operator which determines the rate of exponential
stabilization. However, this precise information is limited to those smaIl norm
8Olutions which lie on the codimension-one manifold of Theorem 3.2.

(2) In contrast to Theorem 2.1, it is !!21 po8sible to hope that estimates
(3.6H3.9) hold true for~ cla.ssical solution to Problem (LI). The reason for
tbis is that the spectrum of Laplace's operator consists exclusively of discrete ne-

~
ative eigenvalues illil ~ = 0 (because of Neumann's boundary condition in
1.1)). It follows from tbis that besides the codimension-one stable manifolds of
heorem 3.2, there also exist one-dimensional center manifolds associated with

Problem (1.1). The natural question is then to know how the coexistence of those
two types o( local manifolds influences the ultimate behaviour of the classical

A

solutions to (1.1). First, given u it ia possible to show that for t sufficiently
A

luge, u(t) approaches the center ma.nifold about u exponentially rapidlYi
moreover, It ia the diffusion process in (LI) that is primarily resPQnsible for this
phenomenon of exponential attractivity of the center manifold. With additional
restrictiona on the nonlinearity g, the cla.ssieal solution u(t) then ultimately

A

stabilizes around some u according to the statement of Theorem 3.1, with a rate
determined by the long time behaviour Q!! the corresponding center manifold.
Moreover, the latter behaviour is primarily governed by the reaction process in

A

(1.1). These considerations eventually frove the asymptotic stability of each u
given by (2.6), and provide a rate 0 decay which is in general slower than

exponential. We refer the reader to 11 for complete details.

Sketch o/the Pro%/ Theorem 3.2. Upon invoking the geometrie theory of 7,8,

we can construet in H2,P(IR) a one-codimensionallocal stable manifold of classi-
A

cal solutions to Problem (LI) around each u. Here again, the Banach algebra

structure of H2,P(IR) is essential. _

Remark. Regarding Theorem 3.2, our observation concerning the regularity hy

pothesis g E t4'(5)(IR,IR) is the same as in Section 2. In panicular, it is not
known whether Theorem 3.2 still holds with only weaker differentiability
properties concerning g. Theorem 3.1, however, actually holds when

g E ~(I)(IR,IR).

Fi naIly, we devote the last section of tbis 'article to the discussion of an open
problem.



4. On tbe Stabilizaüon Properties of SolutioD8 10 AIm08t-Periodic
Reacüon-Diffusion EquaüoD8 with Spaüal Structure.

We noted that under the hypothesea of Theorem 3.1, the u'a given by (2.6)
cannot be global attractOIS. It ia therefore natural to ask whether sorne kind of
additional structure in Problem (1.1) might change tbis overall picture. Consider
the problem

[

u t (x, t) = Au(x, t) + s(x,t)g(u(x,t), (x,t) E O)(!R+ }

Ran(u) C. (uO,u1) (4.1)

~ (x,t) = 0 , (x,t) E IJ{}xlR+

~(t) = mi n s(x,t) . Then both
xEn

tural to ask whether these two functions might playa role in the discussion of the
stabilization properties of the classical801utions to Problem (4.1). A glance at the
proofs.outlined in the preceding sections shows that they do. For instance, if

JlB(!) ~ JlB(i) < 0 , it is easy to show that Uo is the global attractor for Prob

lem (4.1); the proof of tbis fact is entirely similar to that of Statement (A) in

Section 2, with i replacing s (Note that we always have JlB(~) ~ JlB(i) by de-

finition, so that the only non trivial condition in the above case is JlB(i) < 0 ).

Similarly, if 0 < JlB(a) ~ JlB(S) , then u1 becomes the global attractor (here

again, JlB(B.) > 0 ia the only nontrivial condition, which plays the role of

JlB(s) > 0 when s is independent of x). Thirdly, if JlB(i) = 0 and if

t ---+ J: d es( e) = O(1) as It I ---+ lD , then every classical solution to Problem

(4.1) stabilizes around a spatially homogeneous, time almost-periodic solution to
the equation

where g is as before, and where the selection function now depends explicitly on

x En in such a way that t~ s(x,t ) be almoat-periodic for each x E n. If s

is sufficiently smooth on n )( IR!, define i(t) =max s(x,t) and
xEn

i and ~ are Bohr almoat-periodic, and it is na-

'" A-

U I (t) = i(t)g(u(t», t E IR (4.2)

a result which bears same analogy with Theorem 3.1. Of course, in light of the
methods outlined in the preceding sections, none of the above statements is really
surprising, and they all reduce to the corresponding statements of Sections 2 and



3 when a does not depend on x.
However, it ia also worth mentioning that there exists in relation with Problem

(4.1) the additional possibility of having J'B(i) < 0 < J'B(S) . This, of course,

does not occur for Problem (1.1) where s(x,t) = s(t) for every x En. In this
case, it is tempting to conjecture that there exists a unigue time almost-periodic
solution to Problem (4.1) which is neither identically equal to Uo nor identically

equal to U l ' and which is a~ attractor for all classical solutions to (4.1).

This was in fact proved inJl7] when t ----+ s(x,t) is periodic, but remains an
open problem in the gener almost-periodic case. The source of tbis difficulty
lies primarily in the fact that there is no natural substitute for the nation of
Poincare time-map in the almost-periodic case.
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