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A.5 Zum Gradienten 75

A.5 Zum Gradienten

Wir zeigen: Sei /' C R" offen und zu je zwei Punkten P und @ gebe es einen
Weg ¢ : [a,b] — U mit ¢(a) = P und c(b) = Q. Weiter seien fy, fo : U — R. zwel
Funktionen mit grad f; = grad f,. Dann gibt esein & € R mit f; = fo + k.

Beweis. Wir definieren eine Funktion A : U — R durch i := f; — fo. Dann
gilt wegen der Voraussetzung gradh = 0. Zu zeigen ist, das h = & fur
ein k € R gilt. Dazu betrachten wir zwei beliebige Punkte P,@Q-€ U und
einen Weg ¢ : [a,b8] — U in U zwischen P und Q. Die Kettenregel liefert
wieder

(hoc)(t) = (grad h(c(t)), ' (¢)).
Wegen gradh = 0 ist nun {(grad h(c(2))},¢'(t)) = 0, also h o ¢ konstant.
Daraus folgt, daB A(P) = h(e(a)) = h(c(b)) = A(Q) gilt. Also ist fiir
beliebige Punkte P,Q € U gezeigt, daB A(P) = h(Q) gilt, also ist A
konstant.

A.6 Stammfunktionen zu Vektorfeldern

Es sei U eine Teilmenge des R™ und F : U — R™ ein gegebenes Vektorfeld.
Eine Funktion ¢ : U — R mit grad ¢ = F heiBt Stammfunktion zu F.

Uns interessiert nun, wann es solch eine Stammfunktion gibt. Dazu betrach-
ten wir zunachst folgenden Spezialfall:

¢ Essei n =2 und F gegeben durch die Funktionen f,g: U — R. Nehmen
wir an, es gebe eine Funktion ¢ mit gradé = F, also F = (g’,i 5,,).
Dies bedeutet, daB gerade f = ‘8':7 und ¢ = £2 ist. Dann ist aber

a.‘l.'z

F:!; LT und m‘;— Wenn nun ¢ von der Klasse C! ist, dann

8:18z3

ist 3-:—‘3% Bm;L, also gilt dann ;g;L, a:l

Analo)g zei t man allgemem Wenn es ein ¢ € C! mit F = grad ¢ gibt, dann
gilt a—l- FLL fur alle 1, 5.

Wir konnen uns nun fragen: Wenn umgekehrt ‘—3-5{- = -g:,ﬁ_- gilt, gibt es dann
eine Stammfunktion ?
Die Antwort liefert der folgende

Satz. Es ser U ein Rechteck im R"™, d.h ein kartesisches Produkt von offenen
h
Intervallen in R. Weiter sei F = : U =R mit f; : U — R elne
fn
differenzierbare Funktion mit —h 3-1-'- Dann gibt es eine Stammfunk-
tion ¢ : U — R mit F—graddb

Beweis. Wir flihren den Beweis fiir den Fall n = 2 mit f; = fund f5 =¢. Im
allgemeinen Fall schlieft man ganz analog.



PEY)

A GEOMETRIC THEORY FOR SEMILINEAR ALMOST-PERIODEC
PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS ON RN .

PIERRE-A. VUELERMOT+
Maz—Planck—Institut fir Mathematsk
Gottfried—Claren—Siraie 26
D — 5800 Bonn § (BRD)

ABSTRACT
In this short expository article we review various applications of some geo-
metric methods which have been recently devised to investigate the long time
behaviour of classical solutions to certain semilinear almost—periodic reaction-

—diffusion equations on IRN . As a consequence, we also show how to construct

almost—periodic attractors for such equations and how to investigate their stabi-

lity properties. The class of problems which we analyse here contains in parti-
ar well known equations of population genetics.

1. Introduction and QOutline

In this expository article we discuss various applications of some geometric
methods which have been recently devised to investigate the long time behaviour
of classical solutions to semilinear parabolic Neumann boundary value problems
of the form

ug(x,t) = Au(x,t) + s(t)g(u(x,t)) , (xt) € QxR

Ran(u) C (ug,u,) (L1)
-3% (x,t) = 0  (xt) e onxRT

In Eqs. (1.1) Q denotes an open bounded connected subset of RN with compact
closure {I, smooth boundary #Q2 and N e [2,0) N Nt , while A stands for

+ Max—Planck Fellow for Mathematics.
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Laplace’s operator in the x—variables. Furthermore s: RT — R is the re-

striction to R of a Bohr almost—periodic function on R which we shall also
denote by s, while g: R — R is sufficiently smooth and possesses two zeroes
uy and u; such that g(u)>0 for every ue (uyu;) and g’(uy) >0,

g’(ul) < 0. Finally, Ran(u) denotes the range of u and p stands for the nor-
malised outer normal vector to 45 .

Problems of the form (1.1) occur in various fields of sciences, such as the

theory of nerve pulse propagation and population genetics 1,234 . In the
latter case, egs. Fl.l) model %or instance the space—time evolution of the fraction
u of one of {wo alleles in the population of a migrating diploid species located in
? , when the so—called selection function s takes almost—periodic seasonal

variations into account 5 6 . It is then natural to ask whether there exist
conditions on the function s, and perhaps additional restrictions concerning the
nonlinearity g , such that every classical solution (x,t) — u(x,t) to Problem
(1.1) which exists globally in time stabilizes toward a stable almost—periodic
attractoras t — o . .

It is the purpose of this article to show that this i8 indeed possible, upon
using the geometric theory developed in 7,8 for the analysis of some hyperbolic

problems, and further adapted and refined in 9,10 ithin the realm ot nonauto-
nomous parabolic equations. In Section 2 we assume that the primitive of s is
not almost—periodic and moreover that the time average of s satisfies
pB(s) < 0 (resp. pB(s) > 0) .Under further restrictions on 8 and g and upon

combining our geometric arguments with the parabolic maximum principle, we
can then prove that every classical solution to Problem (1.1) which exists glo-
bally in time converges to u, (resp. “1) exponentially rapidly a8 t — o,

. ot — o/
with the rate of decay ruo =g (up)up(s) <0 (resp. rul =g’ (uy)ug(s) <0) .

In this case, we can thus conclude that uj. (resp. ul) is an nentiall 1

lobal attractor, and moreover that the stabilization phenomenon of the classical
solutions of (1.1) is primarily governed by the reaction process in Eq. (1.1). This
is in sharp contrast to the results of Section 3, in which we review the situation
where the primitive of s is itself almost—periodic. In this case, we can prove that
for every classical solution u to (1.1) which exists globally in time, there exists

a non_cons most—periodic attractor u , thereby neither equal to uy mor
equal to u, which captures u in an appropriate topology as t — w . For cer-

tain particular solutions to Problem (1.1), we can moreover prove that the latter
Sstabilization process also takes place exponentially rapidly, but with a rate of de-
cay now determined by the largest negative eigenvalue of Laplace’s operator. We
can thus conclude that in those particular situations the stabilization pheno-
menon of the classical solutions to (1.1) is primarily governed by the diffusion
process. Finally, Section 4 is devoted to the formulation of an open problem.

We should iiké to emphasize the fact that we have deliberately avoided too



technical a presentation of our main results. The interested reader will therefore
only find outlines or very brief sketches of their proof in these notes. More com-
plete details were given to the participants in this school during the lectures.

Those details can be found in references 9,10, 11 .

2. The Two Equilibria 1, and u, as Global Exponential Attractors: The
Role of the Reaction Process.

Consider Problem (1.1); the following hypotheses concerning g will be re-
peatedly used in the sequel:

(Gy) We have ge 3(5)(IR,IR) and there exist u,, u; € R such that
8(ug) =g(u) =0, g'(uy) >0, g’'(v;) <0 and g(u)>0 for
every ue (uo,ul) .

(Gy) If G denotes any primitive of u—— 1u on the open interval
(uguy), then lim G(u)=-w and lim G(u)=+o.
u—tuo u—bul

Now consider the selection function 8 in (1.1) and assume that
8 : R—— R be almost—periodic 12,13, 14,15 . Write

L
. -1
(s)=1lim & J' dés(¢)
g Lo 0

for its time—average; in this section we shall assume that the following two hypo-

theses hold:

(8y) We have pup(s) #0 and t—-»L: d{g(f) =0(1) as |t] —o,
where § = § — pg(8) -

S The restriction of s on IR+ is Holder continuous.
2

~

Remark. If 8 , s are periodic, then it follows immediately that
t A A

t—-»J d¢s(¢) remains bounded on R since pp(s) =0 . However, this is not
0

any longer automatically true in the general almost—periodic case; for instance,



1 1]
8(t) = 2 k_2exp [ik_zt] has a zero time average but its primitive is unboun-

k=1
ded. Finally, we proceed to %ve the definition of classical solution which we shall
use throughout this article. Let [N/2] be the integer part of N/2 ; in the re-

maining part of this paper we shall assume that Q hasa ¢ 5+[N/2] —boundary

in the sense of 16 , in such a way that (1 lies only on one side of its boundary,
and that it satisfies the interior ball condition for every x € 82 . We denote by

g2l (Q x IR'*',!R) the set consisting of all functions z € #(§ x IR'*',IR such that
(x,t) — 8t7Daz(x,t) € €(Q x IR+,IR) forall a=(a;,...ag)eN", 7elN,
N
satisfying 2 a; + 27 £ 2. In a similar way we define ¢ 1,0 (T x IR+,IR) as the
=1 .
set consisting of all ze €11 x IR+,IR) with the property that
N

(x,t) — D%(x,t) e #(TT x IR+,IR) forall aeNY such that z a; <1. Now
j=1

fix p e (N,o); in the simplest case we then have the following

Definition 2.1. A function ue w21 (QxRTR) N #(TRY R) n #10CHRT R)

is said to be a classical solution to Problem (1.1) if the following conditions hold:

(Cy) There exists ¢ € LP(Q,R) such that |u(x,t) —u(x,t’)| <
c(x)|t —t’| forevery x e Q and every t,t’ € R .
(Cy) x—u(xt) e () @UR) for every t e R .
(Cy) (xt) —u(xt) e SA@xRTR) and t—u(xt) e ERTR)

uniformly in x .

(Cy) u satisfies relations (1.1) identically.

The main result of this section is then the following

Theorem 2.1. Consider Problem (1.1) where g satisfies hypotheses (G;) and
(Gz); assume moreover that s satisfies hypotheses (S;) and (S,). Set
1-110 =g’ (uplug(s) 1-ul = g’(u;)ug(s) andlet u be any classical solution to
Problem (1.1) in the sense of Definition 2.1. Then there exists ¢, € (0,0) ,



t, e (0,m) , a positive constant ¢ depending only on N, p and the geometry
0
of Q, such that the following statements hold:

(1) H pg(s) <0, then the exponential decay estimates

sup {u(x,t) —uy| Scegexpry (t—t,_ )] (2.1)
xell 0 0
sup [Vu(xt)| <ceyexplr, (¢—t,_ )] (2.2)
x€ll 0 0
sup_ |x—y| ™ |u(xt) —u(yt)| < eep explr, (t-t, )] (2.3)
x,yef} 0 Y% %
x¥y
xs’igﬂ |x=3 | 7P| Vu(x,)Vu(y,b)| < ceg exp [ry (it )] (2.4)
x#y

hold for every t e [ts ,o) and every Se (0,1 — p_lN] .
0

(2) I pg(s) >0, a completely similar statement holds provided that we re-
place U, by u, everywhere in relations (2.1) — (2.4).

Remarks. (1) Upon invoking the more or less standard terminology of the theo-
ry of dynamical systems, we can say that under the hypotheses of Theorem 2.1,

u, (resp. u;) becomes an exponentially global attractor or simply a global ex-
nential attractor for Problem (1.1). It is interesting to note that because of hy-
potheses iGl), iGz) and (S;), the constants u, and u, are the only almost-

—periodic solutions to the problem

{G'(t) = s(t)g(u(t)), tem}

(2.5)
Ran(u) C (ug,1,]

(2) There are two contributions to the right—hand side of the first equation
in (1.1), which model two very different physical phenomena: the diffusion term
represented by Au, and the nonlinear reaction term represented by s(t)g(u) . It
is then natural to ask which one of the two is primarily responsible for the stabili-
sation properties of the classical solutions to (1.1). As we shall see the answer
strongly depends on the properties of s ; for instance, in Theorem 2.1 where hy-
potheses (Sl) and (82) hold, the stabilization phenomenon is entirely governed by

the reaction term. In fact, the spectral properties of Laplace’s operator play no
role in the proof of relations (2.1) — (2.4), and the rates of decay are uniquely |. _.



determined by g’(u,)ug(s) (resp. g’(u;)sp(s)) . To illustrate how irrelevant

the diffusion process is in this case, for each ve (uo,ul) we consider the
function defined by

~ t A
u(t) = G‘l{ J s + G(v)} (2.6)

for every t € R, where G™! denotes the monotone inverse of G . Then u is a
classical solution to the problem

a’(t) = s(t)g(u(t), teR

(2.7)
Ran(u) € [uj,u;]

Since 3 is independent of x , it is then a fortiori a non diffusive classical

solution to (1.1). However, according to Theorem 2.1, we still have u(t) — g

or u(t)—u,; as t — o, depending on whether pp(s) <0 or pp(s) > 0.
(3) Consider for instance the problem

u, (x,t)=4u(x,t)+(cos(w, t)+cos(wyt)E1)u(x,t)(1-u(x,t)) (x,t)eQxR
Ran(u) € (0,1)

g% (x,t) =0 (x,t)e 90xR™T
(2.8)

where {"’1’“’2} CR/{0} is rationally independent. Problem (2.8) is of the form
(1.1) with 8,(t) = cos(w;t) + cos(wyt) + 1 and it is easily verified that all of
the hypotheses of Theorem 2.1 are satisfied. If s =s_ , we conclude that every
classical solution to Problem (2.8) converges exponentially rapidly toward
U, = 0 with r =-~1.H 8=s, thesame conclusion holds true for u, =1
L + 1
and r, =-1. In the context of population genetics, this result means that only
1

one of the alleles will eventually survive in the population.

We devote the remaining part of this section to outlining the proof of Theo-
rem 2.1, and we refer the reader to 9,10, 11 ¢ complete details. We write
Hz’p(C) = H2’p(Q,C) for the usual Sobolev space consisting of all complex
I? —functions z on @ with LP —distributional derivatives D% for



|a| € [0,2] , and equipped with the usual norm ||-||, p16 . Hz’p(IR) then de-

notes the real component in H2’p(€) . We also write 18 (€)= ¢ L6 (%1,0)
for the Banach space of all complex Holder continuous functions on I with
Holderian derivatives D%z of exponent 8 for |a| € [0,1] , with respect to the

usual pointwise operations and the usual norm . Hf u denotes any classical
solution to Problem (1.1) in the sense of Definition 2.1, and if we define

u(t)(x) = u(x,t) for every (x,t) € I x R7 , it is then clear that u(t) € Hz’p(C)
for every t e R (compare with condition (C,) of Definition 2.1). On the other

hand, since there exists the continuous embedding Hz’p(C) — ¢lP (€), it is
sufficient to prove that

) = gl p < ¢ g exlr, (41, ] (2.9)

for some positive constants ¢, €y and t_ ,in order to obtain estimates (2.1) -
0

(2.4). We can then reduce the proof of inequality (2.9) to proving the following
three statements:

Statement (A) : u(t) — u, strongly in Hz’p(C) as t — o : this is already a
statement which proves that U, is a global attractor, but which fails to provide
the corresponding rate of stabilization.

Statement (B) : In H2’p(lR) , there exists a Banach manifold of classical solu-
tions t — U(t) of small norm to Problem (1.1), such that the estimate

() —uglly < ¢ g exp [ry (2.10)

holds for some £y > 0 and every t e [R'(']' .

In contrast to Statement (A), Statement (B) provide the appropriate
exponential rate of decay, but the validity of estimate (2.10) is limited to certain
classical solutions of small norm. However, we shall see below that we can in fact
combine Statement (A) with Statement (B) to obtain
Statement (C): Given u(t) and the gy of Statement (B), there exists t_ >0

0

and a small norm solution as in Statement (B), such that the equality

u(t) = U(t ~ te) (2.11)



holds for every t e [t ¢ ,) .
0

It is then clear that the combination of (2.10) with (2.11) gives (2.9).

The proofs of the above statements are all very geometric; we begin with
the following

Sketch of the Proof of Statement (A) . Given u(t) , it is possible to define an
auxiliary function v{t) :f1— R such that E{’t) — v(x,t) possesses the

same regularity as (x,t) — u(x,t) , and which satisfies the linear parabolic
differential jnequality

vi(x,t) € Av(xt), (xt) e xRt

&y + (2.12)

' (x,t) =0 , (x,t) € QxR
This function may in fact be chosen as

v(t) = ¢(t) exp [a G o u(t)] (2.13)

where a € RT N (max g’(¢),0), G is as in Hypothesis (G,) and

(e [“0:“1]

¢(t) = exp [— a{G(;) + Lt) d&ﬂ(&)}] (2.14)

for some fixed ;/;e (uo,ul) . Upon exploiting the properties of u(t) along with

the parabolic maximum principle applied to Problem (2.12), we then infer the
existence of a constant ¢ > 0 such that the estimate

v(t =max |v(ix,t)| <¢ 2.15
V¥l 13 xenl( )| ¢ (2.15)

holds uniformly in ¢ € Ry . From relations (2.13) and (2.15) it then follows that

lexp [a G o]y gy —0  (219)

a8 t — o, since pp(s) <0 implies that ¢(t) — @ as t — o . This, com-
bined with Hypothesis (G,), shows that



l(t) — ugl 7y — 0 (2.17)

as t—— o . Finally, if Ap - denotes the LP(C)—realization of Laplace’s
. 2 p’_ 2,p/ey . 02 —
operator on the domain H“)* = { z e H"*(() : x)=0,xe 2}, we can
pe 2P = {2 B¥(0): £ (3) }
prove that
Ap’lu(t) —0 (2.18)

stron‘?ly in LP(C) as t — o . This is exactly here that the geometry comes in:
in order to obtain relation (2.18), we invoke the existence of exponential dicho

mies for the diffusion semigroup generated by Ap - Relations (2.17) and (2.18)
then imply that u(t) — u, strongly in Hz’p(t) , by standard elliptic theory.g

Sketch of the Proof of Statement (B). Here we invoke the geometric techniques

devised in & for the analysis of some hyperbolic problems to construct a
smooth local stable manifold of classical solutions to Problem (1.1) around uy

satisfying estimate (2.10). While it is not possible to iive the details of this con-
struction here, it is however important to point out that our method provides a

manifold of solutions in Hz’p(IR) similar to an open ball, and not merely a lower
dimensional manifold. This is because of the fact that the exponential dichoto-
mies which we need to carry out our construction are valid on the whole of

Hz’p(IR) when pp(s) <0, and not merely on a lower dimensional subspace.

This point is essential if one wants to combine Statements (A) and (B) in order
to obtain Statement (C). -

Sketch of the Proof of Statement (C). Let u(t) be as in Statement (A), and let
c and g, be as in Statement (B). Since we already know that u(t) — uy —0

strongly in H2’p(IR) a3 t— o , there exists t_ >0 such that
0

flu(t) —ugllq p S cey for every t2t. . The crucial point is that this implies
’ 0
that the function u(t_) lies on the stable manifold constructed under (B).
0

What this means is that if we consider the initial boundary value problem



(w(x,t) = Aw(x,t) + s(t)g(w(xt)), (x,t) € Qx(t, ,m) ]
Ran(w) C (ug.y) 0
| wix,t, ) = u(xt, ) ,x €01 r (2.19)
0 0
.%(x’t) =0 ,(x,t)eﬁﬂx(teo,m)‘

then there exists a classical solution t — u(t) of small norm as in statement
(B), such that w(x,t) = U(x,t —t ¢ ) provides a solution to Problem (2.19). But
0
from the third condition in (2.19) and the fact that g is smooth and s is boun-
ded, it follows from the parabolic maximum principle that w(x,t) = u(x,t) for
every t2t_ . Hence u(x;t) = u(x,t —t ¢ ) forevery x e, which implies re-
0 0
lation (2.11).
=

Remarks. (1) The basic geometric idea in the above argument is the following:
since we already know that u(t) — u, as t — o, we just have to wait long

enough until u(t) hits the stable manifold of statement (B) at time t =t g 3 We
0

then proceed to identify u(t) for t > t, with a small norm solution of the type
0

1 , for which estimate (2.10) holds. However, the technical details of the proof of
Statement (C) are not as elementary as it seems, since Problem (2.19) is non-

autonomous. We refer the reader to 11 for complete details.

(2) The reason for which we have formulated Problem (1.1) as a dynamical

system on H2’p(¢) is that Hz’p(t) becomes a commutative Banach algebra
with respect to the usual pointwise operations and the norm |||, D when
]

p>N 16 This underlying Banach algebra structure is an essential ingredient of
our theory, both in the hyperbolic and in the parabolic case '8 9 10,11

(3) Within the scope of our method, the regularity hypothesis
5 e ¥ (5) (R,R) is nearly optimal for the validity of the results of this paper. We
o not know whether our results still hold if g satisfies only weaker differentia-
bility properties.
(4) We leave it to the reader to prove Statement (2) of Theorem 2.1.

In the next section we review the situation where pp(s)=0 and

1
t —’J dfs(€) =0(1) as |t| — o . As is perhaps expected, the nature of
0



the stabilization phenomena then changes radically.

3.  Asymptotic Almost—Periodicity for Classical Solutions to Problem (1.1):
The Réle of the Diffusion Process.
Throughout this section the hypotheses (G;), (G5) and (S,) remain un-
altered, whereas Hypothesis (S, ) is replaced by the following:

A t
(5;) We have pp(s)=0 and in fact t——’J' dés(€) =0(1) as
0
It —w.

Finally, the notion of classical solution to Problem (1.1) is still the same as in
Section 2. It is then clear that ome cannot any longer expect the classical solu-
tions of (1.1) to stabilize around u, or u, . For instance, since it follows from a

t
classic criterion of Bohr that the boundedness of t ——;J d¢s(€) is equivalent
0

to its almost—periodicity 1% 13 14 15 430 non diffusive classical golutions to
Problem (1.1) given by relation (2.6) are now all almost—periodic, and remain

uniformly bounded away from u, and u, because of Hypotheses (G,) and (S,).
In fact, the latter property remains true for every classical solution to Problem

(11 9 It is then natural to wonder whether those classical solutions can stabilize
at all. The answer is fortunately positive, and it turns out that it is precisely the
almost—periodic functions (2.6) which now play the role of attractors. The precise
result is the following

Theorem 3.1. Consider Problem (1.1) where g satisfies Hypotheses (G,) and

(Gg); assume moreover that s satisfies Hypotheses (S,) and (S,), and let u be
any classical solution to (1.1) in the sense of Definition 2.1. Then there exists an
almost—periodic solution u given by relation (2.6) such that

lim sup |u(x,t)—u(t)| =0 (3.1)
t-—mo xEn
Moreover, the given classical solution satisfies the relations

lim sup |Vu(x,t)] =0 (3.2)

and



lim  sup |x—y|Plu(xt)-u(z,t)| =0 (3.3)

t--o x,y

x¥y
lim sup |x—y|_’6|Vu(x,t)-Vu(y,t)| =0 (3.4)
t-o x,y€

x¥y

for every B € (0,1—p-1N] . Finally, every Fourier exponent of E is a finite li-
near combination with integer coetficients of the Fourier exponents of s .

Remarks. (1) In contrast to the statements of Theorem 2.1, it is not possible to
claim that u is a global attractor; in fact, u depends on u in general. Thus,
every classical solution to (1.1) stabilizes around some u , but Theorem 3.1 says
absolutely nothing about the stabilit;r properties of such G’s . It might even be a

priori conceivable that for a given u of the form (2.6), there exists no classical
solution u to Problem (1.1) satisfying relations (3.1H3.4). Fortunately, we
shall see below that this is not the case.

(2) Theorem 3.1 provides no rate of decay for the stabilization of classical
solutions. It is therefore impossible to infer from it whether the stabilization phe-
nomenon described in Theorem 3.1 is governed by the diffusion process, or by the
reaction process in (1.1). We shall see below that the solution to this problem is
much more subtle than in Section 2.

(8) Consider for example the problem

(v, (x,t)=
=Au(x, t ) +(cos(w; t)+cos(wyt))u(x,t)((1-u(x,t))exp[-u(x, t) ]
, (x,t) € xRt |
Ran(u) C (0,1)

75 (xt) = 0 L (x,t) € IxRT

(3.5)

where {w,w,} CR/{0} is rationally independent. Problem (3.5) is still of the
form (1.1) with s(t) = cos(w;t) + cos(wyt) and g(u) = u(l—u)exp[-u] , and it

is easily verified that all of the hypotheses of Theorem 3.1 are verified. We con-
clude that every classical solution to Problem (3.5) stabilizes around a quasi-

periodic attractor of the form u which oscillates between the equilibria Uy = 0

and u =1. Moreover, every Fourier exponent A of u is of the form



A=k v +kyw,, where k1,2 € Z . In the context of population genetics, this
result means that both alleles will persist in the population for all times, and that
the fractions of the two alleles will eventually evolve quasiperiodically in time
with oscillation properties entirely controlled by those of the seasonal variations.

Sketch of the Proof of Theorem 1.1. As in Section 2 let u(t) be defined by
u(t)(x) = u(x,t) for every (x,t) € fIxRT . Then u(t) € H2’p(dl) , and it is suffi-
cient to prove that there exists a 1 of the form (2.6) such that
||u(1:)—u(t)||2,p —0 as t— o . But the proof of this is essentially the same
as that of Statement (A) in Section 2. Finally, the very last statement of Theo-
rem 3.1 follows from relation (2.6) and a classic criterion of Favard 15

m

We shall now see that it is only for certain particular classical small norm solu-
tions to Problem (1.1) that one can expect an exponential stabilization. More

specifically, given any almost—periodic u of the form (2.6), we can prove that
there always exists a smooth manifold of classical solutions to (1.1) which stabi-

lize around u exponentially rapidly by diffusion. The precise result is the follo-
wing
Theorem 3.2. Consider Problem (1.1) where g satisfies Hypotheses (Gl) and

(G,); assume moreover that s satisfies Hpotheses (5,), (Sy) and let u be any
non diffusive almost—periodic solution of the form (2.6). Finally, let A, be the
largest negative eigenvalue of Laplace’s operator realized on the domain
4 2 2
Dom(A ./V) ={z€ Hj,p((l) 14 m€H J’,p(dl)} of the Banach space H J',p((l) .

Then there exists in H.zd’,p(lR) a smooth codimension—one manifold of classical

solutions U to Problem (1.1) such that the following estimates hold for every
tE€ [R_g ,every € (0,1—p_lN] and for some ¢, ?:'0 ERT:

sup |(xt)-u(t)| <& Fpexpdyt] (3.6)
x€fl
sup |Vu(x,t)] <€ ?:'0 exp[A;t] (3.1
x€fN
sup | x-y| P|¥xt)-ir.0)] < T &) exp ;1] (38)

x,y€efl
xty



sup 1x-y| PIVix-TEG 0| <EEepDip] (39
X,y
X¥y

Remarks. (1) Estimates (3.6) — (3.9) clearly play the role of inequalities (2.1) —
(2.4) of Theorem 2.1, with the crucial difference that it is now the largest nega-
tive eigenvalue of Laplace’s operator which determines the rate of exponential
stabilization. However, this precise information is limited to those small norm
solutions which lie on the codimension—one manifold of Theorem 3.2.

(2) In contrast to Theorem 2.1, it is not possible to hope that estimates
(3.6)3.9) hold true for every classical solution to Problem (1.1). The reason for
this is that the spectrum of Laplace’s operator consists exclusively of discrete ne-

ative eigenvalues and A =0 (because of Neumann’s bound condition in
il.l)). It follows from this that besides the codimension—one stable manifolds of
heorem 3.2, there also exist gne—dimensional center manifolds associated with
Problem (1.1). The natural question is then to know how the coexistence of those
two types of local manifolds inguences the ultimate behaviour of the classical

solutions to (1.1). First, given u it is possible to show that for t sufficiently

large, u(t) approaches the center manifold about u exponentially rapidly;
moreover, 1t i8 the diffusion process in (1.1) that is primarily responsible for this
phenomenon of exponential attractivity of the center manifold. With additional
restrictions on the nonlinearity g, the classical solution u(t) then ultimately

stabilizes around some u according to the statement of Theorem 3.1, with a rate
determined by the longh time behaviour on the corresponding center manifold.
Moreover, the latter behaviour is primarily governed by the reaction process in

(1.1). These considerations eventually Frove the asymptotic stability of each u
given by (2.6), and provide a rate of decay which is in general slower than

exponential. We refer the reader to 1 for complete details.

Sketch of the Proof of Theorem 3.2. Upon invoking the geometric theory of 7,8 ,

we can construct in Hz’p(IR) a one—codimensional local stable manifold of classi-
cal solutions to Problem (1.1) around each u. Here again, the Banach algebra
structure of Hz'p(IR) is essential. C m

Remark. Regarding Theorem 3.2, our observation concerning the regularity hy-

pothesis g € 3’(5)([R,IR) is the same as in Section 2. In particular, it is not
known whether Theorem 3.2 still holds with only weaker differentiability
properties concerning g. Theorem 3.1, however, actually holds when

ge eUmR).

Finally, we devote the last section of this article to the discussion of an open .
problem.



4. On the Stabilization Properties of Solutions to Almost—Periodic
Reaction—Diffusion Equations with Spatial Structure.

We noted that under the hypotheses of Theorem 3.1, the u’s given by (2.6)
cannot be global attractors. It is therefore natural to ask whether some kind of
additional structure in Problem (1.1) might change this overall picture. Consider
the problem

ug(x,t) = Bulx,t) +s(x,gu(xL), (x,t) € MR

Ran(u) C (uy,uy) (4.1)
du _ +
Ty (xt) =0 , (x,t) € MNxR

where g is as before, and where the selection function now depends explicitly on
x €1 in such a way that t — s(x,t) be almost—periodic for each x €{1.If s

is sufficiently smooth on I x IR'(*]' , define  8(t) = ma]:% s(x,t)  and
x€

s(t) = miﬁ 8(x,t) . Then both § and s are Bohr almost—periodic, and it is na-
x€

tural to ask whether these two functions might play a role in the discussion of the
stabilization properties of the classical solutions to Problem (4.1). A glance at the
proofs.outlined in the preceding sections shows that they do. For instance, if

pg(8) < pg(s) <0, it is easy to show that u, is the global attractor for Prob-
lem (4.1); the proof of this fact is entirely similar to that of Statement (A) in
Section 2, with § replacing s (Note that we always have up(s) < pg(s) by de-

finition, so that the only non trivial condition in the above case is up(s) <0).

Similarly, if 0 < pg(s) < ppg(s), then u; becomes the global attractor (here
again, pB(g) > 0 is the only nontrivial condition, which plays the role of

pp(s) >0 when 8 is independent of x). Thirdly, if pg(8) =0 and if

{
t ——oJ d¢s(¢) =0(1) as |t| — m, then every classical solution to Problem
0

(4.1) stabilizes around a spatially homogeneous, time almost—periodic solution to
the equation

w’(t) = 3(t)g(u(t)), t ER (4.2)

a result which bears some analogy with Theorem 3.1. Of course, in light of the
methods outlined in the preceding sections, none of the above statements is really
gurprising, and they all reduce to the corresponding statements of Sections 2 and



3 when s does not depend on x.
However, it is also worth mentioning that there exists in relation with Problem

(4.1) the additional possibility of having up(s) < 0 < pp(8) . This, of course,

does not occur for Problem (1.1) where s(x,t) =s(t) for every x €I. In this
case, it is tempting to conjecture that there exists a unigue time almost—periodic
solution to Problem (4.1) which is neither identically equal to u, nor identically

equal to u, and which is a global attractor for all classical solutions to (4.1).

This was in fact proved in a.PT] when t — s(x,t) is periodic, but remains an
open problem in the general almost—periodic case. The source of this difficulty
lies primarily in the fact that there is no natural substitute for the notion of
Poincaré time—map in the almost—periodic case.
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