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Introduction

have :
In the last few years Jacobi forms)begun to play a role in several

contexts: the .p:bbf:: - of the Saitec-Kurokawa. conjecture, the theory of
modular forms of half-integral weight and, more recently, the theory of Heegner

points. The theory of Jacobi forms was systematically developed in [E—i].

The purpose of this paper is to state and prove a general trace
formula for Jacobi forms. The exact statement of this trace formula can be
found in § 1;” especially Theorem 1. In this statement there occurs a certain

quantity Gm(ELthe trace of a certain operator on a space of h"_mﬂ fundamental

theta functions. This quantity is computedJexpliéigly in‘§dﬁTTh§;reﬁslﬁ‘Eﬁéijﬁi*In.ﬂu
course of these latter calculations two minor results,. which may be of

independent interest, ipcidentally drop ocut: a - Gauss sum reciprocity law
(Proposition 4.2) and anice formula for Gauss sums associated to binary quadratic
forms (Theorem 3). Two proofs of the trace formula will be given, in §2 and in;§3.

The main ingredient of the first proof is the construction of a reproducing kermel

gunction;forJg§pobi forms (Lemma 2.1 and Proposition 2.2), while in .the second

..

ﬁrb&f'thé trace formula for Jacobi forms is reduced to the trace formula for
modular forms of half-integral weight as given in [Shi]. The first method is nicer
because it is elementary and completely self-contained, but for convergence reasons
we must assume that the weight k is greater than 3. The second proof works for

all weights and is shorter modulo results in the literature, but it is considerably

more abstract and is longer if one wants a complete proof "from scratch."

The speclalisation of the general trace formula to Jacobi forms on
the full modular group will be given in [S-Z] . o It turns out that
Jk,m(SL‘z(Z)) (=space of Jacobi forms on SLZ(Z) of weight. k and index m)
is isomorphic as a Hecke module to a certain very natural Subspacé of
Mzk_z(FO(m)) {=space of modular forms on To(m) of weight 2k-2), the exlstence

of which was apparently not noticed before. These liftings play a role

in the relationship of Jacobi forms to Heegner points (cf. [C-K-i]y



The original idea to study Jacobi forms and, especially, to develop
a trace formula is due to M.Eichler. He proposed a.different procedure to

deduce such a trace formula: namely, to consider the kernel function

e (zrATH) B

2Tl'im( e +A2.Tf2kz]
K(t,z;7,2) = '_ 2 ) 2 ~—— kcaT+b _,y (Z+AT+U \
S (Bernin er et (g 1) (g - 2

This function transforms like a Jacobi form (on the full modular group)

of weight k and index m in the variables T,z and, modulo a function with

no poles in T' and z', transforms with weight 2-k and index -m in T',2';
moreover the sum of the residues of K(T,z;T',z2')¢(t',z')dT'dz", taken over a

fundamental domain, equals ¢(7,z) for any Jacobl form ¢ of weight k, index m. One

then applies a Hecke operator (w.r.t. T,z) to K, .sets _(t',z') =¢{1,2z), and sums
the residues .over: a.fundamental domain. This approach, which is more '
geometrical tham ours, works for the

elliptic contributions of the trace formula . but seems to be not so suitable

for obtaining . the parabolic contributions (one would have to study the
behaviour of the line bundles. whose sections "”-Jﬂﬂ' ars ' Jacobi forms

when compactifying the cusps).

Originally the déduction of a trace formula for Jacobi forms and the
study of its consequences were planned ..as chapter IV of the monograph [?-i]
{cf. [E-z:[ ; pP.5, second paragraph). Howeve:;, ﬂthis project turned out to be mt,t-ch"-
more time-consuminé than expected and had to be dropped, to be taken up again

by the present authors.

Finally, we mention the paper'[ﬁ] of Eichler, which gives an interesting
trace formula for Jacobi forms. However, hfs traceformula is.of a complétely
different "type . and seems to be unsuitable for comparison with the usual trace
formyia for modular forms' and thus- for proving the existence of the above

mentioned lifting -from Jk,m(SLZ(Z)) to MZk-Z(FO(m))'

It is a great pleasure to us to dedicate this paper to- its initiator

Martin Eichler.
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§ 0. Preliminaries on Jacobi forms

As maln reference for the basic facts and definitions from the
theory of Jacobi forms we refer to EE-Z:] . To fix the notation we briefly

summarize those items that we shall need in the following.

By J(R) we denote the Jacobi group SL2(R)D<R2'Sl , i.e. the set
of all triples (A,x,s) with AeSLz(:_R) ’ xeR? and sest {the multi-
plicative group of complex numbers of modulus 1), supplied with the
composition law

(A,x,8)*(A',x",s8"') = (AA',xA‘+x',SS'e'(lT.||) ) -

Here xA'={(Aa'+ud,Ab'+ud') with x=(A,1), A'=[2:2:] , and I};A,. | denotes
the determinant of the matrix built from the row vectors xA' and x'. Further-

2mi(. ..
more, e(...) always means e ( ) (and we shall use variations of this

2mim(...)
e

like e%(...)= etc.).

We identify SLz(R) and S' .with the subgroups {(a,0,1) |A(—_‘SL2(R) }
and {(1,0,s) |sesl} respectively, and for x€R® we use [x] for the
element (1,x,1) of J{(R) . Then each element & of J(R) can be written

uniquely as E=A[x:|s with suitable As SLZ(R) , x€ R® and ses!.

For subsets G,L,K of SLZ(R) ’ IR?', st respectively we set
@L*K := {A[x]s |AeG, x6L, sest} .
Obviously this defines a subgroup of J(R) if and only if G,L,K are subgroups
of SLZ(R) ,R?' ,S:L respectively, L is invariant under G with respect to the
usual action of G on R® and K contains all numbers e(|:: |} with x,x'e L.
Special subgroups of this kind are the groups
Jm@ := SLZ(Q)KQ2°S]‘ ,

d ;= Ixz? (= 'xz?+{1} ), [ any subgroup of SLE(Z) .

We adopt the usual notations for special subgroups of SL,(Z) :

2
- 2.
T(n)={ace€ SL, (22) |A=1 mod n}, I‘O(n)={A€SL2(ZZ) |A=[c*] with n|cl.



H genotes the upper half plane {T= €| Im(T)>0}. The Jacobi group J(R)

acts on HXC by

z+AT+u)

. ab j )
cT+d (A_[Cd} 1x=’(A 'u) ’ TeH 28 C )

(Alx}s)* (T,z) = (AT,

) T+b
where AT 1s given by the usual action of SLZ(R) onH , i.e. AT_hZT+d

.

Let k be a real number and m an integer. Let A= [2216 SL2(R) Sx= (A, U) :-;‘Rz,
s€s!. Then we have, generalizing the operator
(h], ) (1) = (cT+d) “n(a)
on functions h(T) on H, the operator

(6], (Al]s)) (1,2)
(1)

-k m, -c(z+AT+u)?

= (cT+d) e { ot+d

FA2T+2 0 z+AN) s $ (AT ,ﬂ%{)

CcT

on functions ¢(T,z) on HXC.

Here and in the following W (w,re €, w*0) 1is always defined by

r _ e(J'.P.J:g(w)+1og|wl)r

W (~T<Arg (w)S+T) .

If k is an integer, then (1) defines an action of J(R) on the 'space
of functions on HXC. In one or two instances we have to consider the case of half

integral k, i.e. k€& %4»23 . In this case one has

(¢|k'm(AL‘x]3))|k'm(B[Y]t) = O(A,B) ¢|k'm((A[x]s)(B[y]t)),

where O(A,B)= l; more precisely

1k ' vy 2
()  oa,m =BTl _lerd) (A"[* c;-] B“[*'*} ' AB:[*'-* J -
(c""r:+d")1f2 c c'd c'"d

Let ' be a subgroup of finite index in SLZ(Z) and. k,m be positive

integers. Then Jk l:n(l") denotes the space of Jacobi forms of weight k and
r

index mon I', i.e. the space of all holomorphic functions ¢(T,z) on HXC
such that
: J
(1) qblk'ms = ¢. for all £e&Tl",

(1i) for each AESLZ(ZZ) the function ¢|k mA has a Fourier development
L

t
Ol o = . Eezz cn,r) g% %

411% -x230

of the form for some integer t.



n/t
Here and in the following g / and Cr denote the functions e(%T)

on H and e(rz) on € respectively.

If ¢ has for each AéESLz(%) a Fourier development (il)} satisfying
the stronger condition 4m%-r2>0 then¢ is called a cusp form. The subspace of
(ry.

cusp forms in J m(I') will be denoted by S

k, k,m
For integers p,m with m>0 set
2
r*/4m _r
(3 0 = E q / z .

@,P re z

r=p mod 2m

and denote by Thm the span of the Bm 0 (p&Z) . Obviously Thm is a

’

2m-dimens’ional vector space.

As a consequence of the transformation law with respect to z° Q;FJ)

every Jacobi form ¢ in Ty
2m’
(4) ¢(t,z) = ] h

p=1 P
with suitable functions hp(T) on H. It is a fact that the hp(T) are elements

m(T) can be uniquely written as

(1) emv’p (7,2)

of Mk_l/z(F(4m)nF), where Mk-l/Z(F) for any Fg;FO(4} denotes the space of

modular forms of weight k-1/2 on I', i.e. the space of holomorphic functions

h(T) on Hsatisfying h(AT3(A,T)  “*=h(T) for all A€l and h|k_1/2A

for any A€ SL2(Z) having a Fourier development of the form z qN/t (t a
N20
suitable integer). Here and in the following j(A,T) denotes the usual theta

multiplier which can be défiﬂgdf'-by
3(a,T) = B(AT)/0(T) (A€l (4), © = } a ).

rea

*
One has j(A,T)aE(cT-t—d)m (A=[ ) with a well-known fourth root of unity

*
C
€= (A) (even €(a)E€{£1} for A€l (4)), but we shall not need such explicit

formulas.

Conversely, let hD(T) (p=1,...,2m) be given elements of Mk_l/z(F(4m)nF)
such that the function ¢ defined by (4) transforms with respect. . to T like an

element of Jk m(I"). Then it is easy to check that ¢ is indeed in Jk m(F).
I !



Via (4) we occasionally identify J m(I') with the subspace of elements
r

in Mk_l/z(l"(tlm)ﬂl") ®Thm which are fixed by [ with respect to the obvious

action "|k-1/2 @Ii"’/zlm" of I

Q

r

S (- '
J_ () > 4 o (T4mAT) @ Thy)
(5)

o - > Zl hpGD!‘-Jm

0 0

It is easily seen that by (5) the subspace S m(1") corresponds to

k,

(I'Y for any I‘gf‘o(zl) denotes the

( (T (4m)NT) ®Thm) , where

Sk-1/2 Sk-1/2
subspace of cusp forms in Mk_l/z(l") . Alsc note that we may replace in (5) the
group [ (4m)NT occuring on the right side by any subgroup I of finite

index in [ (4m)nT.



§ 1= The statement of the trace formula

. . 2 .1
Let k,m denote positive integers and let A < J(Q) = SLZ(Q)N Q°-s
be a finite union of double cosets with respect to a subgroup FJ of

finite index in SL2 (Z)J.

We define an operator . I,(A) on Jk m(F) by
’ bl b4

(1) Wi, p @ = Ly Olim &

Here the sum is over a complete set of representatives § for the

FJ-left cosets of A .

Proposition 1.1 - The operator H'k o l..(!.\) is well-defined (i.e. the sum
] *

in (1) is finite and does not depend on the choice of representatives &)

and maps Jk,m(r) to Jk,m(r) and Sk,m(r) to Sk,m(r)'

Proof - We first show that I‘J\ TJEI'J is finite for any £€ J(Q. _

Let &= A[x]s, let Y:I‘JEFJ —> TAl' be the canonical map
n = B{yjt — B and let - Y*:I;J\T'JEI‘J -——3> ['\TA' be the induced
map. For BE TAT the fibre Y-1(B) is invariant by left and right
multiplication with ZZ(E I‘J), and it is easily seen that a set of
representatives for ZZ\Y-‘(B) defines also a set of representatives for
the T'J-left cosets in Y: (I'B). Hence, in view of  ‘the v.lrell—known fact
that  T\I'Al 1is finite, it suffices to show that EZ\Y—T(B) is finite

for any BE TAT.

A simple calculation shows that Y-1(B) is the union of all double

cosets ZZB[xG]sZ2 with G€A.“11"Bﬂ [. The number of such double cosets is



actually finite: if & > 0 1is an integer such that 2x€Z, and if
G,G' € A-1FBnI‘ with G=G' mod 22, then [X'G]Z2 = [xG']zz. But

A—II‘B N T mod 2,25 SL2 (Z/2°Z ) is finite.

Thus it is left to show that ZZ\Zzn Zz is finite for any
ne "I . " _But this is immediate, since a set of representations
for zz\zznzz is given by nn' with n' running through a set of

2 -1,2

representatives for (n-1z nn 22 )\22, and n Zn=2N ZZ for a

suitably choosen positive integer N (depending on n).

Since A 1is a finite union of double cosets of the kind considered

above, we deduce that FJ\A is finite.

That ¢|H'k (4) in (1) is independent of the choice of
)m’r
repregentatives £ 1s clear from the transformation law of ¢€ Jk m(I’),
and also it 1s obvious that tj>|l-lk o F(A) transforms like a Jacobi form
b g ’
J

in Jk,m(r) with respect to TV,

In order to check that (¢|Hk,m,I'(A))|k,mA (A € SLZ(Z)) has the
correct Fourier development one writes for each £ in (1)

EA = A'B[ylt with a suitable A' € SLZCZ) and an upper triangular

matrix BE€ SLZ(Q). Let B = [8 :-1] , ¥ = (A,u). By assumption
cp‘k mA' = Z c(n,r)qncr with c(n,r) = 0 unless 4mn - rz 2 0. Hence
?
2 2
¢|k mf;A = Z c(n,r)e(abn+apur + mip) qa n+air + mA Car+2m)\ , and since
’

4m(a2n+ air + m)\?') - (ar + Zm)‘)2 = a'z(ltmn - r2), we see that in the
Fourier development of (¢|Hk,m,1"(A))lk,mA only powers

1 '
qn " .(n',r" rational numbers) occur. where 4mn' - r’2 2 0. Finally,
using the fact that (d)[H.k (o)) A is invariant with respect to Zz, S0
,m k,m

that only integer powers of [ occur in the Fourier development of



(¢lHk,m(A))|k,mA’ one ends with the required Fourier development.
Also, these arguments show that H_ .(8) maps cusp forms to cusp

forms ,

Remark — Let T' be a subgroup of finite index in [I. Then A 1is
also a finite union of double cosets with respect to F'J and we can
consider the operator Hk o F.(A). It is obvious that the image of

L] bl

J(T'') by H o I..(A) is contained in J, (I') and that the
L Bt ]

k,m k,m
o ar =1 o
restriction of !}‘\f| Hk,m,P'(A) to Jk,m(r) coincides

with Hk o F(A)' Thus we obtain

-1
@) e n@), 3 (M) = TNC] (B n @), (T,

and the same applies to cusp forms.

The simple formula (2) will become important in the deriv&tion;~

of the trace formula for Hk o I.(.‘3.)--'given in §3.
3 b

The aim of this paragraph is to state a formula for the traces of
the operators . H_ 1..(A). In order to do this we have to introduce
’ 3

another operator.

Recall that 'I'hm denotes the span of the theta series

. 2
em o = qr /4m Cr (p=1,...,2m)., For each § € J(I)

r=p(2m)
we define an operator Um(E) on Thm by

3 8lu_®) = f\z?|™! Lgeli/2,m E1]
x€L >

Here L 1is any subgroup of finite index in Zz such that ELE“}E‘ z%. From
the transformation law of f with respect to ZZ it is clear that e]um(g)
depends neither on the choice of L.nor on-the choice of representatives x

for L\Zz. In § 4 we shall show that Um(g)



actually maps Thm to Thm (cf. Prop. 4.1.).

Note that Um(A) for A€ SLZ(Z) coincides with the usual
projective .action of SLZ(Z) on Thm. Using this it is easy to check
=1 -1 . '
that Um(AEA ) = iUm(A)Um(é;)Um(A) for any £ and any A 1in SLZCZ).
Thus the essential part of the trace of Um(E) should only depend on

the' SLZCE)-conjugacy class of E.

To be more precise set
(4) G (€) := e(A) tr v (&) (&= Alx]s€ J(D))
where

-1 if ¢<0 and tr(A)< 2 _ [* #]
(5) e = { Ao )
+

1 otherwise

Lemma 1.2. - The expressions Gm(E) defined by (4) satisfy

G,(MEM ) = G_(§) and G_(BE) = G_(§) for all  E€J(),

M€ SLZ(Z) and all parabolic BE I'(4m).

Proof ~ Let £ = A[x]s. Then .
U_(OU_(E) = o(M,4) U_(ME) = o(M,A)o0MaM ' MU (MEM ) U_(M) with o(-,-)
m = b the Appendix m o -1

as in (0.2). Hence by (3)of)we find e(A)u (DU (&) U (M)

which immediately implies the first assertion of the lemma. The second one

is a simple consequence of the first and the fact that every parabolic

1 4mt |

B € I'(4m) 1is Sszz) - conjugate to a matrix of the form [0 ;| (tez)

and that such a matrix obviously acts trivially on Thm.

We can now state the trace formula.

= e HU_(uEM ),
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Theorem ! - Let k>2, m>0 be integers, I < SLZ(Z) a_subgroup

of finite index, and A a finite union of double FJ - cosets 1in

J(@) . Then

(6) ey o p(8), 8 (M) = AEPEA)/N Le,m,r &) 8, 0,8
m,[

b 4

where P:J(Q) —> SLZ((D) , P(A{x]s) = A , denotes the canonical

projection, ~T is the equivalence relation defined by
»

(A and B are TI-conjugate
or

{
A~ B if and only if A and B are parabolic and GA

m,l
[-conjugate to B for some

| GET,NTGm) ,

and gm(A,A), I I'(A) are iinvariants of the ~ o -equivalence class

k!m’ ’

of A defined as follows:

- (AA) = | Z2\Z2 £22] G (§) ,
“n E€Z‘\P21(A)HA122 o

with Gm(E) as in (4) and the sum being over a set of representatives of

the double cosets iﬁ P-1(A)f1A with respect . to ZZQE FJ).

- If A= [ao] then
—_— 0 a

e 1/27k | 2k=3
Lm0 = [sL,@:T]a %8

=[**

- I1f A is elliptic, A |.° *], let p,p' denote the eigenvalues

of A such that Im(p) and c¢ have the same sign. Then

3/2-k

t

-1 .
a)y = T | sign(e)
Ik,m,I' A 0—p

is
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{
~ I1f A 1ig hyperbolic with tr (A)z- 4 a square in 0 , let

0,p' denote the eigenvalues of A such that |Ipl > Ip'l. Then

_y 32k

Ik,m,I'(A) = - A0, ,
p=0

- If A is hyperbolic with ¢tr (A)Z-h not a square in @Q , then

Ik,m,F(A) = 0.

- 1f A 1is parabolic, then there exists a D€ SLZGl) and numbers

§>0, r such that D-TFAC4mYDH - is generated by [é V?] and

-1 1 1 r
D™ AD = 5 ti(A)- [0 1} . Then

e 1 if Lexz
T LU S g S 1/2-k s

1 (A) - =" =[Pl (4m) ] 7" (ET(A)/2) I

k,m,T ' _‘5 B L1-i cot : if %iz

A
r,(4m) the subgroup T, NT(4m) .

HBere T, denotes the subgroup of all GE€ T -such that cac™1 = Aaéiand

Remarks.-~ (i) The formulae:for I I.(A) are completely explicit. In

k’m’
§4, we will calculate Gm(E) , thus obtaining a "ready to compute"

formula- “for the trace of B I,(A).
3 ’

(1ii) To check that the statement of the theorem makes sense we need
the following observati:ons:
= the sum in (6) is finite, since the matrices in P(A) have bounded
de nominators and since there is no contribution fromthe conjugacy classes

of the non-split hyperbolic elements in P(4) .

~ The expressions definining Ik o 1..(A) make sense (because PA is finite
2
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for elliptic or split hyperbolic A) and depend only on the ~ -conjugacy

m,l
class of A (recall that the sign of the left lower entry of an elliptic A

1s invariant with respect to SLsy (Z)-conjugacy).

- The sum defining gm(A,A) is finite (in the proof of Prop. 1.1 we
showed that the set Z.Z\P—1(A)HA is finite); also gm(A,A) does not
depend on the choice of representatives & for ZZ\P-1(A) ﬂA/22 (it
is obvious from the definition of ‘Gm(E,) that Gm([x]E) = Gm(E[x]) = G (§)

for all x€ zz) .

- One can easily deduce from Lemma 1.2 that gm(A,A) depends only on the

Nm,l“ - conjugacy class of A .

(iii) - There are alsoc formulas for tr(H l.(A), Sk m(I‘)) in the

k,m,

case k = 1,2, For details of this the reader is referred to the end

of § 3.
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§ 2. First method: Kernel function for Jacobi forms

Throughout this paragraph [ denotes a subgroup of finite index
in sy}z), and k,m denote positive integers. We shall mostly assume
that kz 4 . This assumption is needed to ensure the convergence of
several expressions occuring below. A proof of Theorem 1 which is

valid alsc for smaller values of k will be given in § 3.

As indicated 1in the title the derivation of the formula for the

trace of (A) on S (I') will depend on an explicit description
»m, T P

k,m

of the reproducing Kernel function of § (') with respect to the

k,m
Petersson scalar product (which was introduced in [E-Z]). The procedure
will be very similar to the derivation of the trace formula for Hecke

operators on the space of cusp forms on SL,{(Z) as given in [Z].
_ 2

To fix the notation let us recall the definition of the Petersson

scalar product for Jacobi forms.

For TEH , 2z€ELT let

2
- vk/2e 2mmy” /v

.

uk’m(f,z)
Here and henceforth we use

T=u+iv , z=x+ 1y (u,v,x,yER) .

It is easily checked that

at+b Z+AT+HY
et+d ’  cT+d

Hk,m(i'(T,Z)) " P (

2
~k ~c(zZ+AT+ 2
= |leT+ dl | o (_ESE?:E_El_ + AT + 2Az)| “k,m(T’z)

b

for all & = [2 d

J Al €7 @®R) .
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Thus, given any two functions ¢,y on HX{T invariant with

respect to the action of I‘J given by -we deduce that

" "
1k,m ?

¢1TJ]J12< o is a I"J-invariant function on HXE .

- e .t

The' J(R) -invariant volume element in Hx T is given by
-3
dV = v 7 du dv dx dy .

Note that the volume of I‘J\Hx T (with respect to dV) equals
-1 ) -
(TN {£1}| times the volume of [I'\H (with respect to v 2 du dv);

in particular, it is finite.

The Petersson scalar product of two cusp forms ¢,y€ Sk ln(I') is
*
now defined by

2
<p,yP> = I oy dv .
PR B

The.conver.:;g‘é;ze of this integral follows from the easily__prov-e.d_o:-f
" fact that for any cusp form G€ S, () the expression |cp(1',z)uk tIl('l’,z)|

is bounded on HXx T .
Finally, we define a function h.k on (H x C)2 by
. — .-k m -(z-?o)z
QD) he m(‘r,z;'ro,zo) 13 (T-1Ty) e (—_—-)
? T=To

It is invariant under J(R) acting by .lk o 0 (1,2) and in the complex

conjugate way on (Tg,2z,), i.e.,

- - 2
by (80 (1,2) 38 (14,20)) * (cT+d) kem(-LgiT—mH\ZﬁZAzdu)sm .

~k m,~c{z AT, +U)* | 2 m
. __ﬂ_ﬂ_ = .
(cTy+d) e ( ety + X Tp+2hzy+Al) 8 hk, (1,2374,2)
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for £ = (¢ P\, u]s€J(R). This can be verified by a messy direct computation

which becomes somewhat simpler if ¢ =0, the only case we shall need.

The basic lemma is:

Lemma 2.1. Let k>3 . Then one has for any (Tg,2,) €HxC

(1) The integral

Him |ty o (To25T0 52000, o (T,2)| @V

is finite.

(1i) Let ¢(1,2z) be any holomorphic function on HX & such that

|¢(T,z)uk m(r,z)l is bounded in HXC . Then
b ]

2-k_ .k

. - 2., 2 mi
(2 H{m ¢\T,Z)bk’m('f,29'fo »Zq )Uk’m(T,Z) dv m ¢(To ,20)

(Note that the integral in (2) is absolutely convergent by (i) and

the boundedness condition for ¢ .)

Proof. First of all we observe that it suffices to prove the lemma for

(Ty,2e) =(1,0), as we see by choosing & €J(R) (with upper triangular SLZ(]R) -
component if so desired) sending (i,0) to (7,,2z,) , replacing ¢ in (ii) by
¢lk,ms , and using the transformation laws of u‘k,m and hk,m' Write simply

h(t,z) for b'k. m(r,z;i,o) . Now to prove (i) we observe
]

- 1] .2 1 .11‘ 1. '2
vk/Z 2mm(Im {T*’i} x + 2Re {?H}XY‘ [Im{mj""—;] y ).,

(3) |u(t,2)u, (1,2= e
Yo fT+il
Integrated -  over [ with respect to dx dy this yields
k/
_v___E C T where D denotes the absolute value of the
T+l

discriminant of the negative definite quadratic form in the exponential

. . ' . . (lrn'l:n)2 S0
of the right hand side of (3). Asimple calculation:shows D = ———

vit+i]
k=1
v1/2

| - du dv
e senten - 5 [ () a




-17-

Identifying the upper half-plane with the unit disk and introducting polar

coordinates, i.e., setting :E,—]' = rele (0sr<1, 0£8<2m, we find
v 1-r? du dv 4
“ T T Z T Genr ¥
and hence finally
: 227y ] 257
J'_|h('1‘,z)1‘l.k m('r,z)} dv = — [ (1-19 rdr < o
b

HxC

To prove (ii), denote the integral on the left-hand side of (2) by I; then

k-} |
1= forn b A
H (T =-1) v

where

d(1) = [ ¢(t,2) g(1,2) dx dy

C
with
1 2
g(t,2) = (T-1i) "1 e ( e L A

To evaluate the integral I we again set Lt rele and use (4), obtaining

T+1

1,2 Y 1-2 k— 4
I = f (I o(1) ()72 de) ) -(-1-—-52—)-7 dr
0 =T

Let us assume for a moment that ¢(T) 1is holomorphic. Then the inner integral

. 1
equals 21r(2i)k 26(i) by Cauchy's theorem, so

7 1
~k _ .k-7
= > -3 LS N TS
I T i r dr T o (i)
But
. 2 . m, 7> —4my?. -
(1) = (-21) fdJ(l,z) e (_—2-{) e dx dy
C
e 2 -2mr? +mz? i6
= (-2i) 2 f [ ¢Gi,z) e r dfdr (z =re ),
00

and since ¢(i,z) 1is holomorphic this gives finally

. ® _ -%
(i) = (-21) %2Tr¢»(i,0) fe 2mmr® rdr = (Ll)—- $(1,0) .
0



_18_

.

It rémaina_tofshow that ¢(t) 1is holomorphic, or--equivalently--that

(5) ] = | ¢(1,2) jé g(T,2z) dx dy

9T T T

vanishes. A simple calculation gives

[ 5] N

(2 B

Introducing this in (5), taking into account that ¢(1,2) is holomorphic

3 N
a? SCT;Z)

and applying Stoke's Theorem, one obtains

Z2=Z

5(t,2) (?_T

% (T)=; lim J

+ E:E> g(t,z) dz .
e |z|swr

T=T

But the right hand side of this is obviously equal to zero by the

ﬂzi ZmeZ/u)

boundedness condition for ¢ and since g(T1,2) = 0(e (as function

of z for fixed T and |z| —» ) for a suitable € > 0 . This completes the

proof of thg 1em@a.

T

Proposition 2.2 - Let k24. For (1,z), {(7,,2,)€ Hx T define
(6) K(T,2;T,,2,):= |(‘) : )
2Cy lpgr&g/ o™ /\km h~k Tyz)‘rorzo ’
’ EEF
(2k-3)mi"

where b, is the function defined by (1), A
b}

|(1) "

k,m

k,m T Tk » and
2 T

where denotes the action of FJ with respect to the first

pair of variables (T,z). Then one has:
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(i) For any (75,2z5) € HXT the series on the right hand side of (6)

- considered as a series of functions in (T7,z) - is normally convergent

on every compact subset of HxT .

(ii) K 1is the reproducing kernel function for Sy m(I’) with respect to
b4

the Petersson scalar product <s,*> , i,e.:

~ for any (1, ,z )E€HxT the function K(-;T,,2,) 1is a cusp form in Sk,m(r)

- for any (‘tU ,zo)EHx T and any cusp form ¢E Sk g one has
H

(7) <¢3K(' ’TO ,ZD)> = ¢(T0 ’ZO) .

Proof - The proposition is an immediate consequence of the foregoing

lemma.  Indeed,

~—to prove (i), let K be a compact subset of HX T . Then there

exists a compact subget K' € HXxT such that each point of K is an
intericr point of K' , and by standard function theory there exists a constant

¢, , such that for any holomorphic function f on Hx (€ and all (r,z)€K

1
one has If(T,z)IZSc1 IK_, If(‘r',z')l2 du' dv' dx' dy' (t'=u'+iv',z'=x"+y',
c
1 2
5 Jgr 1EG201T e (Thznavint,zh,
denotes the minimum value of (pk (T',z')v'"_3) on K.
’

u',v',x',y'€ R) , and hence If(‘r,z)lzs
where <,

Applying the last inequality to f£(T1,z) = h‘k |(1) EFRIEN ) 1/2 yields

Z (hkm (1) T523T,02, ) Sc—- I(h.k (1) y ,z';‘ro,zo)

gerd €2 gerJ K'

- L) N 1) L}
”k,m(T ,2")dv(t',z2")

(8)
Loy | |
= (t',z',t »2Z ) My (T',z')dV(T',z') .
€2 gerd . K’ ", 0
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But this last series is convergent: since K' is compact it can be
cut into a finite number - say n - of pieces, each of which is contained"
in a fundamental domain for FJ\\HX € ; hence the series in the right
hand side of (8) can- be estimated by
« t '. 1 t l' T : . o
n IHXE Ihk’m(t ,Z ,Tg,zo)i uk’m(T ,2')dV(t',z") , which is finite by

Lemma 2.1 (i). This proves part (i). It now follows

that, for fixed (To,zo) €Hx T the function K(-;T,,z,)} is
holomorphic on HX T , and from the definition it is clear that it trans-
forms like a Jacobi form in Jk m(I‘). That it is even a cusp form is

easily deduced from

LDIR
Ak m l@k,mlé,; Q(T,Z;To z) |-

(t,2)dv

|K(T,z;Tmzo)] pk,m(T,z)dV <

rJ\qu: r'\uxe gerd

'“k,m

H;[m 1hk,.m(T,Z;T9,ZO) | uk’m(‘[,z)dv < ™

Also, by the same procedure of "unfolding the integral" and by Lemma 2.1 (ii)

one deduces (7).

Since the reproducing kernel function K for Sk o can also be written
H

in the form K(T,z;T,,2z,) = Z ¢i(T’z) ¢iztg,zo) » where ¢, runs through
1

any orthonormal basis of S ('Y , it is clear that the trace of an

k,m
operator Hk T(A) on $§ (T) 1is given by the integral of

k,m
Q( |(1) (T Z3T,2) (‘t,z)2 over T"\Hx T with respect to dV, i.e.
I k,m k,m
nel’
Corollary 2.3 - Let k24 and the notation as in Theorem 1 and the

following proposition. Then one has:
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9 @ 0,8, () = A (e | T23To2im (20 %av.

e cho

- - = e w

— - "We must now evaluate ‘the integral in

(9). First of all we rewrite (9) in the form

tr (Hk,m,I‘(A) , Sk,m(rg)
(10)

(hk,m| (I)n%(T,Z;T,Z)uk’m(T,Z)Z ix—dz-[

v

= A S

é ) -1 ) 2
ny A €PQ) ZT+Z\C EE€Z2\P~'(A)NA nEZ

du dv

2 !
v

where,  as in the notation of Theorem 1, P denotes the canonical projection
from the Jacobi group onto SL,(R) , and where n= ITn {t1}|-1 (the factor

n comes in since I'J identifies (t,z) and (1,-2z) if -1 €T) .

Using the formula

e 12
e (H2h) - (1) ] et ran (ew, zem
i 4 r€Z

one easily verifies that

a1 - .2
o = (z+AT+u~24) _

) (hk IE) n)(‘r,z;r., 2 ) = (T-Ty) k CE ( — + A21+2Az)

nezz * " o0 : A HEZ T
; _ T-T,\1/2 =T
= (T-T4) k . (Zmin> N e( 4m0 r?+ (z+ J\T--Eo) r+m{k2‘r+ ZXz})
AEZ r€Z
- - - : ; '?o- -
= (2mi) M2 (T 2K X Xeze( = (e2mn)? + z(r+2mA)) e (‘EE 2 - zor)
’r .

_ _ _ 2m
= (i) V2 PR T e

| b(T,Z) Bm pz’fo ,23) B
p= ’ »
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Thus the inner integral in (10) may be written as

2m

ek / ) (em,o |1/2'mg(‘r,z)

ZTHENT £\ P (A)NA  p=1

1/ 1/2-k

ni)” 2 (at-T) (cT+d)

2 dxdy
. em,pET’Z)uk,m(T’z) ol
or - in terms of the operators Um(E) introduced in (1.(3)) - as

1/2-k 1/2~k

ZT+ZL  E€Z2\P~ 1 (A)NA/Z?

(12) (2mi)'1/2(Aré?) (cT+d) 112¥EZEZZI‘-

g (T 2 dxd
°QE1 em,plUm(a%x,z)em’p(r,z)uk’m(T,z) oy,

c,d denoting the lower entries of A .

By the formula

' 2 dxdy _ -1/2_k=1/2
ZTJ\E em’p(r,z) Bm,oi‘r,z) “k,m(T’z) —61 Sp’ (4m) v

(here.:'p,'d'}r-z/’zﬁz and Gp ; denotes ' the Kronecker 6 ; for the simple

proof cf. [E-Z]) we now find find that (12) is nothing else but

. =1/2 -
vk 1/2

1
23/21:|1 k-1/2

=172 2 |Z2\22522Itr(Um(E)).

(At~T) (ct+d) geza\ e~ (A)NA/Z

Ingerting the last formula in (10), we thus arrive at

(13) tr(Hk’m.r(A),Sk’m(F)) = AQUF§L AE;(A)EA(r)gm(A,A) dﬁfv

where gm(A,A) is the expressionexplained in the notation of  Theorem 1
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where

vk—1/2
k=1/2

fA(r) = ¢(A) =172

(At-T) (cT+d)

with €(A) as defined in (1.5), and

- (2k—3)ik—1/2
k 7/2-k
2 L

Using Proposition A.1 it is easily verified that

fA(Msr) = £ _

: (1) (A, Mg SLZ(]R))
M

AM

"Also, by Lemma 1.2, one knows that gm(A,A) only depends on the ~
2
11

equivalence class of ‘A , where "éb r is the relation explained in
Theorem 1 . Therefore - disreagarding questions of convergence -~ we may
write the integral in (13) in the notations of Theorem 1 (and with R

denoting a set of representatives for P(A) mod. ~ r.) as
1 ]

I g (8,8 E £y (r) oY

AER T\H
Bﬁh,PA
=1 g ST i () S
AER MH MErAT M AM
- dud
+ 1 g @ S ) o £
AGRP N\NH MEI‘A\[‘ "E‘E"T‘A(l#m)- ‘M 'BAM

where Rnp ~and Rpu denote the subsets of non-parabolic and parabolic

elements of R respectively.
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dudv
v2

Now an integral of the form f 2 £ 1 (D can be

T\H METN\T M AM
written as

) £, (M7) dzfv = [ £ d:fv ,
T'\H M_E.['A\F FA\H

and similarly for the integral belonging to parabolic A. Hence we find

er (H o p (@), S (D)

(1) = ) {kk“ { fA(T) dgf"} g, (8,4)
AERnp I"A\H
dudv
’ A&ZRP { R I‘i\H Ber‘gam) w.‘:.fBA W } )

-

Unfortunately, the integrals appearing in (14) diverge for split-—
hyperbolic and parabolic A . To compensate for this, one has to interpret the
corresponding integrals IFA}H in the sense %18 IPA&H\C(E)) , where
C(e) 1s the interior of the (one or two) horocycles of radius € tangent
"to the (ome or two) fixed points of A (if one fixed point of A equals
o , then "interior of the horocycle of radius € tangent to « " means
the region {TEIHlIm T > é} ). It can then be shown that the integrals in
(14) make sense, and also the above deduction of (14) from (13) can be
justified. For details of this, the reader is referred to [Z] or [0],
where integrals exactly as in (13) were treated (the suspicious reader will also
need some estimate for the number gm(A,A): this is easily provided by the

explicit formulae in § 4.)
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Finally, the reader will easily verify (or cf. [0]) that the
expressions in brackets in (14) equal the expressions Ik o I.(A) as

stated in Theorem 1.

Thus, in the case k2 4, Theorem 1 is proved.

Remark ~ The reader who is acquainted with the Eichler-Selberg trace
formula for modular forms of one var iable will have noticed that in the
last _;patt-' . of the foregoing proof of Theorem 1 there has‘been
a strong trend towards modular forms of half integral weight. The
starting point of this was (11), i.e. to write the kernel function K

in the form

k-3)i" " 4g 5

(15)  K(T,z3Tg,25) = =
25127k, AET

(@1151; A)(T,z;'ro vZg)

where

- 1/2-k B
0(T,23Ty,24) = (1 - T,) Lo, o (028, (T,zy)
p=1 ’ *

This is the pendant to the fact that each Jacobi form ¢ can be expanded
as o¢(1,z) = E§21 hp(T) Gm.p(T,z) . Indeed, starting with K as defined

in (15),it is not hard to verify directly that K 1is a reproducing kernel

function for Sk m(P). Also, (15) makes sense even for k = 3.
’

In principle, this is the point of view that we shall adopt in the
next paragraph; but we shall even go a step further and shall reduce the
proof of Theorem 1 directly to the Eichler-Selberg trace formula for

modular forms of half integral weight.
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Nevertheless, we think that the presentation of this paragraph has
its own rights, since it shows the possibility of a completely self-
contained proof of Theorem 1 without passing to modular forms of half
- integral weight. Indeed, to proceed more systematically, it would have
been possible to compute the inner integral in (10) without referring
to the 8 0 and the operators Um(E) . However, the result and the

procedure would essentially have been the same as in § 4 below.
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§ -3. Second method: Reduction to half-integral weight

In order to derive a formula for the trace of H (A) we
»m,T
can as well consider B oo z:(.f_\) where I 1is any subgroup of finite
b >
index in T (cf. (1.2)) . But if we choose L < T(4m) , say Z=TNT(4m),

then we have the canonical isomorphism I m(E)FaM PN Th =~ as

k-1/2

explained in § 0. It is reasonable to expect that via this isomorphism

(D)

Hk,m,E(A) can be written in terms of double coset operators on bik-1/2

and operators on Thm . This turns out to be true, and hence we may
apply the Eichler-Selberg trace formula for double coset operators on
modular forms of half integral weight to derive the desired trace formula

for B o I.(A) . This is the idea of thatprbof;pﬁa& we shall now sketch.
»a, T 1 e S e

P g
By SLZ(R) we denote the well-known double cover of SLz(RJ , i.e.

[2 :] € SLZ(B) , w(T) a holomorphic function }

~—"
ab
o - {([23] v

on. H satis fying w(‘r)2 = cT+d

equipped with the composition law
A,w(t) - A"Ww'(1)) = (Aa",w@A'Dw' (1)) .

Let I < T(4) be a subgroup of finite index and let
£* := {(a,ja,1)) A€ L}

(j(A,T) the theta automorphy factor as explained in § 0). Then I 1is a
T —
subgroup of SLz(RJ
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—
For A€ SLZ(R) denote by A the element (A,w(T))€SL2(I{) , where
1/2 < * % 1/2 . .
w(T) = (cT+d) for. A= cdl (cT+d) being that square roof of cT+d with
- g < Arg (c'r+d)1/25 —} (cf. § 0-.

Let A€ SLz(m). Then it is known that the canonical projection

T¥AL* —»> TAZ (aAlw(T)) > A') 1is one to one. Thus there is a map

(1) t,tZAL —> {#1}

such that for all A' € FAL the element A' - (1,tA(A')) is the inverse

image of A' by the canonical projection g*AT* —> 1AL

With these notations one then has for any A€ SLz.(Q) the operator

Tk_”z’z(A) on bi‘k_”z(z) give.n by

) RIT o) := A'EZE&ZtA(A')Mk_”zA' (heM, o (D).
. and
The operator T, o (A is well-defined)maps M. _, ,(D) to M, _, . (®)

and cusp forms to cusp forms (see-e.g.[Shi].).

Lemma 3.1 - Let the notations be as in Theorem 1. Let I be a subgroup of

finite index in I'N I'(4m). Then, via the identification

Jk’m(Z)NHk_’/z(Z) o Thm , one has
no(A)= T e izh\z%z? v ()
eom, T A€L¥E(a)/z KT1/2.I U gezanp®1 (a)nasze o JL
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1/2(D) » BETH .

Writing out the definition of Hk o Z(A) one finds
] 3

(ho ) B, - (8) = Eng\A(h@ 81y b

(3)

= z z E -1 (h@ G)[k mg y
AEENP(A)/Z  ATEINZAL  EZ2\P (A")NnA '

where we have used once more the fact that a complete set of representatives
for the ZJ - left cosets in a fibre Y;](EB) of the canonical map
Y*:EJ\A —> Z\P(A) is given by a complete set of representatives for

ZZ\P-1(B)f1A (cf. the proof of Proposition 1.1).

The inner sum on the right hand side of (3) may be written in

terms of the operators Um(E) as

|, A" @ zA 2222 18U (5) ) .
k=1/2 leezay p™1 (47 )nasze ® }

Let A' = G1AG for suitable G1,G2 € L. Then

2

%) ) ZAzxz? 1y &) = ) zAz’ez? U Ec,)
£€z2\ P~ ! (A ")NA/Z? n £€Za\F~ | (A)NA/Z2

. . 16,1 I
Now, using that 6|1/2’mG i:;:53775—6 for all G [c d] €TI'ém) 2 L,

one easily verifies that for a § on the right hand side of (4) one has

u_(6, £G,)) = t, (A’ )Um'(g)
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Thus the inner sum on the right hand side of (3) equals

e aDnl A Az’ @)

gez2\p~ ' (a)na)/zz

and in view of - the definition of T E(A) (in (2)) this is

k-1/2,

exactly what we had to prove.

' .Equation (2) of § 1 combined with Lemma 3.1 now immediétely“h

> implies:

Corollary 3.2 - Let the notations as in Theorem 1 and let I be any

subgroup of finite index in T'AT(4m). Then, for any integer k,

) g s =1\ T e er (T, (8,5, (5) g (8,4) ,
(k,m,F k,m AEE\P(A)/Z k 1/2,2 k-1/2 gm
where Tk—1/2,Z(A) is the operator defined by (2) and e(A) as in (1.5).

We shall now apply the Eichler-Selberg trace formula for the traces

of the operators Tk-1/2 z(A) occuring in (5) (cf.(Shil] . or for kz 3, [0]).

Using our notations it reads

tr (T (4),s (L)) - tr (T (a) M @)

k-1/2,L k-1/2

(6) '

5/2-k,L 5/2-k

o Yy (A") t,(aA")e(a")
A'GEAE/~h zIk,m,Z A

Here tA(A') is as in (1), e(A') as in (1.5), I (A'), "~ " as

k,m,Z m,X
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explained explained in Theorem 1, and one has to sum over a set of

representatives A' for the "~m Z" - equivalence classes of [IAL.
r

Note that we have not quoted the Eichler-Selberg trace formula in exactly
the form given in [Shil)
-{or:{0Y:. "Apart from some obvious simplifications coming from the

assumption I<T'(4m) (which also implies that our "~m,2" coincides
with the notation of "I-equivalence" in the sense of the Eichler-Selberg
trace formula) we have made use of our Proposition A.1. Using these
remarks the reader will find it easy to identify (6) with the formulae

given in the literature.
Substituting (6) in (5) and using

e(a) g (8,A) = e(a') ¢, (A")g (4,A")  (A'€IAD)

(cf. the proof of Lemma 3.1) we obtain

tr(Hk’m’r(A) ,Sk’m(l‘)) -

) - i |
| Aez\g(a)/ze(A) er (Tslz—k,z(A)'MS/z_k(Z)T gm(A,A)

P AN IS SN} I

A'€p (A)/~m 5

"_'Theorem 1 is now a consequence of (7) by noticing that
MS/Z-k(Z) =0 for kz3, that gm(A,A) only depends on the

~ F-equivalence class of A , and by the following

Lemma 3.3 - Let I be a subgroup of finite index in T , and

A€ SLZ(Q) . Then



@ I Z;‘ Lem, @) = Lo r®

Alvg, ot

The easy proof of this is left to the reader (for non-parabolic A
the equation (8) is almost obvious; for parabolic A ome needs the identity

E c(_z%-_c_) = nc(z) for z€C, n€N, where c(z) denotes cotmz if
t (mod n)

z€ 2, 0 if 2€Z.)

e . observe that the preceding arguments also give formulas for

k=1 and k=2, 1in particular (specializing (5) to k=t1)

-1
£ (8),8, ’m(r)) = |Z\T| ] e rer(T (A),S

(9) tr (H
Fm AEINP(4) /L

() gm(A,A)

1/2,L 1/2

and (inserting (7) for k=2 in (5) and applying Lemma 3.3)
tr (H (a),S, (I)) = (Same formula as in Theorem ! with k = 2)
2,m,T 2,m .

(10)

sanrl™t Y e T (T, MM

() )Sm(A ,A) ’
AEZ\P(A)/E

1/2,2 1/2

where L again denotes any subgroup of finite index in T'NT(4m)., If T is a
subgroup vof sr.z(z) , then one can choose [ to be a congruence subroup also, and
then one can apply the theorem of [S~S], which gives an explicit description of the
spaces M”z(x), to obtain from (9) and (10) "ready-to-compute" formulas for
tr(E‘k,m,I'<A)’ Sk,m(r)) with .k- 1or 2.

Finally, we mention an . . interprefation of the correction term in (10)

which is helpful in explicit calculatiomns ‘(cf£. {5-2]). Denote by JT m(l") the subspac:
of functiong/ ’ -

f¢(‘t,z) in” MUZU'GIZZm” eThm (here M1 /2 is the space of complex conjugates

of forms in M”é) satisfying _115'|"1‘r mE' = ¢ for all &€ I , tgheré__ti{e action

|’; o 18 defined like Ik o but with (cT+d) € replaced by lt:'t~1-d.|-1 (i.e.,
k]

|*
’ 1,m

is |y, ]1/2,m )., and define
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an operator H* (A) on J* (M by ¢ — Z ¢|* ‘:E . Then the arguments
1,m 1,m rI\A 1,m
of this paragraph can be repeated to show that the second term in (10) is the
trace of HT m(I‘) (we leave the details to the reader), so (10) can also be
put in the form

(11) tr (H (a) , 8

2.m,7 2,2 = ) Iy or@ g (8,4)

A EP(A) /~m r

+ tr (H’;’m(fﬁ) ,J’;,m(r))' .



_34-

§4 .

Evaluation of -Gm‘(E): .

Throughout this paragraph we shall use the following notation:
if f(x) 1is a periodic function on zt , Chen Avxf(x) denotes the

average value of f , i.e.

Av_f(x) = lim ( N L¢ IAS) 1)
X Noco /Al xezr
x| SN lx 1SN

10" SR S TS
xEL\Z

where in the second formula L Szr is any lattice such that f(x+y) = f(x)

for all x€z’ , YEL .

The main result of this paragraph is summarized in the following

Theorem 2 - Let £ = A[xO]s € J(@, let t = tr(A) and

Q, the binary quadratic form QA(A,u) = b)\z + (d=-a)Ay - cuz A= [2 2] ).

Let E(QA) = =1 1if QA is negative definite and E(QA) = +1 otherwise.

Then one has the following formula for the trace Gm(E) (cf. § 1.(4)):

( ‘sm°sign(t-—2)(t-2)1/2_AUxe(%— Q, (x+ xo)mlf‘?l)

if t*+ 2,
Gm(E) a o
1

§"-m e(Q,) sign(t+2)(c+ 2)I/ZAvxe(;n-(,:TZ)QA(x+mb)*|:°|>.,

4 if t+-2,

the. two . expressions on the right hand side beingequal for t#£2 .
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/2 /2

(Recall that (t- 2)1 and (t+ 2)1 denote those square roots

which are positive or have positive imaginary part.)

To make Theorem 2 completely explicit, we need to compute
Auxe(p(x)) where p(x) 1is a polynomial of degree S 2 with rational
coefficients. It is easy to reduce to the case that p(x) 1is a
homogeneous quadratic form. Such a form can be written p(x) = %Q(x)
where M 1is a natural number and Q 1is a binary quadratic form with
integer coefficients which is primitive modulo M
(i.e., Q(A,n) = aA; + bip + cuz with (a,b,c,M) = 1). The formula for
Agxe(p(x)) in this case is an easy comsequence of the classical

calculations of Gauss gsums in one variable. The result, which will be

proved below, is

Theorem 3. % - - Let Q be an integral binary quadratic form

with discriminant A and M be a positive integer such that Q is

primitive modulo M . Then

A, sa/a
Q(x) 1 1 1 1/2
UERS () Groem) 4
1

where A 1is any integer represented by Q and prime to M and the sum

extends over all integers A, such that !A1| = (M,A) and A

1 , A/4

1 1

are both congruent to 0 or 1 mod 4. (Note that the sum has at most two

terms*.)

The first step towards ifheoremﬂi R is to derive explicit

formulas for the operators Um(E) (and to prove that U (£) actually



-36-

maps Th =~ to Thm).

b 2.
Proposition 4.1 - Let A= [:'d]EISLZ(Q) » X = (Ao,u;) € @ . Then one

has for any 1 £p S 2m :

%m
em,p| Um(A[xﬁ]) =7 Kp,c em,c ,
A g=1
where
_ =1/2.-2 U2 \
(2) Kp,o_ (2mei) i ) ) e(amc [ap'“-2p' (O .ZmAg))

0'mod 2m p'mod 2mck
g'=¢(2m) p'=p(Zm)

. d(o'-2mk0)2]+(c'—m}\u)uo>

ii c*0 and

bd(c'-ZmA.o)2

- - .
M2 4m + (o'~ m*u)F0.>

() ¥ o =4d 2 e(
P,0 o'mod 2mf
0'ag(2m)
2d (6" -2mh.y) 220(2mL)

if ¢ = 0. Here £ is any positive integer such that %A and fx, have

integral entries.

" Note that (2) and (3) immediately give formulae for the
trace of Um(A[xn]). Namely in (Zj one has to sum over all ¢'mod 2mf
in the first sum and over all p' mod 2mcl with p'=3¢'(2m) in the
second sum. Writing A for o' and summing over A+ 2mp,u mod ci

in the second sum one finds
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1/2 . -
(4) tr Ulalx,D) = (2—“'5) e(t—n-g-kg—mkouo)) Ay e,(ﬂ A2eal ez
- m ’ 1 c / A,u Cc Cc

if c¢#*#0 . A similar formula can be derived in the case ¢=0 ; however, we

1b]

0 1]3'

shall need such formulae only in the case A=-1 or tr(A)=2 (i.e. A =[

Here (3) simplifies and one easily sees

. - 2 )
- 2m Auke(b-(-}‘aiﬂ + (A-mxo)m) if Ao€Z
£ Um([o 1] EXUI) B { 0 otherwise ' .

=21 1if mx, €EZ
0 otherwise

ez U (DD =

Proof of Proposition 4.1 = By definition of Um{A[xQ]) we have

-2
Bm,plUm(A[xol) = ] 8

(alx,10A,ul) .
A,umod L

m,plllé,m

We consider the case c#0Q .

Observing that Bh plA is invariant with respect to s? , hence
b4

invariant by z + £ + z , we obtain

(6) 8 ja= [ % %e(——iﬁ)(e M)(r x) dx
o " 5z AETACK:

Now

e(—e‘_;) -(em’plég(r,x) = (er+d) /2 “g(zm)e(Pr(x)) ,

* where



- - 4 _Xr mex SX
Pr(x) At 4m cT+d cT+d L

. a 1 .
Using A‘r=-€ ol we find

2
P(x) =1 5242) * 4;c Garz - 2r(s/2) + d(s/0°> )

me (x'_ r, (s/8)(et+d) 2

cT+d 2mc 2mc

Inserting this in (6) gives

2
(1) o |A= Zq(s/’” [4m /4

m,P s€EZ o'mod 2mcl
p'2p(2m)

e(L [ap'2 - 2p'(s/) + d(s/l)zl)- C(s)

4me
with

mec _r (s/2) (eT+d) 2
(‘ (K 7 + ) ) dx

cT+d mc 2mc

L
C(s)= (ct+ a) /27! | e
0 rep' (2mcl)

Ay

(ct+ a)” /27! J’e(.. me (x o, (s/l)(c1+d))2) dx

cT+d 2mc 2me-

-1/22-1 .

(2mci)
From (7) we obtain

2 2 s/e+2m),
em plA[xﬁ] = E q(s/l) [hm+ ko(s/l) + mAl c °e((8/l*'mkm)uy) %
’ : s€L

x Qued) 27Ny e(ﬁg[ap'z - 20'(s/£)+d(5/2)2]> ,
p'mod 2mecf
p's p(2m)

and hence, replacing s by s - 2mfA, ».
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) q(s/mz/am s/

8 | Alxg] = g x
m, P SE€Z
x mci)” /27t g e(Z-L- [ap'? = 20" (s/8-2mAg) + d(s/2-2mA)%] +
' me
p'mod 2med
p'= p(2m)

+ (s/% - mkg)u0>
Finally

2
'P s€Z

1

x Qued)T3TTY L),
%

and after summing over p mod £ only the terms with 2&|s survive .

Thus, replacing s by 2(s=-2mA), we get finally

2
s“/4m _s
em,plum(A[xQ]) SEZZ q oo
x (2mei) /%% 5_ e(z-i?[ap'z-Zp'(s-2m(5\+l0))+d(é-2m(k+ A )02
Jmod? p'mod 2mc
p' = p(2m)

+ (s-2m(k+A°))um) .

2
Here the coefficient of qs /4mts only depends on s modulo 2m, which

shows that @ p|Um(A[xu]) is an element of Th_  and gives the formula
. ]

stated in the proposition.

The case ¢ = Q0 1is left to the reader.

In order to bring the formula (4) into a more useful form we
obviously need some lemmas on Gauss sums. We shall derive these lemmas

from the transformation formula in the foregoing proposition.



Proposition 4.2 - (i) Let A,B,C,D,E be rational numbers, A#*0,

and let A= 32 - 4AC. Then one has

AUA y e(A)\z + BAy + Cu?' + DA + Eu)
(8)

) .
. 1/2 (=D -t {1,2 B A 2 D BD-2AE
@) ey o T (@R g et i s P

(ii) Let Q be a rational binary quadratic form with disciminant A# 0,

let Y€ 0 and x0€ Qz. Then

(9) Av_e(Q(x+yxy) + lzdl)

= E(Q)A1/2 Auke(% Q(xi-xo) + Y [:o|)

(e(Q) as in Theorem 1, i.e. €(Q) = ~1 1if Q 1is negative definite and

£(Q) = +1 otherwise).

ab

. 2
Proof - (i) Let X, = O‘o’”o)EQ , M= [c d

let S = [? _(t)} , hence SM = [-z -g] .

]E SLZ(Q) with a,c%0,

The formula (8) will result from the identity

1/2
f at+b\) . " (cT+d)

(10)  u_(8)u_(Mlx,]) =€ U_(sMx,]), where € = ( cT+d) <
(at+b)

1/2
/2

by -"agp].y ing.the transformation formula (2) in the case m = 1.

2
Namely, let 61’p|Um(S) = 021 K'p,c (s) el,p and similarly K'p,o(M[XO])’

Kp,o(SM[xo]) . Then (10) gives



o

2
Z1K0 o(8) K Cilxe) =ek  (sMix, 1),
o= ? ’ >

and writing this out we find ( & denotes a positive integer such that

RM,JLxO are integral):

2
P ey ) e(ﬁ—[ap'z- 20 (0"-2) )
o=1 o'mod2y p'mod 2¢f M€
0'e0(2) p'=0(2) 2
+d(o'=2X)" 1+ (0'—}\0);10)
~1/2 =2
- eai) V%% g ) e(fg[-cp'z- 20" (" - 2},)

o'mod 2¢ p'mod 2af
G'=20(2) p's0(2) ,
+ b(o' - 2)\0) ] +(c' - Ao)l—'u) s

i.e. (setting ¢'=2y, p'=X on the left and 0'=2u, p"' =21 on the right)

A
=172 L\ =172 d,2 _ a .2 _1 d 2 0 o4
(21) (2ci) 2lel E(E)‘f’_') AUA,ue(TCA Aot — Av 24 Tyt ) u)

(1)
- e2ai) 2 a16(BA2) Av -1, c;\2 2. b 2_2*'.0“2_(1;)\ _ ')
£(2a1 alel 7Aq o e (E +;‘-;\u &+ "7 0 T H/ M)

Now assume that B# 0. Then taking in (11)

' b =g

1 ] 0 ,Uo

a = ~4AB

1

¢ = -B d ==CB

and checking the factors in front of the Gauss sums in (11) yields (8).

If B=0 then choose an integer N#0 such that _;q_A and EN% are integral,

write Av., e(AA%+ Cu?+DA+Ep) = Av uu.=.(A)\2+I~1)\u+ Cu2+DA+Ep) and api:ly (8)

AsH
to the right hand side of this.

A,
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(i1) Applying (8) two times, where in the second application the
f% plays the role of the A 1in (8),yields after a simple calculation
the identity (9) for +y=0 and for all @ with Q(1,0)+0 . But
since the class modulo GLZ(Z) of any quadratic form with A#0
contains such a Q , and since it obviously suffices to prove (9) for

one element of a given class module GLZW) in order to prove it for

the whole class, we  have proved (9) in the case Y=0.

If v+0 , then let x1€012 such that B(x.,,x) = [:1| for all x,

where B denotes the bilinear form associated to Q . With this X,

we may write Auxe(Q(x-a-yxo) + Izo Iy = e(YzQ-(X-U)) AUXE(Q(X)*' lY"H;Xb b,

1/2~=:(\(2Q(x.0)) x

and by the case we just have proved this equals £(Q)A
-1 1/2 2 1

Avgeqpates v, + %) = e@a e (yi@ary + e x

X Auxe(lAQ(x+ Xg) + % B(:ﬂ;1 sX+ Xy )). Now using the easily proved fact

that B(x,,x) = A|§°| for all x one immediately obtains (9).
As-an application of the formulae (8), (9) we give the

Proof of ' _Theorem 3. ... The Gauss sum on the left hand

side of (1) depends only on the SLz(Z) - equivalence class of Q and i{f_hrt’her-
more , using standard Galois theory , it is easily seen that it suffices
to consider the case of primitive Q and Q20 if A S0 . Thus we

2

can restrict to Q(A,u) = AAT + BAu + Cuz with A relative prime to A

and A=1,B=C=0 if A = 0.

If A = 0, then by (8)

2 . 2 . .~M
Q(x) A 2i\1/2 -MA (1+1) (1+i )
Av e(—) = Ay e (—) - (—) Ay e( ) o
X M A M M A 4 2&

which may be written as
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Q) _ 1 1/2
Avxe( M ) Mo E B A1 ?
1A{I=M,A150,1mod4

i.e. in the form (1).

If A% 0 , then by (9)

1/2
Auxe(Qb(lx)) = AM Auxe(% Q(x)) .

Now Q(A,u) 1is SLZCZ)-equivalent to a form which is congruent modulo A
to AAZ if A is odd and to arx? o+ %% u2 (¢ an integer with aA=-1modA )

if A 1is even. Hence

1/2 A [ if A is odd
Auxe(Q(x))-- a Avke(géx") .

\
u M A Av eczg uz) if A 1s even ,
U\ 4

i.e. - by the one variable case proved above -

N e(Q(X)) =AA'1'/2 (M,8) z {_A_f_)( A'O )61/2.11 o if A is odd
x \ M M TAl £,  \eA AW/ (M,8) /%0 .L1+; if A is even
[Aol=lAl/(M,8) -
Ao 30,1 mod 4 '
where g=3ign (4) .
Now it is .an easy exercise to check that the last equation

can be written in the form ( 1). (Consider the six cases according as A

is odd or even and A/(M,A) 1is odd, exactly divisible by 2 or divisible

by 4 , ‘-and make use of I%) = 1),



YA

We.can now - complete the proof of Theorem 2.

Proof of Theorem 2. To begin with we consider the case.

c*0,ts2 (notations as in the statement of the theorem).

First of all veplace Aby A-mu in the formula (4) for the trace

of Um(A[xo]) to obtain

1/2
tr U_(Alx,]) = (EEE) (EE A% - mkouo) x
m 1
-2 .2 -d 2 2 1-4 L d+1 ~
XAU)\ (t—}\ +Ez—c—)\p. "'mE"'}J +(-—c-— AO"'“Q))\ +m(% AO-“O)J") .

4me 4e

Next apply to this the inversion formula (8) which yields

1

1/2
er U (Alx 1) = (EEE) (Eﬂ A% - mANJD>
1/2
=2, -mc 1-d 2\
x (———-)- e (E:f DT;' Ao * uP] } X
X Ay e |-— {cA® + (a=d)u - b 2 222 2 v u
A,M t=-2 H H c on Mo

a-d {1-d t-2 d+1
* 2c [TE(TH*%)‘EE.E (c A= )}“})-

Some simple calculations show

(?-m) (ch 1)‘/2 = e(4) sign (t-2)(c-2)""? (e as in (1.5)) ,

1

d, 72 me | 1-d 2 m 2 2
L )t/ -III)\ }.l ﬁ[—?" )\0'*‘}10] = -t-_—i—(b?\ﬂ + (d-a)louo-cuo) ’

a-d {1-d d+1 - - _ _
ZC['E (—c- A ) vy m( )] 2bA, + [(a-d) + ¢t 2]1.10 .
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Thus the last expression for tr Um(A{xo]) equals

tr Um(A[xD]) = £(A) sign(t-2) (c-2)1/2x

Avl,ue(%{c(kﬂ-ug) #(a=d) e ) (e d) =blu+a )%= (6= 2 a-p w) }) ,

and using Gm(E) = £(A) tr Um(A[xg]s) = 37c(a) tr Um(A[xo]) we see
that we have proved the first equation of Theorem 1 - of course, for
the present only in the case c¢* 0. But Gm(E) depends only on the
SLz(Z)-coujugacy classof A , the same 1s obviously true for the
expressions given for cm(g) in Theorem 2, and every A€ SLZ(Q), A * =1
is SLZCI)—conjugate to a matrix with non—-vanishing left lower entry.
Thus we deduce, that the first equationm in Theoremlz is true for all

A+ ~1 (and with tr A+2).

If A=-1 or tr A=2, ¢ =, then the corresponding formulas
of Theorem 2 are easily werified by using (5), aﬁd again we can drop the
assumption ¢ =0 (because any SLZ(Z)—conjugacy class with trace *2 contains
an upper triangular matrix). Finally, the

equality of the two expressions for Gm(E) in Theorem 2 follows from (9) of

Proposition 4.2. This completes the proof in all cases.
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Appendix .: Conjugacy classes in the double cover of SLo(R)

For A = [2 2] € SLZ(]R) define J(A,T) = (cT+ d)llz. Recall
——— s . .
that SLZ(BJ consists of all pairs (A,w(T)), where A€ SLZ(RJ is
a holomorphic function on H satisfying w(T)2 = J(A,T)z, i.e.
w(t) =2J(A,T) , together with the composition law

(A,w(t)) » (A", w' (D)) = (AA",w(a'D)w' (1)).

Finally recall the definition (cf.(1.5))

(=1 if c<0 and tr(a)< 2. * *
(4 = (a =l ,1€sL,(®)
+1 otherwise

(cf. (1.5)).

P
Proposgition A.1 - For a € SLZ(R) define

pla) := €(A)'s (a = (A,8-J(A,T)),s = £1).

7 — )
Then p(a) depends only on the SLZCR) - conjugacy class of a ,

; -1
1 p(a) = p(uap )
for all a and w in SLZ(RJ
Remark - Equation (1) is obviously equivalent to

T, I M sy 7!
Joam!

(2) e(A) = e(MAM ')
)

(a = (A,*), p= (M,*)). In terms of the cocycle o(*,+) (introduced in

{(0.2)) this can also be written as
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(3) e(A)o(MAM ' M) = e(aM Ho,a) .

Proof of Proposition A.1 - Let C be any conjugacy class in

o
SLZ(BJ . It suffices to show that C contains an element a = (A,%*)

/\/
such that (1) is true for all p € SLZ(BJ , i.e. that (2) is true

for all M .

If C contains only elliptic elements, then let o be one of
these. It is easily checked that for aﬁy ME SLZ(]R) the signs of
the left 1o§er entries of A and MAM'.1 are equal, i.e. e(A) = s(MAM-1).
Thus, for t=Mt, , where 1, denotes the fixed point of A 1in the
1

upper half plane, - . equation (2) becomes J(a,t,) = J(MAaM™ M),

and this can be verified by a simple calculation.

If the elements in C are not elliptic them C contains an
element @ where the left lower entry of A vanighes, say A = [g :-1].
For this A equation (2) is easily checked if the left lower entfy of M
. . * 4 -1 .k %
is 0. Otherwise let th[l_l v], MAM =[c, 4] and t=Mit (t €R). Then,

becomes
[ua2i+(uab+v)/t]1/z[8’111/2[ui*v/tlblfz

-—c 2
(a uiuicw)]

Considering this for t-w one obtains

1 = eaM™

~1 -1 1if ¢' <0, a<0
e(AM ) { +1 otherwise .

But this 1is correct since tr(MAMf‘)-Zﬂtr(A)-Z-a'l(a-1)2.
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