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Abstract
The singular Green operators in Boutet de Monvel’s calculus are characterized by the
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to the boundary on wedge Sobolev spaces.
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Introduction

In 1977, Richard Beals showed that the pseudodifferential operators on R™ can be char-
acterized in terms of the mapping properties of their iterated commutators with multi-
plications and vector fields [1]. Specialized to the standard symbol classes, his result says
the following:

Theorem. Letm € R,0 <6 < p < 1,6 <1, and let P : S(R") — S'(R") be a
continuous operator. Then P is a pseudodifferential operator with a symbol in S7';(R™ x
R™), if and only if for all s € R, and all multi-indices a, B, the iterated commutators
ad®(—iz)ad®(D,)P have bounded extensions

ad®(—iz)ad?(D,)P : H*(R") — H*~™+elei-S8l(R"), (1)

For the notation see section 1. At about the same time, H.-O. Cordes independently
obtained a similar characterization for the class 53, with different methods, cf. [6]. A
new proof for Beals’ result in the above formulation was given by Ueberberg [33]; the
manifold case may be found in Coifman and Meyer’s monograph [5].

Characterizations of families of operators via the properties of their iterated commutators
have been used by Cordes and various associates in the theory of operator algebras, [7],
(9], [22].

Beals’ characterization was the crucial step towards the proof of the spectral invariance
of the algebra of pseudodifferential operators of order zero in £L(L*(R™)), (1], theorem 3.2;
it also turned out to be useful in many other situations, cf. Schrohe [23], Leopold and
Schrohe (18]}, [19].

Moreover, a characterization like (1) allows to introduce a topology on the algebra of
pseudodifferential operators of order zero which makes it topologically an intersection
of Banach algebras, a ’submultiplicative’ Fréchet algebra, a fact observed by Gramsch,
Ueberberg, and Wagner, [13], and of particular interest in connection with the results
of C. Phillips [20] on K-theory and Gramsch [11] on non-abelian cohomology and Oka
principle.

In the present paper, a similar description is given for the singular Green operators of
type zero in Boutet de Monvel’s calculus on the half-space R}. In spite of the rather
complicated usual description of these elements in terms of estimates on the singular
Green symbols or symbol kernels, cf. definition 1.5, below, the characterization in theorem
2.1 is surprisingly simple and close to (1).

It shows that these operators have a natural connection to the wedge Sobolev spaces
introduced by B.-W. Schulze for the analysis on manifolds with singularities. Locally, a
wedge is of the form {cone } x R?. The half-space R} is a particularly simple wedge
where the cone is Ry. Wedge Sobolev spaces differ from the usual ones in that one has a
group action along the cone.

Already in 1991, Schulze has pointed out that there is a close relation between singular
Green operators and wedge spaces, [29] theorem 3.1. His observation was an important
motivation for this paper.

In a related paper [27], a characterization of the pseudodifferential operators with the
transmission property via commutators and wedge Sobolev spaces will be given. This
partly extends the 1990 results of Grubb and Hérmander on the transmission property,
[15]. Using these characterizations I then show in joint work with B. Gramsch [12] that



the algebra of operators of order and type zero in Boutet de Monvel’s calculus also is an
intersection of Banach algebras, making it accessible to the analysis in [20] and [11].

1 Notation. Pseudodifferential Operators and Sin-
gular Green Operators

1.1 Definition.
(a) For m € R,0 < 6 < p < 1,57 = S7%(R"* x R") denotes the set of all smooth
functions p on R™ x R™ satisfying the estimates

|Dg DEp(z,€)| < Cap ()™ 7L, (1)

Here, {¢) = (1 + |€]2)}. The choice of best constants in (1) gives the Fréchet topology for
ST

In general, the symbols will take values in matrices over C. I also admit the case that
p(z,&) € L(E, F) with Hilbert spaces E and F'; for clarity I will then speak of operator-
valued symbols.

(b) A symbol p € 575 defines a pseudodifferential operator Op p or p(z, D) by

[p(z, D)u](z) = [Oppul(z) = (27r)‘""2 /eixfp(a:,.f)ﬂ(f)df, (2)

where u is a rapidly decreasing function, u € S(R"), or — in the case of operator-valued
symbols — u € S(R", E), and  is the Fourier transform of u.

(c) For s € R, H*(R") denotes the usual Sobolev space on R™, cf. [17], ch. 3, def. 2.1.
For s,t € R, let

H*'(R") = {(z)™'u : w € H(R])}.

H**(R", E), E a Hilbert space, denotes the vector-valued analog.
(d) For multi-indices o, 3 € N and an operator T acting on functions or distributions
on R", let

ad®(—iz)ad?(D,)T = ad®(—iz,) - - - ad®"(—iz,)ad” (D,,) - - ad® (D, )T.

Here, ad®(—iz;)T = T, and ad*(—iz;)T = [—izj,ad* " (—iz;)T], k = 1,2,...; the iterated
commutators ad'@f(ij)T are defined correspondingly. Of course, we are assuming for the
moment that all compositions involved make sense.

1.2 Remark. Given a pseudodifferential operator P = Op p with p € 57 it is easily seen
that ad*(—iz)ad”(D.)P is the pseudodifferential operator with the symbol BgD_fp(:c,E).

1.3 Notation on the half-space. We will write R} = {(z),...,%,) : 2. > 0} and z =
(&', 20),€ = (£, &) with 2’ = (21, .., 2a1), & = (&1, - -, am)-

(a) For a function or distribution f on R™ let r*f denote its restriction to RY; for a
function g on R} denote by etg its extension to R" by zero.

(b) Let S(RY) = {*f : / € S(R)}, and H*(RY) = {r*/ : | € H*(R")}, 5t € R.
Hy*(R%) is the closure of C°(R7) in the topology of H*!(R™).



1.4 Green operators and Singular Green Operators. A Green operator of order
and type zero in Boutet de Monvel’s calculus on R is an operator of the form

prq k] CF®D . C=(RY
A: T s M @ — @ 3
C(():O(Rn—l) Coo(Rn—l)

where P is a pseudodifferential operator with the transmission property of order zero,
P, = rtPe*,G is a singular Green operator of order and type zero, i.e. with a symbol
kernel in B=*°, the precise definition being given in 1.5, K is a Poisson operator, T a trace
operator, and S is a pseudodifferential operator with a symbol in S (R""! x R*"!).
The most interesting part within this setting is the algebra

of the elements in the upper left corner.

For the details concerning the calculus, I refer to [2], [14], or [21].

While pseudodifferential operators with the transmission property are the object of [27],
this paper focuses on a description of the singular Green operators G within this algebra.
For the description of these elements I am using symbol kernels rather than the singular
Green symbols, because it makes things slightly easier.

1.5 Definition. Let ¢ € R. The class B*° consists of all smooth functions ¢ on
R;™" xRy x Ry, x Ry, (symbol kernels) satisfying the estimates

||a:f1D§:_y:‘D;'j:D§',Dfag($', £r1 $n,yn)||L2(R+,“xR+,,,) = O((gl)#+1-—k+k —m+m —|a|) (1)

for every fixed choice of k, k',m,m/, o, S.
Such a symbol kernel g induces the singular Green operator Op ¢ g by

Opag(Nl@) = @0 T [[7 e, ¢,2n, 1) Fame NE pn)dvade’,  (2)

f € S(R%); g is called the symbol kernel of Op g g.
For fixed ', ¢’ let the operator g(z',¢’, D,) be defined on S(R4) by

[g(x’r St’v Dﬂ)f](xﬂ) = /:o g(a:', 'f,s Tny yn)f(yn)dyn§

then
OPGQ = Op'g(:c',f', Dn),

where Op’ denotes the usual pseudodifferential action with respect to the z’, £ —variables
for operator-valued symbols.

We finally need the concept of wedge Sobolev spaces, cf. [28], section 3.1.
1.6 Definition. (a) For f € L}(R4),A > 0, let
(saN)(1) = AEF(AL). (1)

This defines a unitary map
gyt LHRL) — LYH(Ry)
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with respect to the sesquilinear form
f.g) = 1)§(t)dt.
(f,9) / f()3(?)

(b) More generally let E be a Banach space and suppose that {x) : A € R} is a strongly
continuous group of operators on E, i.e. A — k) € C(Ry,L,(E)), and krx, = k,.

The wedge Sobolev space modelled on E, W*(R?, E),s € R,q € Np is defined as the
completion of S(R?, E) = S(RY)®, E with respect to the norm

2s %
lllwecre.zy = ([ )% W ys Fomns)lidn)

Here, F,_,u denotes the Fourier transform of the E-valued function or distribution u,

Fomni(n) = @r)72 [ e 5mu(y)dy.
(c) For s,t € R, let
W (R, E) = {(y)"u:ue W (R E)}.

In general, the wedge Sobolev space will depend on the choice of the group action on
E. Here, however, we will only deal with the usual weighted Sobolev spaces on R, cf.
1.3(b), and there we will always use the group defined by (1).
(d) For convenience we introduce the following notation for inductive and projective limits.
Let {Ex : k € N} be a sequence of Banach spaces with Ey ; — Fj; and F = proj-lim Ej.
Suppose the group action is the same on all spaces. Then let

W* (R4, E) = proj-lim W*!(R?, E}).
Vice versa, if Ex — Ey,,, £ =ind-lim Ej, and the group action coincides, then let
W (R, E) = ind-lim W (R, Ey).

1.7 Remark.

(a) S(R}) proj-lim ,, o, H* '(fi")
(b) S'( ’_;_) ind- llm,t_.o,_-,Ho_’_(R")
() W/RSIPRS) = HRI) S >0

(d) Wi (R, H}(R.)) = Hi(RM),s <0,

For (c) and (d), cf. [28], section 3.1.1, (17) and (18).

i

1.8 Lemma. proj — lim were (RI, Hovo2(Ry)) = S(RTM.

$)1,92,01,02-400

Proof. Write Ry = {z = (y,t): ¥y € R%,t > 0}, and write the covariable in the form
£ =(n,7). Let s, N > 0,u € S(RY"), and let U denote an arbitrary extension of u to a
distribution in H*N(R?*!). Then

||“||H-.N(R1+1) = infyll (D:)° (x)N Ul oty
< infy C|| ()Y (D2)* Ullaren)

AN



with C = C(s, N) in view of the boundedness of the operator (D.)* (z)™ (D,)™* (z)™"
on L}(R?*!'). So the last expression is

< infu ) ()Y (0N (D:) Ullza e
< infy C"|| (D)’ (y) (t) Ullrsretr)

in view of the boundedness of the operator {y)" ()~ (D;)* ()™ (y)™™ (D) ™" on L2(R7+),
cf. [24]. The last expression equals

@)™ O ullpmges
< Ny ul|ws(Re 1o (RS ))

I

:
= " {/ (q>2s ”fi(ﬂ)-hry—m((y)N (t)N ‘u)(n)”%!-(RHdT?} (1)

where the inequality is justified by 1.7(c). Let v = ()~ u. Then

||'°(,,)-1fy—~n((y)N (t)N")(’i)”%-{m) < ||"°(,,)-l "?:(H'(R.,,))" (t)N}—U(ﬂ)“%-(m) (2)
By [28], 3.1.2 lemma 1, there are ¢, M such that
||"(,,)-1 lleqaaryy) < C(’))M ’
so (2) can be estimated by
E ™M (O Fo(m)litnms)
= ™M IFv)renrsy)

M
< &)’ ||K(,,)-1-7:U(17)||§{a,~(a+)

by the same argument as before. We can therefore estimate (1) by

1

D { [y ey F () u)lli;-w(lb,)} 2

= D)™ ulyermmomenmy))

= Dllullyyssmr (e, men(Ry)).
Hence the topology induced by the W- spaces is st‘.ronger than the Sobolev topology.
On the other hand, we have (t)" 1])( (m™ ) , and therefore

1™ ko Fu@) ey < () gy Fomn (0N w) )l pro(msy.
This implies '
elliye-morma ey = [ O 1O Kyrs Fran @) 0oz,
[P 1F a0 O )l
)™ (0" ullwema, oy
@™ O ullyeany
Cinfy || ()™ () ul| s (rosr)

C'infy || (2)*" “"H-(Rw)_
C’ |IUHH0,2H(Rq+1).

IAN A IA

It IA
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Here, the infimum is always taken over all U € H*(R%!) with U|R1+' = u, and the

last inequality is due to the fact that multiplication with (z)" ()" (z)™*" is bounded
on H*(RH); this in turn follows from the fact that D2 (y)™ and D2 ()" are both
0(($)[N-IC~|]+)_

Therefore, each weighted Sobolev space is embedded in one of the weighted wedge spaces.
Altogether, we have equivalence of the W-semi-norm system and the H-semi-norm system.
In connection with 1.7(a) this gives the assertion.

1.9 Definition and Lemma, cf. [28], section 3.1.2, proposition 10. Let £ = H*"(R,)
-0,-7

for some choice of o, 7 € R, and let £’ = Hy """ (R4 ) denote its dual with respect to the
extension of the sesquilinear form

(v, 0)E,80 = j u(z)5(z)dz

defined for u € C(R4),v € CP(Ry).
We obtain a natural duality W*{(R7, E), W=*~{(R%, E') and a non-degenerate sesquilin-
ear form by

(f, !I)wo.t(m,z)'w—n.—r(m,ar) = /("‘(n)“l Fyanf, “(n)"fy—-ng)E.E‘ dn (1)
- /(fv*ﬂf, fy—'ﬂg)E.E’ dﬂ,

noting that the group {x: A € R4} of 1.6 (a) is unitary with respect to (-,-)g g, i.e.
(Kau, kav)gEr = (4, V)EE".

(1) extends the usual Sobolev space sesquilinear form on R3™.

1.10 Corollary. S/(R3") = ind-lim ,44r—-c0 W* (R?, H" (R4)).

Proof. This follows from 1.7(a) together with the fact that Hy*(R3Y') = (H-*—*(R%)),
and the proof of lemma 1.8.

2 Characterization of Singular Green Operators

2.1 Theorem. Let G : S(R}) — S'(R}) be a continuous linear operator. Then the
following is equivalent )

(i) G = Op gg for some g € B!,

(ii) For all multi-indices a, 8 € N3™', all 5,t € R, the operator ad®(—iz')ad?(D,)G has
a continuous exrtension

ad®(—iz")ad? (D, )G : W*(R™, §'(R,)) — W*-lIHR"1 S(R,)). (1)
(ii1) G has the mapping properties (1) for t = 0.
The proof will be given in a series of lemmas. I will first show that a singular Green

operator has indeed the mapping properties (1). The idea is to reduce the task to standard
vector valued Sobolev spaces. The crucial step in this direction is lemma 2.7.



2.2 Remark. In [28], section 3.1.2, B.-W. Schulze has introduced the following notation:
Let y« € R and let E,| F' be Banach spaces with group actions «,, %, as in 1.6. Define

S*R* xR xR, E,F)={a€ C*R] xR}, xR}, L(E,F)):
subyek yex I Dy Dy DYa(y,y's Mrmllcs.py < Capa ()™, K cC R}
Supposing that C§°(R?) acts continuously on W*(R?, E) and W*(RY?, E) — a condition

which turned out to be always fulfilled, cf. [16] — he has then proven that, given a €
SHR*x R* x RY, E, F),

Op a: W, (R%, E) — W (R, F) (1)

is bounded. If the symbol is independent of y and 3’, then the comp and loc may be
omitted in (1).

2.3 Definition. Let 0 < p < 1,4 € R. By H% denote all h € C®(R*™' x R x R*™! x
R, x R;) such that

= DXy D D2 DB DLg(y, ¥’ 1, Ty Y )3 (Re, xRoy,) S Chprmamtiagor (1) (1)

This is a Fréchet space with the topology of the best constants in (1).
Write R? | instead of Ry x Ry.

2.4 Lemma. (a) Replacing |- |z2rz,) b || - llsvp,, ,,, in 2.3(1) yields the same topology.
(b) H,{: = S(R+ x R+a :,0) topological!y by (Ina yn) = h(':': '7$nayn)-

(c) S(R+ x Ry, 5,0(R™1)) = S(Ry X Ry )@ 5,0(R"1).

Here, S} o(R™1) denotes S5 o(R}™! x R} x Rp71).

Proof. (a) is obvious, since the topology generated on S(R4+ x R4) by the semi-norm
systems ||z% DY y7 D fllzarz,y and ||z D5y DY fllsup,, . is the same.
(b) In view of (a) and the fact that the supremum can be taken in any order, this is

evident.
(c) Follows from the nuclearity of S(R, x Ry.), cf. [31], p.533.

2.5 Remark. Obviously, the same result holds for the subspace of y’-independent func-
tions in H%.

2.6 Definition. Let x, be a group action on the Banach space E as in 1.6(b). Define

T : W (RS, E) — H*(R, E) (1)
by
T = f'r]——lbyﬁ(n)_lfy""n'

By (28], 3.1.2, proposition 3, T extends to an isometric isomorphism.
Let F be another Banach space with a group action &) and the associated isomorphism
T. Given an operator

A:W'(R?, E) — W*(RY, F) (2)

define the operator
A*:= TAT™': H* (R, E) — H*(RY, F). (3)

Clearly, A in (2) is continuous if and only if A* in (3) is continuous.

9



In the following we will use the above definition with E = Hy """ (R,) and F = H*""'(R,)
for some choice of o, 7,0’,7" > 0. In all cases we shall use the group action of 1.6(a), and
we will not discern between T and T'.

2.7 Lemma. Let g € B*° be independent of y'. Then (Op ¢ 9)* = Opgh, where

—t Tn yn L -1
h(y,n,Zn,Yn =Os—j/e Yely + w,p, ——, — +0)Y 7 {n) ?dwdo, 1
(¥, 0,30 oty + 1,7, =2 ) (04 0)7H (o) (1
and h € H{Y.

Proof. A direct calculation shows the particular form (1) of the symbol kernel. Now for
the estimates. We have

k m
IﬁDi;yrD;r::‘th(y’nammyn) = OS__/] et (I_n) (y_ﬂ)

(n+a)) \(n)
: (D’;L D::,'ng) (y + w,7, (Ui—no)’ (!';—")) (n)m_m"% (o + n)k'k"% dwdo.
If g € B*°, then
()71 d gk DRy DY DB g € BRKSR0 (2)

In order to prove the estimate, it is therefore sufficient to show that for k € B-™"% ¢ €

Srjo_%(Rn_l)

D Os— [ [ e k(y + w,n, (n‘fga) , {f)q(a +1)dwds = O((n) "7l (3)

Now,

O, {k(y + w, 7, ;Tnfﬂ’(!:]_n))}

= (O;K)(y + 0,7, —(—l;::*ﬂ—ﬂ, (1:7—"))

T
oy O=ek) (v om0
T

Y a k) [y + w,n, —2 I (m™).
+220,0 (34w, 22 2 40) 0, (007

In order to establish (3), it is therefore sufficient to consider the case a = 0, using (2). To
this end we will use a procedure developed by Kumano-go for pseudodifferential operators,
cf. [17], chapter 2, proof of lemma 2.4. Write

Iy

Yn -1
(—,5) (o +n)an, (o +m))

b1 2nyn) = [ [ € 0(y,0, 20, yai 0, 0)dwdo,

where

T(U,Th-’ﬂnayn; w,a) = (w)—ﬂo (1 - Ao)lo {k(y + w, 7, Z;:%_Lﬁ: (%;1)“)‘](0 + 77)} .

10



Let @ = {lo] < 3}, Q2= {3 < |o| <3 (n)}, 9 = {|o| > 3 (1)}, and write for j =1,2,3:

2
Ij:jn.] - e_"""’r(y,q,xn,yn;w,a)dwdcr.
J

Then

[N L]

(m < {o+n) < z(n) on QLU

b | —

By Leibniz’ rule
(s 75 %ny Yn; w, 0)lL2(r2 )

< (W)™ Y cape

|a,+a2|52lo
149 (a + 7).

D5 My + 0,1, s ()

L2(R3,)

Note that

aaj{k(y + w, 1, (o_—x_:'ﬁi Z%)}

N ((6:1177))(8 F) (y+w"’( s (y))<‘7+77>3a,((‘7+’?) Y

For a function k£ € B*° we have

llIﬁD:n D,@L(yl' 7, Tn, yn) ||L2(R?l'+) = O((n)#+l—k+k'),

and correspondingly

' () 1ot (v o e )

= O((o +m)¥ (n)FHe+1=4+k)

L2(R2,)

We may therefore estimate (5) with the help of (4) and (6) by

C (w)‘zlo Z ((0’ + -,7)% ()™ (o + 77>—|Cn|) (o + n)nﬁ—«}_hﬂ

Oy ,02

< ¢ (w) ¥ ()™

This shows that
-2 FA—m fa—m
”IIHL?(R?H) <aq -/01 /;tn_-l (w)™"° dwdo () < c(n)

Next let us use that for { € Ny

// e r dwdo = f] e |o|"* Alr dwdo.

11
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Hence

Ialprs,) < [ o™ @)™ ¥ e
Q
ley+arz]<20
D3 AL {k(y + 0,7, ——, %)) 149 (0 + 7)|dwdo
(o +’7) (m L3(R2,)

< o fn o]~ j ()20 $™ (g 4 p)bleabA=Floal y=m g g
< e [ lol™do ()™ = s ()",

provided 2l > n — 1. For the last inequality, estimate (4) has been employed, for that
before, I have used (6).
Now consider 3. Here,

(¢ +mn) < 3lof and () <2|o],

and (7) gives

Ibllms, < [ 1o1™ [ (@)™ oo

14" (o + )| dw do
< -2 —2lp $-loaHi~F=loa| y \-m
< o f Lol [ (@) (o +0) ol ()™ dw do

< o [ 1ol (1) = g ()
M

D5 Ay {k(y + w1, =, 7))

L¥R3,)

provided we choose 2/ > n — 1 + 2||. This completes the proof.
2.8 Lemma. Let g € B*°. Then for all s,t € R, all 0,0’ 7,7’
Opgg: WH (R E) — W bR F)
is bounded, where E = Hy "~ "(Ry), F = H°""'(R,). In other words:
Opag: WHR™, S (Ry)) — W H(R™, S(Ry))
is bounded.
Proof. In view of the composition rules for Green operators and by using commutator

identities like
NA= Z( ) ) (A) ()N~ (1)

1=0
as in [24], lemma 2.6, we may assume s =t = 0 and g = —1. Let us show equivalently

that
(Opgg)*: HYR"',E) — H°(R""', F)

is bounded. By lemma 2.7, (Opg ¢)* = Opgh with an h € H°. We know from lemma
2.4 that we may write

B Tmun) = 5 Ay )b (2 ) (2)

3=0

12



with (A;) € I',a; € STo(R™'), and ¥; € S(R. x Ry) tending to zero.

The integral operators with kernels in S(R4 x R;) have bounded norm in L(E, F') which
can be estimated by the S—semi-norms of the kernel. Therefore the boundedness of
the operators associated with each summand in (2) is a consequence of an extension
of Calderén and Vaillancourt’s theorem to the case of pseudodifferential symbols with
values in L(E, F), noting that E, F are Hilbert spaces. The operators associated with the
partial sums in (2) converge to an operator which is (Op ¢ ¢)* by Lebesgue’s theorem on
dominated convergence.

2.9 Conclusion. This ends the first part of the proof of 2.1, since
ad®(—iy)ad®(D,)G

is the operator with the symbol kernel 3:ng(y,q,xn,yn) € B~'-lel and therefore has
the desired mapping properties.

Let us now prove that 2.1(iii) implies 2.1(i).

2.10 Definition. Fix a function ¢ € C§°(R"™!), equal to 1 in a neighborhood of the
origin. For € > 0 let ¢.(y) = ¢(ey), let 1 denote the identity mapping on S'(R,) and let

P := Op ($(y)d(n) 1;

Py, m) = d(y)de(n) 1;
G, .= PG P..

2.11 Lemma. Let E,F € {H*"(R}),Hy"(Ry) : 0,7 € R},s,t,5,1 € R,0 < e < 1.
Then

(a) B, : W*(R"', E) — WS (R E) is bounded;

(b) P.: W(R" 1, E) — W*{(R"} E) is uniformly bounded, 0 < ¢ < 1.

(€) Ge: W (R E) — W (R, F) is uniformly bounded, 0 < e < 1.

(d) G. is an integral operator with kernel function in S(R} x R%).

Proof. For fixed (y,7),p(y,n) simply is a constant multiplication operator on S{R;).
We have

% y=1 D5 Dypc(y, M8yl ey = 1 D5 D) pe(y)be(m))).
(a) now follows from 2.2, since P, = ¢.(y)Op ¢.(n) and since ¢ has compact support.
(b) For ¢ = 0, this follows from 2.2, using that ¢.(y) is uniformly bounded in C{° for
0 < € <1, and ¢c(n) is uniformly bounded in S7(R7™!)const, the space of symbols that

are independent of y and 3. For small ||, the commutator [(y)*, P.] is uniformly bounded,
so we also obtain the assertion; finally use commutator identities for the case of large |¢,
cf. 2.8(1) and [24], lemma 2.6.

(¢} is immediate from (b).

(d) For every € > 0 and all s,¢,3,7 € R,

G, : W*(R" E) — W (R F)

is bounded for arbitrary E, F. By 1.8, G therefore is bounded from S'(R}) to S(R})
and thus has its kernel in S(R7} x R}).
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2.12 Definition. Let G* = TG T'. In view of the mapping properties 2.11,
Gr:S'(R}) — S(R])

is bounded, thus G7 has a kernel tf € S(R7} x R7}). Fix a function ¥ € S(R""!) such that
7(0) =1 and v(~y) = 7(y). Let v4(y) = v(y — ¥'). Then define for fixed y,y’,n € R*!

g:(y: y'a 7, Dn) : ‘S(R+) I 8(R+)

by
95y, ¥, 1, D)) (22) = e7¥G (e ® v)(y, Tn)-

We will also apply g7{y,¥’,7, Dn) to functions on R}, understanding that then D, acts
with respect to the variable in R, only.

2.13 Lemma. Op . 19:(y,¥",n, Dn) = G-
Proof. 1 am using ideas of Ueberberg [33], pp. 465, 466. Let u € S(R"™!) be arbitrary.
Then _
u(y) = 05—]] &'V Mu(y vy (y)dy'dn.
Therefore we obtain for v € S(R;.)
ACEDVESIESY I MAVENENN
0
' OS"/ j e MUy Yy (2)dy'dn  v(ya)dyndz (1)

)]
f/ £ (Y, Tny 2, Yn)
o0

: [lima-n f f e“""')"u(y')’ryf(z)x(an)dy’dn] v(yn)dyndz

by definition of the oscillatory integral. Here y € C§°(R™"!) is a function with x(0) =1
and a > 0. For fixed y, z define

ra(2) = [ [ ey Yy (2)x(am)dy'an.
Then z — r,(z) is a measurable function, and for fixed z,
Ta(2z) = r(2) := Os——/] ey )y (2)dy'dn

as o — 0%, Taking no = entier(231) + 1, partial integration shows that

IA

[ra(2)]

/ ﬁTlr;FJei(wr)"(l + (=Ay)" ) {u(y )1y (2)} x(an)dy'dn

< const., independent of a.

Since tf(y, Tn, 2,¥a) € L'(R}™" xRy}, independent of o, Lebesgue’s theorem on dom-
inated convergence shows that

G (v ® v)(y, za) (2)

14



= limgo /f (¥, Tny 2, Yn) // Iy Vg (2)x(en) dy'dnu(y,)dyndz
= limg—o f / V' (am) f / (4 %n, 2, ¥n) e 1y (2)v(yn)dyndz u(y')dy'dn
= lnmc._.ojje Yy (o) Gr (e My @ v)u(y)dy'dy

= Os— [ [ 0 gr(y,y',1, Dy, )(u @ v)dy'dy
= [Op g¢(¥, ¥, Da)(v @ v)] (¥, )
Since S(R%) = S(R™"')®.S(Ry), we obtain the assertion.

2.14 Corollary. Since
Gr : S'(RY) — S(R}),
(v, v, n, Dy) actually maps S'(R4) to S(R,), and is an integral operator with a kernel
function gX(y,y',7, Tn,yn), which is rapidly decreasing with respect to x, and y,. We
obtain it by
9w,V 1 Ty Yn) = (95 (Y, ¥ 1, Da)bya, b20) s(ry 1Ry ) - (1)

In fact we may replace the above duality by any of the H*"(R.), H; """ (R4 )-dualities
for sufficiently large o, 7.

2.15 Lemma. (a) The following identities can be verified by a direct computation.
(1) 1,0, T = T*'z,.0,,
(ii) Op p(n)T** = T*'Op p(y) for any p € S3,(R"') which is independent of y.

Fori=1,...,n-1,
) ad(Cin)I = ~0p ()T~ 2,000 ()T
(iv) ad(=iy;)T™" = 3O0p ()T + Op (Fr)T 20z,
(v) ad(D, )T = ad(D,, )T =0.

(b) For every choice of o, 8,3,0,T,

ad*(—iy)ad®(D,)G? : H*(R™™, Hy """ (Ry)) — H*Yl(R™! HO"(RY))
is bounded uniformly in ¢,0 < e < 1.
Proof of (b). By Leibniz’ rule

ad®(—iy)ad®(D,)G* = Y cayss ad®(—iy)ad®(D,)T---

ajtaztaz=a

B+ +8ymp
.- ad®(—iy)ad™®(D,)G, ad*(—iy)ad® (DT .

In connection with 2.11, the identities of (a) give the assertion, noting that the mappings

xnaxn . Hs(Rn-l HU.T(R.}.))__’HJ(RTL—I Ha—l T—I(R+))’
2,0z, : MR HZ"T(Ry)) — H (R, He "' H(RY)),

0p () HU(R™, HU7(Ry)) = HYV (R HO"(R),
Op (# s R HGTT(Ry)) = HHRY Ho® T (Ry))

are all bounded, provided we ask that ¢ > 3 ! for the first mapping.
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2.16 The rough estimate. Let ¢7(y,y',n, D,) and ¢5(y,y’, 7, Zn, yn) be as in 2.13, 2.14.
For fixed k, k', m,m’, a, B, §’ consider

Ey,¥',1,%nYn) = £ DXy DI 92 DE DS g% (y, 4/, 0, Ty Yn).-
Then by 2.14(1)

|E(y,¥'s 1, Tns ¥n) {Zn) (yn) | (1)
= ‘( (ua) wE DE 05D D5 g% (y, 4/, n, Du)((2a) 27 D8,

un 1

S HaaDﬁD'gg(y yanaDﬂ)(( ) mDm l'n)“H“'(R-hn
'”Dz,.{zn (Z,-,) 6In}||H°-"-r(R+,")'

Foro > K + 3,7 > k+32, ||D¥ {z* (z,) bz pzo-r(r,, ) S € < 0o, independent of z.,.
Moreover, for v € §'(R4) a calculation shows that

|02 DS DY g2 (w, ' 1, Da)v] (2) =

=™ Y o pad(—iy)ad®(D,) (GH(e" DF @ ) (). @)
B1+B2=8

Since for measurable f,

6z
), ")Hﬂ'f(R"Fun)'Ho_a.f(R‘.'un)

]If($n7 ynlzdirndyn ﬁ |f($nayn) (-T'n) (yn) Eupzn.yn /(xn)-z (yn>-2 dmndyn

we conclude that

l|E¢(yay’an)$n1yn)l|22(ng'—1XR+XR+)
= f 1B (ys y's 1 2 ) Eaqms ,
< C [NEL: 1,50 va) (@) (W) I, - 3)

Using (1) and (2), (3) can be estimated by

<C Y [Ild(=ig)ad®(D)GEE DI 1y @ V) e mydy,  (4)
ﬁx+ﬁ9 g

where v(z,) = (2.} z7 DV 6,,. We may estimate (4) by

’ - B 5112
S C’ . -g:“ﬁ ”a.d“(—zy)ad 1(Dy)Gt ||C(L2(R"_l .Ho-c'—'(R+)),L’(R"'1.H"»"'(R_..)))
1 2=

e DYy (4) 27 D7, beal T mp=t e ey

The first norm in each of these summands is bounded independent of € for 0 < ¢ < 1 by
lemma 2.15, the second equals

“Dﬁ?+ﬁ 71;'”%7(1{"_1)“ <Zn) Z?D::. 6-71. ||2 TOTT(Re)

Here, the first factor is clearly bounded, independent of y’, the second is bounded inde-
pendent of z,,, if we choose o > m’ + %, T>m+ %
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Altogether, we have shown that the L?-norm of the mapping
(Y3 Tnyyn) 3£Dk Dm aaDﬁD v' 9e S,y s> Tns Yn)

is bounded independent of € and ¥, and so is — with the same considerations — the L?-norm
of any of its derivatives. By Sobolev’s lemma,

|k DX,y D} 85 DY DY g2 (y, 4 0, Ty ya)| < Clk, Kym,m, 0, 8, B,

¥n R

independent of ¢ and y’, or equivalently,

Ik D5y Dy 05 D5 DY 95 (9, ¥'s s oy Yo ) S DUk K mym, 0, 8,8 (5)

¥n 7T

2.17 Corollary. The estimates in 2.16 show that
{gF : 0 < € < 1} is uniformly bounded in HJ.

The symbol kernels g* depend on y’. However, we can find symbol kernels §* such that
(i) g~ is independent of y’,
(i) {g¥:0 < e <1} is uniformly bounded in HJ,
(iii) Opags =Opaygs =Gi.

Proof. By 2.4(b),(c) we can write
“(y,y' = S Al Oy, y' 1
95 (WY 1 2 yn) = 3 A7 (Ensyn)a (v, ¥, ) (1)

with /\(‘) €', and ¢§‘),a§°) null sequences in S(R4 x Ry) and 53 ,(R*™! x R*™'), respec-
tively.

By standard pseudodifferential methods, [17], chapter 2, we can find b[ ) e Soo(Rp™!
R7~') such that Op b( )= 0p a( ); moreover, the mapping a( ) b; 9 is continuous with

respect to the symbol topology. Now define §& by replacing ag) in (1) by bﬁ-‘). Since the
topology on Hj, coincides with the tensor product topology, (i) and (ii) are obvious.
(i1i) Consider the associated operators. The corresponding sum (1) converges in operator
norm and the operators given by the partial sums coincide by construction, so we get the
operator identity.

2.18 Corollary. The estimate 2.17(ii) may be rephrased in the following way: For all
N,N',k,m,a, f there is a C > 0 such that

D}, Dy D3 D D 55 (3, 3,1 2 )| < € () ™ ()™ (1)

By the theorem of Arzela and Ascoli, there is a sequence ¢; — 0 and a function ¢* €
C®(R*™! x R*! x R*! x Ry x Ry) such that ge, — g in all derivatives, uniformly on
compact subsets of R*™! x R*! x R"! x R, x R+ In particular, the pointwise limit
g~ also satisfies the estimates (1).

2.19 Lemma. Opg (9*) = G".
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Proof. It is sufficient to show that

[Opc (9°)f)(z) = [G"f)(2) (1)

for every f € S(R}) and every =z € R}; we may even restrict ourselves to f of the form
f(y,z) = fily) fa(z,), where f; € F~HCP(R™)) and f; € C°(R4): this follows from
the fact that S(R%) = S(R*)®,S(R), the density of C(R*!) in S(R™!) and the
fact that F : S(R*™') — S(R""') is an isomorphism.

For such f we conclude that

Opa(95)f(32) = (2m)'F [ [7 65 (41,20, y0) falum)dyn Salm)in

tends to

(QN)LEL/ehm /0009"(3‘3Wazmyn)fz(yn)dynfl(fi)dﬁ

by Lebesgue’s theorem on dominated convergence, because on the compact support of
f1 ® fa,gF converges uniformly.
On the other hand, let us show that Opagfjf(a:) — G* f(z): We have

Opey., = G;, =TP,GP,T™". 2)

By 1.8, T~' : S(R}) — S(R}) is an isomorphism. For f € S(R}), we have P, f — f
in S(RY}) as j — oo. Therefore P,T7'f — T='f in S(R}), a forteriori in H*(R}) =
W (R, H*(Ry)), and GP,T~'f — GT~'f in view of the mapping properties 2.1(iii).
The family {P; : j = 1,2,...} is uniformly bounded on H*(R}) by 2.11. For fe H*(RY)
we thus have chf = fin H*(R}). We conclude that GF, f — G*f in H*(R™!, H*(R,)).

For large s we obtain (1).

2.20 Definition. Let m € R. By ¥™ denote the space of all H € L{S(R]),S'(R}))
such that for all multi-indices @, 8, and all s € R,0,0',7,7" € Ny, ad*(—iy)ad®(D,)H
has a bounded extension to an operator from H*(R"™!, Hy "~ "(R4)) to H*~™*lI(Rr-!,
H7"(Ry))

2.21 Corollary. We have so far shown that, given H € ¥°, there is an h € HJ such that
H = Opg (h). Let us now show that indeed h € HY.

From what we have shown we deduce that for every K € W™, there is a k € HF with
Opg k= K,m € R; this is a consequence of the fact that

(D)™™ - H™™(Ry™, H™" (Ry)) — H*(R}™, H""'(Ry)

is an isomorphism.
So, for the above H,ad*(—iy)ad®(D,)H € ¥~l°l thus has a symbol kernel h, 5 € Hy el
But hap = 3 D2h, and we conclude that,

||$ﬁD::.y;"D;:.’0:Dgh(ya 7, Zn, yn)”Lz(Ri+) < C(ka e 7:8) (77>‘|0| s

and this is what we had to show.
In other words, G* has a symbol kernel g* € HJ.
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2.22 Conclusion. Let g € H? be the symbol kernel for G*. Then G is the operator
with the symbol kernel

9(¥: 7, TnsYn) = Os—// e 7 g(y + w,7,(0 + 1) T, (7) ¥a) (0 + 1) ()7 dwd o,
and g € B9,

Proof. A direct computation shows that the symbol kernel has the asserted form. The
analysis of the estimates then is as in 2.7.

Acknowledgment. It is a pleasure to thank B.-W. Schulze and T. Hirschmann for
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