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Abstract
The singular Green operators in Boutet de Monvel's calculus are characterized by the
behavior of their iterated commutators with differentiations and vector fields tangential
to the boundary on wedge Sobolev spaces.
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Introduction
In 1977, Richard Beals showed that the pseudodifferential operators on R1l can be char­
acterized in terms of the ma.pping properties of their iterated commutators with multi­
plications and vector fields [1]. Specialized to the standard symbol elasses, his result says
the following:

Theorem. Let m E R, 0 ~ 8 ::; p ~ 1,8 < 1, and let P : S(R1l) ---+ S'(R1l) be a
continuous opemtor. Then P is a pseudodifferential operator with a symbol in S~6(R1l X

Rn), if and only if for alt s E R, and alt multi-indices 0', ß, the iterated commutators
adO( -ix )adß(Dx)P have bounded extensions

(1)

For the notation see section 1. At about the same time, H.-G. Cordes independently
obtained a similar characterization for the elass sg,o with different methods, cf. [6]. A
new proof for Beals' reslllt in the above formulation was given by Ueberberg [33]; the
manifold case may be found in Coifman and f\1eyer's monograph [5].
Characterizations of families of operators via the properties of their iterated commutators
have been used by Cordes and various associates in the theory of operator algebras, [7],
[9], [22].
Beals' characterization was the crucial step towards the proof of the spectral invariance
of the algebra of pseudodifferential operators of order zero in .c(L2 (Rn)), [1], theorem 3.2;
it also turned out to be useful in many other situations, cf. Schrohe [23], Leopold and
Schrohe [18], [19].
Moreover, a characterization like (1) allows to introduce a topology on the algebra of
pseudodifferential operators of order zero which makes it topologically an intersection
of Banach algebras, a 'submultiplicative' Frechet algebra, a fact observed by Gramsch,
Ueberberg, and Wagner, (13], and of particular interest in connection with the results
of C. Phillips [20] on !(-theory and Gramsch [11] on non-abelian cohomology and Oka
principle.
In the present paper, a sitnilar description is given for the singular Green operators of
type zero in Boutet de 110nvel's calculus on the half-space Rf.. In spite of the rather
complicated usual description of these elements in terms of estimates on the singular
Green symbols or symbol kerneis, cL definition 1.5, below, the characterization in theorem
2.1 is surprisingly simple and elose to (1).
It shows that these operators have a natural connection to the wedge Sobolev spaces
introduced by B.-VV. Schulze for the analysis on manifolds with singularities. Locally, a
wedge is of the form {cone} x Rq. The half-space R+ is a particularly simple wedge
where the cone is R+. Wedge Sobolev spaces differ from the usual ones in that one has a
group action along the cone.
Already in 1991, Schulze has pointed out that there is a elose relation between singular
Green operators and wedge spaces, [29] theorem 3.1. His observation was an important
motivation for this paper.
In a related paper [27], a characterization of the pseudodifferential operators with the
transmission property via commutators and wedge Sobolev spaces will be given. This
partly extends the 1990 reslllts of Grubb and Hörmander on the transmission property,
[15]. Using these characterizations I then show in joint work with B. Gramsch [12] that
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the algebra of operators of order and type zero in Boutet de Monvel's ealculus also is an
intersection of Banach algebras, making it accessible to the analysis in [20] and [11].

1 Notation. Pseudodifferential Operators and Sin­
gular Green Operators

1.1 Definition.
(a) For m E R, 0 ~ 8 ~ p. ~ 1, S;;6 = S;;6(Rn x Rn) denotes the set of all smooth
funetions p on Rn X Rn satisfying the estimates

IDeD~p(x, e)1 ~ Goß (~)m-plol+6IßI. (1)

Here, (e) = (1 + 1~12)!. The choice of best constants in (1) gives the Freehet topology for

8;::6'
In general, the symbols will take values in matrices over C. I also admit the ease that
p(x,~) E .c(E, F) with Hilbert spaces E and F; for clarity I will then speak of operator­
valued symbols.
(b) A symbol p E S;;6 defines a pseudodifferential operator Op p or p(x, D) by

(2)

where u is a rapidly deereasing funetion, u E S(Rn), or - in the ease of operator-valued
symbols - u E S(R", E), anel u is the Fourier transform of u.
(c) For s E R, H"(R") denotes the usual Sobolev space on Rn, cf. [17], eh. 3, def. 2.1.
For s, t E R, let

H",t(Rn, E), E a Hilbert space, denotes the veetor-valued analog.
(d) For multi-indices ü:, ß E N~ and an operator T aeting on functions or distributions
on Rn, let

Here, adO( -ixj)T = T, and adk (-ixj)T = [-ixh ad k
-

1(-ix j )T], k = 1,2, ... j tbe iterated
commutators adßj (Dxj)T are defined correspondingly. Of course, we are assuming for the
moment that all compositions involved make sense.

1.2 Remark. Given a pseudodifferential operator P = üp p with p E 8;;6 it is easily seen
that ada(-ix)aelß(D;r)P is the pseudodifferential operator with the symbol ßZDep(x,e).

1.3 Notation on the half-space. We will write R+ = {(XI, ... , x") : Xn > O} and x =

(x', Xn), e= (e', en) with x' = (XI, .. . , Xn-d, e' = (eh' .. , en-d.
(a) For a function or distribution f on Rn let r+ f denote its restrietion to R~; for a
function 9 on R+ denote by e+g its extension to Rn by zero.
(b) Let S(R+) = {r+ f : f E S(R")}, and H",t(R+.) = {r+ f : f E H",t(Rn)}, S, t E R.
H~,t(R~) is the closure of Ccf(R+.) in the topology of H",t(Rn).
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1.4 Green operators and Singular Green Operators. A Green operator 0/ order
and type zero in Boutet de ~10nvel's calculus on R+ is an operator of the form

COO(R+)
--+ ffi

COO (Rn-l )

where P is a pseudodifferential operator with the transmission property of order zero,
P+ = r+ Pe+, G is a singular Green operator of order and type zero, Le. with a symbol
kernel in 8-1,0, the precise definition being given in 1.5, !( is a Poisson operator, T a trace
operator, and S is a pseudodifferential operator with a symbol in S?o(Rn-l x Rn-I).
Thc most interesting part within this setting is the algebra

of the elements in the upper left corner.
For the details concerning the calculus, I refer to [2], [14], or [21].
While pseudodifferential operators with the transmission property are the object of [27],
this paper focuses on a description of the singular Green operators G within this algebra.
For the description of these elements I am using symbol kernels rather than the singular
Green symbols, because it makes things slightly easier.

1.5 Definition. Let J1 E R. The dass 8 IJ,o consists of all smooth functions 9 on
R:;-1 x R(",-1 X R+~n x R+

lIn
(symbol kernels) satisfying the estimates

11
knk' mnm'na Dß ( I (I )11 O((t/)IJ+1-k+k'-m+m'-1a l)x n XnYn "n e' x,9 x ,~ ,Xn , Yn L2(R...t~n x~~n) = ~

for every fixecl choice of k, k' ,m, m ' , 0', ß.
Such a symbol kernel9 induces the singular Green operator Op G 9 by

(1)

[Op G9(/)](x) = (21r) n;-l JfaOO e1X'e'9(X', e, x n,Yn)(Fx'-e' /)(f, Yn)dYndf, (2)

f E S(R~); 9 is called the symbol kernel of Op G 9.
For fixecl x',e let the operator 9(X' ,e, Dn ) be definecl on S(R+) by

then
0PG9 = Op '9(x

/,f, Dn ),

where Op' clenotes the usual pseudodifferential action with respect to the x', ~/-variables
for operator-valued symbols.

We finally need the concept of wedge Sobolev spaces, cf. [28], section 3.1.

1.6 Definition. (a) For / E L2 (R+), A > 0, let

(1)

This defines a unitary map
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with respect to the sesquilinear form

(j, g) = JR.t f(t)g(t)dt.

(b) More generally let E be a Banach space and suppose that {K>.. : A E R+} is a strongly
continuous group of operators on E, Le. A 1-+ K>.. E C(R+, .cu(E)), and K>..K p = K>..p'

The wedge Sobolev space modelied on E, W·(Rq, E), s E R, q E No is defined as the
completion of S(Rq, E) = S(Rq)®1rE with respect to the norm

Here, :F"_TJu denotes the Fourier transform of the E-valued function or distribution u,

(c) For s, t E R, let

In general, the wedge Sobolev space will depend on the choice of the group action on
E. Here, however, we will only deal with the usual weighted Sobolev spaces on R+ l cf.
1.3(b), anel there we will always use the group defined by (1).
(cl) For convenience we introduce the following notation for inductive and projective limits.
Let {Ek : k E N} be a sequence of Banach spaces with Ek+1 ~ Ek and E = proj-lim E k •

Suppose the group action is the same on all spaces. Then let

Vice versa, if Ek C-...+ Ek+1 1 E = ind-lim Ek, ancl the group action coincides, then let

1.7 Remark.
(a) S(R+.) = proj-lim ""t-oo H""t(R+.).
(b) S'(R+.) - ind-lim ""t-oo H~IJ,-t(R+').
(c) W"'(Rq, HIJ(R+)) - 11"'(R++1

), S ~ O.
(cl) W"'(Rq, H~(R+)) = 11~(R~+1), s ::; O.

For (c) and (cl), cf. [28], section 3.1.1, (17) and (18).

Proof. Write R~+l = {x = (y, t) : y E Rq, t > O}, and write the covariable in the form
e= (1], i). Let s, N ~ 0, u E S(R~+l), and let U denote an arbitrary extension of u to a
distribution in HII,N (R9+1). Then

lIullH.,N(R++J) = infull (Dr )"' (x}N UI1L~(Rq+l)

< infu GII (x)N (Dr )· UIIL~(Rq+l)
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with C = C(5, N) in view of the boundedness of the operator (Dx)tJ (x)N (Dx)-tJ (x)-N
on L2 (Rq+l). So the last expression is

~ infu C'II (y)N (t)N (Dx )· UII L2(Rq+1)

~ infu C"II (Dx)fJ (y)N (t)N UIIL2(RQ+1)

in view of the boundedness of the operator (y)N (t)N (Dx )· (t) -N (y) -N (D r ) -. on L 2 (RQ+l),
cf. [24]. The last expression equals

= C"II (y)N (t)N Ullll'(R~+l)

< CII/ll (y)N (t)N ullw'(Rq,H'(R,.))

= Gm {j ('7)2·1I"'(~)_1.ry~~«y)N(t)N u)('7)II~'(R+)d'7}! (1)

where the inequality is justified by 1.7(c). Let v = (y)N u. Then

11 "(7J)-l.rIl_ 17 ((y)N (t)N u)(1J)II~.{R,.) ~ IlK(17)-lll~{H'(R+))lI (t)N fV(1J)II~'{R+) (2)

Hy [28], 3.1.2 lemma 1, there are c, M such that

IIK(7J)-lllqH'{R,.)) ~ c (1J)M ,

so (2) can be estimated by

c2 (1J)2Af 11 (t)N .rv(1J)II~.(R,.)

_ c
2 (7J)2M ll.rv(1J)II~',N(R+)

< d2 (1]) 2M' 11 K(17) -1 F V (1]) 11 t-.,N (R,.)

by the same argument as berore. \Ve can therefore estimate (1) by
1

D {j (,,) 2.+2M' Ih,)-'F( (y)N u)II~"N(I4)} 2

= DII (y)N ullw.+M'(Rq,H.,N(R.t))

= Dllullw-,+MI,N{RQ,H.,N(I4)).

Hence the topology induced by the W-spaces is stronger than the Sobolev topology.

On the other hand, we have (t)N::; (1]) ((1J)-lt)N, and therefore

11 (t)N K(7J)-lfu(1J)IIHO"(R+) ~ (1])N II K (17)-lfll _ 7J ((t)N u)(1J)IIHO"(R+).

This implies

lIull~'-N,N(RQ.H-',N(I4)) = J(1])2.-2N 11 (t)N K(7J)-lfll- 7J ( (y)N u)lI~'{R+)d1]

< J(1])2!J 1l.r1l_ 17 ((y)N (t)N u)Il~'(R,.)d1]

< 11 (y)N (t)N ullw'(RQ,H'(I4))

< CII (y)N (t)N ull H '(R++ 1 )

= C infu 11 (y)N (t)N uIIH'(Rq+l)

< C' infu 11 (X)2N U!lH'{Rq+1)

- C' IluIIH',2N(Rq+l).
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Here, the infimum is always taken over all U E H·(Rq+l) with UIR'l+l = u, and the
+

last inequality is due to the fact that multiplication with (y}N (t)N (x) -2N is bounded
on H"(RQ+l); this in turn follows from the fact that D~ (y)N and D~ (t)N are both
O( (x}(N-1cr ll+).
Therefore, each weighted Sobolev space is embedded in one of the weighted wedge spaces.
Altogether, we have equivalence of the W-semi~normsystem and the H-semi-norm system.
In connection with 1.7(a) this gives the assertion.

1.9 Definition and Lemma, cf. [28], section 3.1.2, proposition 10. Let E = Hd,'T(R+)
for some choice of (7, T E R, and let E' = HÖd.-'T (R+) denote its dual with respect to the
extension of the sesquilinear form

(U,V)E,E' = Ju(x)v(x)dx

defined for u E Cgo(R+), v E Cö(R+).
We obtain a natural duality W",t(RQ, E), W-6,-t(RQ, E') and a non-degenerate sesquilin-
ear form by

(!, 9}w~,t(R'l,E),W-,,-t(R'l,E') = J(K(l1)-l :Fy- l1 !, K(l1)-1 :FJI- 119 )E,E' dry (1)

- J(:FJI-f/!, :Fy - 119)E,E' dry,

noting that the group {K.\ : A E R+} of 1.6 (a) is unitary with respect to (.,. )E,EI, Le.

(1) extends the usual Sobolev space sesquilinear form on R~+l.

1.10 Corollary. S'(R~+I) = iod-lim ",t,d,'T--OO w",t (Rq, H;''T (R+)).

Proof. This follows from 1.7(a) together with the fact that H~,t(R~+I) = (H-",-t(R~+I))',

and the proof of lemma 1.8.

2 Characterization of Singular Green Operators

2.1 Theorem. Let G : S(R+) -7 S'(R+) be a continuous linear operator. Then the
/ollowing is equivalent
(i) G = Op G9 for some 9 E 8- 1,°.
(ii) For all multi-indices 0', ß E N~-l, all s, t E R, the operator ader (-ix')adß(Dxl)G has
a continuous extension

ader (-ix')adß(Dxl)G : w",t(Rn-l, S'(R+)) --+ w"-lerj,t(Rn- 1
, S(R+)). (1)

(iii) G has the mapping properties (1) fOT t = o.

The praaf will be given in aseries of lenunas. I will first show that a singular Green
operator has incleed the mapping properties (1). The idea is to reduce the task to standard
vector valued Sobolev spaces. The crucial step in this direction is lemma 2.7.
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2.2 Remark. In [28], section 3.1.2, B.-W. Schulze has introduced the following notation:
Let JL E Rand let E, F be Banach spaces with group actions K).., K).. as in 1.6. Define

SJJ(Rq x Rq x Rq,E,F) = {a E COO(R~ x R:, x R~,.c(E,F)):

sUP~EK,~'EK 11 K(I1)-t D~D~D;,a(y, y', 1] )K(I1) 11 C(E,F) ::; Ca,ß,,,,!,K (1] )JJ-1a l , I< ceRq}.

Supposing that Cg:>(Rq) acts continuously on W$(Rq, E) and wa (Rq, E) - a condition
which turned out to be always fulfilled, cf. [16] - be has then proven tbat, given a E
SJJ(Rq x Rq x Rq E F), , ,

(1)

is bounded. If tbe symbol is independent of y and y', tben tbe camp and [oe may be
omitted in (1).

2.3 Definition. Let 0 ::; p ::; 1, JL E R. By 1i~ denote all h E coo(Rn-1 x Rn-l x Rn-l x
R+ x R+) such that

(1)

This is a Frechet space with the topology of the best constants in (1).
Write R~+ instead of R+ x R+.

2.4 Lemma. (a) Replacing 11 . IIL2(R~+) by 11 . IlsuPzn.lIn in 2.3( 1) yields the same topology.
(b) H: ~ S(R+ x R+, S:,o) topologically by (xn, Yn) 1-+ h(·,·,·, Xn, Yn).

(c) S(R+ x R+,S;,o(Rn-l)) = S(R+ x R+)e>1fS;,o(Rn-I).
Here SJJ (Rn-I) denotes SJ.J (Rn-l X Rn- 1 X Rn-I), P,o p,o ~ ~' 1].

Proof. (a) is obvious, since the topology generated on S(R+ x R+) by the semi-norm
systems Ilx~D;' y: D':' f1lL2(R2 ) and IIx~D;' y: Dr;:' fllsup is the same.

n :;on ++ n.n .s'n,lIn

(b) In view of (a) and the fact that the supremum can be taken in any order, this is
evident.
(c) Follows from the nuclearity of S(R+ x R+), cf. [31], p.533.

2.5 Remark. Obviously, the same result holds for the subspace of y'-independent func­
tions in 1i~.

2.6 Definition. Let K).. be a group action on the Banach space E as in 1.6(b). Define

by

T : Wa(Rq, E) -t Ha(Rq, E) (1)

T = ;:;:"/\'(1])-1 ;:Y-1]'

By [28], 3.1.2, proposition 3, Textends to an isometrie isomorphism.
Let F be another Banach space with a group action K).. and tbe associated isomorphism
T. Given an operator

(2)

define the operator

(3)

Clearly, A in (2) is continuous if and only if A'" in (3) is continuous.
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In the following we will use the above defi nition wi t h E = HÖ<7,-T (R+) and F = H<7
1

,TI (R+)
for some choice of u, j, u' , j' ~ O. In all cases we shall use the group action of 1.6(a), and
we will not discern between T and t.
2.7 Lemma. Let 9 E Bll,o be independent 0/ y'. Then (Op G g)'" = Op G h, where

and h E 'Hi+1
•

Proof. A direct calculation shows the particular form (1) of the symbol kernel. Now for
the estimates. We have

Ir 9 E BIl'O, then

(2)

In order to prove the estimate, it is therefore sufficient to show that for k E .B-m-~, q E
Sm-!(Rn-l)

1,0

Now,

DCt 0 11 -iW<7k( Xn Yn) ( )d d 0(( )-m+m-1CtI)
11 s- e . y +W,11, (11 +u)' (11) q u +1] 1.U U = 7] • (3)

In order to establish (3), it is thercfore sufficient to consider the case Cf = 0, using (2). To
this end we will use a procedure developed by Kumano-go for pseudodifferential operators,
cf. [17], chapter 2, proof of lemma 2.4. Write

where
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Let 0 1 = {Iul ::; ~}, O2 = {~ ::; IUI ::; ~ (1J)}, 0 3 = {IUI 2: ~ (1J)}, and write for j = 1,2,3 :

Then

(4)

Hy Leibniz' rule

Ilr(y, 1J, xn, Yn; W, u)IIL2(R~+) (5)

< (W)-2Io L C0 1 ,021I D;'{k(y+W,'1, (u~ )' (Yn))}1
10 1+0 21:5 210 1J 1J L2(R~+)

. Iq(02) (u + 1J) I.

Note that

For a function k E J3~'o we have

and correspondingly

(
X n ) k ( k' Dß k) ( x n Yn )

(0"+1J) Drn Y y+w,1]'(u+1J)'07)

= O((u +1])t (1J)t+~+l-k+k')

We may therefore estimate (5) with the help of (4) and (6) by

(6)

C (W)-2Io L ((u +1J)t (1J)-m (u +1J)-lo d) (0" +ry)m-!-1 0 21

°1.°2

This shows that

Next let us use that for I E No

JJe-iWC1 r dw du =JJe-iwC1lur21~~r dw du.

11
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Hence

1I12I1L1(R~+) < in 10"1-21 J(W)-21
0 I: C01 ,01

1 10 1+0 2152/0

11

D;' ß~{k(y +w, 1), ( X
n

)' (Yn))} 11 Iq(02) (0" + 1]) IdwdO"
0" + 1] 1] L2(R~+)

< C3 in, 1<71-21 J(W)-210 L (<7 +I))!-lad+m-Ha,1 (I))-m dWd<7

< C4 { 10"1-21 dO" (1])m-m = Cs (1])m-m ,
JO'l

provided 21 > n - 1. For the last inequality, estimate (4) has been employed, for that
before, I have used (6).
Now consider fh. Here,

and (7) gives

III31IL2(R~+) ~ 1 10"1-21 J(w) -2(0 L CO \ ,~'l IID;1 ß~ {k(y + w, 1), ( ~ )' (Yn))} 11
03 0" 1] 1] L'l(R~+)

. lq(O'l)(a +1])1 dwdO"

< C6 in3 1<71-21 J(W) -210(<7 +1)) Had+m-t-la,1 (I)) -m dw d<7

< C7 r 10"1-21+2Imlda (l1)m-m = Cs (1])m-m .
J03

provided we choose 21 > n - 1 +21ml. This completes the proof.

2.8 Lemma. Let 9 E 81-1,°. Then for all s, t E R, all 0",0"', T, T'

Op G 9 : W",t(Rn - 1 , E) -t W"-I-I-l,t(Rn - 1 , F)

is bounded, where E = H.;-a,-r (R+), F = Ho',r'(R+). In other words:

is bounded.

Proof. In view of the composition rules for Green operators and by using commutator
identities like

(y)N A =~ (~)OOI (y) (A) (y)N-1 (1)

as in [24], lemma 2.6, we may assume s = t = 0 and J.l = -1. Let us show equivalently
that

(Op G gt : HO(Rn
-

1
, E)~ HO(Rn - l

, F)

is bounded. By lemma 2.7, (OPG 9)K = OpGh with an h E HO. We know from lemma
2.4 that we may write

00

h(Y,11,xn1 Yn) = EAjaj(y,1])tf;j(xn,Yn)
j=O

12
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with (Ai) E [l,ai E Sr,o(Rn-l), and"pi E S(R+ X R+) tending to zero.
The integral operators with kerneis in S(R+ x R+) have bounded norm in J:.(E, F) which
can be estimated by tbe S-semi-norms of the kernel. Therefore the boundedness of
the operators associated with each summand in (2) is a consequence of an extension
of Calderon and Vaillancourt's theorem to the case of pseudodifferential symbols with
values in ['(E, F), noting that E, F are Hilbert spaces. The operators associated witb the
partial sums in (2) converge to an operator which is (Op G 9)"'" by Lebesgue's theorem on
dominated convergence.

2.9 Conclusion. This ends the first part of the proof of 2.1, since

ad O
( -iy )adß( D,,)C

is the operator with the symbol kernel a; D~9(Y, 1], X n , Yn) E 8- 1
- 10 [, and therefore has

the desired mapping properties.

Let us now prove that 2.1(iii) implies 2.1(i).

2.10 Definition. Fix a function t/> E C~(Rn-l), equal to 1 in a neighborhood of the
origin. For € > 0 let 4>((y) = 4>( fY), let 1 denote the identity mapping on S'(R+) and let

p( := Op (<f>,(Y)t/>((1])) 1;

p((y, 1]) := q,((y )q,((1]) 1;

2.11 Lemma. Let E, F E {HO",T(R+), H;,T(R+) : u, r ER}, s, t, S, l E R,O < f :::; 1.
Then
(a) p( : w",t(Rn-l, E) --+ w s,f(Rn-l, E) is bounded,.
(b) Pt : w",t(Rn-l, E) --+ w",t(Rn-l, E) is uniformly bounded, 0 < f :::; 1.
(c) Ct : W" (Rn-l , E) ~ W" (Rn-l ,F) is uniformly bounded, 0 < f ::; 1.
(d) C t is an integral opemtor with kernel function in S(R~ x R~).

Proof. For fixed (y, 1]),p((y, 1]) simply is a constant multiplication operator on S(R+).
We have

11"('1}-1 D~ D~p((y, 1])K(71) II.c(E) = ID~ D~Pt(Y)4>((1]))I·

(a) now follows from 2.2, since Pt = q,((y)Op q,t(1]) and since q, has compact support.
(b) For t = 0, tbis follows from 2.2, using that <Pt (y) is uniformly bounded in er for
o< f ::; 1, and q,t(1]) is uniformly bounded in Sr.o(R~-1 )con"t, the space of symbols that

are independent of y and y'. For smallltl, tbe commutator [(y)t ,Pt] is uniformly bounded,
so we also obtain the assertion; finally use commutator identities for the case of large Itl,
cf. 2.8(1) and [24], lemma 2.6.
(c) is immediate from (b).
(d) For every f > 0 and all s, t, S, tE R,

C( : W",t(Rn
-

1 , E) ~ ws,t"(Rn
- 1, F)

is bounded for arbitrary E, F. Hy 1.8, C t therefore is bounded from S'(R~) to S(R+.}
and thus has its kernel in S(R+ X R~.).
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2.12 Definition. Let G~ = TG(T-l. In view of the mapping properties 2.11,

G; :S'(R~) ~ S(R~)

is bounded, thus G: has a kernel t: E S(R~ X R~). Fix a function , E S(Rn-l) such that
,(0) = 1 and ,(-y) = ,(y). Let 'JlI(Y) = ,(y - y'). Then define for fixed y,y',"1 E Rn-l

by
[g~(y, y', 1], Dn)v] (xn) = e-i~~G:( ei.~')'JI' 0 v)(y, Xn)'

We will also apply g;(y, y' ,1], Dn ) to functions on R+, understanding that then Dn acts
with respect to the variable in R+ only.

2.13 Lemma. OPll,Y',f/g;(y,y',1],Dn ) = C:.

u(y) = Os-11ei(JI-lI
l

)T/ U (Y')'/JI' (y )dy'G1].

Therefore we obtain for v E S(R+)

Proof. I am using ideas of Ueberberg [33], pp. 465, 466. Let u E S(Rn-l) be arbitrary.
Then

C;(u0 v )(y,xn) = 1100

t:(y,xn,Z,Yn)

. Os-11ei(z-yl)~u(y')')'yl (z )dy'd1] V(Yn )dYndz (1)

= JJ~ t;(y,xn,Z,Yn)

. [lim,,_o11 ei (Z-")'u(Y'h,,(z)x(O''1)dy'tl'1] v(Yn)dYndz

by definition of the oscillatory integral. Here X E C~(Rn-l) is a function with X(O) = 1
and 0' > O. For fixed y, z define

Then z ~ ro(z) is a measurable function, and for fixed z,

as Q' --. 0+. Taking no = entier(n;l) + 1, partial integration shows that

Ir,,(z)1 :::; 11 1 + ~'112nO ei
(z-.'l'(1 + (_~.,)no){u(Y'h"(Z)}X(O''1)dY'tl'1l

~ const., independent of 0'.

Since t~(y, Xn, Z, Yn) E LI (R;-I X R+ yn ) , independent of 0', Lebesgue's theorem on dom­
inated convergence shows that

(2)
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- liIlla_o Jfooo t;(y, X n, z, Yn) JJei (Z-lI')f1 U (y')"YlI' (Z )X((11) dy'a11v (Yn)dYn dz

= liIlla_o JJ e- ill 'f1 X(O'11) Jfooo t:(y,xn,z,Yn)eiZf1,y'(Z)v(Yn)dYndz u(y')dy'a11

- liITlo_o JJe- iY
'f1x(0'11 )C;( e i

' f1 ')'y' (8) v )u(y')dy'a11

- Os-JJei (Y-Y')f1g;(y,y',Tl, DynHu 0 v)dy'il11

= [üp g:(y, v', 11, Dn )(u 0 v)] (y, X n )

Since S(R+.) = S(Rn-l )0",.S(R+), we obtain the assertion.

2.14 Corollary. Since
c: :S'(R~) ~ S(R~),

g;(y, V', 11, Dn) actually maps S'(R+) to S(R+), and is an integral operator with a kernel
function g;(y, V', 11, X n,Yn), which is rapidly decreasing with respect to X n and Yn. We
obtain it by

g: (y, y', Tl, X n,Yn) = (g;(y, y', 11, Dn)Dlln , D;l:n)S(14 ),5'(14) . (1)

In fact we may replace the above duality by any of the HO',7" (R+), H~O',-7" (R+ )-dualities
for sufficiently large (j, T.

2.15 Lemma. (a) The Jollowing identities can be verified by a direct computation.
(i) xnß;l:nT±l = T±lxnß;l:n

(ii) Op p(11 )T±1 = T±10p p(7J) Jor any p E Sg,o(Rn-l) which is independent oJ y.
For i = 1, ... , n - 1J

(iii) ad( -iYj)T = - !üp (~)T - xnßXn Op (~)T

(iv) ad( -iYj)T-1 = !üp (~)T + Op (~)Txnßxn

(v) ad(Dyj)T - ad(DyJT-1=O.
(b) For every choice oJ 0', ß, 8, (J', T,

is bounded uniformly in f, 0 < € ::; ].

Proof of (b). By Leibniz' rule

ad fi
( -iy)adß(Dy)C; = L: C01 •... ,ßJ adfi1

( -iV )adß1 (Dy)T ...
01 +02 + 03::::l0
Pt +tJ2+.8J-,6

... ad 02 (-iy )adß2 (Dy )C~ acl°3
( -iV )adß3 (D y )T-1

•

In connection with 2.11, the identities of (a) give the assertion, noting that the mappings

H"(Rn - 1 , HO'.7"(R+)) -+ HlJ(Rn- 1, HO'-l,7"-l(R+)),

Ha(Rn- 1, H~O'.-7"(R+)) -+ HlJ(Rn- 1 , H~O'-l,-7"-l(R+)),

H"(Rn- 1 ) H tT·7"(R+)) -+ H,,+1(Rn- 1, HU ,7"(R+)),

are all bounded, provided we ask that (J > ! for the first mapping.
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(3)

2.16 The rough estimate. Let g;(y, y', "7, Dn) and g~(y, y', 1), X n,Yn) be as in 2.13, 2.14.
For fixed k, k', m, m', 0', ß, ß' consider

Then by 2.14(1)

IEt (y,Y',"7,Xn,Yn) (xn) (Yn) I (1)

= !( (un) u~D:~a;D~ D~:g;(y, y', 1/, Dn)( (zn) z;:' D;:" O.n), Oxn)H"'T(~.n).Hö"T(~J

< Ila;D~D~:9;(Y, y', "7, Dn)( (zn) Z;: D;:' 8~n)IIH(T,T(R;.lrn)

. liD:' {z~ (Zn) 8rn }IIH- a ,-T(J). ).
n 0 A~.n

For u > k' + ~,i > k +~' 11 D~: {z~ (Zn) Srn } 11 Hö(T·-T(R;.lrn ) ~ C < 00, independent of Xn.
Moreover, for v E S'(R+) a calculation shows that

[8;D~ D~: g;(y, y', 7], Dn)v] (xn) =

= e-1
1/f1 L eßl ,ß2 adO (-iy)adß1 (D~) (c;( e' ·'1 D~+ß'/~, 0 v)) (x n ). (2)

ßl+ß2=ß

Since for measurable /,

we conclude that

II Et(y, y', 7], X n , Yn)ll~2(R~-1 xR;. xR+)

= JlIEt(Y,Y',7],xn,Yn)1112(R~+)dy

< c J11 Et(y, y', "7, X n, Yn) (x n) (Yn) II:uPzn'h dy.

Using (1) and (2), (3) can be estimated by

~ C' L:: JIlad Q

( -iy)adß(Dy)C;(e' ·Tj Dr:?+ß',y' 0 v)ll~a'T(R..t)dy, (4)
~+ß2=ß .

where v(zn) = (zn) Z: D~' byn • We may estimate (4) by

< eil LIlader (-iy )adßl (D~ )c; 1I~(L2(Rn-l ,HÖ<7.-T(R
t

)).L2(Rn-l,Ha,T(R,.)))
ßl+ß2=ß

11
1~'1Dß2+ß' () mDm' (' 11 2

. e y ,~' Y Zn Zn D rn L2(n.;-1 ,HÖ(T,-T (Rt ))"

The first norm in each of these summands is bounded independent of f for 0 < f ~ 1 by
lemma 2.15, the second equals

Here, the first factor is clearly bounded, independent of y', the second is bounded inde­
pendent of X n , if we choose u > m' + ~,T > m + ~'
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Altogether, we have shown that the L 2-norm of the mapping

is bounded independent of fand y', and so is - with the same considerations - the L4!-norm

of any of its derivatives. By Sobolev's lemma,

independent of fand y', or equivalently,

IIx:D:~y:D;:" a; D~ D~:g:(y, y', 1], X n , Yn)IIL2(R~+) ~ D(k, k', m, m', 0', ß, ß'). (5)

2.17 Corollary. The estirnates in 2.16 show that

{g: : 0 < f ~ I} is uniformly bounded in ~.

The symbol kerneis g: depend on y'. However, we can find symbol kerneis ?J: such that
(i) fJ: is independent of y',
(ii) {g;: 0 < f ~ I} is uniforrnly bounded in ~,
("') 0 -I( 0 K GI(111 P G g( = P G 9( = (.

Proof. By 2.4(b),(c) we can write

(1)

with ..\~() E [I, and 1f';(),ay:) null sequences in S(R+ x R+) and Sg,o(Rn-I X Rn-I), respec­
tively.
By standard pseudodifferential methods, [17], chapter 2, we can find b~() E Sg,o(R~-1 X

R~-I) such that Op b;f) = Op a;f)j moreover, the mapping a;t:) t--+ by) is continuous with

respect to the syn1bol topology. Now define g; by replacing a)f) in (1) by b~f). Since the
topology on ~,o coincides with the tensor product topology, (i) and (ii) are obvious.
(iii) Consider the associated operators. The corresponding surn (1) converges in operator
norm and the operators given by the partial sums coincide by construction, so we get the
operator identity.

2.18 Corollary. The estilnate 2.17(ii) may be rephrased in the following way: For all
N, N', k, m, 0', ß there is a C > 0 such that

(1)

Hy the theorem of Arzela and Ascoli, there is a sequence fj -+ 0 and a function gK E
COO(Rn-1 x Rn-I X Rn-I X R+ X R+) such that g:. -+ gK in all derivatives, uniformlyon

)

compact subsets of Rn-I x Rn-I x Rn-I x R+ x R+. In particular, the pointwise limit
gl( also satisfies tbe estimates (1).

2.19 Lemma. Üp G (gI<) = GI<.
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Proof. It is sufficient to show that

(1)

tends to

for every ! E S(R+.) and every x ER+.; we may even restrict ourselves to 1 of the form
I(y,xn ) = !1(y)/2(Xn ), where 11 E .,'F-l(cgo(Rn-1)) and 12 E Cgo(R+): this follows from
the fact that S(R+.) = S(Rn-1 )01fS(R+), the density of cgo(Rn-l) in S(Rn-1) and the
fact that .,'F : S(Rn-1) --. S(Rn-l) is an isomorphism.
For such! we conclude that

(21r)!T JeiJl7J faoo gK(Y,1J,Xn,Yn)!-2(Yn)dYnJ1(1/)df]

by Lebesgue's theorem on dominated convergence, because on the compact support of
11 0 !-2, g;. converges uniformly.
On the other hand, let us show that Op G 9;. f( x) -+ GK I(x): We have

J

(2)

By 1.8, T- 1
: S(R+.) -+ S(R+.) is an isomorphism. For 1 E S(R+.), we have Ptj ! -+ f

in S(R+.) as j -+ 00. Therefore p(jT-l f -+ T- 1f in S(R+.), a forteriori in HS(R+.) =
W"(Rn-1, 11"(R+)), and GP(jT- 1f -+ GT- 1f in view of the mapping properties 2.1(iii).

The family {p(j : j = 1,2, ...} is uniformly bounded on H"(R+.) by 2.11. For j E H" (R+.)
we thus have pt.ji -+ 1in lTS(R+.). We conclude that G:jf -+ GK1 in HS(Rn-l, HS(R+)).
For large s we obtain (1).

2.20 Definition. Let m E R. By \l1m denote the space of all H E 'c(S(R+), S'(R+.))
such that for all multi-indices Q,ß, and all s E R,U,U',T,T' E No, adO(-iy)adß(DJI)H
has a bounded extension to an operator from H" (R~-l , }/~u,-r (R+)) to Hs-m+ 10 1(R~-l ,
Hu' ,r' (R+ ))

2.21 Corollary. We have so far shown that, given H E \110, there is an h E Hg such that
H = Op G (h). Let us now show that indeed h E 1ft.
From what we have shown we deduce that for every I( E Wm

, there is a k E 11;: with
Op G k = 1(, m E R; this is a consequence of the fact that

is an isomorphism.
So, for the above H,adO(-iy)adß(DJI)H E '1'-1 0 1, thus has a symbol kernel hcr,ß E 11~lol.

But ho,ß = a;D~h, and we conclude that

and this is what we had to show.
In other words, GK has a symbol kernel gK E 1-l'i,
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2.22 Conclusion. Let 9K E '7-Ci be the symbol kernel for GK. Then G is the operator
with the symbol kernel

and 9 E B- 1,0.

Proof. A direct computation shows that the symbol kernel has the asserted form. The
analysis of the estimates then is as in 2.7.
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