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The smooth compact complex surfaces with a holomorphic

conformal structure are cornpletely classified in S. Kobayshi-

Ochiai [Kob-01]. The irnportance of such surfaces is clear

if one pays attension to the fact that the compaet free

quotient of the bidisc are ineluded in this category. How-

ever it seems to be in general a difficult problem to

construct directly exarnples of such surfaees in a geometrie

way. One idea is to construct singular holornorphic

structures and to ask then whether there would be a

desingularization procedure for them. This paper attempts

to present a method of the construction of holomorphic

conformal structures along this idea and to introduce

some non-empty spaces of singular conformal structures

on P2(~) which are desingularizable. In [H1,2], Hirzebruch

showed that same Hilbert modular surfaces are obtained by

taking the double covering of P2(~) ramifying exactly

along sorne rigid and symmetrie curve configurations.

Therefore it will be an interesting problem to construct
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directly the holomorphic conformal structure on P2(~)

induced from such Hilbert modular surfaces (see

section six). The plan of the present paper is as

follows. In the first section we review the theory of

characterization of surfaces uniformazed by symmetrie

domains. Gur viewpoint is Einstein-Kähler metrics and

holomorphic G-struetures. In the second section we

introduee the notion of generalized holomorphie eonformal

strueture on a smooth compaet complex surfaee. The

third seetion contains the study of complex V-surfaees

with at worst isolated quotient singularities with a

complete Einstein-Kähler orbifold-metrie of negative

Rieci eurvature and a logarithmic orbifold-holornorphie

conformal structure. This will be an "equivariant and

logarithmie" version of Theorem (4.1) of [Kob-01) in the ease

of dimension two. The fourth section eontains th~ desingulari

zation procedure of generalized holomorphic conformal

structure, whieh is the main idea of this paper. In the

fifth seetion we diseuss on generalized holomorphie conformal

structure on P2(~). Examples are presented in the final

section, which eontain some Hilbert modular surfaees and

compact surfaces with rational double points satisfying

c~ = 2c2 in the modified sense (see [Ko) and [M)) but

not covered by the bidisc. Here for eompaet surface cf

general type X and its canonical model X' ,c1 and

c 2 are defined as
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= 2 - . I (e !Pp) - I~ (p) I)
p S1.ngEX'

where Ep is the exceptional divisor of the minimal

resolution of p E Sing X I , e (Ep) is the Euler number

of Ep and IG(p) I is the order cf the loeal fundamental

group G(p) of p ESing XI • We include also a Hilbert

modular surface which can be obtained simply by modifying

P2(~) in the birational category, showing that the

formualtion in section 5 is applieable even to such a

case.

This work was done during the stay of both authors,

5. 1985 - 3. 1986, at the Max-Planck-Insi tut für Mathematik

in Bonn. They express their gratitude to Professor Dr.

F. Hirzebruch for directing their interest to this subject.

The special thanks are also due to Professor T. Mabuchi

and Dr. K. Fukaya for hel'pful and stimulating conversations.
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1. Cornplex surfaees uniforrnized -'by symmetrie dornains

Cornpaet eornplex surfaees uniformized by the symmetrie

domain n satisfy

( 1 )

er

(2)

according as n is the ball m2 l

er the bidise D x D.

Now let X be a compact cornplex surface of general

type and XI its canonical model. Then there exists a

unigue (up to constant multiplication) Einstein-Kähler

orbifold rnetric on Xl [Ko].; By using the curvature tensor

of this canonical metric, one can compute the generalized

Miyaoka-Yau characteristic (see [Ko] and [M]), narnely

c 2 ~ e~ - L x,(e(EP) - IG~p) I) =
pESing

which is clearly non-negative, where Ep is the exceptional

set of the minimal desingularization and e(Ep) is the

Euler number of Ep and G(p) is the binary polyhedral

group corre sponding to the singular i ty P EX' and W

1s the anti-self-dual part of the Weyl tensor of the

canonical Einstein-Kähler orbifold-rnetric. Therefore,

if X as above 5ati5fies the equality (1) then X' must

coincide with X , ,and W 5! o. This means that X i5
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uniformized by ]ß2. Combining this wi th the results

in [Kob-02], we obtain the following three equivalent

statements for any compact complex surface X of

general type:

(i)

(ii)

(iii)

2c
1

(X) = 3c
2

(X)

X adrnits a holornorphic projective connection,

X is unifcrrnized by ]ß2.

Now let us consider the similar question for a

surface X of general type satisfying one of the

following conditions:

(1) ,

(ii) I

( ii1) I

2
c 1 (X) = 2c 2 (X)

X admits a holornorphic conformal structure,

X is uniforrnized by D x D •

There are imp11cations (iii) I ~ (i) 1 , (lil) I ~ (ii) I

and .(li)' => (iii) 1. We should note that S .. Kobayashi

and Ochiai [Kob-01] showed that the existence of a

holomorph1c conformal structure implies the. ampleness

of the canonical bundle KX cf X. The equivalence

(li) I ~ (iii)' for any compact complex surface of

general type opens a way to construct directly examples

cf surfaces uniformized by D x D. The difference from

the care cf ]132 1s that the equality (i)' seems to

be insufficient to conclude the validity of :(ii) 1

and (ii1) '. B. Hunt pointed out that there i5 no hope



-6-

to characterize the compact quotie~ts of bounded

domains of rank ~ 2 and complex dimension ~ 3

only in terms of c 1 and c 2 . In fact, c
1

c 2 = 24

and and

The following discussion is completely independent

of the former but the same point of view will appear

in the final section of this paper (see Example 5).

Now let X be a compact surface of general type and
\

Xl its canonical model. Assume that

c 
2 I

pESing XI
( e iEr ) - ;CI) = o.

This means W ~ 0 for the canonical Einstein-Kähler

orbifold-metric on x'. So, XI is uniformized by E 2 .

This would probably be understood as follows: From the

theory of negligeable singularities ([B]) there is a

one-parameter family of compact complex surfaces

such that X = Xo and the canonical bundle

KX of X
t

is ample for t * o. By the theorem of Aubin
t

[A] and Yau [Y1], there is a unique Einstein-Kähler

metric gt on Xt representing c 1 (KX ). As t tends
t

to zero, the anti-self-dual Weyl curvature tensor W

will localize to (-2)-curves on X and off these (-2)-curves

gt will converge to the canonical Einstein-Kähler orbifold

metric on X. which is half-conformally flat W 2 O. We will

find an example in which this kind of argument i5 valid in

the final section. In the case of the deformation cf K3
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surfaces with rational double points, the above

argument of the convergence of Einstein-Kähler metries

is reasonably justified [Ko-T].

2. Holornorphic conformal structures in dimension 2 .

Definition. A generalized holomorphic conformal structure

defined by a holomorphic line bundle Lover a smooth

compact complex surface X is a primitive holomorphic

2section T of L 0 S T*(X}. Here the primitiveness

means that, at the germ level, T is not divisible by any

non-units in the structure sheaf of X.

We give a Ioeal expression of a generalized holomorphie

conformal strueture in the following way. Let {n} be
Cl

an open Stein covering of X by coordinate ne~ghborhood

and assume 2H (n jZ) = {O}, Y . For a generalized holo-a a

morphic eonformal structure we ean find a system of

holomorphic sections T E f(n ,s2T*{X}} such that if
Cl Cl

T = UT I for uEf (S1 ,0) and TI E f U1 ,s.2 T* (X}) then
aCta a a

where haSEf(nanüS'o*) and the coeycle

the holomorphic line bundle L.
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Definition. The discriminant divisor D for a

generalized holomorphic conformal struture {T} is
a

de t T rv = de t (9 , ,). The..... al.]

on the choice of 'T '5. By taking the determinant of
a.

the divisor on X defined by {det T } = 0, where
2 a,

'Ta is locally given by T = I g .. dzl. dz j and
a ij=1 a!.] a a

divisor D does not depend

we get

[D] = 2 (L + K).

Thus we can consider a double covering X of X

branched exactly over D (we have 2q such coverings

where q denotes the irregularity of X. If one wants

X to depend functorially on X, then one .may take the

double cevering associated with L + K ).

Definition. If the discrimiant divisor D is empty,

i. e. , det 'T is non-vanishing everywhere, thea

generalized holomorphic conformal structure

is called non-degenerate or simply a holomorphic conformal

structure [Kob-01].

On the ether hand, there are cases where some com-

ponents of D appear with multiplicity 2. For exarnple,

let X be a Hilbert modular surface with cusps and

(y,E) its minimal resolution where E is the exceptional
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divisor. Then the holomorphic conforrnal structure on

Y - E extends as a generalized one on Y with the

discriminant 2E, i.e., every component of E appears

with multiplicity 2. See Exarnple 6.4 in Section 6.

3. Einstein-Kähler surfaces with a generalized

holomorphic conformal structure

In [Kob-01], S. Kobayashi and Ochiai proved the

following

Theorem ([Kob-01]) Let X be a compact Einstein-Kähler

smooth surface admitting a holomorphic conformal structure.

Then X i5 either P1 (CI:) x P1 (CI:), or flat, or covered by

D x D according as the Ricci curvature is positive, 0 or

negative.

We will use the logarithmic-orbifold version of this

theorem. Since the arguments given by S. Kobayshi-Ochiai

are typieal in eoneluding that the given metric is

locally symmetrie, we give here an outline of their prüof

of the above theorem. We assurne Ric * O. Since the given

holomorphic conformal structure is non~degenerate, we

have a holomorphic section 0 of



by syrnmetrizing

~1Q-

2g = g ~ g. Since the metric i8 Einstein-

Kähler we are able to use Bochner's vanishing theorem

in an effective way to conclude that 0 is eovariantly

eonstant. The existenee of this eovariantly eonstant

objeet eauses reduetion on the holonomy group and it

follows that X must be loeally symmetrie.

To formulare a logarithmic-orbifold version of the

above theorem, we need to introduce the following:

Definition. Let X be a smooth surfaee and D a

reduced divisor with normal crossings. A generalized

holornorphic eonformal structure T behaves logarithmically

near D if T is given loeally by

2 2 2 2Y P(dx) + 2xyQ(dx) (dy). + x R(dy)

with Q2 - PR * 0 in coordinates (x,y) such that

D i5 given by xy = o.

A logarithmic-orbifold version may be formulated as

foliows, for example.

Theorem 1 Let X be a compaet complex surface with

at worst quotient singularities and E a divisor lying

in the regular part of X. Assurne that E consists of the

exceptional sets for Hilbert modular cusps and that

X - E admits a complete Einstein-Kähler orbifold-metrie

with negative Ricci curvature with quasi bounded geometry
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and equivalent to the bidisc rnetric near cusps. If

x - E adrnits an orbifold-holornorphic conformal structure

which behaves logarithmically near E, then X - E is

uniformized by the bidisc.

If Z is a (possibly non-compact) surfac~ with

at worst isolated quotient singularities, then an orbifold-

holomorphic conformal structure on Z means such a

conformal structure on Reg (Z) that any local

uniformization at any singular point lifts and extends

it to the point over the singularity. For the definition

of the quasi-bounded geometry of complete Kähler metric,

see for example [Ko).

Proof of Theorem 1 We prove the theorem in the special

case that X is non-singular. The given holomorphic

sonformal structure on X - E extends to a generalized

one on X with the dtscriminant D ="2E, 1.e., the

discriminant 1s E with each irreducible component

multiplicitiy 2. Just as in S. Kobayashi-Ochiai, we

obtain a holomorphic section s of

{K_ 0 [E)-2 ~ S1T~(log E)c ~ T (-log E) ~ ~ T*(log E)
X "x X X'

since the given holornorphic conformal structure on X - E

behaves lQgarithmically near E. We recall that a

Hilbert modular cusp is defined in the following way.

Let K be a totally real quadratic field over" Wand
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M a free abelian subgroup of rank two and V a

totally positive multiplicative group of rank one

such that VM = M. Let

G(M,V) = {(~ ~)I E: E V, Ii E M}

Then G (H, V) acts on H2
= { (z 1 ' Z 2) E CI:

2 IIm z1 > 0, Im z2:> O}

by (z1,z2) ~ ( EZ
1

1 1 where E
1 and 1

+ Il,E z2 + Il ), j..L

are conjugate of E and j..L over (Q , respectively.

This action is free and properly discontinuous. The

Hilbert modular cusp is'obtained by adjoining a point

00 to the complex manifold H2/G(M,V) with its neigh-

borhood system Y1 Y2 > d , where z. = x. + vC1 y . (1 = 1,2).
1. 1. 1.

Since our complete Einstein-Kähler metric is equivalent

to the bidisc metric near Hilbert modular cusps and is

of quasi-bounded geometry, we see that 31s1 2
is

a n auniformly bounded for large d>O , where an is

the unit normal vector to the real hypersurface

We can thus use Stokes' theorem to conclude that

J ßls1 2
*1 = O.

X-E

On the other hand, Bochner's formula (see for example

[Kob] teIls us that

2 2
~Isl = l\7sl •

Therefore we obtain

= d.
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2
I Vs I *1 = 0,

which means V5 B 0, i.e., s i5 covariantly con5tant.

As we mentioned earlier, this causes the reduetion on

the homology group of our cornplete Einstein-Kähler

metric. Therefore X - E is complete loeally symmetrie

Kähler manifold with negative Ricci curvature with the

relation between logarithrnic ehern numbers.

It rnust be uniformized by the bidisc. Finally, it i5

not difficult to modify the above arguments to the

general case.

Q.:E .. D.

The existence of an Einstein-Kähler metric with

the above properties i5 proved in [Ko] .. So, we obtain:

Theorem "1 , Let X be a compact cornplex surface with

at worst quotient singularities and E a divisor lying

in .the regular part of X consisting of the exceptional

sets for the minimal resolution for Hilbert modular

cusps. Assume the adjoint bundle K- + E
X

is orbifold-

ample outside of E (for the definition, see Theorem 1

of [Ko]). If X - E adrnits an orbifold-holornorphic

conforrnal structure which behaves logarithmically near

E, then X - E is uniforrnized by the bidisc.
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4. Desingularization of generalized holomorphic

conformal structures

Let X be a smooth compact complex surface.

Let T = {1"} be a generalized holornorphic conformal
a

structure on X with the defining .line·bundle L,
T

i.e., L is defined by the 1-cocycle h ß =~ anda T ß
with the'discriminant divisor D. We now consider the

following

(I) the discriminant divisor D is reduced,

(11) T is of rank 1, i. e., rank (g .. ) = 1, along
a OlJ

the regular part Reg (0) of 0,

(111) for every p E Reg (0), the one dimensional null

space N
P

(multiplicity 2) of at p

coincides with T (0).
p

Definition. A generalized holomorphic conformal

structure is called tangential if it satisfies the

condition (111) along Reg(D).

Remark 1. Under the following change of variables

(x ,y.) ~ (x, z) where z = y2 , the holomorphic conformal

structure (dx)2 + (dy)2 is reduced to the generalized one

4z'(dx)2 + (dz)2 which satisfies (I) - (111) locally.

Remark 2. If a given generalized holomorphic conformal

structure behaves logarithmically along D, the condition
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(I) is not satisfied because every component of D

is of multiplicity 2. But (11) and (111) are satis-

fied along Reg (D).

Since [D] is divisible by 2 in 2H (X ;Z), we

may consider a double covering X of branching exactly

over D. Let X(ID) be the double covering of X along

D associated to L + K
X

(recall [D] = 2(L + KX). It

is well-known that Sing (X) = Sing (D) and any

quotient singularity of X is a simple singular point

(or a rational double point). We set D*:= Reg(D) U {simple

singular points of D}. The following Theorem 2 gives a

desingularization procedure of generalized holomorphic

conformal strutures by means of the double covering trick

(cf. Remark 1).

Theorem 2 Assume that the conditions (1)-(111) are

fulfilled. Then the ind~ced holomorphic conforrnal

'" .
structure on X - D uniquely extends to a non-degenerate

holomorphic conformal structure on Reg (X) = (X - D) U Reg (D) .

It extends automatically to an orbifold-holomorphic

conformal struture on (X - D) U D* .

For the proof, we need the following:

Lemma. Let . B be a neighborhood of o in 2er: : (x, y)

and T(BO) = L~ ~ L~ a splitting of the tangent bundle

of BO = B - {O} . Then this splitting extends uniquely

to a splitting T(B) = L1 ~ L2 .
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° ° ° °Proof. We set dx = ~1 + ~2 ' dy = n 1 + n 2 to define

s·,n. E r(BO,(L~)*), i = 1,2, where T*(B)O= (L01 )*EB (L0
2

)*
~ ~ ~

o 0denotes the dual splitting. Then 1-forms ~1,ni' i = 1,2,

extends to holomorphic 1-forms ~. ,n. over B
1. 1.

by

Hartogs-Osgood's theorem. Obviously we have ~1 ~ln1 =

= ~ A n = 0 and2 2

Thus at least one of the terms in the right hand side,

say ~1 A n2 must be different from zero at ' ·O·E a: 2 .

Now the equation n2 = 0, t;1 = 0

of L1 ,L2 , respectively.

define the extensions

Q.E.D..:

Proof of Theorem 2. We first note that the second

assertion.of the theorem is a consequence of the first,

because the holomorphic conformal structures on a

smooth simply~connected surface Z are in one to one

corre spondence wi th the local sp li t ting of the tangent bundle

T(Z) into SUffi of two line bundles [Kob-01]. So, we have

only to prove the first assertion of the theorem. Let

(ds)2 = P(dx)2 + 2Qdxdy + R(dy)2, ß ~ Q2 - RP, locally.

Now 5uppose that p E Reg (D) and the local coordinates

(x,y) in X are so chosen that p = (0,0). By a 5uitable

linear change of x, y we can moreover assume that Q * 0

fj, ·ß * 0 at p, where we have used the abreviation
Y.: y

fj, = ~ fj,'
d6 Since ß Q2 PR = 0 at Q*O, =
dY

. = - p,x dX y

implies p . R * 0. Now we note that the null space N
p
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is given by

(4 • 1 ) P dx + Q dy = 0

since we have the identity

(4.2) P(ds)2 = (P dx + Q dy)2 - ß(dy)2

By the assumption (111) the equation (4.1) should be

equivalent to ßx dx + ßy dy = 0, i.e. the determinant

pß' - Qß is divisible.by ~. There is thus a holornorphic
y x

function a near p such that

(4 • 3) P ßy - Qß x = ~ß .

Now we want to pass to a sufficiently small neighborhood

of p in the double covering X, where we can take

8 = IE and y as local coordinates. In fact, since

ß x * 0 , we can locally express x as a holomorphic

function of y and 8 (Holomorphic functions and forms

near p in X can be regarded as functions and forms

near p in X by projection X ----+- X) • By using (4.2) ,

(4. 3) and 82
= ß we can see that the induced conformal

structure on X - D is locally given by the tensor

induced structure can be defined by the tensor

2 2 2(a8dx + 2Qd8) - (6y) (dy) •
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This extends to a non-degenerate quadratie form near

pEX sinee we have e = 0, Q* 0, ß y * 0 at p.

5. Generalized conforrnal structures on P2(~)

In this section we introduce a reasonable elass

of singular conforrnal structures on P2 (~): (x 1 ,x2 ,x3 )·

Let rla. be an affine part of P 2 «(J:) define by

x * 0 and TI:([3 _ {O} ~ P2(<I) the natural projeetion.a

Let {Ta}' T E r (f2 ,s2T* (P
2

«([)) , be a generalizeda. a.

holornorphic eonforrnal structure on P2(<I) defined by a

line bundle L. Then, if [D] = O(2rn), we have that

L = O(rn +3), sinee [D] = 2 (L + K) and K = 0(-3).

Note that 0(1) = {xß} . By multiplying suitable
x a

non-vanishing holomorphie functions to T '5 we rnay assurnea

that

= eß) m+3

a
in ([3 _ {al.

m+3 m+3
So, n*(Ta)Xa = n*(Tß)x ß on the open set of

defined ,by x a * 0 , x
ß

* o. This means that

* ( ) 01+ 3TI t X
a a.

is the restrietion of a globally def1ned holornorphie

covariant symmetrie tensor to {x * O}. So, if we
Cl
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3
::: \'

L.
i,j=1

h..(x) dx. dx.
1J 1 J

(h ..
1J

~ij(X) is a homogeneous polynomial cf degree rn + 1.

Note that P2(~) is the quotient of ~3_{O} by the

[*-action generated by the Euler vector field
3

~ = ~ x. ---aa . Thus, in order that ds 2 induces a
. 1 1. X.
1.= 1

generalized holomorphic conformal structure on P2(~)'

it is necessary and sufficient that ~ belangs to the

null bundle of the tensor ds 2
; ~ J ds 2 = o. This

condition is expressed by the following identities

(5. 1 )
3
L h ..(x) x. = 0

j=r 1 1.J J
i= 1,2,3.

In fact, if (5.1) is satisfied, we have for exarnple

(5.2) T a
ds 2

m+3
x a

h .. (x).
\' _1...,c.,J__
L. m+1

i,j*a x a

on n ,a

h .. (x)
where ~~1 can be viewed as a polynomial-of degree

m + 1 ~~ (Xi) . It follows from (5.1) that the
x a i*a

cofactor matrix of (hij ) is proportional to the matrix

(xij) where

det(hij)i-j*a
2

x a
polynomial in

x .. ::: X.x .. This means in particular that
1.J 1. J

= V is independent of et. V is a homogeneous
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(5.2) that V = 0 gives the discrimiant divisor D.

Of course we roust assume that V is not identically

zero. We moreover assume the condition (11) of section

four, i. e. ,

(11) I the rank of ds 2 is equal to one along the regular

locus of V = o.

By a suitable linear change of x"x2 ,x 3 if necessary,

we may assume that

(i) no prime factor of V divides one and the same

column er row of H

(ii) V 1s not divisible by ,any coordinate x. .
1.

To forrnulate (111) of section four, i.e., N' = T (D)P P

along the regular locus of D, we introduce homogeneous

polynomials of degree 3m

(cf. (4.3)),

for every even' permutation (i,j,k) of (1,2,3). By

using condition (11) 1 and (i), (ii) abeve, one sees

easily that all a. 's are divisible by V. Now (111)
1.

of section four is equivalent to the following:

(111) I Via.
1.

i = 1,2,3
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The condition (I) in section four 1s equivalent to

the following:

(I) , no multiple factor occurs in the prime f~ctorization

of D.

If the condition (I) I as weIl as (lI)' (III) land (i) - (ii)

are fulfilled, we can use the double covering trick

(Theorem 2) to obtain an orbifold-holomorphic conformal

structure on (X-D) U D*, where X = P 2 (<<:). In particular
f'J

if D is so "n ice" that X has at worst simple singularities

and Hilbert modular cusps and that the minimal resolution
f'J

Y of X over Hilbert modular cusps has the adjoint bundle

~ + E which 1s orbifold-ample outside of E ,where E

is the exceptional set over Hilbert modular cusps, and if

the orbifold-holomorphic conformal structure on

(X - D) U D* =·X - {cusps} behaves logari thmically near E

as a generalized one on Y, then we can use Theorem l'

to conclude that X-- {cusps} are uniformized by the

bidisc. On the other hand, if a given generalized

holomorphic conformal structure behaves logarithrnically

along Reg (D) then we do not need to consider the double

covering along D because such D must come from the

desingularization of Hilbert modular cusps and the blowing

down of some (-1)-curves. So, if we are given a generalized

holomorphic conformal structure behaving logarithmically

along Reg (D) such that
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(a) there exists a partial blowing up X of Sing (D)

so tha~ the proper trans form D of D is of simple

normal crossings and the induced conformal structure

behaves logarithmically along 0 and is non-degenerate
~

outside of D,

(b). D consists of the exceptional sets for the minimal

resolution of Hilbert modular cusps,

(c) Kx + [0] is ample outside of D,
~

then X - D is uniformized by the bidisc. In this

ease the holornorphie eovariant symmetrie tensor ds 2

on ~3 induced by the projeetion ~3 - {O} --T P2([)

splits into the symmetrie produet of two differential

1-forrns, because the two null directions are not eonfused

by the discrete group representing X - D as bidisc-quotient.

Of course, since the hornogeneous degree of ds 2 is rn -+: 3

where deg D = 2m, the surn of homogeneous degrees of the

forms is equal to m + 3.

This last argument is for Example 6.4 in the following

section. As this shows, the eonditions (I) I (I') in

Seetlons 4 - 5 might sometimes be too restrictive. In

some situations we have to allow double faetors to oeeur

in the diserimlnant locus D. Obviously they da not

affeet the double eovering formation; X(ID) = X(/DT)

where D 1 is one simple part of D. It is also an

elementary ealculation to prove that, if ds
2

is tangential
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to an irreducible component'of D with multiplicity 2,

then ds 2 behaves logarithmically near it. This remark

suggests the naturality of dealing with mixed situations

where only simple and double factors occur in the

discriminant locus. For the precise formulation of it

something should still be done.

6. Examples

In the previous section we have seen
3

homogeneous symmetrie tensor ds 2 = L
i·j=1

defines a generalized conforrnal structure

that the

h. . (x) dx . dx .
~J ~ ]

on P2«([)

pro~ided that some additional conditions are satisfied.

To show the richness of this category of conformal

structures. We will now mention some examples:

[ 6 • 1 ] We set here for d ~ 5

h ..
d-2= 2x. ' xjxk~~ ~

h .. d-1 d-1 d-1= xk(xk - x. x. )
~J ~ ]

where we should have always { i , j , k } = {1, 2 I 3} . The

double covering X' branched over the discriminant curve

D is an oribifold of general type with 3 (cl - 1) Ad- 2 -
.....

singular points. Since X has a unique Einstein-Kähler

orbifold metric with negative Ricci curvature, it fellows



-24-

that X is uniformizable by the bidisx D x D. In fact

K. Ivinskis [I] showed that X is uniformi zable by the procluct

of two isomorphie curves of genus (d - 2) (d - 3) /2. This

is thus a so-called reducible quotient of the bidisc.

Ta give good examples for irreducible quotients

of D x D, we have to cite for the moment the earlier

works [H1].,[H2] of Hirzebruch in which he described

P2(~) as same (quotients of) Hilbert modular surfaces.

For such a description the generalized conformal

structure induced on P2(~) should also be captured

as a homogeneous symmetrie tensor ds 2 . It is naturally

of particular importance to calculate,the tensor

explicitly since it should provide interesting identities

between the modular forms describing the coordinates

of P2(~) and their derivatives. We begin with the

simplest one:

[6.2] Let K = W(/2) and ° the ring of integers in

K . Ne denote by f(2) the principal congruence subgroup

of SL(2,O) associated with the ideal (2) of 0

{ (
"0: ß) ,-y 6 E SL (2 , ~) ; 0: B 6 a 1 , ß e y e 0 mod. (2)}

Let further f(2) =f ~ SL(2,O) be the group such that

f/f(2) i5 the center of SL(2,Ol/f(2).

([f:f(2)] = 2, SL(2,O)/r ~ 8
4

) . As usual 8L(2,O)

acts on H x H: (z1' z2) in the non-trivial manner and

we denote the compactified quotients HXH/r,H x H/r (2)
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v v
by Y1'Y2·

eovering map

v
(Y. has six eusps.) There is a natural

~

v v
Y2 ~ Y

1
of degree 2. The eoordinate

interchange (z1,z2) ~ (z2,z1) induees an involution
v

on Y1 and we denote it by T. Hirzebrueh showed [H2]
v

that Y1/T is isomorphie to P2(~) and that the
v

ramifieation loeus of the eovering Y2 ~ P2(~) is

the eurve of degree ten eonsisting of the following

2 2lines and eonies : x = ±1, Y = ±1, xy = ±1, x + Y = 2,

provided that the affine eoeordinates x,y are

suitably chosen.

(Note that this eonfiguration has exaetly six singular

points, ineluding the two at infinity. They eorrespond
v v

to the eusps on Yi .) The mapping Y2 ~ P2([) is

naturally faetorized by the double eovering of P2(cr)

ramified over this eurve of degree 10. Thus there must

be a unique tangential eonformal structure on P 2 (cr)

with the eurve as its discriminant. The explicit



-26-

calculation shows that the structure is given by the

tensor

2 222 2 2 2
(Y - 1 ) (2 - Y - x Y ) (dx) + 2xy (x - 1 ) (y - 1) dxdY

2 222 2
+ (x -1)(2-x -xy ) (dy)

in the affine patch (x,y), which obviously extends

conformally to the whole plane P2(~).

[6.3] Next we observe the Hilbert modular surface

Y = HXH/r(i5) completed with the six cusps of another

type where f(l5) denotes the principal congruence

subgroup of SL(2,O·) associated with the prime ideal

(/5) in the ring 0 of integers in K = Q(IS). Each

.cusP is resolved by a 2-cycle of rational curves with

self-intersection- number' - 3 .As before the transposi tion

(Z1'Z2) ~ (z2,z1) induces an involution, denoted also
v

by T , on Y and it is shown in [H2] that the quotient
v
Y/T is AS-isomorphic to P2(~): (AO,A1 ,A2 ) and that

the branch locus of Y~ P2(~) is the famous Klein

curve C = 0 of degree 10:

C = 320 A6A2A2
- 160 A4A3A3

+ 20 A2A4A4
o 1 2 o 1 2 o 1 2

+ 6 ASA5 _ 4 A(AS
+ A~) (32 A4

- 20 2 + 5 A2A2 )
1 2 1 0 AOA

1
A

2 1 2

A1O
+ A10

+ 1 2
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where (AO,A1 ,A2 ) are the homogeneous coordinates

used in [K]. Note that the operation of SL(2,FS ) 
v

SL(2,O)/r(lS) on Y induces the action of

chosen that the six points

and that (AO,A1 ,A2 ) are so

-1 \J -v(1,0,0), (2 ,E:,E: )

(v = O,1~2,3,4iE = exp (2ni/S)) form the unique minimal

orbit of AS . They are exactly the double cusps of the
v

curve and are the images of the eusps of Y. Now the

tangential eonformal strueture with the diseriminant

C = 0 is unique and given in the affine pateh AO* 0

by the symmetrie tensor P(dx)2 + 2Q dx dy + R (dy)2 with

P(x,y) 2(8 2 - 6
3 2 4 4 x 3 )= Y xy + x y - x y + 4

Q (x., y) -24 10 2 2 3 3 5 5= xy + x Y 2 x Y + x + y

R(x,y) = P(y,x).

[ 6 . 4 ] We operate again in the real quadratic field

W(IS) and its ring 0 of integers. Since the ideal

p =(2) remains prime, the residue elass field O/p

is isomorphie to the Galois field F 4 . This implies in

particular tha t the icosahedral group AS '" PSL (2 , F 4)
v

operates on the completed quotient Y = HxH/r,(2) which

has the five cusps, each ~f which is resolved by a

triangle of rational curves with self-intersection nurnber -3.

Hirzebrueh [H1] showed further that the image of the

diagonal {(z,z)} is lifted to an exceptional curve of
v

the 1 st kind on the minimal resolution Y of Y
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is not AS-invariant but there are exaetly ten

of its As-transforms whieh are disjoint from eaeh other

and that the separate blowing down of them is the

elassieal diagonal surfaee X of Clebseh and Klein

3
(X:EiYi = EiYi = 0 in P4(~): (YO'Y1'Y2'Y3'Y4». The

images of the ten (-1)-eurves are the Eekardt points

of X and the images of the fifteen rational curves

forming the five exceptional sets of the resolution Y

are fifteen arnong the twentyseven lines on X. The

remaining twelve lines form two sixtriplets of disjoint

lines which are permuted among themselves by A
S

• If

one blows down one system of disjoint lines of this

double six, one arrives again at P2(~) on which A
S

acts and the six points forming the rn~nimal orbit are

given. The fifteen lines on X are rnapped onto the

fifteen lines on P2(~): (AO,A1 ,A2 ) each of which passes

exactly two of the six points. They are thus given by

the equations [K]:

(*)

\

(1 ± I5)A
O

+ E
V A

1
+ E-

vA
2

= 0

v -v
E A

1
E A2 = 0

v=0,1,2,3,4

As we have seen in Seetion 3, the conformal 8tructure on

P2(~) induced by this manner i8 regular outside the

fifteen lines and it behaves logarithmieally near them.

It follows that the structure is also written in the form

of hornogeneous symmetrie tensor
2ds = Eh, . dx. dx.

1.J 1. ]
which



-29-

is tangential to any of the fifteen lines and for which

the polynomial V coincides (up to a non-zero constant

factor) with the square cf the product of the left hand

sides of (*). Moreover, when lefted to X, the

singularity of the structure along the (-1)-curves of

the blowing up should be removed by factoring out suit-

able powers of loeal defining functions of the curves.

One sees also the degree of h ..
~J

should be equal"to

15 + 1 ~ 16. Together with AS-invariance, these

2requirements determine uniquely the tensor ds . Since

the discriminant V is a square, ds 2 should be

decomposed into the product of two homogeneous 1-forms.

In fact they are the following differential forms:

f, ~ 10AO(A~ - A~) dAO '+ ('6A~A2 40A~A,A~ - '0

2 4 235 6 5
AOA, + 'OAOA1A2 + A,A2 + A2 )dA, + (-'6A

O
A,

+ 40A~A~A2 + 10A~A~ - 10AOA~A~ - A~ A1A~)dA2
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The strange impression for the fact that f 1 and f 2

have different -degrees will disappear.if one notes that

X admits the action of 8 5 extending that of A 5 and

that odd elements of 55 induce not projective but

Cremona transformations on P2(~) under which the forms

f 1 ,f
Z

are interchanged.

In example [6.2-4], the double plane on a blown up plane

satisfies the sufficient conditions for the existence of

complete Einstein-Kähler metric with negative Ricci-curvature.

It thus rnay be interesting to look at these examples as such

(compatifiable)surfaces whose universal,covering spaces

are determined by looking at the geometry of these (using

the uniforrnization theorem (Theorem 1 I))•.

To close this section we will now give two double

planes for which the modified proportionality is ful-

filled but which can not be uniformized by the bidisc.

The first one is rigid:

[6.5] We take a non-degenerate conic C on .P2(~) and

a point outside it. From we draw then the two

tangent lines t 1,t2 to C and we form the polar line

t lll

1 for by connecting the contact points cf

() I () 1,1

N1 ' N1 with C. We further choose a point pEtIlI
2 1

and

form the two tangents .Q.' .Q. 11

2' Z
11'

and the polar t 2 for P2

in the same w~y. The point P1 is then on the line 2 111

2 •
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consisting of c , 2! , 9. ~I , 2 '."
1. 1. 1.

(i = 1,2)

is unique up to projective transformations. The double

covering, denoted by X, of P2(~) branched over D has

now only rational double points; they are five A1 , two P4

-2and four DS • One easily checks c 1 (X) = 2C2 (X). But the

direct computation says that there is na tangential

conformal structure on P2(~) with the discriminant

D . One can even show that there is not any conformal

structure with the discriminant D. for which the six

lines 2! ,1~,2~ (i = 1,2) are integral curves, of '.
1. 1. 1.

2ds = O. This implies in particular that X is not a

quotient of the-bidisc.

In the following final example we will observe a

1-parameter family of arrangements of five conics, each

having generically . sixteen tacnodes (ordinary contact

points). It contains singular members with more tacnodes.

(The existence of such arrangements is announced in

Naruki (N].) If one considers the corresponding farnily

of double planes branched over such arrangements, one

has then the modified proportionality for generic members.

But the existence of singular members as above allows us

to apply the differential geometrie eonsideration cf

Section 1 to this family, eoncluding that almost all

members do not eome from the bidisc.
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The five conics of the family are given by the

equations:

2 2 2 2
C. : z ::: X la. + xy + a. aky ::: (x - a. a . y) · (x - aiaky)
~ ~ ] ~ ]

{i,j,k} ::: {1,2,3}

2 2c±: z = (xy + py ) ± 2xy

here (x,y,z) are the homogeneous coordinates of P2(~)'

a
1

,a2 ,a 3 are the parameters of the family bound by

the relation a
1

+ a 2 + a
3

~ 0 and we write p for

a 2a
3

+ a 1a
3

+ a 1a 2 • This family is considered to depend

essentiallyon only one parameter, since the corresponding

arrangements are isomorphic for

(ta
1

' taz,ta
3

) t * o. One sees inunediately that the point

is the contact point of= 0z = x - ajak
y

and that z = y = 0 i5 the contact point of

c.
]

and

have thus four tacnodes now. The simple subtraction of

the equations shows also that each of c± is tangent to

each of ci at two points (on the line x./a. ,. a.y = 0).
~ ~ ~

If P = 0, then c± are tangent also at point z = x = o.

Pictorially any generic configuration looks like
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where o· represents a non-singular eonie in P2(~)'

0---0 means two eonies interseet transversely at two

points and eontaet at one point, and u~==~o means

two eonies contact at two points. For any generic eonfiquration

o , the modified proportionality

for X(!D), which has eight A '5
1

-2
c 1 = 2c2 are fulfilled

and 16 A3 'S. There is

an complex analytie family Dt such that Dt for

t =1= 0 is generie and 0 0 is

i.e., two A
1

singularities collapse into one A3

singularity. We claim that any sequenee {t
n

} with

t ~ 0 contains infinitely many tn's, say {t },n nk
with t ~ 0 and X(IDt ) is not uniformized by

nk nk
.the bidisc. Suppose for some {t} with t --7 0

n n

that x(/Dt) is uniformized by the bidisc. Then, by
n

using Kazhdan-Margulis theorem (see [B-G-S] and [Bu])as weIl

as the general Schwarz Lemma for volume forms due to~

Yau [Y2], one sees that the canonical Einstein-Kähler

metric on X«(Dt
n

) converges to the eanonical Einstein

Kähler metric on X(~), which will satisfy I W+ I e lW_I.

On the other hand, for X(/D O)'
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3 =4" c 2
1 2 \' 1
2 c 1 - L (e (Ep) - I'" ( ) I

pEsing(X(/D
O

)) u p

which is a contradiction.

o
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