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0. Introduction

The smooth compact complex surfaces with a holomorphic
cénformal structure are completely classified in S. Kobayshi-
Ochiai [Kob-01]. The importance of such surfaces is clear
if one pays attension to the fact that the compact free
qguotient of the bidisc are included in this category. How-
ever it seems to be in general a difficult problem to
construct directly examples of such surfaces in a geometric
way. One idea is to construct singular holomorphic
structures and to ask then whether there would be a
desingularization procedure for them. This paper attempts
to present a method of the construction of holomorphic
conformal structures along this idea and to introduce
some non-empty spaces of singular conformal structures
on PZ(E) which are desingularizable. In [H1,2], Hirzebruch
showed that some Hilbert modular surfaces are obtained by
taking the double covering of P,(C) ramifying exactly
along some rigid and symmetric curve configurations.

Therefore it will be an interesting problem to construct



directly the holomorphic conformal structure on P T)

2(
induced from such Hilbert modular surfaces (see

section six). The plan of the present paper is as
follows. In the first section we reﬁiew the theory of
characterization of surfaces uniformazed by symmetric
domains. Our viewpoint is Einstein-Kdhler metrics and
holomorphic G-structures. In the second section we

introduce the notion of generalized holomorphic conformal

structure on a smooth compact complex surface. The

third section contains the study pf complex V-surfaces

with at worst isolated guotient singularities with a

complete Einstein-Kdhler orbifold-metric of negative

Ricci curvature and a logarithmic orbifﬁld-holomorphic
conformal structure. This will be an "equivariant and
logarithmic" version of Theorem (4.1) of [Kab-01] in the case
of dimension two. The fourth section contains the desingulari-
zation procedure of generalized holomorphic conformal
structure, which is the main idea of this paper. In the

fifth section we discuss on generalized holomorphic conformal
structure on PZ(E). Examples are presented in the final
section, which contain some Hilbert modular surfaces and
compact surfaces with rational double points satisfying

Ef = 262 in the modified sense (see [Kol and [M]) but
not covered by the bidisc. Here for compact surface of

general type X and its canonical model X' , c and

1
52 are defined as



61 (X) c,(X)
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c., (X) c,(X) - (e (Ep) - -l—r)
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where Ep 1is the exceptional divisorﬂof the minimal
resolution of p€ Sing X' , e(Ep) is the Euler number

of Ep and IG(p)| 1is the order of the local fundamental
group G(p) of p €Sing X' . We include also a Hilbert
modular surface which can be obtained simply by modifying
PZ(E) in the birational category, showing that the
formualtion in section 5 is applicable even to such a

case.

This work was done during the stay of both authors,
5. 1985 ~ 3. 1986, at the Max~Planck-Insitut flir Mathematik
in Bonn, They express their gratitude to Professor Dr,
F. Hirzebruch for directing their interest to this subject.

The special thanks are also due to Professor T. Mabuchi

and Dr. K. Fukaya for helpful and stimulating conversations.



1. Complex surfaces uniformized by symmetric domains

Compact complex surfaces uniformized by the symmetric

domain @ satisfy

2 _
(1) c1 = 302
or

2 _
(2) ey = 202

{
according as f is the ball :B2 or the bidisc Dx D,

Now let X be a compact complex surface of general
type and X' 1its canonical model. Then there exists a
unigue (up to constant multiplication) Einstein-Kdhler
orbifold metric on X' [Kol.. By using the curvature tensor
of this canonical metric, one can compute the generalized

Miyaoka-Yau characteristic (see [Ko] and [M]), namely

1

1 _
273 %7 P€S§ng x'(e(Ep) - |G(P)|) © 8n? IX'IW‘I

2

which is clearly non-negative, where Ep 1is the exceptiocnal
set of the minimal desingularization and e(Ep) 1is the
Euler number of Ep and G(p) 1s the binary polyhedral
group corresponding to the singularity p€X' and W_

is the anti-self-dual part of the Weyl tensor of the
canonical Einstein-K&hler orbifold-metric. Therefore,

if X as above satisfies the equality (1) then X' must

coincide with X , and W_ = 0. This means that X 1is



uniformized by 1B2. Combining this with the results
in [Kob-02], we obtain the following three equivalent
statements for any compact complex surface X of

general type:

. 2 _

(1) cT(X) = 3c,(X) ,

(1i) X admits a holomorphic projective connection,
(1ii) X 1is uniformized by ]Bz.

Now let us consider the similar question for a
surface X of general type satisfying one of the

following conditions:

2 -
(ii)° X admits a holomorphic conformal structure,
(iii) ! X is uniformized by DxD .
There are implications (iii)' = (i)' , (iii)' = (ii)'

and .(ii)' = (iii)’'. We should note that S. Kobayashi
and Ochiai [Kob-01] showed that the existence of a
holomorphic conformal structure implies the ampleness
of the canonical bundle Kx of X. The equivalence
(1i)° e (iii)' for any compact complex sﬁrface of
general type opens a way to construct directly examples
of surfaces uniformized by DxD. The difference from
the care of ZB2 is that the equality (i)' seems to

be insufficient to conclude the validity of (ii)’

and (iii)'. B. Hunt pointed out that there is no hope



to characterize the compact quotients of bounded
domains of rank 2 2 and complex dimension =2 3

only in terms of cq and Cye In fact, c = 24

1C2
3

and cy = 54 for both P1(¢) X PZ(E) and QB(E).

The following discussion is completely independent
of the former but the same point of view will appear
in the final section of this paper (see Example 5).
Now let X be a compact surface of general type and

X' its canonical model. Assume that

C -

1 .2 1\
— E - - .
2737 gk o (o201 - qeriyr) = ©

This means W_ = 0 for the canonical Einstein-K&hler
orbifold-metric on X'. So, X' 1is uniformized by Ez .
This would probably be understood as ﬁollows: From the
theory of negligeable singularities ([B]) there is a

one-parameter family of compact complex surfaces

{Xt}tED such that XO = X and the canonical bundle

Kx of Xt is ample for +t#+0. By the theorem of Aubin
t

[A] and Yau [Y1], there is a unique Einstein-K&hler
metric g on X representing c¢. (K, ). As t tends

t t 1 Xt
to zero, the anti-self-dual Weyl curvature tensor W_
will localize to (-2)-curves on X and off these (-2)-curves
9t will converge to the canonical Einstein-K&hler orbifold
metric on X . which is half-conformally flat WwW_ = 0. We will

find an example in which this kind of argument is valid in

the final section. In the case of the deformation of K3



surfaces with rational double points, the above
argument of the convergence of Einstein-Kdhler metrics

is reasonably justified [Ko-T].

2. Holomorphic conformal structures in dimension 2

Definition. A generalized holomorphic conformal structure

defined by a holomorphic line bundle L over a smooth
compact complex surface X 1is a primitive holomorphic
section T of ° L o SzT*(x). Here the primitiveness

means that, at the germ level, 1T 1is not divisible by any

non-units in the structure sheaf of X.

We give a local expression of a generalized holomorphic
conformal structure in the following way. Let {Qa} be
an open Stein covering of X by coordinate neighborhood
and assume HZ(Qa;Z) = {0}, Va . For a generalized holo-
morphic conformal structure we can find a system of

holomorphic sections Ta€ F(QG,SZT*lx)) such that if

2
= ) ' *
T, = UT, for UEP(Qa,O) and Ta€ P(QG,S.T (X)) then

u € F(QG,O*), and

" .
where haBE F(Qaf1QB,O ) and the cocycle {haB} defines

the holomorphic line bundle L.



Definition. The discriminant divisor D for a

generalized holomorphic conformal struture {Ta} is
the divisor on X defined by {det Ta} = 0, where
2 . .
. . - i j
1, 1is locally given by T i§:1gaijdza dz; and
det Ty = det (gaij)' The divisor D does not depend

on the choice of Ta'S. By taking the determinant of

erolz,) 8‘(za)\ .
(a zB)) (gaij)(aIzB)/= hopl9giy) -
we get

[D] = 2(L + K).

Thus we can consider a double covering X of X
branched exactly over D (we have 29 such coverings
where g denotes the irregularity of X . If one wants
X to depend functorially on X, then one may take the

double covering associated with L + K ).

Definition. If the discrimiant divisor D 1is empty,

i.e., det Ty is non-vanishing everywhere, the
generalized holomorphic conformal structure T = {Ta}

is called non-degenerate or simply a holomorphic conformal

structure [Kob-01].

On the other hand, there are cases where some com-
ponents of D appear with multiplicity 2. For example,
let X be a Hilbert modular surface with cusps and

(y,E) its minimal resolution where E is the exceptional



divisor. Then the holomorphic conformal structure on
Y - E extends as a generalized one on Y with the
discriminant 2E , i.e., every component of E appears

with multiplicity 2. See Example 6.4 in Section 6.

3. Einstein-K&hler surfaces with a generalized

holomorphic conformal structure

In [Kob-01], S. Kobayashi and Ochiai proved the

following

Theorem ([{Kob-01]) Let X be a compact Einstein-Kidhler
smooth surface admitting a holomorphic conformal structure.

Then X 1is elther P1(m) XP1(E), or flat, or covered by

DxD according as the Ricci curvature is positive, 0 or

negative.

We will use the logarithmic-orbifold version of this
theorem. Since the arguments given by S. Kobayshi-Ochiai
are typical in concluding that the given metfic is
locally symmetric, we give here an outline of their proof
of the above theorem. We assume Ric # 0. Since the given
holomorphic conformal structure is non=degenerate, we

have a holomorphic section ¢ of

K% @ s2r*(x) éTi (T (X))
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by symmetrizing g2 = g ® g. Since the metric is Einstein-
Kdhler we are able to use Bochner's vanishing theorem

in an effective way to conclude that ¢ 1is covariantly
constant, The existence of this covariantly constant
object causes reduction on the holonomy group and it

follows that X must be locally symmetric.

To formulare a logarithmic-orbifold version of the

above theorem, we need to introduce the following:

Definition. Let X be a smooth surface and D a

reduced divisor with normal crossings. A generalized

holomorphic conformal structure +t behaves logarithmically

near D if 1 1is given locally by
y?Plax)? + 2xyQ(dax) (dy) + x°R(ay)?

with Q2 - PR # 0 in coordinates (x,y) such that

D is given by xy = 0.

A logarithmic-orbifold version may be formulated as

follows, for example.

Theorem 1 Let X be a compact complex surface with

at worst quotient singularities and E a divisor lying

in the regular part of X . Assume that E consists of the
exceptional sets for Hilbert modular cusps and that

X - E admits a complete Einstein~K&hler orbifold-metric

with negative Ricci curvature with quasi bounded geometry
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and equivalent to the bidisc metric near cusps. If
X - E admits an orbifold-holomorphic conformal structure
which behaves logarithmically near E , then X - E is

uniformized by the bidisc.

If 2 is a (possibly non-compact) surface with
at worst isolated quotient singularities, then an orbifold-
holomorphic conformal structure on 2 means such a
conformal structure on Reg (Z) that any local
uniformization at any singular point lifts and extends
it to the point over the singularity. For the definition
of the guasi-bounded geometry of complete Kdhler metric,

see for example [Kol.

Proof of Theorem 1 We prove the theorem in the special

case that X is non-singular. The given holomorphic
sonformal structure on X - E extends to a generalized
one on X with the discriminant D = 2E, i.e., the
discriminant is E with each irreducible component
multiplicitiy 2. Just as in S. Kobayashi-Ochiai, we

obtain a holomorphic section s of

2

- 1 4 4
(Ki ® [E]) ® 5 ?%(log E)c @ TY(-log E) ® & T*(log E),

X
since the given holomorphic conformal structure on X - E
behaves logarithmically near E . We recall that a
Hilbert modular cusp is defined in the following way.

Let K be a totally real quadratic field over @ and
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M a free abelian subgroup of rank two and V a
totally positive multiplicative group of rank one

such that VM = M, Let

G(M,V) = {(8 ;‘)‘ e €V, pGM} .

2

Then G(M,V) acts on H" = {(21,22)6 E2]Im zq > 0,Im 22>0}

by (z1,22) f—> (ez1 + u,e122 + u1), where 81 and p1
are conjugate of € and p over {) , respectively.
This action is free and properly discontinuous. The
Hilbert modular cusp is obtained by adjoining a point
© to the complex manifold HZ/G(M,V) with its neigh-
borhood system y,y, > d , where z; = x; + ﬂﬁyi(i =1,2).
Since our complete Einstein-Kdhler metric is equivalent
to the bidisc metric near Hilbert modular cusps and is

2
of quasi-bounded geometry, we see that alsi” is

3 n
uniformly bounded for large d>0 , where é%

the unit normal vector to the real hypersurface Y¥, = d.

is

We can thus use Stokes' theorem to conclude that

[ Blsl®s1 = 0.
X-E

On the other hand, Bochner's formula (see for example

[Kob] tells us that

Alsl? = (vsI? .

Therefore we obtain
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ﬁ |VS|2*1 = 0,

X-E

which means Vs = 0, i.e., s 1is covariantly constant.
As we mentioned earlier, this causes the reduction on
the homology group of our complete Einstein-K&hler
metric. Therefore X - E is complete locally symmetric
K&hler manifold with negative Ricci curvature with the
relation E? = 2c, between logarithmic Chern numbers.
It must be uniformized by the bidisc. Finally, it is
not difficult to modify the above arguments to the

general case.

Q.E.D.

The existence of an Einstein-Kidhler metric with

the above properties is proved in [Kol. So, we obtain:

Theorem 1' Let X be a compact complex surface with

at worst quotient singularities and E a divisor lying
in the regular part of X consisting of the exceptional
sets for the minimal resolution for Hilbert modular
cusps. Assume the adjoint bundle Ki + E 1is orbifold-
ample outside of E (for the definition, see Theorem 1

of [(Kel). If X - E admits an orbifold-holomorphic

conformal structure which behaves logarithmically near

E, then X - E is uniformized by the bidisc.
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4, Desingularization of generalized holomorphic

conformal structures

1Y

Let X be a smooth compact complex surface.
Let 1 ={Ta} be a generalized holomorphic conformal
structure on X with the defining .line bundle L ,
i.e., L 1is defined by the 1-cocycle haB = ?E , and
with the'discriminant divisor D . We now consider the

following

(1) the discriminant divisor D is reduced,

(II) T is of rank 1, i.e., rank (g } = 1, along

a adj
the regular part Reg (D) of D ,

(IIT) for every p€ Reg (D), the one dimensional null
space Np (multiplicity 2) of 1 at p

coincides with Tp(D).

Definition. A generalized holomorphic conforﬁal

structure is called tangential if it satisfies the

condition (III} along Reg(D).

Remark 1. Under the following change of variables

(x,y) — (x,2) where =z = y2 , the holomorphic conformal
structure (dx)2 + (dy)2 is reduced to the generalized one
4z(dx)2 + (dz)2 which satisfies (I) - (III) locally.
Remark 2. If a given generalized holomorphic conformal

structure behaves logarithmically along D, the condition
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(I) 1is not satisfied because every component of D
is of multiplicity 2. But (II) and (III) are satis-

fied along Reg (D).

Since [D] is divisible by 2 in Hz(x;z), we
may consider a double covering X of branching exactly

over D. Let X(/D) be the double covering of X along

D associated to L + KX (recall (D)

is well-known that Sing (X) = Sing (D) and any

2(L + Kx). It

quotient singularity of X is a simple singular point

{or a rational double point). We set D*:=Reg(D) U {simple
singular points of D}. The following Theorem 2 gives a
desingularization procedure of generalized holomorphic

conformal strutures by means of the double covering trick

(cf. Remark 1).

Theorem 2 Assume that the conditions (I})-{(III) are
fulfilled. Then the induced holomorphic conformal

structure on X - D uniquely extends to a non-degenerate

holomorphic conformal structure on Reg (X) = (X - D) Reg (D).
It extends automatically to an orbifcold-holomorphic

conformal struture on (X - D) UD* .

For the proof, we need the following:

Lemma. Let B be a neighborhood of 0 in Ez:(x,y)

0 0

and T(BO) = L, @ L2 a splitting of the tangent bundle
0

of BY = B - {0} . Then this splitting extends uniquely

to a splitting T(B) = L, ® L,.



-16-

0 0

Proof. We set dx = £ + 62 , dy = Ny + n, to define

0 0 . 0 _ 0 0y %
Ei,ni € T'(B ,(Li)*), i=1,2, where T*(B)" = (L1}*® (Lz)

0

denotes the dual splitting. Then 1-forms &5 ,n.,

i=1,2,
extends to holomorphic 1-forms Ei’ni over B by
Hartogs-Osgood's theorem. Obviously we have E1A.n1=

= €2 ANy = 0 and
dx dy = 51 AN, + EZAH1

Thus at least one of the terms in the right hand side,
say 51/\n2 must be different from zero at 0€ Ez.
Now the equation n, = 0, 51 = 0 define the extensions

~of L1,L2, respectively.
Q.E.D.

Proof of Theorem 2. We first note that the second

assertion.of the theorem is a consequence of the first,
because the holomorphic conformal structures on a

smooth simply -connected surface 2 are in one to one
correspondence with the local splitting of the tangent bundle
T(Z) into sum of two line bundles [Kob-01]. So, we have
only to prove the first assertion of the theorem. Let
(ds)? = p(ax)? + 20dxdy + R(dy)2, & = Q°> - RP, locally.
Now suppose that p€ Reg (D) and the local coordinates
(x,y) in X are so chosen that p = (0,0). By a suitable
linear change of x,y we can moreover assume that Q=# 0

A A #* 0 at p, where we have used the abreviation

A, SECISN =§—$—.Since A=Q%>-PR=0 at p, Q#0

implies P . R # 0., Now we note that the null space Np
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is given‘by

(4.1) pdx + Q dy = 0

since we have the identity

(4.2) P(@s)? = (P dx + Q dy)? - A(dy)?

By the assumption (III} the equation (4.1) should be
equivalent to Ak dx + Ay dy = 0, i.e. the determinant
pAY - QAX is divisible. by A. There is thus a holomorphic

function o near p such that

(4.3) P Ay - QA X = ah

Now we want to pass to a sufficiently small neighborhood
of p in the double covering X , where we can take
6=/A and y as local coordinates. In fact, since

Ax # 0 , we can locally expreés X as a holomorphic
function of y and 6 (Holomorphic functions and forms
near p 1in X can be regarded as functions and forms
near p in X by projection X —» X). By using (4.2),

(4.3) and 62= A we can see that the induced conformal

structure on X - D is locally given by the tensor

(a02dx + 200d8)2 - (Ay) 262 (dy) 2

= 82{(aBdx + 20d0)% - iAy)2(dy)?} . Thus the

induced structure can be defined by the tensor

(abdx + 20d8)2 - (ay)2(dy)?
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This extends to a non-degenerate quadratic form near '

~

p€ X since we have 6 = 0, Qg%0, Ay=#0 at p.
Q.E.D.

5. Generalized conformal structures on PZ{E)

In this section we introduce a reasonable class
of singular conformal structures on Pz(m):(x1,x2,x3).
Let Qa be an affine part of PZ(E) define by

X, # 0 and m:C> - {0} —> PZ(E) the natural projection.
2 .
Let {Ta}, TafEF(Qa,S T*(PZ(E)), be a generalized

holomorphic conformal structure on P2(¢) defined by a
line bundle L. Then, if [D] = 0(2m), we have that

L = O(m +3), since [D] = 2(L+K) and K = 0(-3).

X
Note that 0(1) = {;E} . By multiplying suitable
(04

non-vanishing holomorphic functions to Ta'S we may assume

that
: X m+ 3
e RO
B a

m+3 m+3

So, wHlT )x T = m*(Tg)xg on the open set of c3- (0}

defined by X, * o, Xg # 0. This means that

m+3

2 _
ds® = w*(ra)xa

is the restriction of a globally defined holomorphic

covariant symmetric tensor to {Xa # 0}. So, if we
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write down d52 as

(x) 1is a homogeneous polynomial of degree m + 1.

h. .
'3y

Note that P,(L) is the quotient of ¢3—{0} by the

2
C*-action generated by the Euler vector field
3
£ =) X; 35— - Thus, in order that ds® induces a’
i=1 i

generalized holomorphic conformal structure on PZ(E),
it is necessary and sufficient that § belongs to the
null bundle of thetensor ds? i £ ds® = 0. This
condition is expressed by the following identities

3

(5.1) p)

h (x)x. =0 i=1,2,3.
1] J
i1

In fact, if (5.1) is satisfied, we have for example

d52 hi.(x). X5 fi
520 rg et o7 () (M) g,
b4 i,j#a x a o
o o
' hi.(x)
where —— can be viewed as a polynomial of degree
X X,
m + 1 ig (—5-) . It follows from (5.1) that the
Xa /i4q .
cofactor matrix of (hij) is proportional to the matrix
= i ' ticul that
(xij) where X xixj. This means in particular
det(hjs)4i-5
l; h R P is independent of o. D is a homogeneous
X
o

polynomial in (x1,x2,x3) of degree 2m. It follows from
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(5.2) that ? = 0 gives the discrimiant divisor D.
Of course we must assume that T 1is not identically
zero. We moreover assume the condition (II) of section

four, i.e.,

2

(II)' the rank of ds® is equal to one along the regular

locus of P = 0.

By a suitable linear change of x1,x2,x3 if necessary,

we may assume that

(i) no prime factor of ¥ divides one and the same

column or row of H ,

(11) P 4is not divisible by any coordinate Xy

To formulate (III) of section four, i.e., Np = Tp(D)
along the regular locus of D , we introduce homogeneous

polynomials of degree 3m

='h,.0. - h. D, . (4. '
ay (X) hjj K hjkvj (cf. (4.3))

for every even permutation (i,3j,k) of (1,2,3). By
using condition (II)' and (i), (ii) above, one sees
easily that all ai's are divisible by 0. Now (III)

of section four is equivalent to the following:

(II1) D|a, i=1,2,3
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The condition (I) in section four is equivalent to

the following:

(r)° no multiple factor occurs in the prime factorization

of D .

If the condition (I)' as well as (II)' (III)' and (i)-(ii)
are fulfilled, we can use the double covering trick
(Theorem 2) to thain an orbifold-holoﬁorphic conformal
structure on (X-D) U D*, where X = Pz(E). In particular

if D is so "nice" that X has at worst simple singularities
and Hilbert modular cusps and that the minimal resolution

Y of X over Hilbert modular cusps has the adjoint bundle
KY-rE which is orbifold-ample outside of E ,where E

is the exceptional set over Hilbert modular cusps, and if
the orbifold-holomorphic conformal structure on

(X-D) UD* = X -{cusps} behaves logarithmically near E

as a generalized one on Y, then we can use Theorem 1'

to conclude that X - {cusps} are uniformized by the
bidisc. On the other hand, if a given generalized
holomorphic conformal structure behaves logarithmically
along Reg (D) then we do not need to consider the double
covering along D because such D must come from the
desingularization of Hilbert modular cusps and the blowing
down of some (-1)~-curves. So, if we are given a generalized
holomorphic conformal structure behaving logarithmically

along Reg (D) such that



-22-~

(a) there exists a partial blowing up X of Sing (D)
so that the proper transform D of D is of simple
normal crossings and the induced conformal structure

behaves logarithmically along S and is non-degenerate

outside of D ,

(b). D consists of the exceptional sets for the minimal

resolution of Hilbert modular cusps,

(c) Ky + [D] is ample outside of D ,
then X - D is uniformized by the bidisc. In this

case the holomorphic covariant symmetric tensor d52

on €3 induced by the projection ¢’ - {0} — PZ(E)

splits into the symmetric product of two differential

1-forms, because the two null directions are not confused

by the discrete group representing X - D  as bidisc-quotient.
Of course, since the homogeneous degree of d52 is m+ 3
where deg D = 2m, the sum of homogeneous degrees of the

forms is equal to m+ 3.

This last argument is for Example 6.4 in the following
section. As this shows, the conditions (I), (I') in
Sections 4 - 5 might sometimes be too restrictive. In
some situations we have to allow double factors to occur
in the discriminant locus D . Obviously they do not
affect the double covering formation; X(vD) = X(vD')
where D' is one simple part of D. It is also an

elementary calculation to prove that, if d52 is tangential
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to an irfeducible component of D with multiplicity 2,
then ds2 behaves logarithmically near it. This remark
suggests the naturality of dealing with mixed situations
where only simple and double factors occur in the
discriminant locus. For the precise formulation of it

something should still be done.

6. Examples

In the previous section we have seen that the
3
homogeneous symmetric tensor as® = Y hij(x) dxidxj
i-3=1
defines a generalized conformal structure on Pz(m)

provided that some additional conditions are satisfied.
To show the richness of this category of conformal

structures. We will now mention some examples:

[6.1] We set here for dz5
_ d-2.
hii = 2xi xjxk
Y S CL It
15 k ¥k Xy 3

where we should have always {i,3,x} = {1,2,3} . The

double covering ¥  branched over the discriminant curve
D is an oribifold of general type with 3(d-1) Ay , -
singular points. Since X has a unique Einstein-K&hler

orbifold metric with negative Ricci curvature, it follows
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that X is uniformizable by the bidisx Dx D. In fact
K. Ivinskis [I] showed that X is uniformizable by the product
of two isomorphic curves of genus (d-2)(d-3)/2. This

is thus a so-called reducible quotient of the bidisc.

To give good examples for irreducible gquotients
of Dx D, we have to cite for the moment the earlier
works [H1],[H2] of Hirzebruch in which he described
Pz(E) as some (quotients of) Hilbert modular surfaces.
For such a description the generalized conformal
structure induced on PZ(E) should also be captured
as a homogeneous symmetric tensor dsz. It is naturally
of particular importance to calculate .the tensor
explicitly since it should provide interesting identities
between the modular forms describing the coordinates
of Pz(m) and their derivatives. We begin with the

simplest one:

[6.2] Let K = @(/2) and 0 the ring of integers in
K . We denote by TI(2) the principal conéruence subgroup

of SL(2,0) associated with the ideal (2} of 0

{(3 g) € SL(2,0);a=6=1,8=y=0 mod. (2)}
Let further T(2) < T < SL(2,0) be the group such that
I/r(2) 4is the center of SL(2,0V/T(2).

([F:F(Z)] = 2, SL(2,0)/T = S4) . As usual SL(2,0)

acts on HxH:(z,,2,) in the non-trivial manner and

we denote the compactified quotients HxH/T ,Hx H/T(2)
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v v
by Y1,Y2 « (Y. has six cusps.) There is a natural

<P

\%
covering map Yz —> Y1 of degree 2. The coordinate

interchange (z1,22) — (22,21) induces an involution
v
on Y, and we denote it by t. Hirzebruch showed [H2]
v

that Y1/T is isomorphic to PZ(E) and that the

Y
ramification locus of the covering Y. —» Pz(m) is

2
the curve of degree ten consisting of the following

lines and conics : x = %1, y = *1, xy = %1, X2'+Y2 = 2,
provided that the affine cocordinates x,y are

suitably chosen.

(Note that this configuration has exactly six singular
points, including the two at infinity. They correspond
to the cusps on §i‘) The mapping §2 —_ PZ(E) is
naturally factorized by the double covering of fz(Q)
ramified over this curve of degree 10. Thus there must

be a unique tangential conformal structure on PZ(E)

with the curve as its discriminant. The explicit
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calculation shows that the structure is given by the

tensor

(yz-1)(2-y2-x2y2)(dx)2+-2xy(x2— 1)(y2-1)dxdy

+ (xz

2
- 1) (2 - x2 - x%y?) (ay) ?
in the affine patch (x,y), which obviously extends

conformally to the whole plane P, (C).

[6.3] Next we observe the Hilbert modular surface

Y = HxH/T (¥/5) completed with the six cusps of another
type where [ (/5) denotes the principal congruence
subgroup of SL(2,0) associated with the prime ideal

(/5) in the ring 0 of integers in K = Q(VY5). Each
cusp 1is resolved by a 2-cycle of rational curves with
self-intersection number -3.As before the transposition
(21,22) — (22,21) induces an involution, denoted also
by 1 , on ; and it is shown in [H2] that the quotient
§/T is A

—-isomorphic to PZ(E):(AO,A Az) and that

5 17
the branch locus of Y —» PZ(E) is the famous Klein

curve C = 0 of degree 10:

= 6,2,2 4.3.3 2,44
C = 320 A0A1A2 - 160 AOA1A2 + 20 A0A1A2
5.5 5 5 4 2 2_2
+ 6 A1A2 - 4 A(A1 + AZ)(BZ AO - 20 A0A1A2 + 5 A1A2)
+ A10+ A10

1 2
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where (AO,A1,A2) are the homogeneous coordinates

used in [K]. Note that the operation of SL(2,Fg) =
v
SL(2,0)/T(V/S) on Y induces the action of

ASE PSL(Z,FS) on Pz(m) and that (AO,A AZ) are Sso

1/

(2-1 ¥

-V
tE4E

chosen that the six points (1,0,0), )

(v =20,1,2,3,4;e = exp (27i/5)) form the unique minimal
orbit of A5 . They are exactly the double cusps of the
curve and are the images of the cusps of ;. Now the
tangential conformal structure with the discriminant

C =0 1is unique and given in the affine patch AO# 0

by the symmetric tensor P(dx)2 + 2Q dx dy + R (dy)2 with

P(x,y) = 2(8 y2— 6 xy34-x2y4-x4y4-4 x3)
Qix,y) = -24 xy + 10 x2y2 - 2 x3y3 + x5 + yS
R(x,y) = Ply,x).

[6.4] We operate again in the real quadratic field

@(/5) and its ring ¢ of integers. Since the ideal

p =(2) remains prime, the residue class field O0/p

is isomorphic to the Galois field Fy - This implies in
particular that the icosahedral group ASEIPSL(Z,F4)

operates on the completed quotient ; = HxH/T{2) which

has the five cusps, each of which is resolved by a

triangle of rational curves with self-intersection number -3.
Hirzebruch [H1] showed further that the image of the
diagonal {(z,z)} is lifted to an exceptional curve of

v
the 1 st kind on the minimal resolution Y of Y
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that is not As—invariant but there are exactly ten
of its As—transforms which are disjoint from each other
and that the separate blowing down of them is the
classical diagonal surface X of Clebsch and Klein
(X:Ziyi = L,y =0 in P4(¢):(y0,y1,y2:y3fy4)). The
images of the ten (-1)-curves are the Eckardt points

of X and the images of the fifteen rational curves
forming the five exceptional sets of the resolution Y
are fifteeh among the twentyseven lines on X. The
remaining twelve linés form two sixtriplets of disjoint

lines which are permuted among themselves by A If

5 -
one blows down one system of disjoint lines of this
double six, one arrives again at Pz(m) on which A5
acts and the six points forming the minimal orbit are
given. The fifteen lines on X are mapped onto the
fifteen lines on PZ(E):(AO,A1,A2) each of which passes
exactly two of the six points. They are thus given by

the equations [K]:

(1+ @)AO + e¢’A

(*) v=20,1,2,3,4
evA1 - e_vA =0

As we have seén in Section 3, the conformal structure on
PZ(E) induced by this manner is regular outside the
fifteen lines and it behaves logarithmically near them.
It follows that the structure is also written in the form

of homogeneous symmetric tensor d52 = Ehij dx.l dxj which
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is tangenfial to any of the fifteen lines and for which
the polynomial 0¥ coincides (up to a non-zero constant
factor) with the square of the product of the left hand
sides of (*). Moreover, when lefted to X, the
singularity of the structure along the (-1)-curves of
the blowing up should be removed by factoring out suit-
able powers of local defining functions of the curves.
One sees a;so the degree of hij should be equal -to

15 + 1 = 16. Together with As—invariance, these
requirements determine uniquely the tensor dsz. Since
the discriminant ©? 1s a square, d52 should be
decomposed into the product of two homogeneous 1-forms.

In fact they are the following differential forms:

£, = 108,(a7 - &3) da, + (16328, - 40a3a.22 - 10
AgAf + 10A0AfA§ + A%n, + Ag)dA1 + (-16A2A,
¥ 40A8AfA2 * 10A§Ag - 10A0A$A§ - A% - A1Ag)dA2

£, = (64A7A7 - 6427A5 - 40agaSA, + 40a3a AS
+ 10a,a7A2 - 108,827 - al0 + a,%)pag. + (64
ASA1A§ - 64A8A$ - 144A8A$Ag ¥ 80A3A?A2
+ 40A7AS + 40A3A?Ag - 26A§A?A§ - 16A§A1
Al 4 AT + 4087 A alal + aZnd)an; + (-
64n/a%A, + 64a5n7 + 144878722 - 20n2n°
-BOASA? - 40A3A$Ag + 16A5A¥A2 + 267
Ang - AOA?Ag - AgA) - A?Ag - A?A;)dAz
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The strange impression for the fact that f1 and f2
have different degrees will disappear. if one notes that

X admits the action of S extending that of Ag and

5
that odd elements of S induce not projective but
Cremona transformations on PZ(E) under which the forms
i

f1,f2 are interchanged.

In example [6.2-4], the double plane on a blown up plane
satisfies thé sufficient conditions for the existence of
complete Einstein-Kdhler metric with negative Ricci-curvature.
It thus may be interesting to look at these examples as such
(compatifiable) surfaces whose universal covering spaces

are determined by looking at the geometry of these (using

the uniformization theorem (Theorem 1')). .

To close this section we will now give two double
planes for which the modified proporticnality is ful-
filled but which can not be uniformized by the bidisc.

The first one is rigid:

[6.5] We take a non-degenerate conic C on va(E) and
a point Py outside it. From p, we draw then the two
tangent lines R{,Rg to C and we form the polar line
2? for p, by connecting the contact points of

2%,£? with C . We further choose a point p, € R? and

form the two tangents 25,25

in the same way. The point P is then on the line 25'.

and the polar 22 for P,



-31-

The octic curve D consisting of C , zi,g;,g;' (1 = 1,2)
is unique up to projective transformations. The double

covering, denoted by X , of P2(E) branched over D has

now only rational double points; they are five A1, two P4

and four Dg. One easily checks Ef(x) = 232(X). But the
direct computation says that there is no tangential
conformal structure on PZ(E) with the discriminant

D . One can even show that there is not any conformal

structure with the discriminant D. for which the six

lines zi,zg,z; (i = 1,2) are integral curves, of

d52 = 0. This implies in particular that X 1is not a

quotient of the bidisc.

In the following final example we will observe a
1-parameter family of arrangements of five conics, each
having generically - sixteen tacnodes (ordinary contact
points). It contains singular members with more tacnodes.
(The existence of such arrangements is announced in
Naruki [N].) If one considers the corresponding family
of double planes branched over such arrangements, one
has then the modified proportionality for generic members.
But the existence of singular members as above allows us
to apply the differential geometric consideration of
Section 1 to this family, concluding that almost all

members do not come from the bidisc.
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[6.6] The five conics of the family are given by the
equations:
C,:2° = x2/a2 + Xy + a.a y2 = (x~-a;a.y) (x - a;a, y)
i i 3%k i3 19
{i,j,k} = {1,2,3}

40 (xy + py’) * 2xy

Q
N
fl

here (x,y,z) are the homogeneous coordinates of Pz(m),
ajsa,,a9 are the parameters of the family bound by

the relation a; ta, +ag-= 0 and we write p for

ajas + aja, +aja,. This family is considered to depend

essentially on only one parameter, since the corresponding
arrangements are isomorphic for (a1,a2,a3) and

(ta1,ta2,ta3) t # 0. One sees immediately that the point

Z = X - ajaky = 0 1is the contact point of cj and Cy »

and that 2z =y = 0 is the contact point of c¢, . We

have thus four tacnodes now. The simple subtraction of

the equations shows also that each of ¢ is tangent to

+

each of cy at two points (on the line xi/ai + a,y = 0).

1

I

If p 0, then c are tangent also at point 2z = x = 0.

t

Pictorially any generic configuration loocks like
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where o represents a non~singular conic in PZ(E), ~

o——o0 means two conics intersect transversely at two

points and contact at one point, and o=——0 means

two conics contact at two points. For any generic configuration
2

D , the modified proportionality 51 = 232 are fulfilled

for X(v¥D), which has eight A;'s and 16 Ajy's. There is

an complex analytic family D such that Dy for

t

t+0 is generic and Dy ‘is

i.e., two A1 singularities collapse into one A3
singulafity. We claim that any sequence {tn} with

t —> 0 contains infinitely many ¢t 's, say {tnk} '

with tnk —> 0 and X(/BE;R) is not uniformized by

_the bidisc. Suppose for some {tn} with t —> 0

that x(/BEn) is uniformized by the bidisc. Then, by

using Kazhdan-Margulis theorem (see [B-G-S] and [Bul)as well
as the general Schwarz Lemma for volume forms due to,

Yau [Y2], one sees that the canonical Einstein-Kihler

metric on X(/BE;) converges to the canonical Einstein-

Kéhler metric on X(vD,), which will satisfy lw_ | = IW_1.

On the other hand, for X(/BE),
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|
] W
It
al
]

1 1
= c; - z (e (Ep) - T T )
2 2 1 pESing(X(/BE)) G(p)

2

1 2 _
a__zfx(/D—o)(lW_I - |W+| )*1 = 0,
m

which is a contradiction.
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