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On the relative polynomial construction and torsionfree
nilpotent groups

by Manfred Harti

In this preprint we present a new approach to the study of torsionfree nilpotent
groups (= 7T -groups for short). As its key point we construct ‘abelian models’ for
central extensions of such groups; this amounts to a functorial equivalence of 7T -
groups with certain iterated singular ring extensions. The concept follows along
the line to establish an ‘integral’ substitute of Mal’cev’s (or Lazard’s) Lie algebra
models for (sufficiently) divisible nilpotent groups in the nondivisable situation.
We obtain applications of onr model theorems to construction, classification and
automorphisms of 7 -groups.

In the first part we start with a detailed study of a relative version of Passi’s
polynomial construction P,(G), i.e. of certain quotients of the integral group
ring. The results obtained include integral analogues of some wellknown results of
Quillen on the rational group algebra.

This is used in part I to establish the following model theorem: The cate-
gory of central extensions B »— E -»G of (finitely generated) torsionfree nilpo-
tent groups of class < n is canonically equivalent to the category of central exten-
sions B > M —» PY(G) of Z-torsionfree (finitely generated Z-free) nilpotent
G-modules of class < n, with PY(G) = P,(G)/Z — torsion. As an immediate
application we derive a description of H?(G, B) for T -groups G and torsionfree
trivial modules B in terms of polynomial cocycles. This improves a result of Passi,
Sucheta and Tahara for B = Q; moreover, it leads to a new method of comput-
ing H*(G,Z) in terms of cocycles given by rational integer valued polynomials,
starting with a presentation of G' and using integral matrix calculus. We point
out that this result also admits a short reduction of the isomorphism problem for
T -groups to an orbit problem of arithmetic group actions which was shown to be
decidable in {Gr-Se80aj. We thus obtain a much simpler proof of the decidability of
the first problem than it was given in [Gr-Se80b}. This will be described in detail
in [Ha92k] where we also give an inductive construction of all finitely generated
T -groups in terms of free abelian groups.

In the third part of the present paper we determine the automorphism groups
of T -groups in terms of iterated group extensions. Here all terms, in particular the
corresponding obstruction operators and extension classes are described in terms
of the polynomial construction PY(G); this ensures that they are computable
from a presentation of GG by linear algebra, using proposition E in part II.

We conclude with the remark that the results of this paper also admit appli-
cations to simplicial T -groups and thus to homotopy theory as well as to group



cohomology with respect to varieties of nilpotent groups [Ha92h).

The content of this paper is part of the author’s doctoral thesis, Bonn 1991,
written under supervision of Prof. H.J. Baues and Prof. F. Grunewald. I am
indepted to them for many useful discussions. Also I would like to acknowledge
the support of the Max-Planck-Institut fiir Mathematik in Bonn.
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Part I: On the relative polynomial construction

The polynomial construction P,(E) for groups E is due to the classical work of
Passi [Pa68a]. The relative polynomial construction defined below is only implicit,
however, in Passi’s studies of the dimension subgroup problem [Pa68b], [Pa79] or
in Roquette’s proof of the Golod-Safarevi¢ inequality [Roq67]. We here determine
the structure of the relative polynomial construction P,(FE,B) modulo lorsion.
Moreover, the torsion subgroup of P,(F, B) is identified in terms of the groups
B< E, and generalizations of theorems of Witt and Quillen are derived concerning
certain Lie algebras associated with groups. Our results below are also key steps
in our investigation of torsionfree nilpotent groups in parts two and three of this

paper.

1 Results

1.1 Definitions: Let E be a group, R be a commutative ring and let Ap(F)
be the augmentation ideal of the group algebra R(/). For a normal subgroup
B < E we define the quotient ring

Por(E,B) = Ap(E)/ (Ar(B)AR(E) + MG (B)) .

Thus P, r(F) = P, n(£,{1}) is the polynomial construction of Passi. For an
abelian group A let 7A = torsion of A and A = A/TA. We define the quotient
rings

PY(E,B) =7 Poz(E,B), PY(E)= PY(E,{1}).

Via left multiplication, P, r(E,B), PY(E,B) and PY(E/B) are left nilpotent
FE/B-modules of class < n. Moreover, the maps

Pn R E_’Pﬂ,R(EaB) 1 p':l/“ E— P{(E:B)

sending ¢ € E to the coset of a — 1 are (E — E/B)-derivations; they are uni-
versal with respect to nilpotent R{E/B)-modules of class < n or to nilpotent
Z-torsionfree £/B-modules of class < n, respectively. A canonical isomorphism
P.r(E,B) = R(E/B)®gP,z(E) of R(E/B)-modules is induced by this property
of Pn.R-

We write p for the canonical quotient map from Agr(F) to P, p(F) or to
Pn,R(E? B) ’

Let E =%(E) D v(E) D ... denote the lower central series of E, and for
U< Elet VU ={a € E|3m € Z: a™ € U}, the isolator of U, which is a
subgroup if F is nilpotent.



Theorem A: Let B v+ E 5 be a central extension of groups and let n > 1.

Suppose that the relation /B, 1(E) C By/Ya+1(E) holds in E or, equivalently,
that the relation \/Yn41(G) C 7\/¥nsa(E) holds in G (lhis is the case, for

example, if G s torsionfree nilpotent of class < n ). Then the following is true:

(1)  The sequence of homomorphisms between Z-torsionfree nilpotent (-modules
of class <n

Y i V(x
0 — 7(B/BNyun(E) "2 pre,B) 28 prc) — 0

is exact. Here the G-action on the left hand term is trivial. If £ is finitely
generated all terms are finitely generated free abelian groups, so the sequence
splits (nonnaturally).

(2) The torsion subgroup of P,(F, B) is generated by the elements
pa{ar) - palar), & > 1, with a1 € J7u1(E) if £ = 1 and with a; €
VB71s(E), 1 £ ¢ <k and 8 + ...+ s > n. In particular, taking

B = {1}, one obtains a canonical isomorphism
PY(G) = A(G)/AF(G)
where the ideal filtration {A!-(G)} of Z(G) is induced by the N-series
{\/*y,_(G')} of G, see [PaT9].
(3) If E and G are torsionfree nilpotent groups of class < n then the derivation
pl: E— PY(E,B)

is an injective map.

The structure of the group PY(G) is derived from the following integral analogue
of Quillen’s result on the structure of Gr(Q(G)) [Qu68).
The graded Lie ring LY (G) is defined by

LY(G) = X \/%(G) [ Jrin(G)

i>1

[a\[';r,-+1(G') ,b\/’)’j+1(G)] = (a, b) \/7t‘+j+1(G) ’

and the grading of the envelopping algebra ULY(G) is induced by the grading of
LY (G).

Theorem B: For all groups G there is « natural isomorphism
bz : ULY(G) =5 GV (Z(G))

of Z-torsionfree graded rings. Here the associaled graded ring Gr¥ (Z(G)) is
taken with respect to the filtration {A'(G)} of Z(G), cf. theorem A (2). The

map 0z is induced by the inclusions \[7;(G) C A'HG). O



Corollary C: Let GG be a group and n > 1. Then the following statements hold:

(1)  There is a natural isomorphism
GV (PY(G)) = ULY(G)/ T ULV (G)
i>n

of graded rings induced by 0;', cf. theorem B. If G is finitely generated
then there is a (nonnatural) isomorphism of groups

PY(G) = QULY(G).

=1

In particular, the rank of PY(G) is determined by the numbers r; =
rank (\/1:(G) /\/%:(G)), 1 < i < n, according to the Birckhoff-Witt-
theorem.

(2) The following sequence consists of (7-linear homomorphisms and is exact:

00— (@) /e (@) 25 PY(G) FED PTG (@) — 0

with m: G —» G/ V(G .

(3) The divisability in PY(G) of elements in pY (v,(G)) is given by the identity

y Pr{('Tn(G)) = P;{-( M (C)) -

Here the symbol 3/ indicates that the corresponding isolator is taken with
respect to the additive structure of PY(G). If K, denotes the subgroup
generated by the n-fold ring commutators of PY () we have the following
isomorphism and identities in PY (G):

V(@) [ n (G) 2 \f1al(G) = oY (1a(G)) = K.

|

Part (2) may be viewed as a generalization of Witt’s theorem that the commu-
tator Lie ring L(G) of a free group G is free. In fact, let T" denote the noncommu-
tative polynomial ring generated by a basis of G' and let T be its augmentation
ideal. Then Witt’s theorem says that L({(G') is isomorphic with the sub-Lie algebra
of T generated by homogenous elements of degree 1. T'his is a special case of corol-

lary B (2) since we have \/7,(G) = 1.(G), PY(G) = T/T™ and ¥YK, = K,.

Theorem D: Let G be a group. Then the graded Lie ving LY (G) is determined
by the group ring Z(G) up to isomorphism. In fact, let Gr'(Az(G)) be the



associated graded ring of Agz(G) with respect to the filtration { 1+/A%(G)} . Let
L™(G) be the sub-Lie ring of Gr"(Az(G)) which is the additive isolator of the
sub-Lie ring generated by Gri(Az(G)). Then the inclusion G C Z(G) induces a
natural isomorphism of Lie rings

LY (G) = L7(G). O

This is an integral analogue of Quillen’s result in [Qu68] that the Lie algebra
LY(G)® Q is determined by the ring Q(G).

2 Proofs

We start. by showing that our statements hold after tensoring with Q. The ‘descent
to Z’ then turns out to be much simpler than in comparable situations in the
literature; e.g., lattice subgroups do not play a distinguished role.

2.1 First note that we have for all groups the elementary relations

Q@ (1) /111(6) = Q@ (V1(G) / 1n(@)) , Aq (V4(G)) C Ay(G) and
hence Al o(G) = AQ(G).

Theorem 2.2 ([Qu68])  For all groups there is « natural isomorphism
0q: U(Q®LY(G)) = Gr(Q(G))

of graded algebras induced by the inclusion Aq ( 7,-(6')) C L\&(G) . Here the
associated graded of Q(G) is taken with respect to the augmentation filtration. In
particular, the map LY (G)— Gr(Q(G)) and hence also the map

PhQ: G/ \/7n+1(G) - n,Q(G)

are injective.
As a generalization of the latter statemant we obtain

Theorem 2.3 Let £ =( B Ay E G ) be a central extension of groups. Then
the following sequence of G -linear homomorphisms ts exact:

Q@Pni P"'Q(Tr)
0 — Q@ (B/BNy(E) BB PolE B "5 P,q(G) —0



Proof:

(1) Using 2.1 one replaces £ by the exiension
B[ BNYa(G) > E/v(E) 7> G/rmn(G).

Now the only non elementary part is to prove injectivity of Q ® p,7. Write

B=B/B N Yot (G) E= E [Yn41(E) and G = G/ Yns1(G).
(2) Let 0#z € Q® B; we have to show that Pn,Qi(z) #0 in Pn‘Q(E’,B).

Choose a linear retraction 1 : Q ® B—»Q -z of the inclusion Q-2 C Q® B.
Let )
Qz——E-1sG

he the central extension induced by the homomorphism
f: B2Z®B Q@B »Qz.
Then

(3) E is nilpotent of class < n, and

(4) the number k£ = —1 + min{l/ {7Qz N /m(E) = {1}} is defined and

satisfies 1 < & < n since

1Qe N Vran(E) = 1Qen {1} = (1)

by (3) and the fact that Q is torsionfree. We obtain the following commutative
diagram

P,,,Qi eQ
) o |
(5) P.q(E,B) Puq(E)
| ;
.. P, olf) =
Piq(E, B) =Q Piq(E,7Qz)

Here o is induced by 7, B is the canonical quotient, and f : E — E is induced

by f.
(6)  Wehave 1Qz C \/v(E): By definition of k thereis 0 # y € Qz withiy €
Vk(E). For z € Qz there are m,n € Z with i(mz) =1(ny) € \/'yk(E) which

implies 7z € \/v(F).



By (6) and 2.1 one has Aq(zQz)Aq(E) C Ag'(E); hence 8 is isomorphic.
Furthermore pyq and « in (5) are injective by 2.2 and by definition of &, resp.
Now by commutativity of (5) it follows that p,qi(z) # 0 which concludes the
proof by (1) and (2). O

Now our ‘descent to Z’ rests on the following

Lemma 2.4  Let L be a graded Lie ring which is lorsionfree as an abelian group.
Then the envelopping algebra UL over Z is also torsionfree as an abelian group.

Proof: The Lie ring L is the colimit of its sub-Lie rings L, which are locally (i.e.
in each degree) finitely generated as abelian groups. Since the envelopping algebra
as a left adjoint functor preserves colimits we get

*) UL = colim, UL, = U ULa/ ~

where z ~y, ® € UL,, y € ULg, if there is an inclusion 7,4: L, C Lg in L such
that U(iap)(z) =y .

Since L is supposed to be additively torsionfree each L, is locally and hence glob-
ally a free Z-module. The Birckhofl-Witt-theorem then provides a natural ring
isomorphism Gr(UL,) 2S(L,) of the associated graded of U L, with respect to
the filtration by word length with the symmetric Z-Algebra over L,. It follows
that UL, is additively free abelian and whence torsionfree, and that the homo-
morphisms Gr(U(i,g)) induced by the inclusions i,5: L, C Lg are injective.
Thus also the maps U(i,4) are injective which implies the assertion by *). O

For the proof of theorem A we introduce a relative version of the filtration

{A(E)} of the group ring Z(E).
Definition 2.5 Lel FE be a group and B E. Then the subgroup
A'(E,B) C Az(E)
is generaled by the elements (a; —1)---(ax — 1), k > 1, with a; € \/:yn.}.l—(E) if
k=1 and with a; € m, 1<i<k and si+ ...+ s > n. Note that

A(E,{1}) = A {E). Since A'/(E,B) is a two-sided ideal we have the quolient
rings

n

PY(B,B) = Ag(E) /AN (E,B), FBY(E) = PY(E,{1}).



Proof of theorem A and B.
For an abelian group A let v or v(A): A= ZQ®A — Q® A be the canonical map.
Let G be a group.
Using 2.1 and 2.2 we obtain the following factorization of »(ULY (G)):
_ g
ULY(G) 'z, GrY(Z(G)) - Gr(Q(G)) 2 U(QQLY(G)) = Q® ULY(G)

Here 7 is induced by v: Z(G) = Q(G). Since LY(G) and thus by 2.4 also
ULY(G) are torsionfree as abelian groups we obtain

(1) injectivity of »(ULY(G)) and whence
(2) injectivity of 0z, i.e. theorem B
(3) injectivity of ».
By 2.1 we have a factorization
vi PA(G) 2 BY(G) 5 P,q(G) = Q@ Pu(G),
where w is the canonical quotient map. But
(4) GrY(n) = 7| @iga GrY (Z(G))
where the associated graded map GrY'(v,) is taken with respect to the filtration

k -
{%‘fr(%} of PY(G) and with respect to the augmentation filtration of P, q(G).
nT

Now (3) entrains injectivity of 1, which implies
(5) 7 P.(G) =Ker(v) =Ker(w) = ATH(G) [ A™(G)

This proves theorem A (2) in case B = {1}. To study the relalive case we first
consider

(6) PY(E,B) = P,(I,B)/pA%\(E, B,
see 1.1, 2.5. Observe that by centrality of B in E we have a natural factorization
Por(E, B)® Por(E, B) "™ 282 P _(6) ©6 Pus(G) = Pug(E, B)

of the multiplication map of P, r(E,B) where o : P, p(G)— Paoy,r(G) is the
canonical quotient map. Using this and the relation /Bv;(G) = 7~ 1/v:(H) we
may rewrite (6) by

(7) PATEV(E, B) = pur[/1ni1 (B) + 1t (St rAAG) @ pAG))

Consider the following commutative diagram with exact bottom row by 2.3.



HB/BNwa(G) i Bre B Y pbre

X l b I

Py, : P ofm)
Q®(B/BN%u(G) > Pug(E,B) "% P.q(G)

The homomorphism $Y¢ is welldefined since  F(B/B N 7,41 (G))

B/\/B N Yy (G) and $Y 4/ B N Y1 (G) C 5733/ Yapa (E) = 0 by (7). The maps
« and B are induced by v(P.(E,B)) and v(P.(G)), resp. and are welldefined

since we have

vpATFN(E,B) C pv (A"f“(b')) +u S prAG) ® prALA(G)
t+i>n
C pAGUE)+ 1 3 pAG(G)® pAG’TH(G)
+i>n

=0
Hence 5 is injective by commutativity of the left hand square in (8). Morcover,
the top row is exact in PY (£, B) since P,(x) (pA'\';”(E, B)) = pAYYG) by
(7) and the relation ﬂ\/7n+1(E) = \/'y,ﬂ_l(G) which holds by assumption. Now
the injectivity of 8 by (5) implies injectivity of e. From the factorization

v: P,(E,B) — PX(E,B) S Pn,Q(EaB)

we conclude 7P (E,B) = Kerv = pAM(E, B) which is assertion (2). Whence
PY(E,B) & PY(E,B) and the short exactness of the top row in (8) already
shown proves assertion (1). For the proof of (3) let £ and G be T, -groups. Then
the map

P\f 3 13
Paq: G == PY(G) = Pq(G)
is injective by 2.2 whence so is pY. Now let a,b € E with pY(a) = p/(b) in
PY(E,B). Then n{a) = w(b) by naturality of pY and by injectivity of py on G.
Thus we have a~'b € 1(B) and
pY (a) = p (8) = pl (ai(i"*(a7'b))) = p{ (a) + P} i(i 7" (a7'b)) .
This implies a='6 =1 by injectivity of pYi proved above. )

Proof of Corollary C:
(1):  We have isomorphisms of graded rings

GrY (PY(@)) = Gr¥ (Az(G)/AT(G)) = ULY(G)/ X ULY(G)

i>n



by theorem A (2) and theorem B. If @ is finitely generated then LY (G) =
\/'yi(G)/\/‘r;H(G) is a finitely generated free abelian group, thus so is U;LY (&)

and the second assertion f{ollows.

(2): By theorem A (1), (2) and 2.5 it remains to show that the quotient maps

BY(G) 2 BY (G \run(@)) 2287 (G [ \Jrurr(G) s 3@ [ f1em(@))

areinjective. This follows readily from the following relationsin G = G / v Tn+1(G)
which are easily verified: For i > n one has /v(G) = \/7;(G)/\/7n+1(G) and

Jr@ /e @) W(E) = | Yl ) 1(E) € Y

(3):  In order to apply (2) we calculate

75) Yl On(@) < (Yl (1 (G/y3(6))) =
Now (2) implies
Yoy (1(@)) C pY \Jm(G) .

The converse inclusion follows from the linearity of pY|v/7.(G). ]

Proof of theorem D: The ring structure of Az(G) is determined by the ring
structure of Z{G) [PmT77] p. 664, whence also the Lie ring L™(G). The asserted
isomorphism with LY (G) is provided by corollary C (3) as an isomorphism of
abelian groups.

Now let a € {/7(G) und b€ (/v(G). Then (a,b) € \/7+i(G), and we

have
) plla,0) = [plae), pa(®)] + pl(a™'67") [plala) , pLa(6)]

by the relation (a,b) —1 =a"'b"'[a—1,b—1] in Z(G). But the last term in %)
lies in the image of AM™(G) in PY,(G) and thus vanishes by theorem A (2).
This proves the theorem. 0



Part II: On central extensions of torsionfree
nilpotent groups

It is a classical result [Re-Ro79] that for a group G the category of group
extensions B >— E —» ( 1is equivalent with the category of G-module ex-
tensions B >— M —» A(() where A(G) is the augmentation ideal of the
group ring Z((G). We here show thal for cenlral extensions of lorsionfree nilpo-
tent groups G and £ an analogous ‘model theorem’ holds using Z-torsionfree
nilpotent modules and replacing A(G) by the polynomial quotient PY(G) =
(A(G’)/A“H(G)) /Z — torsion. From this result we obtain inductive models
for torsionfree nilpotent groups (7 -groups for short) in terms of nilpotent rings.
Further applications are concerned with the cohomology group H?*((G,B) of T-
groups G and Z-torsionfree trivial G-modules B: We give a description in terms
of polynomial cocycles and of polynomial coboundaries in the sense of Passi. This
result generalizes a theorem of [Pa-Su-Ta87] for B = Q to nondivisable coeffi-
cients. Moreover, it amounts to a computation of H%(G, B) in terms of explicit
integer valued rational polynomials, starting from a presentation of G and using
matrix calculus. Compared with corresponding classical results these polynomials
are of a particular simple form and of minimal degree.

The results of this paper form also the basis of our inductive description of
automorphism groups of 7 -groups in part three of this paper.

1 Abelian models of torsionfree nilpotent groups

We consider the category Gy of central group extensions £ = (B v E »G )
where G and E are 7 -groups of class < n (7,-groups for short). Morphisms
[rom £, to E, in Gy are tripels (f, F, f') of homomorphisms which make the
following diagram commutative:

B > B Ih G
I
B, > B T Gy

For the construction of an ‘n-model’ of a group extension I € G, we recall the
definition of the relative polynomial construction in part I: Let A(FE) denote the
augmentation ideal of the group ring Z(£). We define the quotient rings

Pu(E,B) = A(E)/ (A(B)A(E) + A™ ()

PY(E,B) = Pu(E,B)[Z - torsion, PY(E) = PY(£,{1}).

10



Via the map 7 and left multiplication, P,(E,B), PY(E,B) and PY(G) are left
nilpotent G-modules of class < n , and the map

Pv‘{‘E_)P'r:/-(EaB)’ p{(a):{a—l},

is a w-derivation which is universal with respect to Z-torsionfree modules of this

type.
Now an n-model is a pair (G, M) where G is a T,-group and where M =
(B>— M —» PY(G)) is an extension of left G'-modules such that B is a Z-

torsionfree trivial module. We assign to a group extension £ = (B E 5G)
in G, the n-model

v vVix
P(E) = (C B &5 BY(E,B) 2% pY (G)) '

The term on the right has the required properties of an n-model by theorem A in
part I of this paper.

1.1 Conversely, an n-model (G, M) gives rise to a group extension
Pully(G, M) = (B =— E, ¥3 @)
in G, defining

= {(z,a) € M x C|n(z) = pY (a) },
(z,0) - (y,6) = (¢ +a-y,ab)

and 'z = (z,1).

We also want to compare the automorphism groups of group extensions in Gy
with those of their n-models. For this we define the category My of n-models by

taking as morphisms from (G,, M) to (G2, M,) all tripels (f, F, /') with the
following properties:
o [: Gy — (Gqyand f': By —» B, are homomorphisms of groups;

o IF: M; — M, is an f-equivariant homomorphism, i.e. F(az) = f(a) F(2)
forz e M, a € Gy;

¢ the following diagram is commutative:

i

Bl = M, % PY(GY)

[FA |7

By > M, D PY(Gh)

11



The constructions P, and Pull, above are actually functors
P

—
gn — Mn
Pull,,

by defining Pu(f, F, [") = (f, PY(F),[") and Pull,(f,F,f") = ([,F x [, f).

Model theorem A: A group extension I € Gy, is uniquely determined by its
n-model up to congruence and conversely, Furthermore, the automorphism group
of E is mapped isomorphicly onto the automorphism group of its n-model by the
functor P, . Actually, the functors P, and Pull, are mulually inverse equivalences
of categories.

Proof: Natural transformations P, o Pull, — id and id — Pull, o P, are
readily established by the universal properties of pY and of the pullback used in
the definition of Pull,, resp. These are isomorphisms by the five-lemma. ]

Thus theorem A relies essentially on the fact that the functor P, is welldefined,
i.e. on our study of the relative polynomial construction in part 1.

Remark: In comparison with the general model theorem on arbitrary group
extensions in [Re-Ro79] our special result for 7 -groups has several advantages:

e For finitely generated groups E the models P,(E) consist of finitely gener-
aled free abelian groups.

¢ PY(G) is computable by abelian generators and relations if G is given by a
finite presentation, cf. proposition E below. This is due to the fact that for
free groups I the ring PY(F) is a truncated noncommuative polynomial

ring, i.e. it is free in the category of rings of index n+ 1 while the ring Z(G)
itself is not free but has a much more complicated structure.

o The modules involved in our models are nilpotent which is well adapted to
inductive constructions [Ha92k].

From Theorem A we obtain the following inductive abelian models for torsionfree
nilpotent groups and their homomorphisms.

For a group E and U < E let VU = {a € E|Im € Z : a™ € U}, the
isolator of I/, which is a subgroup if F is nilpotent. In particular, E/\/'y,,H(G)
is a T,-group. Now let S be a ring (without unit) of index n + 1, i.e. §™*' = 0.
Then K,(S) denotes the additive subgroup of S generated by the n-fold ring
commutators of S and {/K,(S) denotes its isolator taken with respect to the
additive structure of §.

We define the category R, of models for 7T, -groups as follows: Objects are pairs
S=(G, 7 :85—» P/(G)) where G is a T,_;-group, S is a ring of index n + 1

whose additive group is torsionfree and where 7 is a surjective ring homomorphism

12



such that Ker(r) = {/K,(S). Morphisms from $; to S, in Ry are pairs ([, F)
with f € Hom(G,,G2) and where F: S; — 5, is a ring homomorphism such
that PY(f)ym ==, F.

Now we assign to a 7,,-group E the model

Ru(E) = (E/\Jv(B), P/(x): PY(E)—PY (E/\Jm(B))

where 7 : E'—»G/\/'yn(E) is the canonical quotient map. This is in fact an
object in Ry by Corollary C in part 1. Conversely, an arbitrary object
S=(G, m:85— PY(G) )€ R, gives rise to a group

Gal(S) = {(v,a) € § x G () = p ()} with (=,a)(y,b) = (=« +ay, ab)

where @ is some element in S with 7(@) = pY («). The product ay is welldefined

since {/K.($)S C ¥S! =0 by our assumptions on §.

Model theorem B: A T, -group E is determined by its model R, (G) up lo
isomorphism, and its automorphism group is canonically isomorphic to that of
R.(G). Actually, the constructions R, and G, are mutually inverse equivalences
of the calegory of T, -groups and the category R, .

In some sense, this result is a substitute of the Mal’cev correspondence between
rational nilpotent groups and rational nilpotent Lie algebras in the nondivisable
case. It may be used for the construction of ‘small’ models for simplicial 7 -
groups and thus for integral homotopy types, in analogy with Quillen’s use of
the Mal’cev correspondence as a key ingredient in his modelization of rational
homotopy theory by rational differential graded Lie algebras. As a first step in
this direction we derive from theorem B a Dold-Kan theorem for simplicial groups
of class 2 [Ha92h]. Applications to group cohomology with respect to the variety
of nilpotent groups of class n are also to be exspected.

Theorem B is an immediate consequence of theorem A using the following

Remark 1.2 Anextension of G-modules B >— M -"» PY(G) can be viewed
as a singular ring extension with B - M = 0 and conversely. In fact, the module
M can be endowed with the multiplication

MoM™2 pricyeM S M

where g is induced by the given G-action on M. The converse is clear.

2 The second homology and cohomology of tor-
sionfree nilpotent groups

We proceed to apply model theorem A to the classification of group extensions.
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Let G be group and B be a trivial G-module. Let
Ext ( PY(G),B) C Extg( PY(G),B)

be the subgroup of congruence classes of G-module extensions B >— M —»
PY(G) for which the module M is nilpotent of class < n. Similarly, consider the
ring

~

PY(G) = (Z(G)/ A (G)) /Z — torsion

and let s .
Hi(P, (G),B) C Hy(P,(G),B)
v

. (G) consisting of congruence
n
n

be the subgroup of the Hochschild cohomology of P
P (G) for which § = Ker(en)

classes of singular ring extensions B >— S —»
satisfics S™*! = 0. Then thcorem A implics

Corollary C: Let G be a T, -group and let B be a Z-torsionfree G -module. Then
the constructions P, and Pull, provide mutually inverse natural isomorphisms

(1) HY(G,B) = Extl,,(P¥,(G),B)
(2) HY(G, B) = HZ,,(PY.(G),B)

where for (2) we suppose in addilion thal G is finilely generaled.

The latter condition assures that the group f’,\:;, (G} is finitely generated and
whence free abelian. Thus (2) follows from (1) via 1.2.

Now we derive from corollary C an explicit formula for H%(G, B). One has
natural homomorphisms

Z ®c Ba(G) =5 Po(G) ®c PolG) 25 Poi(G).

Here By(G) is the term of degree 2 in the normalized bar resolution of Z over Z(G),
Plalb] = pa(a)®@pn(b), and pn4y is the canonical factorization of the multiplication
map of P, (G).

Theorem D: Let G be a finitely generated T, -group and let B be a Z-torsionfree
trivial G-module. Then ¢ induces natural isomorphisms

H*(G,B) = Homgz (Pu(G) @ Pu(G), B) [ phsr Homz (Paia (G), B)

Hg(G)/torsion =~ Ker(ftnt )/torsion .

14



In [Ha91] we show that the assertion on H3(G) actually holds without assuming
G to be finitely generated, and we also determine H*(G, B) as a bifunctor in this
general case.

Theorem D may be viewed as a convergence theorem on the polynomial ap-
proximations of H? and H, defined in [Pa74] and [Ha92d], respectively. In fact,
the statement on H?*(G, B) improves the following result of Passi, Sucheta and
Tahara in two directions: As a main result in [Pa-Su-Ta87] they prove that each
cohomology class in H?*(G, Q) is representable by a polynomial cocycle of degree
< n (in Passi’s sense {loc.cit]) for a 7 -group G and the trivial G-action on Q.
Theorem A extends the result to arbitrary torsionfree coefficient groups (in partic-
ular, to B = Z) and, morcover, gives a precise computation of the group H?(G, B)
in terms of polynomial cocycles and polynomial coboundaries. In the following we
make this computation explicit and give an example before proving the theorem.

Let G = (1,...,2x|r1,...,71) be a presentation of a T,-group. Then one
can compute the groups H%(G,Z), Hy(G)/torsion and the Kronecker pairing by
matrix calculus using theorem D and the next propositions E and F.

Let T be the noncommutative polynomial ring in variables z,...,z;, and let
T, =T/T**. Write r; = :z;fl1 .'L;El in the free group F = (y,...,2x). Let

Fo= (b)) (o) —1 i T,

with (14+2)™' =14+ %0 ,(—1)z. Let 6: R={r(,...,71) = F be the ho-
momorphism defined by §(r;) = r;, and let R, = span{#,,...,7;} and S, =
T.RT, +T,R,T, CT?,

Proposition E:  We have the following commutative diagram with isomorphisms
my,my defined below and with exact rows

Rer pn = P(G) ® Py(G) > Pa(G)
[ &~ }m = ‘[mz
Ker(6%: R* — Fob) N T?2/5, g Tn/Tan T,

Here my and my are induced by
7”1(3;31 te IL',m) = Pn—l{wal} ® Pn—l{wag} e 'pn-l{wam}

7”2(51"51 T I‘m) = pn—l{mal} te pﬂ—l{ﬂ:’m}

where {x;} denotes the coset of z; in G. Furthermore, pr and & are induced by
the inclusion T: C T, and by the map r; — ¥;, respectively.

15



The prool is easy [Ha91] 1.2.9.

Proposition F: Lel z,,...,z, be a set of generelors of a T, -group G (e.g., a
Mal’cev basis of G ) and let d: P,(G) ®g P.(G) = B be a homomorphism into
some abelian group B. Then the corresponding polynomial cocycle D : G x (( = B
is given by

D(g;;.‘llzz:’zzill;r:.) -
n ne\ {1y mM,
d n\Tk M"'ankr “r®pn$ YEL nmny’
Z::(m) (#f)(vl) (u) (pu(ex) (@1, )7 @ Pl )™ - pal)™)

with | = {(#11---:“1‘1”1)'--:1/3) ¢ Sﬂi:-yj _<_n, 1< Z#ivzij Zﬂi"}"zvj S
n+1} and where (:) , s€Z, n>0, is defined to be the coefficient of z* in the
ezpansion of (1+z)* n Z[[z]].

Note that (:) is an integer valued rational polynomial of degree g in s for
fixed j: and fixed sign of s. Hence the coefficients in the sum ezpansion of D above
are integer valued rational polynomials of degree < n in the variables n; and m;
and of total degree <n+1.

Example: Consider the Heisenberg groups G, = {¢,b,¢|(¢,b) = %, (a,c) =
(b,c) = 1), ¢ € Z. Here a computation by the procedure indicated above ([Ha91]
2.3.20) gives isomorphisms

THHG) = Z-7ps{(a,c)} ®Z - Tps{(b,c)}
HYG,Z) 2 Z/¢Z2 LD Z,

where the tupel (u,w,z) is represented by the polynomial cocycle

D(u,w, z)(a® bt | a®2b2c2) =

wbjag 4+ w (qbl ((;2) - Claz) +2 (qblazbz + Q(l;l)az - 0152) )

a;, b, ¢; € Z. Moreover, the Kronecker product
<, >: HYG,Z) x THy(G)—Z

is given by
< (u,w,2), k{(e,e)} + 1{(b,c)} > = wh + 2l.

Proof of theorem D: _
(1) First observe that a central extension M = (B>— M -Z» P/ (G)) of
Z-torsionfree nilpotent modules of class < n is equivalently described by a diagram

16



PY(G)®c PY(G)

[w

B o ML)

where the row is the underlying extension of abelian groups and where W is a
homomorphism of abelian groups lifting the map

wivs PY(G) ®a PY(G) = PYa(G)

induced by the multiplication map of the ring PY,(G). In fact, W is obtained
by the following factorization of the action map

AG) oM BE p(GYoM 5 PY(G)®s PY(G) L M
where p and T are the canonical quotient maps.

(2) The terms Po(G) ®c P.(G) and Poy(G) in theorem D can be replaced
by PY(G)®c PY(G) and PY,,(G), resp., since the group B is torsionfree by
assumption.

Using (1) define a map
x: Hom( PY(G) ®c PY(G), B) — Ext)(P.(G), B)

n

by
PY(G) ®: PY(G)

J (dudy)

(1’0): 1 ! A
x(d) = { B> B& PY,(G) oy Pr:-fH(G)}

where brackets {} denote the congruence class.

One readily checks that x is a homomorphism using the Baer sum construction of
module extensions {ML63]. Moreover, the identity

(3) Pull, o x =9~

is readily verified using the transversal a — (0,pY,,(c)), a € G, for B in E,, cf.
1.1.

Since G is supposed to be finitely generated the group PY,,(G) is finitely generated
torsionfree, whence free abelian; this shows that y is surjective. To determine
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Ker(x) suppose that x(d) = 0 = y(0). This is equivalent with the existence of
an automorphism a of B @ PY,(G) with matrix

| Y
0 1/”
o' € Hom(PY,,(G),B), such that

(d, i) = o0,0001) = (&'wly i)

i.e. d=puli, . By corollary C together with (3) we thus have proved the first
part of the theorem. For the second one first note that by theorem A (2) in part
I we have for (7 € T4y the relations

(4) T(Pasr(G)) = ptnp1 (T(Pa(G)) @ T(Pa(G))) C Pasa(G)?
where 7(—) denotes the torsion subgroup.

(8) Thus the sequence of homomorphisms
PY(G) < PY(G) 2> P(G) =G

is welldefined and is a free resolution of the free abelian group G*. Let o denote
the canonical quotient maps from A(G) to PY(G) or to PY,(G). Consider the
following commutative diagram of short exact sequences where the top row is the

universal coeflicient sequence for H*(G, B) and where both terms on the left equal
ExtL(G*,Q) = 0.

+ \/.‘ 1 ]
Hom(BL(G1.Q) 4 Hom(F/(G)86 AY(GLY) <, tom(Ker(u), Q)

j"Hom(P},(G), Q) (71011)"Hom(A(G), Q)
la' 1(080)' l(c@a)‘
HOIII(A2(G), Q) -#') HOI'H(A(G) ®z((;) A(G), Q) _L_-» om(Ker
7 Hom(A(G), Q) (7t} Hom(A(G), Q) Hom(Ker(x), Q)

The vertical map in the middle is alrcady proved to be isomorphic whence so is
o* on the right. This shows that the map

Hy(G) = Ker(p: A(G) ®z(6) AG) = A(G)) 225 Ker(nls,)

is injective mod torsion. It is also surjective by surjectivity of the map p®p:
Ker(n) — Ker(pin41) (which is easily checked) and by (4) above. This proves
the theorem. O
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Part III: On automorphism groups of torsion-
free nilpotent groups

We describe an inductive computation of the automorphism group of torsionfree
nilpotent groups (= T -groups) in terms of iterated group extensions. All terms
involved are computable by use of linear algebra in case (' is given by a finite
presentation.

In particular we consider the automorphism groups of free nilpotent groups
which are ol particular interest in algebraic K-theory; for nilpotency class 2 they
are related to the exotic element of K3(Z) as was pointed out by Baues-Dreckmann

[Ba-Dr89].

Let G be a free nilpotent group of class n, i.e. &G = F/y,41(F) for some
free group F', where ~;(#') is given by the lower central series of F'. For the free
abelian group A = G = G/7,(G) let T(A) =Z & @;>1 A% be the tensor ring
over A, T its augmentation ideal, T, = T/T™' the quotient ring, and let L,(A)
be the subgroup of the free Lie-ring over A which is generated by the commutators
of length n. Then we have the following two exact sequences of abelian groups:

La(A) > T2 24 T2/Lo(A) & To/La(A) -2 A

n

Here 1, is the restriction of the canonical inclusion for the universal envelopping
algebra UL.(A) = T(A).

Note that G, G/4x(G) is a free nilpotent group of class n — 1. The
sequences above are sequences ol left Aul(Gr) - modules: Let [ € Aul(G,). Then
f acts on A= G° and on L,{A) by the induced map fy = f* and fy = L,(f**)

respectively. Next choose a basis {z;} of &, and write
pectively. Next cl I .} of G, and t

flz) = mﬁl . -:c?;’ Ya(G) -

Note that T, is isomorphic with the truncated (non commutative) polynomial

ring with generators {z;}. Ring isomorphisms fy on 7,, and T?, respectively,

are defined by sending the generator z; to the coset of the element

(o) (42— 1
with (1+2)"'=1+35"_,(—1)"2¥. The isomorphisms fy now yield the action of
fon T2, T?/L.(A) and T, /L.(A).

The exact sequences above induce the following short exact sequences with
Hom = Homgzg.
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I:Hom (A, Ln(A)) 5 Hom (Tn/Ln(A), L,,(A)) 2 Hom (T,f/Ln(A), L,,(A))

L1 Hom(T,f/L,,(A), Ln(A)) SN Honl(T,?/Ln(A),Tf)

2% Hom (T2/La(A), T2/ Ln(A))

These are actually sequences of left Aut(G,)-modules by defining [ - a(z) =
fya(fy'x) where o is an element in one of the Hom-modules in | or 1L

Theorem A: Let G be a free nilpotent group of class n with A = G**. Then the
classifying cohomology class of the group extension

0 — Hom(A, L,(A)) 1, Aut(G) L Aut(G/y(G)) — 1
coincides with the element
BiBri(e) € H*(Aut(G/7a(G)), Hom(A, Lq(A))

Here B; and By; are the Bockstein operators associated with the sequences [ and
11 respectively and ¢ is the O-dimensional cohomology class given by the identity

of T/ La(A). .

The homomorphisin II in the theorem is reduction mod +,(G) and the homomor-
phism 1% is defined for z € G by 1*(a)(z) =z -y where y =ia(zy(G)) € ¢
by the isomorphism of Witt 7: L,(A4) = 7,(G).

Next we consider the more general case of a finitely generated torsionfree
nilpotent group G of class n.

Let /7n.(G) = {a € G |d* € 1,(G) for some k} be the isolator of v,(G) so
that G, < G’/\/'yn(G) is a 7 -group of class n — 1. Now the group Aut(G) can
be computed from the group Aut((G,) in a similar way as in Theorem A. Here,
however, an additional obstruction operator arises, and the polynomial ring T,
above has to be replaced by the following more general construction: Define the
ring

PY(G) = (A(G)/An'H (G’))/Z — torsion
where A(G) denotes the augmentation ideal of the group ring Z(G), and let
fin = 1a(G) : PYL4(GR) ®c, PY1(Gn) — PY(G)

be the canonical factorization for the multiplication map of PY(G). All these
terms can be computed from the truncated polynomial ring 7, above in case G
is given by a free presentation R — F —» G with A = Fe,

Let K, denote the isolator in PY(G) of the additive subgroup of PY(G)
which is generated by the n-fold ring commutators of PY(G). We recall from
corollary C (3) in part 1 the following
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Proposition: Lel (G be ¢ group. Then for n 2 1 there is a naltural isomorphism

bn: 1(G) /Y 1mn(G) = K,

induced by the map a— {a —1} € PY(G).

This may be viewed as a generalization of Witt’s isomorphism v,(G) = L,(A)
used in theorem A to arbitrary groups since in case G is free we have isomorphisms

PY(G) =T, and K, 2 Lo(A) = T,.

Now for f € Aut(G,) the induced isomorphism ®2PY,(f) of PY,(G,) Q.
PY (G,) restricts to an isomorphism f, of the subgroup M = u,(G)~'K, since
one has the identity M = u,(G)™'K, = Ker p,,(G,) by 1. Corollary C (2). Let

cAut(G,) C Aut(G)

be the subgroup of all automorphisms f for which there exists fy € Aut(K, ) such
that

S GualM) = (palM) fu .
The map fy is uniquely determined since the span of the n-fold ring commutators
of PX(G) is contained in KA, N Pf(G)z = K,N Im g, and has finite index

in K, where K, is torsionfree. Hence for f € cAut(G,) one obtains a unique
automorphism of

A Kt PYG),
also denoted by f, satisfying
Jittn = p,,@QP,;{-_](f) -
Thus K, and A, are left cAut(G,, )-modules by use of [ — fy.
The following lemma is an immediate consequence of theorem A (2) in part I.

Lemima: One has the following short exact sequence of homorphisms between
abelian groups:

PY(G)" & PY(Ga) Lx G2,
where p sends the cosel of a — 1, a € G, Lo the elemenl ay,(G).

Therefore the following sequences are short exact sequences of cAut(G,, )-bimodules.
I: Hom(G®,K,) > Hom( PY(Gn), Kn) == Hom( PY (Gn)? Ko)

oy ExtL(G,K,)

n>’
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2, A") #nﬁv‘)-

11’ : Hom( P"‘f(Gn)z, Kn) > Hom( PY(G,)
Hom( £Y(Ga)®, £ (Ga)")

with ¢: K, — A,. As above, these sequences are sequences of left cAut(G,)-
modules by setting f-o = f,f "a.

Now a derivation
O: cAut(G,) — Hom( P,:‘F(G'H)Q,K,,)

with respect to the left cAut{G,,)-action is given as follows: Since PY(G) is a
finitely generated free abelian group one can choose a Z-linear splitting ¢ of the
surjection

PY(7) « PY(G)— PY(Gy)

: . . . 2
where 7 : G— G, 1s the canonical quotient map. Here ¢ carries PY (G,)" to
Ay, so one gets the restriction

I: PY(G) > A, of t.

Thus we obtain for f € cAut(G,) the welldefined homomorphism
O(f) = (et PYUIH £Y(G)?) = 1)

Hence the operator O satisfies O(f) =¢ " (f -1 ~1) so that O is a derivation.
Theorem A is a special case of the next result.

Theorem B: Let G be a finitely generated T -group of class n.
(i)  The following sequence is exacl:
1 — Hom(G®, Ky) -5 Aut(G) - cAut(Gr) ZSExtL(G2, LY (G))

Here the homomorphism 11 in the theorem is reduction mod \/v,(G) and
the homomorphism 1% is defined for x € G, by 1*(a)(z) = -y where
y = k) a(zy(G,)) € G by the isomorphism k,: J7.(G) 2 K, in the
proposition above. The derivation E*O is given by E in I'. Moreover, the
action of Ker E~O on

k'
Hom(G",’f,K,,,) = Hom (ng, 7?1(G))

defined by conjugation in Aul(G) coincides with the restriclion of the left
cAut(G, )-action defined above.
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(i1)  The classifying cohomology cluss of the group extension
Hom(G2, K,) »— Aut(¢) s Ker(£°0)
oblained from (i} coincides with the element
B{O|Ker(£°0)} € H*(, Hom(G¥, K,))
where
By H'(Ker(E0), Ker£i*) — H*(Ker(£°0), Hom(G%, K,))

is the Bockstein operator associated with the extension I' of Ker(E*O)-
modules.

(iii) Let (G,)® be torsionfree (this, in particular, holds if G®* is torsionfree, i.e.
V72(G) = 12(G)). Then the Ext-term in (i) vanishes so that one has the

group extension
Hom(G%, K,) »— Aut(G) —» cAut(Gn).

The classifying cohomology class of this extension coincides with the element
B161,(e) € H? (cAut(Gn), l-lom(Gf,b,]\"n)) .

Here B}, is the Bockslein operator associated with extension II' of Ker E*O-
modules defined above and ¢ is the 0-dimensional cohomolgy class given by
the identity of P{(G,;)z.

Theorem A and B are corollaries of more general results on the category 75, of
T -groups of class < n. For this one needs the notions of ‘linear extension of
categories’; ‘exact sequences for functors’ and the ‘cohomology of categories’ as
established by Baues [Ba88]. Using these new concepls we proved results on the
categories T, which are almost literally of the same nature as theorem A and B.
This in fact shows that not only automorphism groups but also all diagrams in 7,
can be computed by results as above.

The proofs are contained in [Ha91]. There also automorphism groups of nilpo-
tent groups with dimension property are described.
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