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In this preprint we present a new approach to the study of torsionfree nilpotent
groups (= T -groups for short). As its key point we construct 'abelian 1l1odels' for
central extensions of such groups; this amounts to a functorial equivalence of T­
groups with certain iterated singular ring extensions. The concept follows along
the line Lo establish an 'integral' substitute of Mal'cev's (ar Lazard's) Lie algebra
models for (sufficiently) divisible nilpotent groups in the nondivisable situation.
We obtain applications of OHT model t.heorems to constrllction, dassification and
autolllorphisms of T -groups.

In the first part we start with a detailed study of a relative version of Passi's
polynomial canstruction Pn(G), i.e. of certaill quotients of the integral group
ring. The results obtained include integral analogues of same wellknowD results of
Qllillen on the rational grOllp algebra.

This is used in part II ta establish the following model theorelll: The cate­
gory of central extensions B ~ E ~Gof (finitely generated) torsionfree nilpo­
tent groups of dass ~ n is canonically equivalent to the category of cent.ral exten­
sions B >---7 JYI -----* p;((G) of Z- torsionfree (fini tely generated Z-free) nil potent
G-modules of dass ~ n, with p[(G) = Pn(G)/Z - torsion. As an immediate
application we derive a description of H 2 (G, B) for T -groups G and torsionfree
trivial1110dules B in ternlS of polynoIllial cocycles. This improves a result of Passi,
Sucheta and Tahara for B = Q; nloreover, it leads to a new method of COlllput­
ing H 2 ( C, Z) in terms of cocycles given by rational integer valued polynoillials,
starting with a presentation of G and using integral matrix calculus. We point
out that this result also admits a short reduction of the isomorphisnl problem for
T -groups to an orbit problem of aritlunetic group actions which was shown to be
decidable in [Gr-Se80a]. We tLus obtaill a Illuch sirnpler proof of the decidability or
the first problem than it was given in [Gr-Se80b]. This will be described in detail
in [Ha92k] where we also give an inductive construction of an finitely generated
T -groups in terms of free abeliau groups.

In the third part of the present paper we determine the autoll1orphisnl groups
of T -groups in terms of iterated group extensions. Here all ternls, in particular the
corresponding obstruction operators and extension classes are described in ternlS
of thc polynomial construction pn..r(G) j this ensures that they are computable
from a presentation of G by linear algebra, using proposition E in part 11.

We conclude with the remark that the results of this paper also admit appli­
cations to simplicial T -groups and thus ta homotopy theory as wen as to group



cohomology with respect to varieties of nilpotent groups [Ha92h].
The content of this paper is part of the author's doctoral thesis, Bonn 1991,

written under supervision of Prof. H.J. Baues and Prof. F. Grunewald. I am
indepted to theIn for nlany useful discussions. Also I would like to acknowledge
the support of the Max-Planck-Institut für Mathematik in Bonn.
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Part I: On tlle relative polynolnial cOllstruction

The polynoluial construction Pn(E) for groups E is due to the classical work of

Passi [Pa68a]. The relative polynolllial constructioll defined below is only ilnplicit,

however, in Passi's studies of the dimension subgroup problein [Pa68h], [Pa79] 01'

in Roquette's proof of the Golod-Safarevic inequality [Roq67]. \Ve here detcrmine

the structure of thc relative polynornial cOlistruction Pn(E, B) Inodulo torsion.

!vIoreover, the torsion subgroup of }Jn(E, B) is identified in ternlS of the groups

B<j E, and generalizations of theorems of Witt and Quillen are derived concerning

certain Lie algebras associated with groups. OUf results below are also key steps
in Dur investigation of torsionfree nilpotent groups in parts two and three of this
paper.

1 Results

1.1 Definitions: Let E be a group, R be a COlllIllutative ring anel let Lln(E)
be tbe augynentation ideal of the grollp algebra ReE). For a nornlal subgroup

B<l E we define the quotient ring

Thus Pn,R(E) = Pn,n(E, {I}) is the polynornial constructioll of Passi. For an
abelian group A let TA = torsion 01 A and rA = AlrA. \Ve define the quotient
nngs

PnV(E, B) = f Pn,z(E, B) , PnV(E) = PnV(E, {I}) .

Via left 11lultiplication, Pn,R(E, B), P;[(E, B) and P;[(EIB) are left nilpotent

EIB-modules of dass ~ n. 1Jloreover, the maps

Pn,R: E ---+ Pn,R(E, B), p[: E ---+ P;((E, B)

sending a E E to the eoset of a - 1 are (E ---. EI B)-derivationsj they. are uni­
versal wit.h respect to nilpotent R(EIB)-nloelules of dass ~ 11, 01' to nil potent

Z-torsionfree E / B -nlodules of dass ~ n, respectively. A canonical isomorphism

Pn,R(E, B) ~ R(EIB)0E Pn.z(E) of R(EIB)-lnodules is induced by this property

of Pn.R.
We write p for t.he canonical quotient nlap fronl D..R(E) t.o Pn,R( E) 01' to

Pn,R(E, B).
Let E = /1 (E) :J T2(E) :J ... denote t,he lower centraJ series of E, and for

U <E let JV = {a E E 131n E Z : am E U}, the isolator of U, which is a

subgroup if E is nilpotent.
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Theorenl A: Let B Ä E ~ C; be a central extension of gl'oups and let n 2: 1.

8uppose that the relation VB rn+l (E') c B Vrn+l (E) holds l:n E orJ equivalent/y,

that the relalion V,n+l (G) c 1fVln+1 (E) holds in G (lhis is the case, fo'I'
exampleJ if G is torsionfree ni/polent 01 dass::; 11.). Then the following is tnie:

(1) The sequence of hOIllolllorphislllS between Z-torsionfree nilpotent G-Illodules
of dass ~ 11

o -----7 f(B/B n In+l(E)) :r<.!Li) P[(E,B) P~) p[(G) ---+ 0

is exact. Here the G -action on the left hand term is trivial. 1f B is finitely
generated all tenns are finitely generated ffee abelian groups, so the sequence
splits (nonnaturally).

(2) The torsion subgroup of Pn(E, B) is generated by the elements

Pn(ad"'Pn(ak), k ~ 1, with ai E V,n+l(E) if k = 1 and with ai E

VB 18i (E), 1 ::; i ::; k and SI + ... + Sk > n. In particular, taking
B = {I}, one obtains a canonical iSOl110rphism

p;[(G) ~ Ll(G)/Ll1I (G)

where the ideal filtration {Ll:r( G)} of Z(G) is induced by the N-series

{V/i(G)} of G, see [Pa79].

(3) If E and Gare torsionfree nil potent grollps of dass::; n then the derivation

p'{;: E~ P;[(E,B)

is an injective 1l1ap.

The strllcture of the group P;((G) is derived frolll the followillg integral analogue
of Quillell 's result on the structllre of Gr (Q(G)) [Qu68].

The graded Lie ring LV(G) is defined by

LV(G) = L .j'i(G) / .j'i+t{Cn ,
i~l

[a.jii+l(G), b.j'i+dG) ] = (a, b).j'I+i+1(O) ,

and tbe grading of the envelopping algebra ULV(G) is ind llced by the grading of
LV(G).

Theorenl B: For all groups G lhere is a natural isonl0rphism

(}z: U LV(G) ~ GrV(Z(G))

01 Z-torsionfree graded rings. llere the associated graded ring Grv (Z(G)) is
taken with respect to the filtration {.6.~(G)} 01 Z(G), cf. theorem A (2). The

rnap Oz is induced by the indusions )/i(G) C ~~(G) . 0
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Corollary C: Lei. C/ be a grollp und n 2:: 1. Then f,he followi'1l9 statements hohl:

(1) There is a natural isolllorphislll

GrV ( PnV(G)) ~ ULV(Cn/L: UiLV(Cl)
i>n

o[ graded rings induced by OZl, cL theorenl B. If G is finitely generated
then there is a (nonnatural) isomorphism of groups

n

P7'[(G) ~ E9 UiLY(G) .
i=l

In particular, the rank of p;[(G) is detefll1ined by the numbers ri =

rank ( jii(G) / jii+l (G) ), 1 ::; i ~ 11, according to the Birckhoff-Witt­
theorell1.

(2) The following seqllence consists of G-linear hOlllolnorphisll1S and is exact:

o~ j,n(G) I V,n+l(Ci) tL p[(G) P~) P[(CI/j,n(G)) ~ 0

with 7r: Ci ---* GI V'n(G).

(3) The cl ivisabiIity in p;[(G) of elell1ents in p'[('n(G)) is gi yen by the ideutity

Here the sYlnbol V indicates that the corresponding isolator is taken with
respect to the additive structure of p;[(G). Ir !(n denotes the subgroup
generated by the n-fold ring comnlutators of P;[(G) we have the following
iSOInorphisIll and identities in p;((G):

o

Part (2) Illay be viewed as a generalization of \Vitt'8 thearern that the canunu­
tator Lie ring L(G) of a ffee group G is free. In fact, let T denote the nonCOIll111U­
tative polynomial ring generated by a basis of Ci and let T be its augrnentation
ideal. Then "Vitt's theorelll says that L(G) is jsolnorphic with the sub-Lie algebra
of T generated by hOlnogenous elelnents of degree 1. 1'his is a special case of corol-

lary B (2) since we have V,u{G) = ,n{G), P;[(G) :: T/fn+l anel ~ = J<n'

TheorelTI D: Let G be a 9rouP. Then the 91'aded Lie ring LV(G) is deiennined
by the group ring Z(G) up to isomorphism. In fact, let Gr T

(~z (G)) be the
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associated graded ring of ßz (G) with respect to the filtration {tiß z(G)}. Let

LT (Ci) be the sn b- Lie ring of GrT (ßz (G)) which is the additive isolator of the
sub-Lie ring gencrated by Grr (ßz(G)). Then the inclusion Gf C Z(C) induces a
natural isomorphisnl of Lie rings

o

This is an integral analogue of Quillen's result In (Qu68] that the Lie algebra

L.r(G) C9 Q is determined by the ring Q(C-n .

2 Prüofs

\·Ve start by showing thal our statenlent.s hold after tensoring with Q. The 'descent

to Z' then turns out to be much simpler than in conlparable situations in the

literature; e.g., lattice subgroups da not playa distinguished role.

2.1 First note that we ha.ve for all groups the elelnentary relations

Q® (1'i(C;)/1'i+1 (G)) ~ Q0 (V'i(G) / V'i+1(G)) , ßQ (V'i(G)) C ß~(G) and
hence ß:r-,Q (G) == ß~ (G).

Theorem 2.2 ([Qu68]) For a/l gro'ups therf 'is a natural isomorphism

01 graded a/gebras induced by lhe inclusion ßQ (V1'i(G)) C ß~(G). llere lhe
associated graded 01 Q(G) is laken with l'espeet to the augmentation filtration. In
partieu/ar, the Ulap LV(G)----+Gr(Q(G)) and !lence also the rnap

Ql'e injective.

As a generalization of the laUer stateillant we obtain

Theorenl 2 .. 3 Let E = ( B ~ E ~ G ) be a central extension 01 groups. Then
the following sequence 01 G -linear hom,onlorphisms is exact:
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Proof:

(1) Using 2.1 one replaces E.. by the extension

Now t,he only non elenlentary part is (,0 prove injectivity of Q 0 ]Jn i. vVrite

i3 = B / B n /n+l(G), E = E / 'Yn+dE) anel t} = G/'Yn+l(G).

(2) Let 0 =I x E Q ® iJ; we have to show that Pn,Qi{x) i:- 0 in Pn,Q(E, B).

Choose a linear retraction r : Q 0 i3 ----Ho Q . x of thc inclusion Q. x c Q 0 B .
Let

i - 11"Q x >-----+ E~ G

be the centraJ extension induced by the honlonl0rphis1l1

- - - r
f: B :: Z 0 B ---t Q0 B -----* Qx .

Then

(3) E is nilpoteIlt of dass ::; 'Tl, alld

(4) tbe nlllllber k = -1 + 111in{llzQx n V"n(E)
satisfies 1 :S h~ :S n since

{I }} i8 defined and

by (3) and the fact that Q i8 torsionfree. \Vc obtain the following COllullutative
diagranl

Qt;?yß r
----*

Ipn,Qi
(5) Pn.Q(E, B)

1-
Pk,Q(E, B)

Qx ~ E / j'k+dE)

Ip"Q
Pk,Q(E)

1ß

Here ü i8 induced by I, ß is thc canonical quotient, and J: E ---t E is induccd

by f.

(6) \Ve have zQx c V'k(E): By definition of k there is 0 i:- y E Qx with zy E

Vik(E). For z E Qx there are rn, Tl E Z with z(rnz) = z(ny) E Vik(E) which

implies IZ E Vik(E).
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By (6) and 2.1 one has ßQ(zQx)ßQ(E) c ß~+l(E); hence ß is isorllorphic.
Furthermore Pk,Q anel a in (5) are injective by 2.2 anel by definition of k, resp.
Now by Cotlullutativity of (5) it follows that TJn,Q i (x) =f:. 0 which conelndes the
proof by (1) and (2). 0

Now our 'descent to Z' rests on the following

Lemnla 2.4 Lei L be a 91YLded Lie ring which is torsionftee (IS an abelian group.

Then the envelopping algebra ULover Z is also torsion/Tee as an abelian 91"O'UP.

Proof: The Lie ring L is the colinut of its sub-Lie rings L o which are locally (i.e.
in each degree) finitely generated as abelian groups. Since the envelopping algebra
as a leH adjoint funct.or preserves colinllts we get

*) UL ~ colinla ULa = UULa / I'.J

o

where x I'.J y, x E ULa, y E ULß, if there is an inelusion ioß : L o C Lß in L such

that U(ioß)(x) = Y .

Since L is supposed to be additively torsionfree each L o is 10ca11y and hence glob­
ally a free Z-tnodule. The Birckhoff-Vvitt-theoreI11 then provides a naf1l1'ltl ring
isolll0rphisill Gr(U Lo:) ~ S (Lo:) of the associated graded of ULo: with respect to
the filtration by word length with the symnletric Z-Algebra over Lo:. It follows
that ULo: is additively free abelian anel whence torsionfree, and that the homo­
1110rphisms Gr( U(iaß )) induced by thc inelusions i oß : L o C Lß are injective.
Thus also thc 111apS U( iaß ) are injecti ve which i111plies the assertion by *). 0

For the proof of theorenl A we introduce a relative version of the filtration
{ß~(E)} of the group ring Z(E).

Definition 2.5 Let. E be a g't'01lp and B <JE. Then fhe s1lbgroup

ß~(E,B) C ßz(E)

is gene'l'ated by the elenteuts (a] - 1) ... (ak - 1), k 2: 1, with a] E J{n+1 (E) ij

k = 1 and wilh ai E JB {Bi (E), 1 ::; 'i ::; k and s] +... + Sk > n. Note that
ß~(E, {I}) = ß~(E). Since ß~(E,B) is a two-sided ideal we huve the quotient
nngs
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Proof of theorenl A and B.

Für an abelian gI'üup A let 11 or v(A): A ~ Z ® A --+ Q ® A be the canonical Inap.

Let G be a group.
Using 2.1 and 2.2 we ohtain the following factorization of v(UL"(Ci)):

Here v is indueed by v: Z(C) --+ Q(C). Sinee LV(C) and thus by 2.4 also
UL"(C) are torsionfree as abelian groups we obtain

(1) injectivity of v(ULV(C)) and whence

(2) injeetivity of Oz, i.e. theorelll B

(3) injeeti vi ty of v.

TIy 2.1 we have a faetorization

where w i8 the eanon ieal quotient I11ap. Hut

(4)

where the associated graded lllap Gr"(v2 ) i8 laken with respeet to the filtration
ßk (G) ..{611(G)} of p;[(G) and wi t h respeet to the augmentation filtration of Pn,Q ( Ci) .

Now (3) entrains injeetivity of V 2 whieh implies

(5)

This proves theorern A (2) in ease B = {I}. Ta study the relative case we first
eonsider

(6)

see 1.1, 2.5. Observe tha.t by eentrality of B inE we have a natural fa.ctorization

of the rnultiplication lllap of Pn,R(E, B) where (j ; Pn,R(C) ----*' Pn-I,R(G') is the

eanonical quotient map. Using this and the relation JB li(C) = 1r-
1 V'i(H) we

rlla.y rewrite (6) by

(7) pß11 (E, B) = Pn /,n+1 (E) + Jl (L:i+i>n pß~(C) 0 Pö.~(G))

Consider t.he following comnlutative diagranl with exact bottonl row by 2.3.
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pV. tf\f)r(B /8 n In+] (G))
n 1 P;[(E, B) p,-;(G)-----+

(8) 1 10 1ß

Q 0 (B / B n In+l(G))
Pn,Qi

Pn,Q(E,B)
Pn,Q('lr)

Pn,Q(G)>-+ ----7+

The hOlllomorphislll p'[i is welldefined since f(B/B n 1'n+l(O)) =

B / VB n fn+] (Ci) and p:[iJB n 1n+1 (Ci) C p'[i V1'n+l (B) = 0 hy (7). The nHlps
Q' auel ß are illduced by v(Pn(E,B)) alld II(Pn(C/)), resp. anel are welldefined
since we have

vPß.11 (E, B) C pv (ß.71(E)) + Il L pviJ.:.r(G) ® pvß.i..r(G)
i+j>n

C pß'Q+l(E) + fl L P~Q(G) ~ pß~j-n(G)
i+i>n

= 0

Hence p'[i is injective by COlllllllltativity of the left hand square in (8). ~Ioreover,

the top row is exact in P;[(E, B) since Pn (7r) (pfl11(E, B)) = piJ.1 1(G) by

(7) and the relation 'Fr V,n+l (E) = V1'n+l (e;) whidl holds by assu111ption. Now
t.he inject.ivit.y of ß by (.5) implies inject.ivit.y of 0'. From t.he filct.orizil.t.ion

-v Q'

v: Pn(E1B) -----* Pn (E,B) >---7 Pn,Q(E,B)

we conclude T Pn(E, B) = Kerv = piJ.11(E, B) which is assertion (2). vVhence
PnV(E, B) ~ PnV(E, B) and the short exactness of the top row in (8) already
shown proves assertion (1). For the proof of (3) let E and G' be 7;l-grOUPS. Then
the Inap

v
Pn,Q: G~ pf(G) ~ Pn,Q(G)

is injective by 2.2 whence so is p[. Now let a, b E E with p[(a) = p'[(b) in
PnV(E,B). Then 7r(a) = 'Fr(b) by naturality of p[ and by injectivity of p[ on G.
ThllS we have a-1b E i(B) and

p'[(a) = p~(b) = p'[(a i(i-1(a-1b))) = p~(a) + p:[i(i-l(a-]b)) .

This iInplies a- 1b= 1 by injectivity of p[i proved above. 0

Proof of Corollary C:
(1): \Ve have isoluorphislllS of graded rings

Grv (P;[(G)) ~ Grv (iJ.z(G)/ß11(G)) ~ ULV(G)/I: UiLV(G)
i>n
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by theorenl A (2) and theorCITI B. If G is finitely generated then L((G) =
V'i(O) / V'i+l(O) is a finitely generated free abelian group, thus so 18 lJiLV(Ci)
anel t.he seconel assertion folIows.

(2): By theoreul A (1), (2) anel 2.5 it renlaills to show that the quotient lllaps

are injective. This follows readily froln the following relations in G = G/ V,n+l (G)

whieh are easily verified: For i 2: n oue has V,j(t) = V'i(G)/V,n+l(G) alld

(3): In order to apply (2) we calculate

Now (2) iInplies

Tbe converse illclu8ion follows frOlll the linearity of p'[l V,n (G) . o

Proof of theoreUl D: Tbe ring structure of ßz(G) i8 deternuned by the ring
structure of Z(G) (Pm77J p. 664, whence also the Lie ring LT(G). '1'he asserted
isomorph1sm with LV(G) 1S provided hy corollary C (:3) as an isomorphism 0/
abelian g'roups.

Now let a E V'k(G) und b E V'"Yt(G). Then (a, b) E V7k+l(G) , and we
have

*) pf.rl(a, b) = [p41(a) , p4/(b)] + pf.rt(a-1b- 1
) [p4t(a) , p4t(b)]

by the relation (a, b) - 1 = a-1 b-1 [a - 1 ,b - 1] in Z(G). But the last ternl in *)
lies in the iJnage of ß:;I+1 (C-:) in Pk';;'l( G) and thus vanishes by theorenl A (2).
This proves the theorem. 0
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Part 11: On celltral extellsions of torsionfree
nilpotent groups

lt is a classical result [Re-R079] that for a group G the category of group

extensions B ~ E ---* G is equivalent with the category of G-1nodule ex­
tensions .8 >--+ M -----* ~ (G) where ~ (G) is the augmentation ideal of the
group ring Z(G). vVe here show that for cenl'ral extensions of tors'ion/lee nlJpo­

lenl groups G anel E an analogous 'luodel theorenl' holds USillg Z-torsionfree
ni/polent. modules anel replacing ~(C;) by the polynomial quotient PnV(C;) =
( ß (G) / .ö.n+l (G) ) /Z - torsion. Frolll this result we obtain inductive 111ode1s

for torsionfree nilpotent groups (T -groups for short) in tenns of nilpotenL rings.
Further applications are concerned with the cohomology group H 2 ( G, B) of T­
groups G and Z-torsionfree trivial G-Illodules B: v\Te give a description in ternlS
of polynonlial cocycles and of polynolllial coboundaries in the sense of Passi. This
result geueralizes a theorelu of [Pa-Su-Ta87] for B = Q Lo llondivisable coeffi­
cients. 1tloreover, it alnoullts to a cOlnputation oI 11 2 ( G, B) in tenns of explicit
integer va}ued rational polynomia}s, starting from a presentation of C-: and using
nlatrix calculus. COillpared with corresponding classical results these polYllOInials
are of a particular siJnple form and of nlininla.l degrce.

The reslilts of this paper fornl also the basis of OUf inductive description of
autoll1orphism groups of T -groups in part three of this paper.

1 Abelian models oftorsionfree nilpotent groups

vVe consider the category Qn of central group extensions E = ( B ~ E' ~ G )
where G and ,E are T -groups of dass ::; n (Tn -groups for short). Morphisms
[raIn EI to E 2 in Qn are tripels (I, F, I') of hOffiOlnorphislllS which make the
following e1iagralIl COllullutative:

For the construction of an 'n-model' of a group extension E E Qn we recall the
definition of the relative polynoluial constructioB in part I: Let ß(E) denote the
augnlentation ideal of the group ring Z(E). 'vVe deRne the quotient rings

Pn(E,B) = ~(E)/ (~(B)~(E) + ~n+l(E))

P[(E,B) = Pn(E1,B)/Z - tors'ion, P[(E) = P[(E',{l}) .
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Via the Inap 7r anel left multiplication, Pn(E, B), P;((E, B) anel p;((G) are left
nilpotent G-modules of dass ~ n , allel the map

p[: E -+ P;((E, B), p;:(a) = {a -I} ,

is a 7r-derivation which is universal with respect to Z-torsionfree Illodules of this

type.
Now an n-model is a pa.ir (C, AI) where G is a Tn-group alld where AI =

(B >---+ lvl ~ p;((G)) is an extension of left G-nlodules such that B is a Z-

torsionfree trivial module. We assign to a group extensionE = ( B ~ E ~G )
in Yn the 11, -1l10del

(

V. v )Pn(E) = C-:, B ~ P[(E, B) P
n (l~) p[(G)

The tenll on the right has the required properties of an n-nlodel by theorenl A in

part I of this paper.

1.1 COllversely, an n-model (G, NI) gives rise tu a group extension

in Yn defining

Eo = {(x, a) E A1 x G 11r(x) = p~(a) } ,

(x, a) . (y, b) = (x + a . y, ab)

allel ,i'x = (x,l).

VVe also want to COIllpare the autornorphisln groups of grollp extensions in Yn
with those of their n-models. For this we define the category Mn of n-nlodels by

taking as nlorphisrlls fronl (GI, All) to (G~, 1\1 2 ) all tripels (f, F, f') with the
following properties:

• f: GI -+ G2 anel f': BI --+ B2 are hOlTIOIl1orphisms of groups;

• F: All -+ A12 is an f -equivariant hOlllolllorphislTI, i.e. F(ax) = f(a) F(x)
for x E lVII, a E GI;

• the following cliagranl is cOllllnutative:

PnV(Gd

1p/"U)
P;[(C-:2 )

11



The constructions Pn and Pulln above are actually functors
Pn
~

911 +-- Mn
Pulln

by defining Pn (!, F, I') = (I, p[(F), I') and Pulln (/, F, f') = (/, F X I, f').

Model theorenl A: A group extension E E guis uniquely determined by its
n-'1nodel 'Up /.0 congrllcnce and conversely. Furthermore, t.he au/.olnorphism, group
0/ E is 'mapped isomorphicly onto I.he auto'11lorphisJIl grou}) 0/ its n -model by the
functor Pn . Actually, fhe functors Pn and Pulln are nnLlually inverse eqw:valences
0/ cafegories.

Proof: Natural transfornlations Pu 0 Pul/n ~ itl and id ~ Pulln 0 Pn are
readily established by the universal propcrties of p'[ and of the pullback used in
the definition of Pulln , resp. These are isomorphisms by the five-Iemma. 0

Thus theoreITI A reHes esscntially on thc fact that the fUllctor Pn is welldefined,
i.e. on our study of the relative polynomial construction in part 1.

Renlark: In comparison with the general model theorenl on arbitrary group
extensions in [Re-R079] aUf special result for T -groups has several advantages:

• For flllitely generated groups E the IllOdels Pn ( E) consist of Jinitely gener­
a/ed jree abe/ian groups.

• p;((G) is conlputable by abelian generators and relations if G is given by a
finite presentation, cL proposition E below. This is due to the fact that for
free groups F the ring P[(.F) is a truncated noncommuative polynomial
ring, Le. it is free in the category of rings of index n +1 while the ring Z(G)
itself is not free but has allluch more conlplicated structure.

• The Il10dules involved in our 1110dels are 'Tl-i/potent which is weIl adapted to
iuducti ve constructions [Ha92k].

Fronl Theorenl A we obtain the following inductive abelian 1110dels for torsionfree
nilpotent groups and their h0l110D10rphis111S.

For a group E and U < E let JfJ = {a E E 13'17l E Z : am E U}, the

isolat.or of U, which is a stlhgrollp if E i8 nilpotent.. In part.icular, E/ J"Yn+l (C;)
is a 7;1-group. Now let S be a ring (without unit) of index 11, + 1, i.e. sn+l = O.
Then !(n(S) denotes the additive subgroup of S generated by the n-fold ring

commutators of Sand \IKn(S) denotes its isolator taken with respect to thc
additive strucLure o[ S.

'Ve define the category 'Rn of Ill0dels for Tn -groups as folIows: Objects are pairs
S = (G, 7r : S --7t p[(G) ) where G is a Tn_1-group, S is a ring of index n +1
whose additive group is torsionfree anel where 7r is a surjective ring homomorphism

12



such that Ker(1r) = \!J(n(S). MarphisI11S {raIn SI ta S2.in Rn are pairs (!,F')
with f E Horn (GI, O2 ) and where F: SI ----+ 82 is a ring homonlorphism such
that p;[(f) Jr) = 1r2 F.

Now we assign to a ~ -group E thc tl10del

where 1r : E -# C / J,n(E) i5 the canonical quotient tl1ap. This i8 in fact an
object in Rn by Corollary C in part I. Conversely, an arbitrary object

S = (C, 1r : S -# P;(G) ) E Rn gives rise to a graup

GnL~) = {(x,a) ES X Cl1r(x) =p~(a)} with (x,a)(y,b) = (x+ay,ab)

where a is some element in S with 1r(a) = p[(a). The product ay is welldefined

since \!Kn(S) Sc {!Sn+l = 0 by our assumptions on 5'.

Model theorelu B: A Tn -group E is detennined by its 1nodel R n ( G) ·up Lo
isomorphism, and its aulontorphisnt group is canonically iS01TtOrphic Lo that of
R'11 (G). Adual/y} th (; con81'Mlction.~ Rn (ln d Gn (f re m ulually inve r.c;e equ;valen ce..::;
01 the calegory 01 Tn-groups and lhe calcgory Rn .

In SOllle sense, this result is a substitute of the Mal'cev correspondence between
rational nilpotent groups anel rational nilpotent Lie algebras in the nondivisable
case. It nlay be used for the construci,ion of '8111al1' Illodels for sin1plicial T­
groups anel thus for integral hOl11otOpy types, in analogy with Quillen 's use of
the 11al'cev correspondence as a key ingredient in his J110delization of rationa.l

hOlllOtopy theory by rational differential graeleel Lie algebras. As a first step in

this direction we derive fron1 theorem B a Dold-Kan theorem for silnplicial groups

of dass 2 [Ha92h]. Applicatiolls to graup COhOl1l01ogy with respect to the variety

of nilpotent groups of dass n are also to be exspected.

Theoretn ß is an inll11ediate consequence of theoren1 A using the fol1owing

Renlark 1.2 An extension of G-tllodules B~ kJ ~ p;[(G) call be viewcd
a.s a singular ring extension with B· 1yJ = 0 and conversely. In fact, the 1110dule
NI can be endowed with the multiplication

J\10 A1 1f0"f pf(G) <&I 1\1~ N!

where Jl is induceel by the given G-action on M. The converse is deal'.

2 The second homology and cohomology of tor­
sionfree nilpotent groups

\".Te pl'ocecd to apply rnodel theoren1 A to the classification of grollp extensions.



Let G be grollp anel B be a trivial G-llloduie. Let

be the subgroup of congruence dasses of G-lllodule extensions ß >---+ M ~
p;((G) for which the module lvI is nilpotent of dass:::; n. Sinlilarly, consider the
nng

P:(G) = (Z(G)j ~n+l (G)) jz - torsl:on

anel let
2 ---f 2 -...r

Hn (P n (G), B) c HH (P n (G), .B)

be thc subgroup of the Hochschild COh01110logy of P;:(G) consisting of congruence

classes of singular ring extensionsB >------+ S~ P;:(G) for which $ = Ker (f 1r)
satisfics $n+l = O. Thcn theorem A implies

Corollary C: Let G be a Tn -group anfi let B be a Z-torsionf,..ec G -'module. Then
the consl1'uclionsPn andPulln p'IYJvide m:utually inverse nai'U'lYlI iSOU10iphislns

(1)

(2)

where {ar (2) we suppose in addil'ion that G is finilely generuted.

The laUer condition assures that the group P~1 (G) is finitely generated anel
whence free abelian. Thus (2) follows from (.1) via 1.2.

Now we derive from corollary C an explicit formula for Jf2(G, B). Oue has
natural hOll101110rphislns

Here B2 ( G) is the tenn of degree 2 in the nonualized bar resolution of Z over Z(G),
-rj; [al b] = pn (a) 0 pn (b), anel J.ln+l i8 the canonical factorization of the Iuultiplication
Inap of Pn+l (G).

Theorenl D: Let G be a finitely generated Tn -group and let ß be a Z-torsionfree
trivial G -module. Then 'lj; induces natural isomorphisms
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In [HagI] we ::;how that the assertiOll Oll JJ'J( G) actllally hold::; without assulning
G to be finitely generated, and we also detennine H 2 (G, B) as a bifunctor in this
general case.

Theorenl D lnay be viewed as a convergence theoreln on the polynomial ap­
proxiInations of H 2 anel JI2 defillcd in [Pa74] and [Ha92d], rcspectivcly. In fact,
the statement on H 2 ( C, B) ilnproves the following result of Passi, Sucheta alld
Tahara in two directions: As a, main result in [Pa-Su-Ta87] they prove that each
coholl1ology dass in 1/2(G, Q) is representable by a polynonüal cocyde of degree
~ n (in Passi's sense [loc.eit]) for a T -group G anel the trivial G-action on Q.
Theorem A extenels the resllit to arbitra,ry torsionfree coeffieient groups (in partic­
ular, to B = Z) and, 1110reover, givcs apreeise eomputation of the gIaup Jf2(G, B)
in tenns of polynomial cocydes alld polynonüal coboundaIies. In the following we
ma.ke this coolputation explicit and give a,n example before proving the theorem.

Let G = (x!, ... , Xk 11'1, ... ,1'1) be a pl'esentation of a Tn -group. Then oue
cau compute tbe groups H 2(G, Z), H2(G)/torsion alld the Kronecker pairiug by
matrix calclllus llsiug theorem D anel the next propositions E anel F.

Let T be the noncolnnlutative polynOinial ring in variables Xl," • , Xk, and let
Tn = T /'J'n+1. vVrite 1'i = x"11

... xL~ in the free grollp F = (XI,' .. ,Xk)' Let
I

F· = (1 + x· )±1 ... (1 + x· )±1 - 1 In TnI 11 ;.j

with (1 + X)-l = 1 + L:~;:l(-l)lIxv. Let 8: R = (TI,'" ,Tl) -+ F be the ho­
ll10nlorphislll defined by 8(ri) = ri, and let Rn = span{ '1';t, ••. , Fd anel Sn =

- - -2
TnR7lTn +TnRnTn C Tu .

Proposition E: l'Ve haue the fo//owing commutative diagrant with isom,ol'phisms
111,1, '1n2 defined below and with exaet rows

Ker Jln Pn-1(G') @c Pn- 1(G)
Iln Pn(G)~ -----+

r ~ rm , ~ rm2

Kcr(8ab : Rab -+ Fab) s
t~ / Sn Tn / TnRnTn-----+ ------+

IlT

Here 111,1 and rn2 areinduced by

1Ht(X"I" ,x"m) = Pn-1{x"1} 0 Pn-l{X"~},, 'Pn-1{X"m}

nt2(xa1" .xam ) = Pn-1{X"I}' "Pn-1{X"m}

where {xd denotes the coset 01 Xi in G. Furthermore, J-lT and "8 are induced by
the inclusion t~ C Tn and by the 'fnap ri ~ 'r i, rcspeetively.
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The proof is easy [Ha91] 1.2.9.

Proposition F: Lei Xl, ... , Xk be (l set 0/ generetors 0/ a Tn -group G (e.g., a
Nlal'cev basis 0/ G) and let d: Pn(G) C9G Pn(G) --+ B be a h07no'morph1:sm info

som,e nbelian groupB. Thr.n thr. corresponding polynominl cocydeD: G x C: ---+B
is given by

L (nI) ... (nT) (nt]) ... (711&) d(p,,(XkJ1JI .. ·Pn(XkT)J.jr 0Pn(Xl t Y'I .. 'Pn(Xl.Y")
1 fll fl,. VI V tt

with 1 = {(jl], ... ,It,. , V], ... , vtt ) I0 ~ Pi, Vi ~ n, 1 ~ 1: jli, l: Vi , l: Iti + l: Vi ~

n + I} and where (:), s E Z, jl 2:: O} is defined Lo be lhe coefficient 0/ x JJ in the

expansion 0/ (1 + x)tt in Z[[x]].

Note that (:) i5 an integer valued rational polynonlial of degree jl in s for

fixed fl and fixed sign of s. Hence the coeffichmt8 in the sum, expansion o/D above
are intege1' valued rational polyno1Jlials 0/ degree ~ n tn lhe variables ni and Hlj

and of total degree ~ n + 1 .

Exanlple: Consider the Heisenberg groups Gq = {a, b, cl (a, b) = cq
, (a, c) =

(b,c) = 1), q E Z. Here a computation by the procedure indicated above ([Ha9l]
2.3.20) gives isomorphisms

flI2(G') ~ Z· fjJ3{(a,c)} ffi Z· fp3{(b,c)}

JJ2 (G, Z) I'V Z / qZ ffi Z ffi Z ,

where the tupel (u, w, z) is represented by the polynoluial cocycle

11 bl ad w (qb] (~) - CI a 2) + z (qb1a2 bd q (~ ) a2 - CI~) ,

ai, bi , Ci E Z. 11oreover, the Kronecker product

is given by
< (ll, w, z) , J.: {(a, c)} + 1{(b, c)} > = w k + z1.

Proof of theorenl D:
(1) First observe that a central extension M = (B~ NI ~ P~l(G)) of
Z-torsionfree nilpotent modules of dass ~ n is equivalently described by a diagram
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P[(G) 0G p[(G)

IIV
B

i
>--+ M ~p..r (0)n+l

where the row is thc lInelerlying extension of abelian groups anel where lV IS a
hOnl01110rphisnl of abclian grollps lifting the l11ap

P.~1: p[(G) 0G P[(G) ---t P!t-l(G)

induced by tbe multiplication lnap of the ring P~l (G). In fact, Hf is obtained
by the following factorization of the action lnap

where p and f are the canonical quotient ll1aps.

(2) The tenns Pn(G) 0G Pn(G) allel Pn+dG) in theorenl D can be replaced
by pf(G) 0G pf(CJ) and Pft-l (GI), re8p., since the group B 18 tors10nfree by
assumption.

Using (1) define a nlap

by
p[(G) O9G p[(G)

1(d,";(.; 1 )'

X(d) = { B~ BEBP;c'l(G) ~ P~l(G)}

where brackets {} denote the cOllgruellce dass.

One readily checks that X is a honl0IllorphisIll using the Baer SUll1 construction of
1l1odule extensions [rvIL63]. ivIoreover, the identity

(3) Pulln 0 X = '1jJ*

is readily verified using the transversal a ~ (0, P~l (a)), a E G, for B in Eo ) cf.
1.1.

Since G is supposed to be finitely generated the group Pft.l (G) is finitely generated
torsionfree, whence [Tee abe/ia71; this shows that X is surjective. To detefInine
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Ker(x) suppose that X(d) = 0 = X(O). This is equivalent wiLl! the exisLeuce of
an autolllorphism Q of B EB Pn~1 (G) with Inatrix

(
1 ci)
o 1 '

Q' E HOlll (Pfrl (G) ,B), such that

(d,Jl;;:I)t = a(O,Il;;:l)t = (Q'Il~ull;;:l)'

Lc. d = J-l~1·a'. By corollary C togcther with (3) wc thus have proved the first
part of the theorenl. For the second one first note that by theorem A (2) in part
I we have for G E ~+1 the relaLions

(4)

where T( -) denotes the torsion sUbgfOUp.

(5) Thus the sequenee of hOlnolnOrphis111S

is welldefined and is a free 'resolution of the ffee abelian group Gab. Let adenote
the eananieal quotient maps frolll ß (G) ta p;[(G) or to Pfr 1(G). Consider thc
following eonlffiutative diagram of short exact sequences where the top TOW is the
universal eoefficient scquence for H2(C, B) and where büth tenns on the left equal
Ext~(c;ab,Q) = O.

Hüm(Pn;l (G)2, Q)
.,r.

HOln( p[(G) 0G Pu"'-(G),Q)-~n+l ,.
Hom(Ker(J.t~l)' Q)

j'"Hüm( P~l (G), Q)
>----t

(jJi~1 )*Hom(ß(G), Q)
------Ho

lU" 1(u0 u )" 1(u0u)"

-J.l. Hom(ß(G) 0Z(G) ß(G), Q) ,.
Hüm( Ker(ll) , Q)>----t

(iJL)"' HOln(ß(C/), Q) -----++

The vertical Inap in the llliddle is alrcady proved to bc isülllürphic whence so is
a* on the fight. This shows that the Illap

is injective 1110d torsion. It is also surjective by surjectivity of thc 111ap p @ p:
Ker (J-l) ---t Ker(Jln+l) (whieh is easily checked) alld by (4) above. This proves
the theorem. D
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Part 111: On autolll.Orpllislll groups of torsion­
free nilpotent groups

'.;Ve describe an inductive COlllputation of the autonlorphisll1 group of torslonfrec
nilpotent groups (= T -groups) in ternlS of iterated grollp extensions. All ternlS
involved are conlputable by use of linear algebra in case G is given by a finite
present.at.ion.

In particular we eonsider thc autoIll0rphislll groups of free nilpotent groups
which are of particular interest in a,lgcbraie K-theory; for nilpotency dass 2 they
are related to the exotie elelnent of !(3(Z) as was pointed out by Baues-Drecknlaun
[Ba-Dr89].

Let G be a free nilpotent group of dass n, i.e. G = F/,n+dF) for S0l11e
[fee groupF, where li(P) i8 given by the lower eentral series of }? For the [ree
ahelian group A = Gab = 0/,2(G) let T(A) = Z EB €Bi>l A0i be the tensor ring
over A, T its aUglllentation ideal, Tn = T/tn+1 the quotient ring, and let Ln(A)
be the subgroup of the free Lie-ring over A whieh is generated by the commutators
of length n. Then we have the following two exact sequenees of abelian groups:

Hefe In is the restrietion of t.he canonical inclusion for the universal envelopping
algebra UL.(A) ~ T(A) .

Note t.hat Gn d~ G/,n(G) is a ffee nilpotent group of dass n - 1. The
sequellces above are sequences or left AuL{ Gn ) - Inodules: Lei J E AuL{ Gn ). TLen
facts Oll A ~ G~b and on Ln(A) by thc indueed map f~ = fab and f~ = Ln(fab)
fespectively. Next choose a basis {:Z;i} of Gn and write

Note that Tn i5 isoillorphic \Vi th the truncated (non comlllUtative) polynonlial
ring with generators {xd. Ring isomorphislns f~ on j~ and T;, respeetively,
are defined by sending the generator Xi ta the eoset of the elelnent

with (1 +X)-l = 1 +L~=l (_l)V x v. The iS01110rphislllS fu now yield the action of
f on j~, 1~ /Ln(A) alld 1'n/Ln{A).

The exact, sequences ahove incltlce the following short exact sequences with
Honl = HOIlIZ.
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p;[(GI) = (ß(G) / ~n+l (GI)) jz - torsion

where 6. (G) denotes tLe augrnentatioll ideal or the group riug Z(G), alld let

I:Holll (A, Ln(A)) ~ HOnl (Tn/ Ln(A) , Ln(A)) ~ Hüln (i~/Ln(A), Ln(A))

ll: Hülll ( T,; /Ln (A) , Ln (A)) ~ HOIll ( j~ / Ln (A) , T~)

~ HOnl (i~/ Ln(A), j~/Ln(A))

These are actually sequellces of left Aut(Gn )-1l10dules by dcfining f· a(x) =
föCi(ju-1 x) where Ci is an e1enlent in one of the Hom-nl0duJes in I or 11.

Theorenl A: Let G be a {ree niIpotent gro'Up 0/ class n will! A = Gab. Then tlle
classi/y;'lg coho'moIogy class 0/ the group extension

o ----+ HOln(A, Ln(A)) ~ Aut(G) ~ Aut(G/,n(C-:)) ~ 1

coincides with the eIe'lncnl

Here ßI and ßll are the ßoc~'"-Stein operato1's associated with i,he sequences fund
JE respeclively und t is the O-dimensionul cohomology class given by the identily
0/ T~jLn(A) ..

The hOI11ol11orpLislll II ill the theorenl b recluctioll Iuod f'n (G) allel the h0111011101'­
phisnl 1+ is defined for x E G by l+(a)(x) = x· y where y = i a(x f'2(G)) E G
hy the lsomorphism of Witt. 1:: Ln ( A) ~ In (G).

Next we consider the 11lore general case of a finitely generated torsionfree
nilpotent group G of dass n.

Let Vf'n(G) = {(l E G I(lk E f'n( G) for SOllle k} be the isolator of ln (C-:) so

that Gn d~ G j V,n(G) is a T -group of dass 11 - 1. Now the g1'oup Aut( G) can

be computed from the group Aut( Gn ) in a similar way as in Theorem A. Here,
however, an additional obstruction operator arises, and the polynomia.l ring Tn

above has 1,0 be replaced by the following 1110re general construction: Define thc
rIng

be the canonical factorization for the nuiltiplication Inap of pf(G). All these
terms can be computed fronl the truncated polynomial ring i~ above in case GI
is given by a free presentation R ~ F --* G with A = Fab.

Let !(n denote tbe isolator in pf(G) of the additive subg1'oup of Pn"(G)
which is generated by the n-fold ring COllullutators of pf(G). \Ve recall fronl
corollary C (3) in part] the following
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Proposition: LcI. G be a grol1jJ. Thcn for 11 2:: 1 therr; 'is a natural isolllorphism

i'1ld'Uced by the map a 1-+ {a - I} E pf(G) .

This Il1ay be viewed as a gencralization of \,Vitt's iSOll1orphislll /'n(G) ~ Ln(A)
used in theorenl A to arbitrary groups since in case G is free we have iSOl110rphislllS

p;[(G) ~ 'in and J<n ~ Ln(A) ~ Tn.

Now for f E Aut( Gn) thc illduced isoillorphisrn Q92 Pn~l (f) of pf-dGn) 0Gn

Pf-l (Gn) restricts to an isoIllorphislll f~ of the subgroup M = Pn (G)-l J(n Since
one has the identity M = Iln(G)-l Ku = Ker J-ln(Gn) by 1. Corollary C (2). Let

cAut(Gn ) c Aut(G)

be the subgroup of all autoIl1orphis111S f for which there exists fu E Aut(J(n) such
that

Thc 111ap fu is uniquely deternlined since the span of the n-fold ring conllllutators

of PnY(G) is contained in /(n n p;[(G)2 = J{nn hn Pn and has ftnite index
in K n where 1(n is torsionfree. Hence for f E cAut( On) one obtains a unique
autoI110rphisrn of

also denotcd by fu, satisfyi ng

ThllS ](n anel An are left cAllt( Cn )-Inodules by use o[ f 1-+ fu.

The following lenlIua is an inUllediate consequence of theorelll A (2) in part I.

Lenlma: One has the followü~g sltad exad sequence of homorphiS'lllS between
abelian grollps:

p
------*'

where p sends lhe toset of a - 1, a E G, /'0 /'he demenl. a/'2(G) .

Therefore the followillg sequences are short exact sequellces of cA lIt( On)-billlodllles.

1': HOIn(G~b,1{n) ~ Honl( p;[(Gn),}<n) ~ Hom( p;[(Gn)2,}{n)

E· E t 1 (Glab r. T
)-----* X Z T n ,-l\ n
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with f.,: ](n '----+ An' As above, the1:ie sequeuces are sequences o[ feit cAut( Gn )­

Inodules by setting f· 0' = J.I-"o·.

Now a derivation

with respect to thc left cAut( Gn )-action is givell as folIows: Since P;(G) is a
finitely generated free abelian group one can choose a Z-linear splitting t of the
surjection

where 1r: G~Gn is thc canonical quotient Inap. Here t carnes PnV (Gn)2 to
An, so aue gets the restriction

I: P;((Gn )2-tAn oft.

Thus we obtain for f E cAut( On) the welldefined hOIllOlllorphislll

Hence the operator 0 satisfies 0(/) = [.-1 (/ . I - I) so that 0 is a derivation.
Theorenl A is a special case of the next resulL.

Theorenl B: Let G be a finit.ely generat.ed T -grou]> 0/ elass n.

(i) The Jollowing sequence is exacl.:

1 --t Honl(G~blJ<n)~ Aut(G)--.!!... cAut(Gn ) ~Ext~(G~blL[(G))

He're the h01JlOlnOrphisnt TI in lhe theoreln is reducl,ion 'mod /,n(C;) and
the homomorphism 1.+ is dejined /01' x E C;n by ]+(a)(x) = x . y where

y = k;;l 0:(x1'2(Gn )) E G by lheisomol'phism kn: /rn(G) ~ I\n in lhe
proposition above. The de1'ivalion E*CJ is given by E in 1'. J'vJoreover, the
action 0/ !(er E*CJ on

defined by conjugalion in A ut{G) coincides wit.h lhe rest.,.icl.ion 0/ lhe leJt
cA ut{Gn)-aetion dejined above.
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(ii) The classifying cohomology dass of lhe gl'oup extension

ob/'ained flvm (i) coincidcs with lhe elernerd

where

ß~: fiI (Ker(E$()) , KerE$) -t H2 (Ker(E$O) , HOIll(G~b, J{n))

is Ole Backstein operator associaJed -WiOl the extension l' 0/ Ker( E*O)­
lnodules.

(iii) Let (Gn )ab be torsion/tee (this, in particuIar, haIds i/ Gab is torsion/ree, i. e.

V12(G) = 12(G)). Then the Ext.-term. in (i) vanishes so tha.t one has the
gro'up extension

Hom(G~b, }(n) Aut(G) cAut(Gn ) .

The dassifying cohornology dass 0/ this extension coincides wilh Ihe cle1nenl

fIere ßh is lhe Bockstein operator associaled with ex/,ension 11' 0/ Ker E*O­
modules dejined above und f is l/ze O-di111ensional coho'l11olgy dass given by
the identity 0/ PnV(G'n) '2.

Theorcrl1 A anel ß are corollaries of 11lorc general results on thc categol'Y Tn of
T -groups of dass ::;n. For this one needs the notions of 'linea.r extension of

catcgories', 'exact scquenccs for functors' and thc 'cohornology of categories' as
established by Baues [BaSS]. Using these new concepts we proved results on thc

categories Tn which are abnost literally of thc salne nature as theorelIl A anel B.
This in fact shows that not only autolTIorphism grollp8 hut also aB diagrams in Tn

can bc conlputed by reslllts as above.

The proofs are contained in [Ha91]. There a.lso auto1110rphisI1l groups of nilpo­

tent gl'OllPS with dimension property are described.
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