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Abstract

We study the Yang–Mills gradient flow as a Morse function on the
space A(P ) of connection 1-forms on a principal G-bundle P over the
sphere S2. The resulting Morse homology is compared to that of the
based loop group ΩG. Via a hybrid moduli space approach we obtain
an isomorphism between both Morse homologies, thereby answering a
question due to Atiyah.
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1 Introduction

Let Σ := S2 be the unit sphere inR3. Let G be a compact Lie group, g its Lie
algebra (on which we fix an Ad-invariant inner product), and P a principal
G-bundle over Σ. In this paper we answer a question raised by Atiyah re-
lating Yang–Mills Morse homology of the space of gauge equivalence classes
of g-valued connections on P to heat flow homology of the group ΩG of
based loops on G. The Morse complexes to be studied here are the complex
generated by the L2 gradient flow of the Yang–Mills functional YM on the
one hand, and the complex generated by the L2 gradient flow of the energy
functional on ΩG on the other. Our goal is to establish a chain isomorphism
between these two Morse complexes.

Denote by ad(P ) := P ×G g the adjoint Lie algebra bundle over Σ, and
by A(P ) the space of g-valued 1-forms on P . This is an affine space over
Ω1(Σ, ad(P )), the space of ad(P )-valued 1-forms on Σ. The curvature of a
connection is the ad(P )-valued 2-form FA = dA+ 1

2 [A ∧A] ∈ Ω2(Σ, ad(P )).
The space A(P ) is acted on by the groups G(P ) and G0(P ) of gauge, re-
spectively based gauge transformations of P , cf. Section 2.1 for precise
definitions. Each connection A ∈ A(P ) induces an exterior differential
dA : Ωk(Σ, ad(P )) → Ωk+1(Σ, ad(P )) via dAα := dα + [A ∧ α]. On the
space A(P ) we consider the gauge invariant Yang–Mills functional

YM : A(P ) → R, YM(A) =
1
2

∫
Σ

〈
FA ∧ ∗FA

〉
. (1)

The corresponding Euler-Lagrange equation is the second order partial
differential equation d∗AFA = 0, called Yang–Mills equation. Critical points of
YM are degenerate (due to the gauge invariance of the functional) but satisfy
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the so-called Morse–Bott condition, cf. the discussion in Section 2.3. The
(perturbed) negative L2 gradient flow equation associated with the Yang–
Mills functional is the PDE

∂sA+ d∗AFA +∇V−(A) = 0. (2)

Cf. Section 2.2 below for the precise form of the perturbation V− : A(P ) →
R.

Denote S1 := R/2πZ. The free loop group of G is the space ΛG :=
C∞(S1, G), endowed with the group multiplication defined by (x1x2)(t) :=
x1(t)x2(t) for x1, x2 ∈ ΛG. The based loop group of G is the subgroup

ΩG := {x ∈ ΛG | x(0) = 1}

of ΛG. Throughout we will identify ΩG with the quotient of ΛG modulo the
free action of G defined by

(h · x)(t) := hx(t)

for h ∈ G and x ∈ ΛG. On ΛG there is the energy functional

E : ΛG→ R, E(x) =
1
2

∫ 1

0
‖∂tx(t)‖2 dt. (3)

It descends to a functional on ΩG by G-invariance of the metric on G. It
is well-known that the critical points of E are precisely the closed geodesics in
G. As a consequence of the invariance of the functional E under conjugation
with elements h ∈ G, it follows that critical points of E are degenerate.
However, also here it turns out that the Morse–Bott condition is satisfied.
The (perturbed) negative L2 gradient flow equation resulting from (3) is the
PDE

∂sx−∇t∂tx+∇V+(x) = 0. (4)

For the precise form of the perturbation V+ : ΩG→ R, we refer to Section
2.2 below. Morse homology groups for loop spaces of compact Lie groups
and homogeneous spaces have been computed in a classical paper by Bott
[4], which constitutes an interesting example of the successful application of
Morse theory in the context of infinite dimensional Hilbert manifolds. For
further applications to the theory of closed geodesics on general compact
manifolds we refer to Klingenberg [10]. However, in both instances, Morse
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theory is based on a W 1,2 gradient flow, leading to an ODE in Hilbert space.
In contrast, the L2 gradient flow approach to Morse theory on loop spaces
of compact Riemannian manifolds has only recently being investigated by
Weber [23] and uses techniques from parabolic PDEs. In this work, we shall
follow the latter approach and specialize some of the results in [23] to the
case ΩG of loop groups.

Main results

In their seminal paper [3], Atiyah and Bott considered the Yang–Mills func-
tional YM over a compact Riemann surface as an infinite dimensional ana-
logue of a Morse–Bott function, and consequently gained topological infor-
mation about the space of gauge equivalence classes of connections. Their
discovery of a close correspondence between the Morse theoretical picture
of a stratification of the space A(P )/G(P ) into stable manifolds and cer-
tain moduli spaces of semi-stable holomorphic vector bundles initiated a lot
of further research in algebraic geometry, cf. the article [9] by Kirwan for
a review. In [3], Atiyah and Bott pointed out that in the genus zero case
the Yang–Mills critical points correspond via a so called holonomy map to
closed geodesics in G. This observation was subsequently made more explicit
through work by Gravesen [8] and Friedrich and Habermann [7]. In these
works, a holonomy map Φ: A(P ) → ΩG is constructed by assigning to a
connection A its holonomy along the greater arcs connecting the north and
south pole in Σ, cf. Appendix B for details. The map Φ is equivariant with
respect to the actions of G(P ) by gauge transformations and of G by con-
jugation. It furthermore maps critical points of the Yang–Mills functional
to closed geodesics in G (of a certain homotopy type, determined by the
bundle P ), preserving the Morse indices. The natural question whether this
apparent close relation between the two sets of generators of Morse com-
plexes extends to the full Morse theory picture, has not been resolved so
far. However, there is a formal consideration, invoking an adiabatic limit
of a certain deformation of the Riemannian metric on S2, which indicates a
positive answer to the following question.

Conjecture 1.1. Let G be a compact Lie group and P be a principal G-
bundle over Σ. Then there exists an isomorphism between the Morse homo-
logy HM∗

(
A(P )/G0(P )

)
and the Morse homology HM∗

(
ΛG/G

)
.

For a heuristic explanation, due to Atiyah, why this should be true, we
refer to the PhD thesis [5] by Davies. The aim of the present paper is to prove
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this conjecture. Morse homology theories based on the L2 gradient flows as-
sociated with the functionals E and YM have been laid down by Weber [23]
(for compact Riemannian manifolds, cf. also [22] for some analytical foun-
dations, and Salamon and Weber [15] for an application to Floer homology
of cotangent bundles), and the author [19] (for YM over arbitrary compact
Riemann surfaces). The guiding idea in our proof of the above conjecture
is to combine both L2 gradient flows by studying a so-called hybrid moduli
space problem. For a given pair Ĉ± of critical manifolds of the functionals
YM, respectively E , we shall consider the space of configurations

M̂(Ĉ−, Ĉ+) :={
(A,Ψ, x) ∈ C∞(R−,A(P )× Ω0(Σ, ad(P )))× C∞(R+,ΛG)

∣∣
(A,Ψ) satisfies (2), x satisfies (4), x(0) = hΦ(A(0)) for some h ∈ G,
lim

s→−∞
(A(s),Ψ(s)) =

(
A−, 0) ∈ Ĉ−×Ω0(Σ, ad(P )), lim

s→+∞
x(s) = x+ ∈ Ĉ+

}
.

Hence M̂(Ĉ−, Ĉ+) is the moduli space consisting of tuples (A,Ψ, x) such
that (A,Ψ) solves the perturbed Yang–Mills gradient flow equation (2) on
the negative time interval (−∞, 0], while x is a solution of the perturbed
loop group gradient flow equation (4) on the positive time interval [0,∞).
Both solutions are coupled under the trivialization map Φ: A(P ) → ΩG as
introduced above. The moduli space M(C−, C+) to be actually studied is
the quotient of M̂(Ĉ−, Ĉ+) modulo the actions by gauge transformations and
left translations x 7→ hx (for h ∈ G).

As indicated above, the sets of critical points of both the functionals YM
and E are degenerate in a Morse–Bott sense. To overcome this difficulty we
will use a certain variant of Morse theory, the so-called Morse theory with
cascades, as introduced by Frauenfelder in [6] and described in Appendix A.
Throughout we shall work on sublevel sets {A ∈ A(P ) | YM(A) ≤ a} and
{x ∈ ΛG/G | E(x) ≤ b} (where usually b = 4a/π). As an additional datum,
we fix a Morse function h on the union of all critical manifolds of YM below
the level a (respectively of E below the level b), the discrete set of critical
points of which are the generators of two Morse complexes

CMa
∗
(
A(P )/G0(P ),V−, h

)
and CM b

∗
(
ΛG/G,V+, h

)
. (5)

We adapt the convention that throughout this article ΩG = ΛG/G shall
denote the connected component of the based loop group which contains the
image of A(P ) under the map Φ, cf. Appendix B. It is determined by the
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equivalence class of the principal G-bundle P . Our goal is to set up a chain
homomorphism Θ between the complexes in (5). It is defined for a pair of
generators of equal Morse index by a count of elements in the moduli space
M(C−, C+). The key observation, which allows us to show invertibility of the
homomorphism Θ, is the property of the trivialization map Φ: A(P ) → ΩG
to decrease energy. Namely, for any connection A ∈ A(P ) there holds the
inequality

YMV−(A) ≥ π

4
EV+

(Φ(A)), (6)

cf. Lemma B.4 below. In the case of a Yang–Mills connection A ∈ crit(YM),
equality holds in (6). The property of the map Φ to be energy decreasing
is not a new result and can be found in Gravesen [8]. In our context it
leads directly to the proof of invertibility of Θ and thus implies the desired
isomorphism in Morse homology.

Theorem 1.2 (Main result). Let G be any compact Lie group, and P any
principal G-bundle P over Σ. Let a ≥ 0 be a regular value of YM and set b :=
4a/π. Then, for a generic perturbation V = (V−,V+) ∈ Ya (cf. Definition
2.4 below) the chain homomorphism

Θ∗ : CMa
∗
(
A(P )/G0(P ),V−, h

)
→ CM b

∗
(
ΛG/G,V+, h

)
induces an isomorphism

[Θ∗] : HMa
∗
(
A(P )/G0(P ),V−, h

)
→ HM b

∗
(
ΛG/G,V+, h

)
of Morse homology groups.

Let us point out here that the approach to define a chain isomorphism via
a hybrid moduli space problem is a fairly recent one. It has successfully been
employed by Abbondandolo and Schwarz [2] in proving that Floer homology
HF∗(T ∗M) of cotangent bundles T ∗M is isomorphic to singular homology
of the free loop space ΛM (M a compact manifold). In their situation, an
inequality similar to (6) is utilized, relating the symplectic action to the
energy functional via Legendre duality.

Further directions

G-equivariant Morse homology. Let us remark that on the quotient
spaces G(P )/G0(P ) and ΛG/G there is a (in general not free) action of the
group G. In the first case, with G ∼= G(P )/G0(P ), this is given by g · [A] =
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[g∗A]. In the second case it is conjugation g[x] = [g−1xg]. In his thesis [18]
the author has worked out a G-equivariant version of Theorem 1.2. This is
mainly a technical extension and requires to replace the spaces A(P )/G0(P )
and ΛG/G by (A(P )× EnG)/G(P ), respectively by (ΛG× EnG)/(G×G),
for a suitable finite-dimensional approximation EnG of the classifying space
EG.

Higher genus surfaces. The Morse homology HM∗
(
A(P )/G0(P ),V−, h

)
we are dealing with in this article has more generally been defined for Rie-
mann surfaces of arbitrary genus in [19]. It is also known from [5, 8] that
Yang-Mills connections on principal G-bundles P over such surfaces corre-
spond bijectively to certain geodesic polygons in the Lie group G. Moreover,
an estimate similar to (53) relating the energy functionals YM and E in this
more general situation is also known to exist. Hence one should be able to
prove a version of Theorem 1.2 also for higher genus surfaces, but this is
open at present.
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2 Critical manifolds, Yang–Mills gradient flow lines,
and Morse complexes

2.1 Preliminaries

Let Σ := S2 be the unit sphere in R3, endowed with the standard round
metric. Let G be a compact Lie group with Lie algebra g. On g we fix an
ad-invariant inner product 〈 · , · 〉, which exists by compactness of G. Let
P be a principal G-bundle over Σ. A gauge transformation is a section of
the bundle Ad(P ) := P ×G G associated to P via the action of G on itself
by conjugation (g, h) 7→ g−1hg. Let ad(P ) denote the Lie algebra bundle
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associated to P via the adjoint action

(g, ξ) 7→ d

dt

∣∣∣∣
t=0

g−1 exp(tξ)g (for g ∈ G, ξ ∈ g)

of G on g. We denote by Ωk(Σ, ad(P )) the space of smooth ad(P )-valued
differential k-forms, and by A(P ) the space of smooth connections on P . The
latter is an affine space over Ω1(Σ, ad(P )). The group G(P ) acts on A(P )
by gauge transformations and on Ωk(Σ, ad(P )) by conjugation. We call a
connection A ∈ A(P ) irreducible if the stabilizer subgroup StabA ⊆ G(P )
is trivial. Otherwise it is called reducible. It is easy to show that StabA
is a compact Lie group, isomorphic to some subgroup of G. Let z ∈ Σ be
arbitrary but fixed. We let G0(P ) ⊆ G(P ) denote the group of based gauge
transformation, i.e. those gauge transformations which leave the fibre Pz ⊆ P
above z pointwise fixed. It is a well-known fact that G0(P ) acts freely on
A(P ).

The curvature of the connection A is the ad(P )-valued 2-form FA = dA +
1
2 [A∧A]. Covariant differentiation with respect to the Levi-Civita connection
associated with the metric g and a connection A ∈ A(P ) defines an operator
∇A : Ωk(Σ, ad(P )) → Ω1(Σ) ⊗ Ωk(Σ, ad(P )). Its antisymmetric part is the
covariant exterior differential operator

dA : Ωk(Σ, ad(P )) → Ωk+1(Σ, ad(P )), α 7→ dα+ [A ∧ α].

The formal adjoints of these operators are denoted by ∇∗A and d∗A. The
covariant Hodge Laplacian on forms is the operator ∆A := d∗AdA +dAd

∗
A, the

covariant Bochner Laplacian on forms is ∇∗A∇A. They are related through
the Bochner–Weitzenböck formula

∇A = ∇∗A∇A + {FA, · }+ {RΣ, · }.

Here the brackets { · , · } denote C∞-bilinear expressions with coefficients
independent of A. The functional YMV := YM+ V where YM is as in (1)
is called perturbed Yang–Mills functional. If V = 0, we still write YM and
call this the unperturbed Yang–Mills functional. The L2 gradient of YMV

at the point A ∈ A(P ) is

∇YMV(A) = d∗AFA +∇V(A) ∈ Ω1(Σ, ad(P )).

Its Hessian is the second order differential operator

HAYMV = d∗AdA + ∗[∗FA ∧ · ] +HAV : Ω1(Σ, ad(P )) → Ω1(Σ, ad(P )). (7)
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We also make use of the notation HA := d∗AdA + ∗[∗FA ∧ · ]. For a
definition of Sobolev spaces of sections of vector bundles, of connections,
and of gauge transformations we refer to the book [21, Appendix B]. We
employ the notation W k,p(Σ) and W k,p(Σ, T ∗Σ ⊗ ad(P )) for the Sobolev
spaces of ad(P )-valued sections, respectively ad(P )-valued 1-forms whose
weak derivatives up to order k are in Lp. Similarly, the notation Ak,p(P )
indicates the Sobolev space of connections on P of class W k,p. We shall also
use the parabolic Sobolev spaces

W 1,2;p(I × Σ, ad(P )) := Lp(I,W 2,p(Σ, ad(P ))) ∩W 1,p(I, Lp(Σ, ad(P )))

of ad(P )-valued sections over I×Σ, with I ⊆ R an interval (and similarly for
parabolic Sobolev spaces of connections and for ad(P )-valued 1-forms). Fur-
ther notation which is used frequently is Ȧ := ∂sA := dA

ds , etc. for derivatives
with respect to time.

2.2 Perturbations

Perturbations of the Yang–Mills funcional

Our construction of a Banach space of perturbations is based on the following
L2 local slice theorem due to Mrowka and Wehrheim [12]. We fix p > 2 and
let

SA0(ε) :=
{
A = A0 + α ∈ A0,p(Σ)

∣∣ d∗A0
α = 0, ‖α‖L2(Σ) < ε

}
denote the set of Lp-connections in the local slice of radius ε with respect to
the reference connection A0.

Theorem 2.1 (L2 local slice theorem). Let p > 2. For every A0 ∈ A0,p(Σ)
there are constants ε, δ > 0 such that the map

m :
(
SA0(ε)× G1,p(P )

)
/StabA0 → A0,p(Σ), [(A0 + α, g)] 7→ (g−1)∗(A0 + α)

is a diffeomorphism onto its image, which contains an L2 ball,

Bδ(A0) :=
{
A ∈ A0,p(Σ)

∣∣ ‖A−A0‖L2(Σ) < δ
}
⊆ im m.

Proof. For a proof we refer to [12, Theorem 1.7].

We fix the following data.
(i) A dense sequence (Ai)i∈N of irreducible smooth connections in A(P ).
(ii) For everyAi a dense sequence (ηij)j∈N of smooth 1-forms in Ω1(Σ, ad(P ))

satisfying d∗Ai
ηij = 0 for all j ∈ N.
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(iii) A smooth cutoff function ρ : R → [0, 1] such that ρ = 1 on [−1, 1],
supp ρ ⊆ [−4, 4], and ‖ρ′‖L∞(R) < 1. Set ρk(r) := ρ(k2r) for k ∈ N.

Let δ = δ(Ai) > 0 be as in Theorem 2.1 and assume that for A ∈ A0,p(Σ)
there exists g ∈ G1,p(P ) with ‖g∗A−Ai‖L2(Σ) < δ(Ai). It then follows from
Theorem 2.1 that there exists a unique α = α(A) ∈ Lp(Σ, ad(P )) which
satisfies for some g ∈ G1,p(P ) the conditions

g∗A−Ai = α and d∗Ai
α = 0. (8)

If for A ∈ A(P ) no such α exists, we formally set α(A) = −ηij . Hence
the map

V−` : A(P ) → R, A 7→ ρk(‖α(A)‖2
L2(Σ))〈ηij + α(A), ηij〉 (9)

is well-defined for every triple ` = (i, j, k) ∈ N3 with k > 4
δ(Ai)

. Note that
V−` is invariant under gauge transformations.

Remark 2.2. In the following we shall admit only multiindices ` = (i, j, k) ∈
N3 with k > 4

δ(Ai)
and hence

supp ρk ⊆
[
0,
δ(Ai)2

4

]
.

Moreover, it is easy to see that 〈ηij + α(A), ηij〉 ≥ 0 holds if ‖α(A)‖L2(Σ) ≤
‖ηj‖L2(Σ), and hence the map V−` is non-negative for sufficiently large indices
k. We henceforth consider only those multiindices ` = (i, j, k) ∈ N3 which
satisfy both these two conditions, and renumber the set of such triples (i, j, k)
by integers ` ∈ N.

Given ` ∈ N, we fix a constant C` > 0 such that the following three
conditions are satisfied.

(i) supA∈A(P ) |V−` (A)| ≤ C`,
(ii) supA∈A(P ) ‖∇V−` (A)‖L2(Σ) ≤ C`,
(iii) ‖∇V−` (A)‖Lp(Σ) ≤ C`(1+‖FA‖L4(Σ)) for all 1 < p <∞ and A ∈ A(P ).

The existence of the constant C` has been shown in [19]. The universal
space of perturbations of the Yang–Mills functional is the normed linear space

Y − :=
{
V− :=

∞∑
`=1

λ`V−`
∣∣∣λ` ∈ R and ‖V−‖ :=

∞∑
`=1

C`|λ`| <∞
}
. (10)

It is a separable Banach space isomorphic to the space `1 of summable real
sequences. Some relevant properties of the perturbations V−` are discussed
in [19, Appendix A].
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Perturbations of the loop group energy functional

We shall follow closely Salamon and Weber [15] in our construction of a
Banach space Y + of perturbations of the loop group energy functional E .
Let us fix the following data.

(i) A dense sequence (xi)i∈N of points in ΩG.
(ii) For every xi a dense sequence (ηij)j∈N in Txi(ΩG).
(iii) A smooth cut-off function ρ : R → [0, 1] supported in [−4, 4], and sat-

isfying ρ = 1 on [−1, 1] and ‖ρ′‖L∞(R) < 1. Set

ρk(r) := ρ(k2r)

for k ∈ N.
Denote by ι > 0 the injectivity radius of the compact Riemannian mani-

fold G. Fix a further cut-off function β supported in [−ι2, ι2] such that β = 1
on

[
− ι2

4 ,
ι2

4

]
. For xi ∈ ΩG as fixed in (i) above and q ∈ G within distance ι

of xi(t), let ξi
q(t) ∈ Txi(t)G be uniquely determined by q = expxi(t) ξ

i
q(t). For

a triple ` = (i, j, k) ∈ N3 we define the smooth map

V+
` : ΩG→ R, x 7→ ρk

(
‖x− xi‖2

L2(S1)

) ∫ 1

0
Vij(t, x(t)) dt,

where

Vij(t, q) :=

{
β(|ξi

q(t)|2)〈ηij(t) + ξi
q(t), ηij(t)〉, if |ξi

q(t)| < ι,

0 else.

The L2 distance appearing in the argument of ρk above refers to the
L2 distance induced after isometrically embedding the manifold G in some
ambient euclidian space RN . Note that V+

` extends uniquely to a map
V+

` : ΛG → R, which is invariant under the free action h · x 7→ hx of G on
ΛG.

Remark 2.3. It is clear that 〈ηij + ξi
q, ηij〉 ≥ 0 holds if ‖ξi

q‖L2(S1) ≤
‖ηij‖L2(S1), and hence the map V` is non-negative for sufficiently large in-
dices k (for given pair (i, j)). We henceforth consider only those multiindices
` = (i, j, k) which satisfy this condition, and renumber the set of such triples
(i, j, k) by integers ` ∈ N.

Let Y + denote the vector space spanned by the maps V+
` , ` ∈ R3. As the

space Y − (cf. the previous section) it may be endowed with a norm, turning
it into a separable Banach space isomorphic to the space `1 of summable real
sequences (cf. [23, Section 7.1] for details).
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2.3 Critical manifolds

Throughout this article we denote by crit(YM) ⊆ A(P ) the set of critical
points of the unperturbed Yang–Mills functional YM, and by crit(E) ⊆ ΛG
the set of critical points of the unperturbed energy functional E . We fur-
thermore let ĈR(YM) and ĈR(E) denote the set of connected components
of crit(YM), respectively of crit(E). The group G0(P ) of based gauge trans-
formations acts freely on A(P ), hence on crit(YM). Thus it makes sense
to define CR(YM) as the set of connected components of crit(YM)/G0(P )
in A(P )/G0(P ). It is well known that every such connected component is a
finite-dimensional submanifold of A(P )/G0(P ) diffeomorphic to a homoge-
neous space G/H. Likewise, the group G acts freely on ΛG and on ĈR(E).
We hence denote by CR(E) = ĈR(E)/G the set of connected components
of crit(E)/G in ΛG/G ∼= ΩG. Furthermore, the holonomy map Φ induces a
bijection between CR(YM) and CR(E) which preserves the action filtration
given on both these sets, cf. Theorem B.2. Critical manifolds Ĉ− ∈ ĈR(YM)
and Ĉ+ ∈ ĈR(E) satisfy the Morse–Bott condition, which here amounts to
saying that the kernels of the Hessians HAYM (for every A ∈ Ĉ−) respec-
tively HxE (for every x ∈ Ĉ+) are entirely due to gauge transformations in
G(P ) and transformations x 7→ h1xh2 for h1, h2 ∈ G.

In the following we shall mostly work on some sublevel set {A ∈ A(P ) |
YM(A) ≤ a} of connections, respectively {x ∈ ΛG | E(x) ≤ a} of loops, and
hence denote

crita(YM) := {A ∈ crit(YM) | YM(A) ≤ a},
crita(E) := {x ∈ crit(E) | E(x) ≤ a}.

We furthermore introduce the notation ĈR
a
(YM), CRa(YM), ĈR

a
(E),

and CRa(E) for the subsets of the sets ĈR(YM) etc. as above whose elements
lie in the sublevel set of value not greater than a. For a given regular value
a ≥ 0 of YM and each critical manifold Ĉ ∈ ĈR

a
(YM) we fix a closed L2

neighborhood UĈ of Ĉ such that UĈ1∩UĈ2 = ∅ whenever Ĉ1 6= Ĉ2. Because the
set ĈR

a
(YM) is finite for every a < ∞ (cf. [19] for a proof) it follows that

such a choice is possible. It follows from Theorem B.5 that the holonomy
map Φ induces a bijection between ĈR

a
(YM) and CRb(E) for b = 4a/π. We

now choose for each C ∈ CRb(E) a sufficiently small closed L2 neighborhood
UC of C such that UC1 ∩ UC2 = ∅ if C1 6= C2, and moreover it holds that
Φ(UĈ) ∩ UC = ∅ for all Ĉ ∈ ĈR

a
(YM) with Φ(Ĉ) 6= C.
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Definition 2.4. Let a regular value a ≥ 0 of YM be given. We call a
perturbation V− =

∑∞
`=1 λ`V−` ∈ Y − admissible if it satisfies

suppV−` ∩ UĈ 6= ∅ for some Ĉ ∈ ĈR
a
(YM) =⇒ λ` = 0.

For the regular value b = 4a/π of E we analogously define the subset of
admissible perturbations V+ ∈ Y +. We let Y −a × Y +

b = Ya ⊆ Y denote the
space of pairs (V−,V+) where V± is an admissible perturbation with respect
to the regular value a ≥ 0, respectively b = 4a/π.

It is straightforward to show that the spaces of admissible perturbations
are closed subspaces of the Banach spaces Y ±, and hence Ya is a closed
subspace of Y , for every regular value a of YM. Furthermore, it is always
possible to choose a small open ball within the set of admissible perturbations
in such a way that there do not arise any new critical points (below the
sublevel set a). Namely, in [19] we have shown the following result.

Proposition 2.5. For every ε > 0 and a ≥ 0 there exists a constant δ > 0
with the following significance. Assume the perturbation V− ∈ Y − satisfies
the conditions ‖V−‖ < δ and

suppV− ⊆ A(P ) \
⋃

A∈cCRa
(YM)

Bε(A),

where Bε(A) := {A1 ∈ A(P ) | ‖A1−A‖L2(Σ) < ε}. Then the perturbed Yang–
Mills functional YMV− has the same set of critical points as the functional
YM below the level a, i.e. it holds that

crit(YMV−) ∩ {A ∈ A(P ) | YM(A) < a}
= crit(YM) ∩ {A ∈ A(P ) | YM(A) < a}.

Proof. For a proof we refer to [19, Proposition 2.7]. It relies on the fact that
the functional YM satisfies a gauge equivariant version of the Palais–Smale
condition.

The analogous statement holds true for the energy functional E .

Proposition 2.6. For every ε > 0 and b ≥ 0 there exists a constant δ > 0
with the following significance. Assume the perturbation V+ ∈ Y + satisfies
the conditions ‖V+‖ < δ and

suppV+ ⊆ ΛG \
⋃

x∈CRb(E)

Bε(x),
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where Bε(x) := {x1 ∈ ΛG | ‖x1 − x‖L2(S1) < ε}. Then the perturbed func-
tional EV+ has the same set of critical points as the functional E below the
level a, i.e. it holds that

crit(EV+
) ∩ {x ∈ ΛG | E(x) < b} = crit(E) ∩ {x ∈ ΛG | E(x) < b}.

Proof. For a proof which relies on the fact that E satisfies the Palais–Smale
condition, we refer to [23, Section 6.2].

2.4 Gradient flow lines

In the following we fix perturbations V± ∈ Y ±.

Definition 2.7. The perturbed Yang–Mills gradient flow equation is the non-
linear PDE

∂sA+ d∗AFA − dAΨ +∇V−(A) = 0 (11)

for smooth paths A : s 7→ A(s) ∈ A(P ) of connections and Ψ : s 7→ Ψ(s) ∈
Ω0(Σ, ad(P )) of ad(P )-valued 0-forms.

The term −dAΨ plays the role of a gauge fixing term needed to make
equation (11) invariant under time-dependent gauge transformations s 7→
g(s) ∈ G(P ). These act on pairs (A,Ψ) as g · (A,Ψ) = (g∗A, g−1Ψg +
g−1ġ). Defining the principal G-bundle P̂ := R− × P over R− × Σ (by
extending P trivially as a product), we may consider time-dependent gauge
transformations as gauge transformations of P̂ and hence denote the group
of these by G(P̂ ). We also define

G0(P̂ ) := {g ∈ G(P̂ ) | g(s) ∈ G0(P ) for every s ∈ R−}.

Definition 2.8. The perturbed loop group gradient flow equation is the non-
linear PDE

∂sx−∇t∂tx+∇V+(x) = 0 (12)

for a smooth path x : s 7→ x(s) ∈ ΛG of free loops.

Equation (12) is clearly invariant under the action of the group G on ΛG
via (h·x)(t) = hx(t). The proper analytical setup for a study of the perturbed
Yang-Mills and loop group gradient flow equations will be introduced in
Section 3.1.

14



2.5 Morse homologies for the Yang–Mills and heat flows

For finite dimensional manifolds, the construction of a Morse homology the-
ory from the set of critical points of a Morse functions and the isolated flow
lines connecting them goes back to Thom [20], Smale [17] and Milnor [11],
and had later been rediscovered by Witten [24]. Weber’s construction of a
heat flow homology [23] is an instance of a Morse homology theory in an
infinite dimensional setting, here for the loop space of a compact manifold.
The same sort of ideas underlies the author’s Yang–Mills Morse homology
[19], where the underlying space is the infinite dimensional manifold of gauge
equivalence classes of connections over a compact Riemann surface Σ. Let
us describe both Morse homology theories briefly.

Let a ≥ 0 be a regular value of YM. We fix an admissible perturbation
V− ∈ Y −a (cf. Definition 2.4). Let h : crita(YM)/G0(P ) → R be a smooth
Morse–Smale function (with respect to some fixed Riemannian metric on the
finite-dimensional smooth manifold crita(YM)/G0(P )). We let

CMa
∗ (A(P ),V−, h)

denote the complex generated as a Z2 module by the set crit(h) of critical
points of h. To each x ∈ crit(h) we assign the index Ind(x) to be the sum of
the Morse indices of x as a critical point of YM and of the function h. For
x−, x+ ∈ crit(h) we call the set M(x−, x+) as in [19, Section 8.2] the moduli
space of Yang–Mills gradient flow lines with cascades from x− to x+.

Lemma 2.9. For generic, admissible perturbation V− ∈ Y −a , Morse function
h, and all x−, x+ ∈ crit(h), the set M(x−, x+) is a smooth manifold (with
boundary) of dimension

dimM(x−, x+) = Ind(x−)− Ind(x+)− 1.

Proof. For a proof we refer to [19, Lemma 8.3].

For k ∈ N0 we define the Morse boundary operator

∂YMk : CMa
k (A(P ),V−, h) → CMa

k−1(A(P ),V−, h)

to be the linear extension of the map

∂YMk x :=
∑

x′∈crit(h)

Ind(x′)=k−1

n(x, x′)x′, (13)
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where x ∈ crit(h) is a critical point of index Ind(x) = k. The numbers
n(x, x′) are given by counting modulo 2 the flow lines with cascades (with
respect to YMV− and h) from x to x′, i.e.

n(x, x′) := #M(x−, x+) (mod 2).

Theorem 2.10. Let a ≥ 0 be a regular value of YM. For any Morse
function h : crita(YM)/G0(P ) → R and generic, admissible perturbation
V− ∈ Y −a , the map ∂YM∗ satisfies ∂YMk ◦ ∂YMk+1 = 0 for all k ∈ N0 and thus
there exist well-defined homology groups

HMa
k (A(P ),V−, h) =

ker ∂YMk

im ∂YMk+1

.

The homology HMa
∗ (A(P ),V−, h) is called Yang–Mills Morse homo-

logy . It is independent of the choice of admissible perturbation V− and
Morse function h.

Proof. For a proof we refer to [19, Theorem 1.1].

Weber’s heat flow homology for the loop space ΩM of a closed manifold
M is based on a similar construction of a chain complex and a boundary
operator. One of his main results is the following theorem (which he only
states for the case where the function EV is Morse, the adaption to the
present case of a Morse–Bott situation being straight-forward).

Theorem 2.11. Let b ≥ 0 be a regular value of EV . For any Morse function
h : critb(E)/G→ R and generic, admissible perturbation V+ ∈ Y +

b , the map
∂E∗ (defined in analogy to (13)) satisfies ∂Ek ◦ ∂Ek+1 = 0 for all k ∈ N0 and
thus there exist well-defined homology groups

HM b
k(ΩM,V+, h) =

ker ∂Ek
im ∂Ek+1

.

The homology HM b
∗(ΩM,V+, h) is called heat flow homology . It is in-

dependent of the choice of admissible perturbation V+ and Morse function
h.

Proof. For a proof we refer to [23, Theorem 1.14].
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2.6 Hybrid moduli spaces

We combine trajectories of the Yang–Mills and loop group gradient flows
satisfying a certain coupling condition in a so-called hybrid moduli space
as follows. For abbreviation we set A0 := A(0), x0 := x(0), and xA0 :=
Φ(A(0)). For critical manifolds Ĉ− ∈ ĈR(YM) and Ĉ+ ∈ ĈR(E) let us
define

M̂(Ĉ−, Ĉ+) :={
(A,Ψ, x) ∈ C∞(R−,A(P )× Ω0(Σ, ad(P )))× C∞(R+,ΛG)

∣∣
(A,Ψ) satisfies (11), x satisfies (12), x0 = hxA0 for some h ∈ G,

lim
s→−∞

(A(s),Ψ(s)) =
(
A−, 0) ∈ Ĉ−×Ω0(Σ, ad(P )), lim

s→+∞
x(s) = x+ ∈ Ĉ+

}
.

(14)

By construction, the space M̂(Ĉ−, Ĉ+) is invariant under the obvious
action of the group G0(P̂ ) × G on triples (A,Ψ, x). Let us denote C− :=
Ĉ−/G0(P ) and C− := Ĉ+/G. The moduli space we shall study further on is
the quotient

M(C−, C+) :=
M̂(Ĉ−, Ĉ+)
G0(P̂ )×G

. (15)

We show subsequently that M̂(Ĉ−, Ĉ+) arises as the zero set F−1(0) of
an equivariant (with respect to G0(P̂ ) × G) section F of a suitably defined
Banach space bundle E over a Banach manifold B. After showing that the
vertical differential dxF at any such zero x ∈ F−1(0) is a surjective Fredholm
operator, it will follow from the implicit function theorem that the moduli
space M(C−, C+) is a finite-dimensional smooth manifold.

3 Fredholm theory and transversality

3.1 The nonlinear setup

In this section we introduce the setup which will allow us to view the mod-
uli space defined in (15) as the zero set of a Fredholm section of a certain
Banach space bundle. These Banach manifolds are modeled on weighted
Sobolev spaces in order to make the Fredholm theory work. To define these,
we choose numbers δ > 0 and p > 3, and a smooth cut-off function β such
that β(s) = −1 if s < 0 and β(s) = 1 if s > 1. We define the δ-weighted
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W k,p Sobolev norm (for k ∈ N0) of a measurable function u over some infinite
or half-infinite interval to be the usual W k,p Sobolev norm of the function
eδβ(s)su.

For the definition of parabolic Sobolev spaces we refer to Section 2.1. We
define the space A1,2;p

δ (P ) of time-dependent connections on P which are
locally of class W 1,2;p and for which there exists a limiting connection A− ∈
crit(YM) and a number T− ≤ 0 such that the 1-form α− := A−A− satisfies

α− ∈W 1,p
δ ((−∞, T−], Lp(Σ)) ∩ Lp

δ((−∞, T−],W 2,p(Σ)).

Similarly, let G2,p
δ,0 (P̂ ) denote the group of time-dependent, based gauge

transformations of P which are locally of class1 W 2,p and in addition satisfy
the following two conditions. The ad(P )-valued 1-form g−1dg satisfies

g−1dg ∈ Lp
δ(R

−,W 2,p(Σ, T ∗Σ⊗ ad(P ))),

and there exists a limiting gauge transformation g− ∈ G2,p(P ), a number
T− ≤ 0, and an ad(P )-valued 1-form

γ− ∈W 2,p
δ ((−∞, T−]× Σ)

with

g(s) = g− exp(γ−(s)) (s ≤ T−).

Let Ĉ− ∈ ĈR(YM) be a critical manifold. We denote by B̂− := B̂−(Ĉ−, δ, p)
the Banach manifold of maps

(A,Ψ) ∈ A1,2;p
δ (P )×W 1,p

δ (R− × Σ)

such that the limiting connection appearing in the above definition of the
space A1,2;p

δ (P ) is contained in Ĉ−. The group G2,p
δ,0 (P̂ ) acts smoothly and

freely on B̂− by gauge transformations. The resulting quotient space

B− := B−(C−, δ, p) :=
B̂−(Ĉ−, δ, p)
G2,p

δ,0 (P̂ )

is again a smooth Banach manifold. The tangent space at the point [(A,Ψ)] ∈
B− splits naturally as a direct sum

T[(A,Ψ)]B− = T 0
[(A,Ψ)]B

− ⊕Rdim C− , (16)

1For a definition of Sobolev spaces of gauge transformations we refer to [21, Appendix
B].
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where T 0
[(A,Ψ)]B

− denotes the space of pairs

(α, ψ) ∈W 1,2;p
δ (R− × Σ)⊕W 1,p

δ (R− × Σ)

which satisfy the gauge fixing condition

L∗(A,Ψ)(α, ψ) := ∂sψ + [Ψ, ψ]− d∗Aα = 0.

This way, a tangent vector in T 0
[(A,Ψ)]B

− becomes identified with its
unique lift to T(A,Ψ)B̂− perpendicular to the gauge orbit through (A,Ψ).

Let Ĉ+ ∈ ĈR(E). In a similar manner, we define the Banach manifold
B̂+ := B̂+(Ĉ+, δ, p) of maps from R+ to ΛG with prescribed asymptotics as
s→∞. Let B̂+ denote the Banach manifolds of maps x : R+×S1 → G such
that the condition

eδs(x− x+) ∈ Lp(R+,W 2,p(S1, G)) ∩ W 1,p(R+, Lp(S1, G))

is satisfied for some x+ ∈ Ĉ+. To make sense of the difference x− x+ and of
the Sobolev spaces involved in this definition, we think of the Lie group G
as being isometrically embedded in some euclidian space RN . Now put

B+ := B+(C+, δ, p) :=
B̂+

G
,

and define B := B− × B+.

Next we define the Banach bundle E = E(C−, C+) over B in the follow-
ing way. Let Ê− be the trivial Banach space bundle over B̂− with fibres
Ê−(A,Ψ) := Lp

δ(R
−, Lp(Σ, T ∗Σ ⊗ ad(P ))), and Ê+ the trivial Banach space

bundle over B̂+ with fibres Ê+
x := Lp

δ(R
+, Lp(S1, g)). We set

Ê := Ê(δ, p) := Ê− × Ê+ × ΛG.

The free action of the group G2,p
δ,0 (P̂ )×G on B̂−×B̂+ lifts to a free action

on Ê− × Ê+ × ΛG via

(u, h) · (A,Ψ, α, x, ξ, x1) := (u∗A, u−1Ψu+ u−1u̇, u−1αu, hx, ξ, hx1).

Let E denote the respective quotient space and define the smooth section
F : B → E of E by

F : [(A,Ψ, x)] 7→

 ∂sA+ d∗AFA − dAΨ +∇V−(A)
x−1 (∂sx−∇t∂tx+∇V+(x))

x(0)x−1
A(0)

 . (17)
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3.2 Yang–Mills Hessian and linearized Yang–Mills gradient
flow

For A ∈ A(P ), we let HA denote the augmented Yang–Mills Hessian defined
by

HA :=
(
d∗AdA + ∗[∗FA ∧ · ] +HAV− −dA

−d∗A 0

)
:

Ω1(Σ, ad(P ))⊕ Ω0(Σ, ad(P )) → Ω1(Σ, ad(P ))⊕ Ω0(Σ, ad(P )). (18)

Here HAV− denotes the Hessian of the map V− : A(P ) → R. In order
to find a domain which makes the subsequent Fredholm theory work, we
decompose the space Ω1(Σ, ad(P )) of smooth ad(P )-valued 1-forms as the
L2(Σ) orthogonal sum

Ω1(Σ, ad(P )) = ker
(
d∗A : Ω1(Σ, ad(P )) → Ω0(Σ, ad(P ))

)
⊕ im

(
dA : Ω0(Σ, ad(P )) → Ω1(Σ, ad(P ))

)
.

LetW 2,p
0 andW 1,p

1 denote the completions of ker d∗A, respectively of im dA

with respect to the Sobolev (k, p) norm (for k = 1, 2). We set W 2,p
A (Σ) :=

W 2,p
0 ⊕W 1,p

1 and endow this space with the sum norm. Note that this norm
depends on the connection A. For p > 1 we consider the operator

HA : W 2,p
A (Σ)⊕W 1,p(Σ, ad(P )) → Lp(Σ, T ∗Σ⊗ ad(P ))⊕ Lp(Σ, ad(P )).

In the case p = 2 this is a densely defined symmetric operator on the
Hilbert space L2(Σ, T ∗Σ⊗ ad(P ))⊕ L2(Σ, ad(P )) with domain

domHA := W 2,2
A (Σ)⊕W 1,2(Σ, ad(P )). (19)

It is shown in [19] that it is self-adjoint. For the further discussion of
the operator DA it will be convenient to also decompose each β ∈ imHA as
β = β0+β1, where d∗Aβ0 = 0 and β1 = dAω holds for some ω ∈ Ω0(Σ, ad(P )).
A short calculation shows that for α = α0 +α1 = α0 + dAϕ (with d∗Aα0 = 0)
this decomposition is given by HAα = β0 + dAω, where ω is a solution of

∆Aω = ∗[dA ∗ FA ∧ α]. (20)

As ∆A might not be injective due to the presence of ∆A-harmonic 0-
forms, the solution ω of (20) need not be unique. This ambiguity however is
not relevant, as only dAω enters the definition of β0 and β1. With respect to
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the above decomposition of Ω1(Σ, ad(P )) the augmented Hessian HA takes
the form

HA

 α0

α1

ψ

 =

 ∆Aα0 + ∗[∗FA ∧ α0] + [d∗AFA ∧ ϕ]− dAω
−dAψ + dAω
−d∗Aα1

 , (21)

with α1 = dAϕ and ω a solution of (20). Note that the first line of (21)
does not depend on the choice of ϕ used to satisfy the condition α1 = dAϕ
because

[d∗AFA ∧ ϕ] = − ∗ dA ∗ [FA ∧ ϕ] + ∗[∗FA ∧ dAϕ]
= − ∗ dA ∗ dAdAϕ+ ∗[∗FA ∧ dAϕ] = 0

holds for all ϕ ∈ ker dA.

Next we consider the linearization of the Yang–Mills gradient flow (11).
Since any solution (A,Ψ) of the Yang–Mills gradient flow is gauge equiv-
alent under G(P̂ ) to a solution satisfying Ψ ≡ 0, it suffices to consider the
linearization along such trajectories only. We define for p > 1 the Banach
spaces

Zδ,p,−
A :=

(
W 1,p

δ (R−, Lp(Σ, T ∗Σ⊗ ad(P ))) ∩ Lp
δ(R

−,W 2,p
A (Σ))

)
⊕

(
W 1,p

δ (R−, Lp(Σ, ad(P ))) ∩ Lp
δ(R

−,W 1,p(Σ, ad(P )))
)

and

Lδ,p,− := Lp
δ(R

− × Σ, T ∗Σ⊗ ad(P ))⊕ Lp
δ(R

− × Σ, ad(P )),

where the number δ > 0 refers to the weight function fixed at the beginning
of Section 3.1. In the following we shall be concerned with the linear operator

DA :=
d

ds
+HA : Zδ,p,−

A → Lδ,p,− (22)

for a smooth path s 7→ A(s) ∈ A(P ), where s ∈ R−. It arises as the
linearization of the Yang–Mills gradient flow (11) along a solution (A,Ψ) =
(A, 0). Some of its properties are collected in Appendix C.

3.3 Linearized loop group gradient flow

We discuss the linearized loop group gradient flow, following Weber [23]. The
Hessian of the energy functional E at the loop x ∈ ΛG is the linear operator

Hx : ξ 7→ ∇t∇tξ +R(ξ, ∂tx)∂tx+HxV+ξ (23)
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for vector fields ξ along x. Here R denotes the Riemannian curvature tensor
associated with the Levi-Civita connection ∇ on TG, and HxV+ denotes the
Hessian of the map V+ : ΛG→ R. Let x : R+ × S1 → G be a smooth map.
We define for p > 1 the Banach spaces

Zδ,p,+ := W 1,p
δ (R+, Lp(S1, x∗TG)) ∩W p

δ (R+,W 2,p(S1, x∗TG))

and

Lδ,p,+ := Lp
δ(R

+ × S1, x∗TG).

Note that the spaces Zδ,p,+ and Lδ,p,+ depend on x, which is suppressed
in our notation. For short we will often also drop x∗TG and simply write
Lp(S1) etc. The number δ > 0 refers to the weight function fixed at the
beginning of Section 3.1. We denote

Dx :=
d

ds
+Hx : Zδ,p,+ → Lδ,p,+.

Note that the operator Dx arises as the linearization of the loop group
gradient flow (2.8). We discuss some of its properties in Appendix C.

3.4 Linearized moduli space problem

Let Ĉ− ∈ ĈR(YM) and Ĉ+ ∈ ĈR(E) be given. We define the constant
δ0(C−, C+) to be the infimum of the set{

|λ| ∈ R
∣∣λ 6= 0 is eigenvalue of HA for some A ∈ Ĉ− or

λ 6= 0 is eigenvalue of Hx for some x ∈ Ĉ+
}
.

We remark that δ0(C−, C+) is positive as follows from compactness of
the manifolds C±. In the following we fix p > 1 and 0 < δ < δ0(C−, C+).
Recall the definition of the space M̂(Ĉ−, Ĉ+) in (14). For u = (A,Ψ, x) ∈
M̂(Ĉ−, Ĉ+) we define the Banach spaces

Zδ,p
A := Zδ,p,−

A ⊕Zδ,p,+

and

Lδ,p := Lδ,p,− ⊕ Lδ,p,+ ⊕ L2(S1, g).

Put A0 := A(0) (and analogously for α0, x0, and ξ0). We use the notation

DΦA0 := Φ(A0)−1 dΦ(A0) : Ω1(Σ, ad(P )) → C∞(S1, g),
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where Φ is the holonomy map as in (49). Let us consider the linear operator
Du : Zδ,p

A → Lδ,p given by

(α, ψ, ξ) 7→ (DA(α, ψ),Dxξ,NA(α, ξ)), (24)

where we denoteNA(α, ξ) := x−1
0 ξ0−DΦA0α0. The following remark clarifies

the relation between the operator Du and the linearization of the section F
in (17).

Remark 3.1. (i) From the definition of F as a section F : B → E (cf. (17))
it follows that its linearization dF(u), where u = (A,Ψ, x), acts on the
space of pairs (α, ψ, ξ) where α(s) converges exponentially to some
α− ∈ TA− Ĉ− as s→ −∞, and likewise ξ(s) → ξ+ ∈ Tx+ Ĉ+ as s→∞.
This asymptotic behaviour is in slight contrast to that required for
elements of Zδ,p

A , the domain of the operator Du. However, it is easy
to see that dF(u) is Fredholm if and only if this property holds for Du,
and that the Fredholm indices are related via the formula

ind dF(u) = indDu + dim C− + dim C+.

To see this, we view dF(u) as a compact perturbation of the operator
Du, extended trivially to Zδ,p

A ⊕Rdim C− ⊕Rdim C− .
(ii) The operator Du arises as the linearization of the unperturbed Yang–

Mills gradient flow equation (11). The Fredholm theory for general
perturbations V ∈ Y can be reduced to the unperturbed case because
the terms involving V contribute only compact perturbations to the
operator Du.

Weighted theory

Because the Hessians HA− and Hx+ will in general (i.e. if dim C± ≥ 1) have
non-trivial zero eigenspaces, we cannot directly refer to standard theorems
on the spectral flow to prove Theorem 3.3. As an intermediate step, we
instead use the Banach space isomorphisms

ν−1 : Zδ,p,−
A → Z0,p,−

A =: Zp,−
A , ν−2 : Lδ,p,− → L0,p,− =: Lp,−

and

ν+
1 : Zδ,p,+ → Z0,p,+ =: Zp,+, ν+

2 : Lδ,p,+ → L0,p,+ =: Lp,+
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given by multiplication with the weight function eδβ(s)s, where β : R → R

denotes the cut-off function introduced at the beginning of Section 3.1. We
furthermore denote

Dδ
A := ν−2 ◦ DA ◦ (ν−1 )−1 and Dδ

x := ν+
2 ◦ Dx ◦ (ν+

1 )−1.

We use the notation Zp
A := Zp,−

A ×Zp,+ and Lp := Lp,−×Lp,+×L2(S1, g),
and set

Dδ
u := (Dδ

A,Dδ
x, NA) : Zp

A → Lp.

It is easy to check that the operator Du is Fredholm if and only if this
holds for Dδ

u, in which case both Fredholm indices coincide. Note also that
the operator Dδ

A takes the form

Dδ
A =

d

ds
+HA − (β + β′s)δ, (25)

and hence, if δ > 0 is chosen sufficiently small, the operator family s 7→
HA(s) − (β(s) + β′(s)s)δ converges to the invertible operator HA− + δ as
s→ −∞. Analogously, we have that

Dδ
x =

d

ds
+Hx − (β + β′s)δ. (26)

Here the operator family s 7→ Hx(s) − (β(s) + β′(s)s)δ converges to the
invertible operator Hx+ − δ as s→∞.

3.5 Fredholm theorem

For short, we use notation like e.g. Lp(I) := Lp(I, Lp(Σ, T ∗Σ ⊗ ad(P )) to
denote the Lp space of ad(P ) valued 1-forms over I × Σ, where I is some
interval.

Theorem 3.2. Let u = (A,Φ, x) ∈ M̂(Ĉ−, Ĉ+). There exist positive con-
stants c(u) and T (u) such that the estimate

‖(α, ψ, ξ)‖Zp
A
≤ c(u)

(
‖Dδ

u(α, ψ, ξ)‖Lp + ‖R(α, ψ)‖Lp,−

+ ‖(α, ψ)‖Lp([−T (u),0]) + ‖ξ‖Lp([0,T (u)])

)
(27)

is satisfied for all (α, ψ, ξ) ∈ Zp
A. Here R denotes the compact operator of

Lemma C.2. As a consequence, the operator Dδ
u has finite-dimensional kernel

and closed range.
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Proof. Inequality (27) is invariant under gauge transformations in G0(P̂ ),
and thus it suffices to prove it for Φ = 0. We first estimate ζ := (α, ψ).
For T = T (A) > 0 large enough we choose a smooth cut-off function
β : (−∞, 0] → R with support in [−T, 0] and such that β(s) = 1 for s ∈
[−T + 1, 0]. Then with R denoting the compact operator of Lemma C.2 it
follows for some constant c(A, p) that

‖ζ‖Zp,−
A

≤ ‖βζ‖Zp,−
A

+ ‖(1− β)ζ‖Zp,−
A

≤ c(A, p)
(
‖Dδ

Aζ‖Lp([−T,0]) + ‖ζ‖Lp([−T,0]) + ‖Dδ
Aζ‖Lp,− + ‖Rζ‖Lp,−

)
. (28)

Here we used (58) to estimate the term ‖βζ‖Zp,−
A

. The estimate for the
term ‖(1 − β)ζ‖Zp,−

A
follows from Lemma C.2, which remains valid for any

Dδ
A sufficiently close (in operator norm) to Dδ

A− . This is satisfied thanks to
Lemma C.1. We next estimate ξ by applying Lemma C.4. Let T = T (x) > 0
be as in the lemma. Then it follows for a constant c = c(x, p, δ) > 0 that

c−1‖ξ‖Zp,+ ≤ ‖Dδ
xξ‖Lp,+ + ‖ξ‖Lp([0,T ],L2(S1)) + ‖ξ(0)‖L2(S1)

≤ ‖Dδ
xξ‖Lp,+ + ‖ξ‖Lp([0,T ],L2(S1)) + ‖NA(α, ξ)‖L2(S1) + ‖dΦA0α(0)‖L2(S1)

≤ ‖Dδ
xξ‖Lp,+ + ‖ξ‖Lp([0,T ],L2(S1)) + ‖NA(α, ξ)‖L2(S1) + ‖α(0)‖W 1,2(Σ).(29)

The second line is by definition of the map NA. The last line follows from
continuity of the the map dΦ(A0) : W 1,2(Σ) → W 1,2(S1), cf. [18, Lemma
A.1]. To control the term ‖α(0)‖W 1,2(Σ) we use Lemma C.8 with

H = W 1,2(Σ), V = W 2,2(Σ), V ∗ = L2(Σ).

Choosing the constant δ > 0 in that lemma sufficiently large we obtain for
a constant c(A, p) > 0 the estimate

‖α(0)‖p
W 1,2(Σ)

≤ ‖ζ(0)‖p
W 1,2(Σ)

≤ c(A, p)
( ∫ 0

−∞
‖Dδ

Aζ‖
p
L2(Σ)

ds+
∫ 0

−∞
‖ζ‖p

W 1,2(Σ)
ds

)
≤ c(A, p)

(
‖Dδ

Aζ‖
p
Lp,− + ‖ζ‖p

Zp,−
A

)
. (30)

The last line follows, as by definition the norm of Zp,−
A is stronger than that

of Lp(R−,W 1,2(Σ)), and that of Lp,− is stronger than that of Lp(R−, L2(Σ)).
Combining estimates (29) and (30) with (28) yields the claimed inequality
(27) (with T (u) := max{T (A), T (x)}). To finish the proof, we note that the
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operator Dδ
u = (Dδ

A,Dδ
x, NA) is bounded and that the operator R and the

inclusion maps Zp,−
A ([−T (u), 0]) ↪→ Lp([−T (u), 0]) and Zp,+([0, T (u)]) ↪→

Lp([0, T (u)]) are compact (the latter by Rellich’s theorem). Hence the as-
sertions on the kernel and the range follow from the abstract closed range
lemma (cf. [14, p. 14]). The proof is complete.

We now state and prove the main result concerning the linear operator
Du.

Theorem 3.3 (Fredholm theorem). The operator Du is a Fredholm operator
of index

indDu = indA− − indx+ − dim C+. (31)

(Here indA−, respectively indx+, denotes the numbers of negative eigenval-
ues of HA− and Hx+ , counted with multiplicities).

Proof. By what we have remarked in Section 3.4 it sufficies to prove the
assertion for the operator Dδ

u. That the operator Dδ
u has finite-dimensional

kernel and closed range is part of Theorem 3.2. It remains to establish the
formula for the index. Let H := L2(S1, x∗TG) and denote

S := {ξ0 ∈ H | ∃ξ ∈ Zp,+ such that Dδ
xξ = 0 and ξ(0) = ξ0}. (32)

Note that S is a closed subspace of H. Let T be the orthogonal complement
of S in H. We denote

K := {(α(0), ψ(0)) | (α, ψ) ∈ kerDδ
(A,Ψ)}.

It follows that the kernel of the operator Dδ
u has dimension

dim kerDδ
u = dim ker dΦ|K + dim(N(K, 0) ∩ S). (33)

On the other hand, the dimension of its cokernel equals the codimension of
the hyperplane

W =
{
N(α(0), ξ(0))

∣∣ ∃(α, ψ, ξ) ∈ Zp
A such that

(Dδ
A(α, ψ),Dδ

xξ) = (β, ω, η)
}

for arbitrary but fixed (β, ω, η). Let (α, ψ) vary over the space kerDδ
A to see

that this codimension is given by

codimW = dimT − dimK + dim ker dΦ|K + dim(N(K, 0) ∩ S). (34)

Combining (33) and (34) and using that dimK = indHA− (by Lemma C.3)
and dimT = indx+ + dim C+ (by Lemma C.5), the asserted index formula
follows.
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Remark 3.4. In view of Remark 3.1 and Theorem 3.3 we obtain the formula

ind dF(u) = indA− − indx+ + dim C− (35)

for the Fredholm index of the linearization of F .

3.6 Transversality

Let a regular value a ≥ 0 of YM be given. We recall the notation Ya

as introduced in Definition 2.4. Our aim is to show that for every pair
(C−, C+) ∈ CRa(YM) × CRb(E) (where b = 4a/π) and a dense subset of
perturbations V = (V−,V+) ∈ Ya the linearized section dF(u) is surjective,
for all u ∈ M(C−, C+). We shall work with the so-called universal moduli
space Muniv(C−, C+), which arises as the zero set of a certain bundle section
F̂ as we explain next. Let us recall the definition of the Banach manifold
B, the Banach space bundle E , and the section F (cf. Section 3.1). We now
change our notation slightly and let M(C−, C+;V) indicate the moduli space
as in (15), i.e. defined for a fixed perturbation V ∈ Ya. Throughout the rest
of this section we also replace the notation F by FV . Let then F̂ : B×Y → E
denote the section of the Banach space bundle E defined by

F̂ : [(A,Ψ, x,V)] 7→ FV([(A,Ψ, x)]). (36)

Thus the perturbation V ∈ Ya which had previously been kept fixed is
now allowed to vary over the Banach space Ya. We define Muniv(C−, C+) :=
{w ∈ B × Y | F̂(w) = 0}. In this section, our main result is the following.

Theorem 3.5. There exists a dense subset Y reg
a ⊆ Ya of perturbations such

that for every V ∈ Y reg
a the moduli space M(C−, C+;V) is a Banach sub-

manifold of Muniv(C−, C+).

Proof. As shown in Theorem 3.6 below, the linearized operator dF̂(w) is
surjective, for every w ∈ Muniv(C−, C+). It hence follows from the implicit
function theorem that Muniv(C−, C+) is a smooth Banach manifold. The
proof is now completed by an application of the Sard–Smale theorem for
Fredholm maps between Banach manifolds, cf. [1, Theorem 3.6.15]. This
guarantees that the set of regular values

Y reg
a (C−, C+) :=

{
V ∈ Ya

∣∣ dπ(w) is surjective for allw ∈Muniv(C−, C+)
}

of the projection map π : Muniv(C−, C+) → Ya is residual in Ya. Again
by the implicit function theorem, it follows that M(C−, C+;V) is a Banach
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submanifold of Muniv(C−, C+) for every V ∈ Y reg
a . Now define the set

Y reg
a :=

⋂
(C−,C+)∈CRa(YM)×CRb(E)

Y reg
a (C−, C+)

which is the intersection of finitely many residual subsets, hence residual in
Ya. For this set Y reg

a , the assertions of the theorem are satisfied.

Theorem 3.6. The horizontal differential dF̂(w) of the map F̂ as in (36) is
surjective, for every pair (C−, C+) ∈ CRa(YM)× CRb(E) (where b = 4a/π)
and every w ∈Muniv(C−, C+).

Proof. The theorem follows, combining Lemmata 3.8 and 3.9 below.

Transversality at stationary flow lines

Throughout we fix a pair (C−, C+) ∈ CRa(YM) × CRb(E) such that C+ =
Φ(C−) is satisfied. In this case, we show that transversality of the section F
holds automatically.

Proposition 3.7. Let [u] ∈ M(C−, C+;V) where u = (A, 0, x) for some
A ∈ C− and x = Φ(A). Then kerDδ

u is trivial.

Proof. Let (α, ψ, ξ) ∈ kerDδ
u and consider the maps

ϕ− : R− → R, s 7→ ‖(α(s), ψ(s))‖2
L2(Σ),

ϕ+ : R+ → R, s 7→ ‖ξ(s)‖2
L2(S1).

As by assumption ζ := (α, ψ) satisfies ζ̇ +HAζ = 0 it follows that

ϕ̇−(s) = −2〈ζ,HAζ〉, (37)
ϕ̈−(s) = 4〈HAζ,HAζ〉 ≥ 0. (38)

Inequality (38) shows that ϕ− is convex. Because lims→−∞ ϕ−(s) = 0 it thus
follows that ϕ− vanishes identically or ϕ̇− > 0. Assume by contradiction the
second case. Then (37) shows that 〈ζ0,HA0ζ0〉 < 0 and from Proposition
B.6 it follows that

〈ξ0,Hxξ0〉 < 0, (39)

where we denote ζ0 := ζ(0) and ξ0 := ξ(0) = dΦ(A)ζ0. Likewise, from the
assumption that ξ satisfies ξ̇ +Hxξ = 0 it follows that

ϕ̇+(s) = −2〈ξ,Hxξ〉, ϕ̈+(s) = 4〈Hxξ,Hxξ〉 ≥ 0,
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and the map ϕ+ is convex. Because lims→∞ ϕ+(s) = 0 it thus follows that
ϕ̇+ ≤ 0 and hence in particular ϕ̇+(0) = −2〈ξ0,Hx0ξ0〉 ≤ 0. This contradicts
(39) and shows that our assumption was wrong. Hence ϕ− and therefore ζ
vanish identically. Then asNA(α, ξ) = 0 by assumption, we have that ξ0 = 0,
and convexity of ϕ+ shows that also ξ vanishes identically. Hence kerDδ

u is
trivial, as claimed.

Lemma 3.8. The horizontal differential dF([u]) is surjective, for every [u] ∈
M(C−, C+;V).

Proof. Because C+ = Φ(C−) by assumption, it follows from the gradient
flow property that u = (A,Ψ, x) is independent of s. By applying a suitable
gauge transformation we can in addition assume that Ψ = 0 and hence u
satisfies the assumptions of Proposition 3.7. By formula (3.4) it follows in this
case that ind dF(u) = dim C−. We check that this number is precisely the
dimension of ker dF(u), which will imply the claim. Now every [α0] ∈ T[A]C−
gives rise to some (α, ψ, ξ) ∈ ker dF(u) by defining (α(s), ψ(s)) := (α0, 0) for
s ∈ R− and ξ(s) := ξ0 := dΦ(A)α0. From the decomposition of T[(A,0)]B− in
(16) it follows that a direct complement of the dim C−- dimensional space of
such kernel elements is given by Zp

A. The restriction of dF(u) to Zp
A is the

operator Du which has trivial kernel as follows from Proposition 3.7. Hence
indeed dim ker dF(u) = dim C−, as claimed.

Transversality in the non-stationary case

Let (C−, C+) ∈ CRa(YM) × CRb(E), where b = 4a/π. We show surjectiv-
ity of the linearized operators in the case where C+ 6= Φ(C−). Under this
assumption, the following result holds true.

Lemma 3.9. Let w = [(A, 0, x,V)] ∈ Muniv(C−, C+). Then the horizontal
differential dF̂(w) is surjective, for every w ∈Muniv(C−, C+).

The proof is based on the following auxiliary result.

Proposition 3.10. Under the assumptions of Lemma 3.9 the map dF̂(w) is
onto if one of the following two conditions is satisfied. (i) The linear operator

D̂(A,V−) : {(α, ψ) ∈ Zp,−
A | (α(0), ψ(0)) = 0} × Y −a → Lp,−,

(α, ψ, v−) 7→ DA(α, ψ) +∇v−(A)

is surjective. (ii) The linear operator

D̂(x,V+) : {ξ ∈ Zp,+ | ξ(0) = 0} × Y +
b → Lp,+, (ξ, v+) 7→ Dxξ +∇v+(x)

is surjective.
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Proof. Assume case (ii). Let (β, η, ν) ∈ Lp,− × Lp,+ × L2(S1, g) be given.
By Lemma C.3 the equation D̂(A,V−)(α, ψ, v−) = β admits a solution (with
e.g. v− = 0). Assumption (ii) implies that the equation D̂(x,V+)(ξ, v+) = η
can be solved for arbitrary ξ(0), in particular for ξ(0) = x(0)(ν+DΦA(0)α(0)),
cf. (24) regarding the notation. For this ξ(0), the condition NA(α, ξ) = ν
is satisfied. It follows that (D̂(A,V−), D̂(x,V+))(α, ψ, ξ, v−, v+) = (β, η, ν) and
hence dF̂(w) is onto. Assuming case (i) we may argue analogously, using
Lemma C.5 at the place of Lemma C.3.

Proof. (Lemma 3.9) From our initial assumption that C+ 6= Φ(C−) it fol-
lows that the gradient flow lines (A,Ψ) or x are not stationary. In this
situation, the transversality results [19, Theorem 7.1] and [23, Proposition
7.5] apply. In the first case this yields surjectivity of D̂(A,V−), in the sec-
ond case surjectivity of D̂(x,V+). The claim now follows from Proposition
3.10.

Remark 3.11. In [23, Proposition 7.5] Weber shows surjectivity of the lin-
earized section D̂(x,V+) along a gradient flow line x defined on the infinite
interval R by studying the kernel of the adjoint operator D∗x. His proof car-
ries over almost literally to the present situation, with the only difference
that we now consider the same operator over the half-infinite interval R+

and assume Dirichlet boundary conditions at s = 0. An analogous remark
applies to the result [19, Theorem 7.1] used in the proof of Lemma 3.9.

4 Compactness

For a given pair (C−, C+) ∈ CR(YM)×CR(E), we aim to show compactness
of the moduli spaces M(C−, C+) (as defined in (15)) up to so-called con-
vergence to broken trajectories. Let us first introduce this notion, following
here the book by Schwarz [16, Definition 2.34].

Definition 4.1. A subset K ⊆ M(C−, C+) is called compact up to bro-
ken trajectories of order µ = (µ−, µ+) ∈ N2

0 if for any sequence [uν ] =
[(Aν ,Ψν , xν)] in K the following alternative holds. Either [uν ] possesses a
C∞ convergent subsequence, or there exist the following:

(i) numbers 0 ≤ λ± ≤ µ± and critical manifolds

C−0 = C−, . . . , C−
λ− ⊆ CR(YM) and C+

0 = C+, . . . , C+
λ+ ⊆ CR(E);
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(ii) (for every 0 ≤ j ≤ λ−−1) connecting trajectories (Aj ,Ψj) ∈ M̂(Ĉ−j , Ĉ
−
j+1),

a sequence of gauge transformations (gj,ν)ν∈N ⊆ G0(P̂ ) and a sequence
of reparametrization times (τ−j,ν)ν∈N ⊆ [0,∞);

(iii) a point (A∗,Ψ∗, x∗) ∈ M̂(Ĉ−
λ− , Ĉ

+
λ+) and a sequence of gauge transfor-

mations (gλ−,ν)ν∈N ⊆ G0(P̂ );
(iv) (for every 1 ≤ j ≤ λ+) connecting trajectories xj ∈ M̂(Ĉ+

j , Ĉ
+
j−1) and

a sequence of reparametrization times (τ+
j,ν)ν∈N ⊆ [0,∞), with the

following significance.
There exists a subsequence (again labeled by ν) such that, as ν →∞,

g∗j,ν(A
ν( · − τ−j,ν),Ψ

ν( · − τ−j,ν)) → (Aj ,Ψj) for every 0 ≤ j ≤ λ− − 1,

xν( · + τ+
j,ν) → xj for every 0 ≤ j ≤ λ+ − 1,

g∗λ−,ν(A
ν ,Ψν) → (A∗,Ψ∗), xν → x∗

holds in C∞ on all compact domains I×Σ, respectively I×S1, where I ⊆ R−
(respectively I ⊆ R+) is a compact interval.

Here the notation M̂(Ĉ±j , Ĉ
±
j∓1) refers to the moduli spaces of connecting

trajectories for the gradient flows of YMV , respectively of EV as introduced
in [19] and [23]. As we show next, the moduli space M(C−, C+) is compact
in the sense of Definition 4.1.

Theorem 4.2 (Compactness of moduli spaces). For every pair (C−, C+) ∈
CR(YM)× CR(E), the moduli space M(C−, C+) is empty or compact up to
convergence to broken trajectories of order µ = (µ−, µ+), where

µ− + µ+ = indA− + dim C− − indx+. (40)

The integers indA− and indx+ denote the numbers of negative eigenvalues
of HA− , respectively of Hx+ (for any A− ∈ Ĉ− and x+ ∈ Ĉ+).

The statement of the theorem and its proof are in analogy to the com-
pactness result in Abbondandolo–Schwarz [2, Theorem 3.5]. To prove it we
need the following two lemmata, the first one being due to the author [19]
and the second one due to Weber [23].

Lemma 4.3. Let Aν = Aν + Ψν ds, ν ∈ N, be a sequence of solutions of
the gradient flow equation (11) on R− × Σ. Assume there exists a critical
manifold Ĉ− ∈ ˆCR(YM) such that every trajectory Aν(s) converges to Ĉ− as
s→ −∞. Then there exists a sequence gν ∈ G(P̂ ) of gauge transformations
such that a subsequence of the gauge transformed sequence (gν)∗Aν converges
uniformly on compact sets I × Σ (for every compact interval I ⊆ R−) to a
solution A∗ of (11).
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Proof. For a proof we refer to [19, Theorem 6.2].

Lemma 4.4. Let xν , ν ∈ N, be a sequence of solutions of the gradient flow
equation (12) on the interval R+. Assume there exists a constant C ≥ 0
such that the energy bound

sup
s∈R+

EV+
(xν(s)) ≤ C (41)

is satisfied for all ν ∈ N. Then there exists a solution x∗ of (12) on R+×S1

such that, after passing to a subsequence, xν converges uniformly to x∗ on
compact sets I × S1 (for every compact interval I ⊆ R+).

Proof. For a proof we refer to [23, Proposition 4.14].

Proof. (Theorem 4.2) Let uν = (Aν ,Ψν , xν), ν ∈ N, be a sequence in
M̂(Ĉ−, Ĉ+). Note that the sequence xν satisfies condition (41). Namely,
thanks to the energy inequality (54) it follows for all ν and a constant C(C−)
that

sup
s∈R+

EV+
(xν(s)) = EV+

(xν(0)) ≤ 4
π
YMV−(Aν(0)) ≤ C(C−).

Such a constant C(C−) exists due to the assumption that Aν(s) converges
to Ĉ− as s → −∞. Hence Lemmata 4.3 and 4.4 apply and show that
there exists a subsequence of uν (which we still label by ν) and a sequence
gν of gauge transformations such that (gν)∗(Aν ,Ψν) and xν converge in
C∞loc. Furthermore, for each compact interval I ⊆ R± it follows that the
limit as ν →∞ of (gν)∗|I×Σ(Aν |I×Σ,Ψν |I×Σ) (respectively of xν |I×S1) is the
restriction of a trajectory of (11) (respectively of (12)) of finite energy at
most C(C−). Now the exponential decay results [19, Theorem 4.1] and [23,
Theorem 1.8] imply that every such finite energy solution is contained in one
of the moduli spaces M̂(Ĉ−0 , Ĉ

−
1 ), M̂(Ĉ+

0 , Ĉ
+
1 ), or M̂(Ĉ−0 , Ĉ

+
0 ) for some Ĉ−j ∈

ĈR
a
(YM), respectively Ĉ+

j ∈ ĈR
b
(E), where j = 0, 1 and a = YM(Ĉ−),

b = 4a/π. (Here we use the notation of Section 2.3). Convergence after
reparametrization as required in Definition 4.1 and the relation (40) then
follow from standard arguments as in [16, Proposition 2.35].

5 Chain isomorphism of Morse complexes

5.1 The chain map

Let a ≥ 0 be a regular value of YM and set b := 4a/π. Throughout this
section we fix an admissible perturbation V = (V−,V+) ∈ Y reg

a (with the set
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Y reg
a as in Theorem 3.5), which satisfies the conditions of Theorem B.5. Let
h : crita(YM)/G0(P ) → R be a smooth Morse–Smale function, i.e. a Morse
function such that all stable and unstable manifolds W s

h(x) and W u
h (x) of h

intersect transversally. We let

CMa,−
∗ := CMa

∗
(
A(P )/G0(P ),V−, h

)
, CM b,+

∗ := CM b
∗
(
ΛG/G,V+, h

)
denote the Morse–Bott complexes as in Section 2.5. The resulting Morse
homologies will for short be denoted by

HMa,−
∗ := HMa

∗
(
A(P )/G0(P ),V−, h

)
, HM b,+

∗ := HM b
∗
(
ΛG/G,V+, h

)
.

Our construction of the moduli space M(C−, C+) in Section 2.6 gives rise
to a chain map Θ: CMa,−

∗ → CM b,+
∗ as we shall describe next.

Definition 5.1. Fix critical points x−, x+ ∈ crit(h) and integers m−,m+ ≥
1. A hybrid flow line from x− to x+ with m− upper and m+ lower cascades
is a tuple

(x−, x0, x+, T−, T+)

= ((x−j )j=1,...,m− , x0, (x+
j )j=1,...,m+ , (t−j )j=1,...,m− , (t+j )j=0,...,m+−1),

where for each j, x−j : R− → A(P )/G0(P ) is a nonconstant solution of the
Yang–Mills gradient flow equation (11), x+

j : R+ → ΛG/G is a nonconstant
solution of the loop group gradient flow equation (12), t±j ∈ R+, and the
following conditions are satisfied.

(i) For each 1 ≤ j ≤ m±−1 there exists a solution y±j ∈ C∞(R, crit(h)) of
the gradient flow equation ẏ±j = −∇h(y±j ) such that lims→∞ x±j (s) =
y±j (0) and lims→−∞ x±j+1(s) = y±j (tj).

(ii) There exist p− ∈W u
h (x−) and p+ ∈W s

h(x+) such that lims→−∞ x−1 (s) =
p− and lims→∞ x+

m(s) = p+.
(iii) There exist C− ∈ CR(YM) and C+ ∈ CR(E) such that x0 = [(u−, u+)] ∈

M(C−, C+). Furthermore, there exist solutions y−
m− and y+

0 of the gra-
dient flow equations ẏ−

m− = −∇h(y−
m−) and ẏ+

0 = −∇h(y+
0 ) satisfying

the conditions

lim
s→∞

x−
m−(s) = y−

m−(0), lim
s→−∞

u−(s) = y−
m−(t−

m−),

lim
s→∞

u+(s) = y+
0 (0), lim

s→−∞
x+

1 (s) = y+
0 (t+0 ).
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− grad YM

− grad E

− grad h

− grad h

− grad h

− grad YM

− grad h

− grad h

− grad YM

− grad E

Figure 1: A hybrid flow line with 2 upper and 1 lower cascades.

A hybrid flow line with m− = 0 upper cascades and m+ ≥ 1 lower cascades
is a tuple

(x0, x+, T+) = (x0, (x+
j )j=1,...,m+ , (t+j )j=0,...,m+−1)

as before satisfying conditions (i-iii) with the following adjustment in (ii).
Here we require the existence of p− ∈ W u

h (x−) such that lims→−∞ u−(s) =
p−. Conditions involving flow lines x−j and times t−j are empty in this case.
A hybrid flow line with m− ≥ 0 upper cascades and m+ = 0 lower cascades
is defined analogously. Conditions involving flow lines x+

j and times t+j are
then empty.

Denote by Mhybr
(m−,m+)

(x−, x+) the moduli space of hybrid flow lines from
x− to x+ with (m−,m+) ∈ N2

0 upper and lower cascades (modulo the action
by time-shifts of the group Rm− ×Rm+ on tuples (x−, x+)). We call

Mhybr(x−, x+) :=
⋃

(m−,m+)∈N2
0

Mhybr
(m−,m+)

(x−, x+)

the moduli space of hybrid flow lines with cascades from x− to x+.
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Lemma 5.2. The dimension of Mhybr(x−, x+) is given by the formula

dimMhybr(x−, x+) = Ind(x−)− Ind(x+). (42)

Proof. The asserted formula follows from the following one for the dimension
of the space M̂hybr

(m−,m+)
(x−, x+) (where we do not take into account the action

of Rm− ×Rm+ by time shifts). Namely, by the result [6, Corollary C.15] of
Frauenfelder and the index formula (35) it follows that

dimM̂hybr
(m−,m+)

(x−, x+) = Ind(x−)− Ind(x+) +m− 1,

wherem denotes the total number of cascades of an element in M̂hybr
(m−,m+)

(x−, x+).
Note that in the present setup this number is given by m = m− +m+ + 1
because we have to take into account the additional cascade coming from
the configuration x0. The asserted formula for the quotient space modulo
the action of Rm− ×Rm+ then follows.

Our construction of a moduli space Mhybr(x−, x+) for each pair (x−, x+)
of generators gives rise to a chain map between the Morse–Bott complexes
CMa,−

∗ and CM b,+
∗ .

Definition 5.3. For a pair (x−, x+) ∈ crit(h)×crit(h) with Ind(x−) = k let

Θk(x−) :=
∑

x+∈crit(h)

Ind(x+)=k

#Mhybr(x−, x+) · x+,

where #Mhybr(x−, x+) denotes the number (counted modulo 2) of elements
of Mhybr(x−, x+). We define the homomorphism Θk : CMa,−

k → CM b,+
k of

abelian groups accordingly by linear continuation, and set Θ := (Θk)k∈N0 .

Theorem 5.4. The map Θ is a chain homomorphism between the Morse
complexes CMa,−

∗ and CM b,+
∗ . Thus for each k ∈ N0 it holds Θk ◦ ∂ YMk+1 =

∂ Ek+1 ◦Θk+1 : CMa,−
k+1 → CM b,+

k .

Proof. From the compactness Theorem 4.2 it follows that the number of
elements of Mhybr(x−, x+) is finite and hence the homomorphism Θ is well-
defined. The proof is then completed by standard arguments as e.g. carried
out in [2].
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5.2 Proof of the main theorem

The aim of this final section is to prove Theorem 1.2. Thanks to Theorem
5.4, the map Θ induces for each k ∈ N0 a homomorphism [Θk] : HM

a,−
k →

HM b,+
k of abelian groups. It remains to show that these homomorphisms

are in fact isomorphisms. In our proof we follow closely the line of argument
employed by Abbondandolo and Schwarz in [2].

Proof. (Theorem 1.2) It suffices to prove that each of the chain homo-
morphisms Θk is in fact an isomorphism and hence induces an isomorphism
in homology. Let k ∈ N0 and fix a set p := (p1, . . . , pm) of generators of
CMa,−

k . We order the entries pj of the tuple p such that the following two
conditions are met. First, we require that

i ≤ j =⇒ YMV−(pi) ≤ YMV−(pj) (43)

holds for all 1 ≤ i, j ≤ m. Secondly, in case where pi and pj lie on the same
critical manifold C− ∈ CR(YM) we choose our ordering such that

i ≤ j =⇒ h(pi) ≤ h(pj). (44)

Set qj := Φ(pj) and define q := (q1, . . . , qm). Them-tuple q generates CM b,+
k

which follows from the facts that Φ induces a bijection CRa(YM) → CRb(E)
which by Theorem B.2 preserves the Morse indices, and that on both sets
CRa(YM) and CRb(E) we use the same Morse function h. By Theorem B.5
we have for each 1 ≤ j ≤ m the identity

YMV−(pj) =
π

4
EV+

(qj), (45)

which by our choice of the ordering of p implies that the tuple q is ordered
by non-decreasing EV+ action. Furthermore, if EV+

(qi) = EV+
(qj) for some

i ≤ j then either qi and qj lie on different critical manifolds in CRb(E)
or otherwise h(qi) ≤ h(qj). Let us represent the homomorphism Θk with
respect to the ordered bases p and q by the matrix (Θk

ij)1≤i,j≤m ∈ Zm×m
2 .

The following two observations are now crucial. Both are a consequence of
the energy inequality

YMV−(A) ≥ π

4
EV+

(Φ(A)) (46)

for all A ∈ A(P ) as in Theorem B.5. First, Θk
ii = 1 for all 1 ≤ i ≤ m

because the moduli space Mhybr(pi, qi) consists of precisely one point. It is
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represented by the hybrid flow line with (m−,m+) = (0, 0) upper and lower
cascades and configuration x0 = (pi, qi) = [(u−, u+)] with stationary flow
lines u− of YMV , respectively u+ of EV . Note that (m−,m+) 6= (0, 0) is not
possible in this case as this would contradict (45). Secondly, if i > j then
Θk

ij = 0 because in this case Mhybr(pj , qi) = ∅. Assume by contradiction
that Mhybr(pj , qi) contains at least one element. Let pj ∈ C− and qi ∈ C+

for critical manifolds C±. The gradient flow property and (46) imply that
YMV−(pj) ≥ π

4E
V+

(qi). This inequality must in fact be an equality because
otherwise there would be a contradiction to condition (43) and identity (45).
Hence C+ = Φ(C−), and the gradient flow property of the function h implies
that h(qj) = h(Φ(pj)) ≥ h(qi). With i > j, condition (44) and again identity
(45) show that this can only be the case if h(qj) = h(qi). It follows that qj =
qi because h is monotone decreasing. Thus i = j, which is a contradiction.
These two observations imply that the matrix (Θk

ij)1≤i,j≤m takes the form

(Θk
ij)1≤i,j≤m =



1 ∗ · · · · · · ∗

0 1
. . .

...
...

. . . . . . . . .
...

...
. . . 1 ∗

0 · · · · · · 0 1


∈ Zm×m

2 ,

and thus is invertible over Z2. This completes the proof of the theorem.

A Morse–Bott theory

We briefly recall a version of so-called Morse–Bott theory which is due to
Frauenfelder [6, Appendix C]. Let (M, g) be a Riemannian manifold. A
smooth function f : M → R is called Morse–Bott if the set crit(f) of its
critical points is a submanifold of M and if for each x ∈ crit(f) the Morse–
Bott condition Tx crit(f) = kerHxf is satisfied. Let us fix a Morse function
h : crit(f) → R such that the Morse–Smale condition is satisfied, i.e. all
stable and unstable manifolds W s

h(x) and W u
h (y) of h intersect transversally.

We assign to a critical point x ∈ crit(h) ⊆ crit(f) the index

Ind(x) := indf (x) + indh(x). (47)

Definition A.1. Let x−, x+ ∈ crit(h). A flow line from x− to x+ with m ≥ 1
cascades is a tuple (x, T ) = ((xj)1≤j≤m, (tj)1≤j≤m−1) with xj ∈ C∞(R,M)
and tj ∈ R+ such that the following conditions are satisfied.
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(i) For each 1 ≤ j ≤ m, xj is a nonconstant solution of the gradient flow
equation ẋj = −∇f(xj).

(ii) For each 1 ≤ j ≤ m − 1 there exists a solution yj ∈ C∞(R, crit(f))
of the gradient flow equation ẏj = −∇h(yj) such that lims→∞ xj(s) =
yj(0) and lims→−∞ xj+1(s) = yj(tj).

(iii) There exist points p− ∈W u
h (x−) ⊆ crit(f) and p+ ∈W s

h(x+) ⊆ crit(f)
such that lims→−∞ x1(s) = p− and lims→∞ xm(s) = p+.

A flow line with m = 0 cascades simply is an ordinary flow line of −∇h on
crit(f) from x− to x+.

Denote by Mm(x−, x+) the set of flow lines from x− to x+ with m
cascades, modulo the action by time-shifts of the group Rm on tuples x =
(x1, . . . , xm). We call

M(x−, x+) :=
⋃

m∈N0

Mm(x−, x+)

the set of flow lines with cascades from x− to x+. In analogy to usual Morse
homology theory, a sequence of broken flow lines with cascades may converge
to a limit configuration which is a connected chain of such flow lines with
cascades. This limiting behaviour is captured in the following definition.

Definition A.2. Let x−, x+ ∈ crit(h). A broken flow line with cascades
from x− to x+ is a tuple v = (v1, . . . , v`) where each vj , j = 1, . . . , `, consists
of a flow line with cascades from x(j−1) to x(j) ∈ crit(h) such that x(0) = x−

and x(`) = x+.

Theorem A.3. Let x−, x+ ∈ crit(h). Under suitable transversality assump-
tions (as specified in [6, Appendix C]) the set M(x−, x+) is a smooth mani-
fold with boundary of dimension dimM(x−, x+) = Ind(x−) − Ind(x+) − 1.
It is compact up to convergence to broken flow lines with cascades.

Proof. For a proof we refer to [6, Theorems C.10, C.11].

Define by CM∗(M,f, h) the chain complex generated (as a Z-module)
by the critical points of h and graded by the index Ind. Thanks to Theorem
A.3 we may define for each k ≥ 0 a boundary operator ∂k : CMk(M,f, h) →
CMk−1(M,f, h) by linear extension of

∂kx :=
∑

Ind(x′)=k−1

n(x, x′)x′

for x ∈ crit(h) with Ind(x) = k. Here n(x, x′) denotes the (oriented) count
of elements in the zero dimensional moduli space M(x, x′). As was shown
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in [6] the maps ∂k give rise to a boundary operator satisfying ∂∗ ◦ ∂∗ = 0.
We define the Morse–Bott homology HM∗(M,f, h) of (M,f, h) by

HMk(M,f, h) :=
ker ∂k

im ∂k+1
(k ∈ N0).

B Holonomy map and critical manifolds

We think of Σ = S2 ⊆ R3 as the unit sphere with standard round metric
induced from the ambient euclidian space R3. Fix the pair z± = (0, 0,±1) of
antipodal points and set D± := Σ\{z∓}. We parametrize the hypersurfaces
D± ⊆ R3 by the maps

u± : [0, π)× [0, 2π) → D±, (r, t) 7→
(
± cos(t) sin(r),± sin(t) sin(r),± cos(r)

)
.

The volume form in these coordinates is

dvol(D±) = sin(r) dr ∧ dt.

Set λ : [0, π) → R, r 7→ sin(r). Denote by |Σ| = 4π the volume of Σ. The
Hodge star operator induced by the metric on Σ acts on differential forms
on D± as

∗1 = λ dr ∧ dt, ∗ dr ∧ dt = λ−1, ∗ dr = λ dt, ∗ dt = −λ−1 dr.

We define a family γt (0 ≤ t ≤ 2π) of paths between z+ and z− by

γt : [0, π] → Σ, γt(r) := (cos(t) sin(r), sin(t) sin(r), cos(r)). (48)

We fix two points p± ∈ Pz± in the fibre Pz± ⊆ P above z±. For a
connection A ∈ A(P ), let γ̄A

t denote the horizontal lift of the path γt with
respect to A, starting at p+.

Definition B.1. For parameter 0 ≤ t ≤ 2π, we define xA(t) ∈ G by the
condition

γ̄A
t (π) = p− · xA(t).

Thus t 7→ xA(t) is a loop in ΛG. Now define the map

Φ : A(P ) → ΩG, A 7→ x−1
A (0)xA. (49)

The map Φ is called the holonomy map for the principal G-bundle P .
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Note that Φ is independent of the choice of p−, while replacing p+ by p+·h
for some h ∈ G results in the conjugate holonomy map hΦh−1. Similarly,
replacing A by g∗A for a gauge transformation g ∈ G(P ) with g(p+) = h ∈ G
gives Φ(g∗A) = hΦ(A)h−1. Thus for the subgroup of gauge transformations
G0(P ) based at z+, i.e. for

G0(P ) := {g ∈ G(P ) | g(p+) = 1}, (50)

it follows that Φ descends to a G-equivariant map Φ: A(P )/G0(P ) → ΩG,
again denoted Φ and named holonomy map. The next theorem gives an
explicit description of the set of Yang–Mills connections on the principal
G-bundle P . Recall that the set of isomorphism classes of principal G-
bundles is in bijection with the elements of π1(G), as any such bundle P is
determined up to isomorphism by the homotopy class of the transition map
D+ ∩D− → G of a trivialization of P over the open sets D±.

Theorem B.2 (Correspondence between critical points). Let P be a princi-
pal G-bundle over Σ of topological type α ∈ π1(G). Then the map Φ : A 7→ xA

induces a bijection between the set of gauge equivalence classes of Yang–Mills
connections on P and the set of conjugacy classes of closed, based geodesics
x on G of homotopy class [x] = α.

Proof. For a proof we refer to [7, Theorem 2.1].

Theorem B.3. Let [A] be a G0(P ) equivalence class of Yang–Mills connec-
tions, and let xA = Φ(A) ∈ ΩG denote the corresponding closed geodesic.
Then the Hessians of YM at [A] and of E at xA have the same index and
nullity.

Proof. For a proof we refer to [7, Theorem 2.2].

Let i± : D± → Σ denote the inclusion maps and P± := (i±)∗P the
corresponding pull-back bundles. Because D± ⊆ Σ is contractible, the prin-
cipal G-bundle P admits local sections over D± which we can use to iden-
tify any connection (i±)∗A ∈ A(P±) with a 1-form u ∈ Ω1(D±, g). Given
A ∈ A(P ) we can choose this local sections in such a way that the pull-
back of (i±)∗A ∈ A(P±) under these sections is of the form u± dt for maps
u± ∈ C∞(D, g) satisfying

u−(r, t) = xA(t)u+(π − r, t)x−1
A (t)− ∂txA(t)x−1

A (t) (51)

for 0 < r < π. Because the connections (i±)∗A are well-defined near r = 0
it follows that limr→0 u

±(r, t) = 0. Following Gravesen [8] we set

`(r) :=
1
2
(1− cos(r)) and ξA := x−1

A ∂txA ∈ Ωg,
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and split the map u+ as

u+(r, t) = `(r)ξA(t) +mA(r, t). (52)

(mA ∈ C∞(D+, g) being defined through this equation). Because u+(r, t) →
0 as r → 0 this definition implies that also limr→0mA(r, t) = 0. Note that
by (51)

u−(r, t) =

`(π − r)xA(t)ξA(t)x−1
A (t) + x−1

A (t)mA(π − r, t)xA(t)− ∂txA(t)x−1
A (t),

and thus `(π) = 1 and the condition u−(r, t) → 0 as r → 0 imply that
limr→π m(r, t) = 0 is satisfied. The following energy identity is due to
Gravesen [8, Section 2]. There is also a generalization to higher genus sur-
faces, cf. Davies [5, Section 4.2].

Lemma B.4 (Energy identity). For every A ∈ A(P ), the identity

YM(A) =
π

4
E(xA) +

1
2
‖λ−1∂rmA(r, t)‖2

L2(Σ,dvol(Σ)). (53)

is satisfied.

Proof. We identify A ∈ A(P ) locally on D± with 1-forms u± ∈ Ω1(D±, g)
as described before, and make use of the decomposition (52). Hence the
curvature FA becomes identified locally on D± with the 2-form ∂ru

± dr∧dt.
Recall also the formula ∗(dr ∧ dt) = λ−1 for the Hodge star operator on
2-forms. In addition, we use that ∂r`(r) = 1

2λ(r). Hence it follows that

YM(A) =
1
2

∫
Σ
〈FA ∧ ∗FA〉

=
1
2

∫
D+

λ−1〈∂ru
+, ∂ru

+〉 dr ∧ dt

=
1
2

∫
D+

λ−1(r)
〈

1
2
λ(r)ξA(t) + ∂rmA(r, t),

1
2
λ(r)ξA(t) + ∂rmA(r, t)

〉
dr ∧ dt

=
1
2

∫
D+

〈
1
2
ξA(t) + λ−1(r)∂rmA(r, t),

1
2
ξA(t) + λ−1(r)∂rmA(r, t)

〉
λ(r)dr ∧ dt

=
π

8

∫ 2π

0
〈ξA(t), ξA(t)〉 dt+

1
2

∫
D+

∣∣λ−1(r)∂rmA(r, t)
∣∣2 λ(r)dr ∧ dt

+
1
2

∫
D+

∂r〈ξA(t),mA(r, t)〉 dr ∧ dt

=
π

4
E(xA) +

1
2
‖λ−1∂rmA(r, t)‖2

L2(D+,dvol(D+)).
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The term in the second but last line vanishes as follows from the above stated
property limr→0mA(r, t) = limr→π mA(r, t) = 0.

Theorem B.5. Let V− =
∑∞

`=1 λ
−
` V

−
` ∈ Y − and V+ =

∑∞
`=1 λ

+
` V

+
` ∈ Y +

be admissible perturbations (cf. Definition 2.4) with non-negative coefficients
λ−` , respectively non-positive coefficients λ+

` . Then for every A ∈ A(P ) there
holds the inequality

YMV−(A) ≥ π

4
EV+

(xA), (54)

with equality if A is Yang–Mills. In this case, the loop xA is a geodesic.

Proof. In view of Remarks 2.2 and 2.3 and the assumptions on λ±` it follows
that V− ≥ 0 and V+ ≤ 0. Hence it suffices to prove the inequality in the
case of vanishing perturbations V± = 0, where it follows from the energy
identity (53) (note that the last term in (53) is non-negative). Equality in
the case where A is a Yang–Mills connection and the assertion that then xA

is a closed geodesic follow from the discussion in [7, p. 236].

The following is an infinitesimal version of the energy identity (53).

Proposition B.6. Let A ∈ C− and x = Φ(A) ∈ C+. Then for all α ∈
Ω1(Σ, ad(P )) with 〈α,HAα〉 < 0 it follows that 〈β,Hxβ〉 < 0, where β :=
dΦ(A)α.

Proof. The claim is an immediate consequence of the energy identity (53)
which implies that for sufficiently small ε > 0 the map ε 7→ E(xA+εα) is
strictly monotone decreasing.

C A priori estimates

Estimates involving Dδ
A

Lemma C.1. Assume V− = 0 in the definition (18) of HA. For every
A− ∈ A(P ) there exists a constant c(A−) > 0 such that the operator DA as
in (22) satisfies the estimate

‖DA −DA−‖L(Zδ,p,−
A ,Lδ,p,−)

≤ c(A−)‖α‖C0(R−,C1(Σ))

where we denote α := A−A−. Similar estimates hold for the operator Dδ
A as

in (25) and for domains where R− is replaced by some subinterval I ⊆ R−.
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Proof. Consider first the upper left entry in HA −HA− which is

− ∗ [α ∧ ∗dA−+α · ] + d∗A− [α ∧ · ] + ∗[∗(dA−α+
1
2
[α ∧ α] ∧ · ],

for which clearly an estimate of the claimed type holds. The other terms
follow similarly.

The following is a basic estimate involving the operator Dδ
A as in (25),

here for a stationary path A(s) = A (s ∈ R−).

Lemma C.2. Let A ∈ A(P ) and assume for some δ > 0 that the operator
HA + δ is injective. Then for every p ≥ 2 there exists a constant c(A, p, δ)
and a compact operator R : Zp,−

A → Lδ,p,− such that the estimate

‖(α, ψ)‖Zp,−
A

≤ c(A, p, δ)
(
‖Dδ

A(α, ψ)‖Lp,− + ‖R(α, ψ)‖Lp,−
)

(55)

holds for all (α, ψ) ∈ Zp,−
A . Moreover, the operator Dδ

A : Zp,−
A → Lp,− is

surjective and has finite-dimensional kernel of dimension

dim kerDδ
A = indA.

(The integer indA denoting the number of negative eigenvalues of HA + δ).

Proof. The proof follows the lines of [23, Theorem 8.5] and consists of four
steps. Throughout we set ζ := (α, ψ).

Step 1. The statement on surjectivity and the kernel is true in the case
p = 2.

The operator HA + δ with domain W2,A(Σ) is an unbounded self-adjoint
operator on the Hilbert space H := L2(Σ, T ∗Σ ⊗ ad(P )) ⊕ L2(Σ, ad(P )),
cf. [19, Proposition 5.1]. Denote by E− and E+ its negative, respectively
positive eigenspaces. Since HA + δ is assumed to be injective, H splits as
an orthogonal sum H = E− ⊕ E+. Let P± denote the projections onto E±

and set H± = (HA + δ)|E± . As H− and −H+ are negative-definite self-
adjoint operators, it follows from the Hille-Yosida theorem (cf. for instance
[13, Section X.8]) that they generate strongly continuous contraction semi-
groups s 7→ esH

− on E− respectively s 7→ e−sH+ on E+, both defined for
s ≥ 0. This allows us to define the map K : R→ L(H) by

K(s) :=

{
−e−sH−P− for s ≤ 0,
e−sH+

P+ for s > 0.

43



As one easily checks, K is strongly continuous in R \ {0} and its pointwise
operator norm satisfies

‖K(s)‖L(H) ≤ e−δ0|s| (56)

for δ0 > 0 the smallest (in absolute value) eigenvalue ofHA+δ. Now consider
the operator Q : L2,− → Z2,−

A defined by

(Qη)(s) :=
∫ 0

−∞
K(s− σ)η(σ) dσ.

It satisfies

d

ds
(Qη)(s) =

d

ds

∫ s

−∞
e−(s−σ)H+

P+η(σ) dσ − d

ds

∫ 0

s
e−(s−σ)H−P−η(σ) dσ

= P+η(s)−
∫ s

−∞
H+e−(s−σ)H+

P+η(σ) dσ

+P−η(s) +
∫ 0

s
H−e−(s−σ)H−P−η(σ) dσ

= η(s)− (HA + δ)(Qη)(s).

From this calculation we see that

Dδ
AQη =

d

ds
(Qη) + (HA + δ)(Qη) = η,

so Q is a right-inverse of Dδ
A. This proves surjectivity of Dδ

A. Now let
ζ ∈ kerDδ

A such that (HA + δ)ζ(0) = λζ(0) for some λ ∈ R. Then ζ(s) =
e−λsζ(0), which is contained in L2,− if and only if λ < 0. Therefore ζ ∈ Z2,−

A

satisfies Dδ
Aζ = 0 if and only if ζ(0) ∈ H−. This shows that H− and kerDδ

A

are isomorphic to each other.

Step 2. For every p ≥ 2 there exists a constant c1(A, p) such that the fol-
lowing holds. If ζ ∈ Z2,−

A and Dδ
Aζ ∈ Lp,−, then ζ ∈ Zp,−

A and

‖ζ‖Zp,−
A

≤ c1(A, p)
(
‖Dδ

Aζ‖Lp,− + ‖ζ‖Lp(R−,H)

)
. (57)

The claim follows from standard arguments based on the linear estimate

‖ζ‖Zp,−
A ([−1,0]) ≤ c(A, p)

(
‖Dδ

Aζ‖Lp([−2,0]) + ‖ζ‖Lp([−2,0])

)
, (58)

cf. [18, Proposition A.6]. Full details are given in [18, Lemma 3.20].
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Step 3. The operator Q : Lp,− → Lp(R−,H) is bounded, for every p ≥ 2.
(In the following, we let c2(A, p) denote its operator norm.)

The claim follows from Young’s convolution inequality with

‖Qη‖Lp(R−,H) = ‖K ∗ η‖Lp(R−,H)

≤ ‖K‖L1(R−,L(H))‖η‖Lp(R−,H) ≤
1
δ0
‖η‖Lp,− .

In the last step we used that for p ≥ 2 the Lp,− norm dominates the
Lp(R−,H) norm.

Step 4. We prove the lemma.

The estimates of Step 2 and Step 3 imply that

‖ζ‖Zp,−
A

≤ c1(A, p)
(
‖Dδ

Aζ‖Lp,− + ‖ζ‖Lp(R−,H)

)
≤ c1(A, p)

(
‖Dδ

Aζ‖Lp,− + ‖QDδ
Aζ‖Lp(R−,H) + ‖ζ −QDδ

Aζ‖Lp(R−,H)

)
≤ c1(A, p)

(
(1 + c2(A, p))‖Dδ

Aζ‖Lp,− + ‖ζ −QDδ
Aζ‖Lp(R−,H)

)
.

This shows (55) because the operator

R := 1−QDδ
A : Zp,−

A → Lp(R−,H)

has finite rank (of dimension equal to dim kerDδ
A) and therefore is compact.

To prove surjectivity we note that the operator Dδ
A has closed range by (55)

and the usual abstract closed range lemma (cf. [14, p. 14]). Hence it suffices
to show that ranDδ

A is dense in Lp,−. Hence let η ∈ Lp,− ∩ L2,− be given.
The latter is a dense subspace of Lp,− because it contains all compactly
supported smooth functions. By Step 1 there exists some ζ ∈ Z2,−

A such
that DAξ = η. From (55) and the assumption η ∈ Lp,− it follows that
ξ ∈ Zp,−

A which implies surjectivity. Again (55) together with finiteness of
the rank of R shows that the kernels of the operators Dδ

A : Z2,−
A → L2,− and

Dδ
A : Zp,−

A → Lp,− coincide, for all p ≥ 2. Hence the assertion on the kernel
follows from Step 1. This finishes the proof of the lemma.

Lemma C.3. Let s 7→ A(s), s ∈ (−∞, 0], be a smooth solution of (11)
satisfying for a Yang–Mills connection A− the asymptotic condition

lim
s→−∞

A(s) = A−
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in C1(Σ). Let δ > 0 be such that the operator HA + δ is injective. Then
the operator Dδ

A : Zp,−
A → Lp,− associated with A is surjective and has finite-

dimensional kernel of dimension

dim kerDδ
A = indA−. (59)

Proof. The proof is divided into three steps.

Step 1. Stationary case.

Consider the case where the path A ≡ A− is stationary. In this case
Lemma C.2 applies and yields surjectivity of Dδ

A and formula (59). In par-
ticular, Dδ

A is a Fredholm operator.

Step 2. Nearby case.

Let us assume that for some sufficiently small ε > 0 the condition

‖A−A−‖C0(R−,C1(Σ)) < ε (60)

is satisfied. We here consider A− as a stationary connection over R− × Σ.
Surjectivity and the Fredholm index are preserved under small perturbations
with respect to the operator norm. By Lemma C.1, the operator norm of
Dδ

A depends continuously on A with respect to the C0(R−, C1(Σ)) topology.
Therefore surjectivity is implied by assumption (60). As the Fredholm in-
dices of Dδ

A− and Dδ
A coincide it follows that (59) holds true in the nearby

case.

Step 3. General case.

The general case can be reduced to the nearby case by a standard argu-
ment as e.g. carried out in the proof of [23, Proposition 8.3].

Estimates involving Dδ
x

The following lemma gives a basic estimate for the operator Dδ
x as in (26).

Lemma C.4. Fix p ≥ 2. Let x ∈ C∞(R1 × S1, G) with lims→∞ x(s) = x+

in the C1(S1) topology for some x+ ∈ C∞(S1, G). Then there exist positive
constants c and T , which depend only on x, p, and δ, such that for every
ξ ∈ Zp,+ the estimate

‖ξ‖Zp,+ ≤ c
(
‖Dδ

xξ‖Lp,+ + ‖ξ‖Lp([0,T ],L2(S1)) + ‖ξ(0)‖L2(S1)

)
(61)

is satisfied.
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Proof. We start with the standard parabolic estimate

‖ξ‖Zp,+ ≤ c(p, x)
(
‖Dδ

xξ‖Lp,+ + ‖ξ‖Lp(R+,L2(S1))

)
as obtained (for any p ≥ 2) in Step 3 of the proof of [23, Theorem 8.5].
To prove the lemma, it therefore remains to estimate the last term in (61),
which we split into integrals over [0, T ] and [T,∞) for sufficiently large T > 0.
We apply Lemma C.6 to the operator L := Hx+ − δ, which has spectrum
bounded away from 0 by our choice of δ. Defining Dδ

x+ := d
ds +L this yields

for a constant c(x+, T ) the estimate

‖ξ‖Lp([T,∞),L2(S1)) ≤ c(x+, T )
(
‖Dδ

x+ξ‖Lp([T,∞),L2(S1)) + ‖ξ(T )‖L2(S1)

)
, (62)

for all ξ ∈ Lp([T,∞), L2(S1)). Denoting by L the space of bounded linear
maps W 1,2(S1) → L2(S1) we have for all s ≥ T the pointwise estimate

‖Dδ
x+ξ(s)−Dδ

x(s)ξ(s)‖L2(S1) =

‖Hx+ξ(s)−Hx(s)ξ(s)‖L2(S1) ≤ ‖Hx+ −Hx(s)‖L‖ξ(s)‖L2(S1).

We hence can further estimate the term Dδ
x+ξ in (62) as

‖Dδ
x+ξ‖Lp([T,∞),L2(S1))

≤ ‖Dδ
x+ξ −Dδ

xξ‖Lp([T,∞),L2(S1)) + ‖Dδ
xξ‖Lp([T,∞),L2(S1))

≤ ‖Hx+ −Hx‖L∞([T,∞),L)‖ξ‖Lp([T,∞),L2(S1)) + ‖Dδ
xξ‖Lp([T,∞),L2(S1)).

Using the assumption lims→∞ x(s) = x+ in C1(S1), it can be checked that
‖Hx+ −Hx‖L∞([T,∞),L) → 0 as T →∞. Hence the term involving Hx+ −Hx

can be absorbed in the left-hand side of (62) for T = T (x) sufficiently large.
Furthermore, the term ‖Dδ

xξ‖Lp([T,∞),L2(S1)) is controlled by ‖Dδ
xξ‖Lp,+ as is

clear from the assumption p ≥ 2. The desired estimate now follows after
applying Lemma C.7 (with L(s) := Hx(s) − δ and ε > 0 sufficienty small)
to the remaining term ‖ξ(T )‖L2(S1) in (62). This introduces a further term
ε‖Hxξ‖L2([0,T ],L2(S1)) which can be absorbed in the left-hand side of the
asserted inequality (61), and a term ‖Dδ

xξ‖L2([0,T ],L2(S1)) + ‖ξ‖L2([0,T ],L2(S1))

which for p ≥ 2 is dominated by ‖Dδ
xξ‖Lp([0,T ],Lp(S1)) + ‖ξ‖Lp([0,T ],L2(S1))

appearing on the right hand side of (61).

Lemma C.5. Let s 7→ x(s), s ∈ [0,∞), be a smooth solution of (4) satisfy-
ing for a closed geodesic x+ the asymptotic condition

lim
s→∞

x(s) = x+
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in C1(S1). Then the operator Dδ
x : Zp,+ → Lp,+ associated with x is surjec-

tive and has finite-dimensional cokernel of dimension

dim cokerDδ
x = indx+.

(The integer indx+ denoting the number of negative eigenvalues of Hx+−δ).

Proof. The proof of an analogous result in [23, Proposition 8.3] for the back-
ward halfcylinder R−×S1 carries over to the present situation by taking the
adjoint of Dδ

x and time-reversal s 7→ −s.

Further linear estimates

Lemma C.6. Let H be a Hilbert space and L : dom(L) → H be the infinites-
imal generator of a strongly continuous one-parameter semigroup on H. We
assume that the spectrum of L is contained either in the interval (−∞,−λ]
or in the interval [λ,∞) for some λ > 0. Let p ≥ 1. Then any solution
ξ : R+ → H of the equation ξ̇ + Lξ = η satisfies the estimate

‖ξ‖Lp(R+,H) ≤
1
λ
‖η‖Lp(R+,H) +

c(L, p)
λ

‖ξ0‖H ,

for a constant c(L, p) ≥ 0. Here we denote ξ0 := ξ(0).

Proof. We first consider the case where the spectrum of L is contained in
the interval (−∞,−λ]. Assume also that ξ0 = 0. Then ξ can be represented
as the convolution ξ(s) = (K ∗ η)(s) with kernel

K(s) :=

{
0 for s ≥ 0,
−e−Ls for s < 0.

(63)

Our assumption on the spectrum of L implies that for s < 0 the operator
norm of K(s) : H → H is bounded by eλs. Thus

‖K‖L1(R,L(H)) ≤
∫ 0

−∞
eλs ds =

1
λ
,

and Young’s convolution inequality implies that

‖ξ‖Lp(R+,H) ≤ ‖K‖L1(R,L(H))‖η‖Lp(R+,H) ≤
1
λ
‖η‖Lp(R+,H). (64)

Now let ξ0 ∈ H be arbitrary. Defining ξ1 := ξ − eLsξ0 for s ≥ 0 it follows
that ξ1(0) = 0. Also, ξ1 satisfies the equation

ξ̇1 + Lξ1 = η − 2LeLsξ0 =: η1.
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Hence by (64),

‖ξ‖Lp(R+,H) ≤ ‖ξ1‖Lp(R+,H) + ‖eLsξ0‖Lp(R+,H)

≤ 1
λ
‖η1‖Lp(R+,H) +

1
λ
‖ξ0‖H

≤ 1
λ
‖η‖Lp(R+,H) +

2
λ
‖LeLsξ0‖Lp(R+,H) +

1
λ
‖ξ0‖H

≤ 1
λ
‖η‖Lp(R+,H) +

c(L, p)
λ

‖ξ0‖H .

To obtain the last estimate we note that L : domL → H is a bounded
operator, when domL is endowed with the graph norm of L. It thus follows
that

‖LeLsξ0‖p
Lp(R+,H)

=
∫ ∞

0
‖LeLsξ0‖p

H ds ≤ ‖L‖p · ‖ξ0‖p
H

∫ ∞

0
e−λps ds

=
‖L‖p · ‖ξ0‖p

H

pλ
.

Now set c(L, p) := 1 + 2‖L‖
p
√

p . The claim then follows. Now assume that the
spectrum of L is contained in the interval [λ,∞). In this case we may argue
as before, replacing the kernel K in (63) by

K(s) :=

{
e−Ls for s ≥ 0,
0 for s < 0.

The claim then follows as before.

Lemma C.7. Let H be a Hilbert space. Assume ξ : [s0, s1] → H satisfies the
equation ξ̇+Lξ = η for a path s 7→ L(s) of (densely defined) linear operators
on H. Then for every ε > 0 there holds the estimate

‖ξ(s1)‖2
H − ‖ξ(s0)‖2

H

≤ (1 + ε−1)‖ξ‖2
L2([s0,s1],H) + ε‖Lξ‖2

L2([s0,s1],H) + ‖η‖2
L2([s0,s1],H).

Proof. We integrate the equation

d

ds

1
2
‖ξ(s)‖2

H = 〈ξ(s), η(s)〉 − 〈ξ(s), L(s)ξ(s)〉

over the interval [s0, s1] and apply to the two terms on the right-hand side
the Cauchy-Schwarz inequality. This immediately yields the result.
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The following is a general interpolation lemma for operators of type D =
d
ds +A(s).

Lemma C.8 (Interpolation Lemma). Let V ⊆ H ⊆ V ∗ be a Gelfand triple.
Assume that the family A(s) : V → V ∗ (s ∈ R−) of operators satisfies for
all ξ ∈ V the uniform bound

‖ξ‖2
V ≤ c1〈ξ, A(s)ξ〉H + c2‖ξ‖2

H

for constants c1, c2 > 0. Then for any δ > 0 and p ≥ 2 there holds the
estimate

1
p
‖ξ(0)‖p

H +
( 1
c1
− 1

2δ
) ∫ 0

−∞
‖ξ(s)‖p−2

H ‖ξ(s)‖2
V ds

≤
(δ(p− 2)

2p
+
c2
c1

)
‖ξ‖p

Lp(R−,H)
+
δ

p
‖ξ̇(s) +A(s)ξ(s)‖p

Lp(R−,V ∗)

for all ξ ∈W 1,p(R−, V ∗) ∩ Lp(R−, V ).

Proof. Set η := ξ̇ + Aξ ∈ Lp(R−, V ∗). For every s ∈ R− there holds the
estimate

1
p

d

ds
‖ξ(s)‖p

H = ‖ξ(s)‖p−2
H 〈ξ̇(s), ξ(s)〉H

= ‖ξ(s)‖p−2
H 〈η(s)−A(s)ξ(s), ξ(s)〉H

≤ ‖ξ(s)‖p−2
H

(
‖η(s)‖V ∗‖ξ(s)‖V −

1
c1
‖ξ(s)‖2

V +
c2
c1
‖ξ(s)‖2

H

)
≤

( 1
2δ
− 1
c1

)
‖ξ(s)‖p−2

H ‖ξ(s)‖2
V +

δ

2
‖ξ(s)‖p−2

H ‖η(s)‖2
V ∗ +

c2
c1
‖ξ(s)‖p

H ,

for any constant δ > 0. Integrating this inequality over R− and applying
Hölder’s inequality yields

1
p
‖ξ(0)‖p

H =
∫ 0

−∞

1
p

d

ds
‖ξ(s)‖p

H ds

≤
∫ 0

−∞

( 1
2δ
− 1
c1

)
‖ξ(s)‖p−2

H ‖ξ(s)‖2
V +

δ

2
‖ξ(s)‖p−2

H ‖η(s)‖2
V ∗ +

c2
c1
‖ξ(s)‖p

H ds

≤
∫ 0

−∞

( 1
2δ
− 1
c1

)
‖ξ(s)‖p−2

H ‖ξ(s)‖2
V ds+

c2
c1

∫ 0

−∞
‖ξ(s)‖p

H ds

+
δ

2

( ∫ 0

−∞
‖ξ(s)‖p

H ds
) p−2

p ·
( ∫ 0

−∞
‖η(s)‖p

V ∗ ds
) 2

p
.

We now apply Young’s inequality to the product term in the last line. The
claim then follows.
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