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FACTORIZABLE 'V-MODULES

SERGEI KHOROSHKIN AND VADIM SCHECHTMAN

1. INTRODUCTION

1.1. Let 9 be a cOInplex semisimple Lie algebra; let Mod(g) be thc category of finite
dimensional representations of g. In the paper [D) Drinfeld introduced a relnarkable
structure of a braided tensor category on Mod(g). In fact, the tensor product is the usual
one but the commutativity and associativity isomorphisms are deforIned; they depend on
a "quantization" parameter h (a sufficiently sInall complex number 01' a formal variable)
and are defined using the Knizhnik-Zamolodchikov differential equations (cf. Section 5
below).

In this paper we propose a geolnetric construction of the Drinfeld 's braided tensor cate­
gory. Namely, we introduce a category :FM" (depencling on a nOIl-zero eomplex paranle­
tel' K. (j. Q) of Jactorizable 'V-modules on the space Div+(A1

; Y) of non-negative Y-vaJued
divisors on the affine line Al, Y being the eoroot lattice of g.

An object of :FMx: is a certain collectioll of regular holonorrüc 'V-Illodules on various sym­
nletric powers of Al eonnected by jactorization isornorphisms (for the precise definition
see Section 2 below). The category :FMI\. COlnes eqllipped with a braided tensor structure
defined using the Malgrange - Kashiwara specialization functors, [K], [lvI]. The lnain
result of this paper is Theoreln 5.2 whieh provides a tensor equivalence

(a) <P" : :FM"~ Mod(g)"

where Mod(g)K denotes thc Drinfeld's tensor category corresponding to h = 1'\:-1.

The definition of the category F M K is cOlllpletely parallel to that of FSq froln [FSl],
[FS2]; the only difference is that we replace perverse sheaves by V-modules. By [FSl]III
Thm. 18.4, we have a tensor equivalence

(b) <P q : FSq~ Mod(Uq g)

where the right hand side denotes the category of finite dimensional representations of
the quantized enveloping algebra Uq 9, q E C· not a root of unity.

On thc other hand, the Riemann-Hilbert correspondence induces the tensor equivalence

(c) RH : :FM"~ :FSq

where q = exp(1/2ni1'\:). GOlnbinillg (a), (b) alld (c) we get the tensor equivalence
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(d) Mod(g)~ ~ Mod(Uq g).

Tbe existence of an equivalencc (d) was one of tbc Inain results of [D] (witb h = 1/K,

fonnal). In [KL] it was establisbecl in a different Illanner, assuilling '" t;f. Q. ThllS, our
results provide the third, "Riemann-Hilbert", proof of the equivalencc (cl), together with
its explicit construction.

Thus, we have a square of equivalences

RH
~ :FM~

.l. <I>~

~ Mod(g)~

In asense, the tensor categories in the left (resp., right) COlUI11n Inay be regarded as a
II multiplicative" (resp., II additive") incarnations of the salne tensor categoryl.

Our proof of the equivalence (a) diffcrs froln the method used in [FSl] for proving (b); in
a sense it is more direct. It is based on the methods of [Kh1], [Kh2] which provide a full
II quiver" description of the categories of V-modules involved (cf. also Remark 5.5).

As a byproduct, we get a natural explanation of thc ad hoc fonIlulas for the solutions of
KZ equations from [SV], cf. 5.3. Roughly speaking, these fonllulas are containecl in the
inverse to the functor (a). The KZ equations themsclves appeal' as a result of an explicit
computation of the NIalgrange - Kashiwara specialization of factorizable V-Illodules, the
crucial result being Theorem 4.12.

The proofs are omitted 01' sketched in this paper. A detailed account will appeal' later on.

1.2. Open questions. At the lllolilent, our methods give the result only for an irrational
"', while the main result of [FSl], [FS2] establishes an equivalence (b) in the most inter­
esting case q equal to a root 0/ unity as weIl. In this case the category Mod(Uq g) sholIlci
be replaced by the category C studied by Andersen - Jantzen - Soergel. It would be
tempting to find aversion of the equivalence (a) in this case. Thc first problem is, that
nobody (to our knowledge) knows what category should appeal' in thc lower right corner
of the square above.

The Drinfeld's equivalellce for an irrational K, is a startillg point for thc Kazhclall ­
Lusztig relnarkable theorem [KL] establishing an analogue of this equivalellce for thc case
of a rational (non-positive) K,. Here the category Nlod(Uq g) is replacec1 by an appropriate
catcgory of repl'eselltations of the quantUI11 group with divided powers, and rvlod(g)~ - by
an appropriate category of representations of thc affine Lie algebra 9with central charge

IThis situation resembles the isoIIlorphism, given by the ehern character, between I(-theory and
cohomology. This resemblance is supported by thc "Ricmann-Roch type" commutation formulas of the
"Riemann-Hilbert" isomorphism for vanishing cycles with the maps u (canonical) and v (variation), {these
maps being analogous to the inverse (resp., direct) image for a closed codimensioll 1 embcdding), cf. [K],
Theorem 2 (2).
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1'\,- h (h being the dual Coxeter nlunber of g). It would be interesting to find a geometrical
interpretation of the Kazhdan-Lusztig equivalence.

1.3. A few wOHls about the notations. V'le will work over C.

We will deal with SDIOOth complex algebraic varieties A equipped with finite algebraic
\~Thitney stratifications SA (with sInooth strata). vVe will denote by M(A) the category of
regular holonoInic algebraie V-modules, lisse along SA. It is an artinian abelian category
with a duality D: M(A)OPP ~ M(A). vVe allow ourselves to drop SA froIn the notation
since in each case a variety A will be equipped with an explicitly specified stratification.

If A, E are two stratified varieties, ,ve have an exact exterior tensor product funetor
~: M (A) x M (B) ---+ M(A xE). Here A xE is equipped with the product stratification.
This functor induces an equivalence M(A) ® M(E) ~ M(A x B).

* will denote a one-elelllent set, as weil as its unique eleIllcnt.

Throughout thc paper we fix a nOIl-zero complex paraIneter K, (j. Q.

For the cOllvenience of the reader, we list below thc maill notations concerning configu­
ration spaces, togethcr with the pIaces where they are introduced.

AJ : 2.2. We will use two stratifieatiolls on these spaces: S, clefincd in 2.2, alld Sdiltg,
defined in 4.1. AJe, AJo: 2.2.

A(K): 3.1.

AJ (I(), Al (I()., Al (I()u: 3.3, see also 4.8.

AV (I<), AV (K)., AV (K)o: 3.3.

1.4. We are grateful to NLFinkelberg who has explained to us that thc Malgrangc ­
Kashiwara specialization sen'es as a V-nlodule counterpart of the topological constrllction
froDl [FS1].

This work was written up during the stay of thc second author at thc Max-Planck­
Institut für Mathematik, Bonn. He is grateful to the Institut for the excellent working
atmosphere.

2. DEFINITION OF THE CATEGORY :FMx:

This section is devoted to thc definition of the category :FMx:.

2.1. \~e will use the Lusztig's notations for root systenls, cL [L]. Throughollt this
section, we fix a Cartan datuIn (1, .) of finite type. Let (Y, X, ... ) be the silnply connected
root datum of type (I, .). Thus, I is a finite set with a syInmetric bilinear form VI, V2 H

VI . V2 on the ffee abelian group Z[I] satisfying thc known properties, }, = 2[1]' X =
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Hom(Y, Z). Thc brackets (".): Y" X X --+ Z will denote the obvious palnng; thc
obvious embedding I '-1 Y will bc denoted i H i, we have an clnbedding Y" c ~Y givcn
by i H i' := 2i . i/i· j; we will dcnote by the salne letter 1/ E Y and its image in ~Y. Wc
set Y+ := N[I] C }/".

We will usc the following partial order on ..-\: for /-LI, /-L2 E X we write I.LI ::; /-L2 iff
/-L2 - /-LI E Y+.

2.2. Divisor spaces. Let Al denote thc complex affine line. For a finite set J , let AJ
denote thc J-fold cartesian power of Al. We fix a coordinate t on Al; this providcs A/
with the coordinates {t j }, j E J. For v = LVii E Y+, let us call an unfolding of v a
map 7r : J --+ I such that 11T- I (i) I = Vi for each i; we define a group En := {a: .J ~
JI7roa=7r}.

Vve define thc space AV := AJ jEn. Here 1T is an unfolding of v, thc group En opcratcs
on thc space AJ by pennutations of coordinates. VVe will denote by thc same letter 7r thc
canonicaJ projection AJ ----t AV.

The space AV does not depend on the choice of an unfolding. Points of AV are finite formal
linear cornbinations L VaX a1 Va E Y+, X a E Al with L Va = v. Therefore one can think
of the disjoint union

Div+ (Al; Y):= II AV

vEY+

as of the space of nonnegative Y-valued divisors on Al.

\,Ve equip AJ with a stratification S. By definition, the closures of its strata are all non­
clnpty interscctions of the hyperplanes ti == 0, ti = tj (i # j in I). Define thc open
subspaces

and
AJo := {(tj) E AJel tj' # tjll for all j' # j" in J}.

The last space is the unique open stratu'ln of S.

If 7r : J --+ I is an unfolding of 1/, we will denote by Ave (resp., by AVO) the image of
AJe (resp., of AJO) under the canonical projection; these subspaces do not depend on the
choice of an unfolding.

\~le will equip the spaces AJe, AV, etc. with the induced stratifications.

2.3. Let 7r: AJ --+ AV be the projection corresponding to an unfolding of v. Thc
lllorphism 7r is finite, surjective and flat; therefore we have two exact adjoint functors

7r*: M(AJ
) ~ M(AV

): 7r*

For M E M(AV), the adjunction IllorphislTI A1 ----1 7r*7r* A1 identifies A1 with the sub­
Inoclule of E1l'-invariants (7r*7r* A1)E•.

Note that all our varieties AJ , All, etc. are affine, hence 'V-affine.
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2.4. Specialization functors. Suppose that a finite set J is represented as a disjoint
union J = J1 UJ2 . Then we have a fnnctor

SPJl,h : M(AJ
) --+ M(AJ

1 x Ah e
)

It is defined as a cOInposition of the Kashiwara spccialization along the c10sed submanifold
given by thc equations {tj = o} (j E Jd (er. (K]) which will live on the product AJI x Ah,
and the Testriction to the open subspace. In the analytical picture, SpJl ,h (A1) is just the
restriction of M to the "asylnptotic zone" jtjll « Ith ! (ji E .1i ).

These functors enjoy the follo\ving fundalllental properties.

(a) (Unit) SPJ,0 = Td; SP0,J coincides with the restriction.

(b) (Associativity, or 2-cocycle property) Ir J = J 1 U.12 UJ3l we have a natural isolllor­
phisIll

Ült,h,JJ: SPJ11J2 0 SPJ} U J21JJ ~ SPJ21h 0 SPlt,J2 U J3'

of functors M(AJ ) ---t M(AJI X Ah e X AJJe).

(c) (3-cocycle property JOT a 's) For J = J1 UJ2 U.13 UJ4 , we have an equality

of the natural isolllorphisms

SpJl,J2 0 SpJl UJ2,JJ 0 SpJ1 UhU J3,)4 ~ SpJ3,J4 0 Sph,JJ UJ4 0 SpJ1 ,h UJJ Il J4'

2.4.1. Remark. Thc interested reader may try to draw the full diagraIlls involved. He
would encounter the first permutoedra, cf. [~1S]. 0

The property (c) guarautees that all possible iterations of the specialization fuuctors are
canonically equivalcnt (MacLane's coherence). Thus, we cau, anel will, simply identify
them, Le. pretencl that the isolnorphisms aare iclentities.

The functors SPJ1,h induee the funetors

SPVI,Vol: M(Av1+V2) --+ M(AVI) x M(Av2e
)

satisfying the sinlilar associativity property.

Iterating, \ve get the functors
n

SPVI, ... ,V
n

: M(Avl+ ...+Vn) --+ M(AVI) x TI M(Avi e).
i=2

2.5. Cartan V-modules. Let J-l E X, v E Y+. Choose an unfolding 1r : J --+ I of v.
Let t;; be the lisse V-nloelule over AJo given by an i'ntegrable connection on tJAJ with the
connection fonn

n(j) . J-l n(j') . n(j")L - dlog tj + L dlog(tj' - t j ,,)
jE J K, j'=I.j" K,
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The V-IllOdule i;. adIllits an obviollS "ElI"-equivariant structure. vVe define a V-module L~
over AVO as

~ := (7f.i;.)l:",-.

Here the superscript "ElI"' - denotes the submocllllc of skew "ElI"-invariants.

These V-modules enjoy the following basic factorization property.

2.5.1. For all VI, V2 E }r+ J there are canonical factorization isoIllorphisms

A.. (1/ V): Sp I/.Il +/.12 ~ L/.I1 [8J I/.I2
lf-'Il 1, 2 Vl,/.I2 Il Il 1l-/.I1.

These isomorphisms satisfy the associativity property: for alt VI, 1/2, V3 E )1"+ J we have
the equality

01 isomorphisms

Let :r;:. denote the Deligne-Goresky-MacPherson extension of L~ to the space AV
•• By

functorialitYI we have the factorization isoIllorphisIllS (to be clenoted by the same letters)

A.. ( ) S I Vl+/.I2. '" I/.I1·I'V'\Iv2.
lf-'Il VI, V2: PVl ,/.12 1~ ---+ I' l.C:lI /'-/.11

which enjoy the associativity property.

2.6. Factorizable V-modules. Let us fix a coset c E X/)I". A factorizable V-rnodule
supported at c is a collectiün M of data (a), (b), (c) below.

(a) An element tt = tt(M) E c.

(b) V-Inodules M/.I E M(A~) (v E Y+).

(c) IsümorphisIllS 7.jJ(VII V2): Sp/.l1,v2MvI+v2 ~ M/.II [8JI~=-/.I1 (VI, V2 E )1"+).

These isomorphisms are callecl factorization iso7fwrphislns. They rnust satisfy thc asso­
ciativity proper'ty (cl) below.

(cl) Für all VI, V2, V3 E Y+, 'ljJ(Vl' V2)'ljJ(VI + V2, V3) = 1J/~-v1 (V2, V3)'IjJ(VI, V2 + V3)'

2.7. Let 1,/.11,/.12: A/.I1 '-+ AV 1+/.I2 denote the closed embedcling adding V2 points sitting at
the origin 0 E Al.

Let M = (J1, MV, ... ) be a factorizable V-Illoclule supported at c E X/Y. Für each
ti' 2:: J-l, V E )1"+, define a V-rllodule M~, E M(AV) by

if V - J-t' + It E )1"+

otherwise.
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Let N = (fJ/, NV, . .. ) be another factorizable D-Illodule supported at c. For A E ~\, A 2::
jt, A 2: fJ,' and v 2: 1/ in Y+, considcr the composition

Tr'v' : Hom(M~,Nf) ~ HOIll(SPv,vl_vM~,SPv,lJ'_vNf')

1/J
~ HOIll(M~ r:?JIr=~·,N( r:?JIr=~·) = Hom(M~',N().

Let us define the space Hom(M,N) as the double limit

HOIn(M,N) := Ihn lim Hom(M~,Nf).
-+).t-v

Here the inverse limit is taken over y+ with its partial order, the transtition Inaps being
Tr'v' , and the direct liInit is taken over the set of all A E X such that A 2:: {t, A 2:: jt', the
transition maps being inducecl by the obvious iSOIllorphislllS

Hom(M~,Nf) = Hom(M~t~,N:::,').

Vvith this clefiniti~Inorphisms, factorizable V- I110dules supported at c fonn a category,

to be denoted by F M ...;c~e composition of morphisms is de~l in the obvious manner.

We define the category FM", as thc c1irect product TIcEXjY F M ... ;c.

2.8. Finite modules. Let us call a factorizable V-module M = (Mv, ... ) E rn... ;c
finite if there exists only a finite nUInber of v E Y'+ such that the conormal bu~ of

the origin 0 E AV is containcd in the singular support of MV. Let F M ... ;c C F M ... ;c
be the full subcategory of finite factorizable Inoclules. 'vVe define the category FM ... by
FM ... := TIcEX/Y F M ... ;c.

Obviously, FM", is an additive category. In fact, it is an abelian artinian category.

2.9. Thc duality functor for holollOluic D-I110dules induces an equivalcnce D : :FM~PJl ~
FM_....

3. TENSOR STRUCTURE

In this section the braided tensor structure on the category :FM"" is introcluced. At
the beginning we recall the Deligne's definition of a braided tensor category, using the
language of specialization.

3.1. Für a finite set 1(, set A(K) := {(Zk) E AK I Zk =1= Zt for all k f. l in K}. 'A'e equip
this space with the trivial stratification; thus, M (A(I()) will consist of lisse D-Inodules.

For a surjective Inap p: !( --7 L, we have a spccialization functor

SPp: M(A(1()) ----+ M(A(L) x TI A(l(z)).
L
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(a) If p: K -7 L, T: L -7 1'1 are two surjective Inaps, we have a natural iSOlnorphislll

C'tp.T : SPTSpp~ (TI SPPm )SPTp
M

Here Pm := pi l<m. The LHS denotes thc COlllposition

M(A(K)) -7 M(A(L) X TI A(l<t})~ M(A(M) X TI A(Lm) X TI A(!<t})
L M L

and the RHS - the eomposition

M(A(K)) ~ M(A(J11) X TI A(l<m)) ~ M(A(1'1) X TI(A(Lm ) X TI A(l<t})).
M M L m

Note that fl M (A(Lm ) X IlLm A(I(d) = fl M A(Lm) X fl L A(!<d.

The isomorphisms satisfy a "two-eoeycle" property; we leave it to the reader to write it
down. Due to this property, we will identify thc both sides of (a), as in 2.4.

In other words, the eategories M(A(I<)) for various !( fonn a "2-operad". We have
borrowed the operadie notations frOln [BD].

3.2. Braided tensor structures. The formalism below is due to Deligne, [De].

Let C be a eategory; let T be a topologieal spaee. It is eleal' what a presheaf:F on T with
values in Cis. For eileh X E C, HOlllc(J'\,:F) is a presheaf of sets on T. A presheaf :F is
ealled a sheaf if for every ); E C, Hornc (X,:F) is a sheaf.

Assume that T is loeally eonneeted anel locally sitnply eonnected. Eaeh object X E C
clefines a constant sheaf J'Ye; by definition, for a eOllneeted open U c T, f(U; Xc) = J'\.
A loeal system on T with values in C is a sheaf locally isomorphie to a eonstant sheaf.

For loeal systenls on the spaees A(I() with values in C, we have the saIne fonnalism of
speeialization as in the previous subseetion, with M (A(l<)) replaced by the eategories
Me (A(I<)) of loeal systems on A(l() with vall1cs in C.

A braided tensor structure on C eonsists of the data (a), (b) below.

(a) A loeal system ®K )(k E Me(A(]<)), given for any finite set !< anel a ](-tuple
{J'\k} (J'\k E C).

(b) Factorization isornorphisms. A natural isomorphisIll 'l/Jp : SPp(®K X k ) ~ 0L(c2)Kl X k ),

given for any surjeetive map p: ]<~ L allel a K -tnple as above.

The isomorphisms 'l/;p mnst satisfy the

(e) Associativity axiom. For any pair of surjeetive maps !{ ...!..-.t L ~ M and a
l(-tupIe as above, the two compositions
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and

SPTSpp(0K ..Yk ) = TI SPPm 0 SPTP (0K X k ) 1/JTP) TI SPPm (0M(0Km ..Yd) =
M M

coincide.

Now we are going to introduce a setup which is a COIumon generalization of 2.4 anel 3.2.

3.3. For a finite set K and v E Y+, consicler a Inanifolcl AV (I() := AV x A(I(). Let
7f: J --+ J( be an unfolcling of IJ. WC set Al (I() := Al X A(I().

Vve equip AJ (I() with a stratification S thc closures of whose strata are all noneIllpty
intersections of hypcrplanes tj = zk, tj! = tj!1 U' =I=- j"); we dcnotc by the sarne letter S
the image of S uudel' the projection 7r : AJ (I() --+ AV(I().

We set AJ(I()· := {(tj)1 tj =I=- Zk for all j,k}; AV(I()· := 7r(A/(I()·) C AV(K). Let
Al (]()O C AJ (](). (resp., AV (I()O c AV (I()·) be the open strata of S.

3.4. (a) If p : ]( --+ L is a surjective Illap of finite sets we·have thc specialization functor

SPp: M(AV(]();S) --+ M(AV(L) x rr A(I(z);S).
D

These functors satisfy the operadie associativity property, as in 3.1 (a).

In particular, we have a functor

SPeK: M(AV(K);S) --+ M(AV (*) X A(K);S)

corresponding to thc map ]( --+ *.

(b) If 1/ = ({Vk} E y+ K anel va E y+ we havc the specialization functor

SPo;vo: M(AV(I();S) --+ M(ll AVh x AVo (I(t; S).
K

Here v = LK Vk + 1Jo. These functors satisfy thc associativity property, as in 2.4.

3.5. For a ](-tupIe j1 E X K, define a lisse V- Illodule TE over AV (]()O as folIows. Choose

an unfolding 7r: J --+ ] of v; let I'ß be the V-Illoclule over AJ (I()O corrcsponding to the
integrable connection on its structurc sheaf given by thc form

Phi' Pk" 7rU) . k 7rU') . 7r(j")L dlog(zkl-Zkl/)+ L - ellog(t1t(j)-Zk)+ L dlog(tjl-tjll)
kl#k" K JEJ, kEK K, jl:j:.j" f\,

vVe set by definition,
"TV ._ ('TI" 'T7f)I:: lT ,-
.1..ji,'- Jl *.1../1 .

Here 7r denotes the projection AJ (K) --+ AV
(]().
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These V-nlodules satisfy the two factorization properties corresponding to thc specializa­
tions (a) and (b) above.

(a) Wc have isomorphisIllS

ifJp: Spp(Ij;) ~ I;'.iI rgJ 0D z:il'
Here p.fl denotes the L-tuple {fit} with tit = LKI ttkl anel fll := {jik}kEK/.

(b) Vve have isomorphisms

cPiJilJO: SPOiIJOI ;;~ 0K I;: !8] IJ~~iJ'

The isomorphisms (a) anel (b) satisfy the associativity properties.

We denote by I p• the Deligne-Goresky-MacPherson extension of IE to the space AIJ (I().
These V-Illodules are also cOlluectecl by factorization isomorphisIllS.

3.6. Let {.rM k = (Jikl :FM~",,)} (k E J() be a ](-tuple of faetorizable D-ulodules.

(a) Exterior tensor product0K M k is by definition a collection ofV-modules (0K Mk)V E

M (AV (1<); S) (11 E Y+). Nanlely, (0K Mk)1J is the unique D-Illoclule such that for all
cleeolllpositions v = LK Vk + Va, one has isomorphisms

SPiJ;VO(0K Mk)1J - 0K MlJk rgJIß~iJ(I(),

these isomorphisms satisfying a eoeycle eOlldition. This is the salne as the gluing of a
sheaf from sheaves given on an open covering, together with the isolnorphisms on double
intersections.

These D-Inoclules for different 11 are conneeted by the obvious factorization isolllorphisms
satisfying the associativity property.

(b) The ](-fold tensor product ®K M k is the eolleetion of V-ulOclules (®K Mk)V E

M(AV (*) x A(K); S) where

(®K Mkt := SPeK(0K Mk)v,

These V-modules are conllected by the faetorization isolnorpbisms. After taking tbe sheaf
of solutions along A(K), this collection maybe regarded as a loeal systerll of factorizable
V-modules over A(I<). When the set ]( varies, these loeal systeills satisfy in turn a
factorization property, thus clefining a tensor structure on :FM.

4. V-MODULES AND QUIVERS

This seetion contains the descriptioll of eertain V-module categories Oll eonfiguration
spaees, in tenns of linear algebra data. The lnain results are theorems 4.6, and 4.12,
eomplernented by 4.4. These results (whieh lnay be of interest for their own sake) are the
main techllical tools in our proof of the Equivalenee theorem 5.2 below.
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4.1. Let us consider an affine spacc AI with fixed coordinates {td (i E I) 1 I bcing a
finite set. Let Sdiag be a stratification of Al the dosures of \vhose strata are all non-empty
intcrsections of the diagonal hyperplanes t i = t j (i =1= j). Throughout this section, we will
imply this stratification when we speak about thc category M(AI ). (Pay attention that
Sdiag is different frolli the stratification S used in Section 2.)

Let Q(1) denote the set of quotients of I, i.e. of dasses of surjective lnaps a: 1 ---+ J,
the two lnaps a: I ---+ J and c/: I ---+ J' defining the sattle element of Q(1) iff there
exists a bijection 0: J ~ J' such that ci = oa. Abusing thc notation, we will not
distinguish between a map Q: and its dass in Q(1). The set Q(1) is equipped with the
following partial order: for Q:: 1 ---+ J, ß: 1 --+ ]( we writc ß ::; a Hf thcre exists a
surjective map ,: J ---+ J' such that ß = la.

Let assign to an elelnent Q: E Q(1) a stratuln So. whosc closure is cqual to {(ti) E AI I ti =
t j if a(i) = a(j)}. This way we get a bijection between Q(I) anel the set of all strata. \-Ve
have dirn So. = IJI if a: 1 ---+ J, and a ::; ß iff So C Sß.

For (a: 1 ---+ J) E Q(1) and i -1= j in J, set Jij := J - {i, j} U*; let lij: J ---+ Jij bc
map sending i and j to * and k to k for every k not equal to i and j. VVe will regard Jij

as J with i and j identified, anel the itnage of i and j in Jij will also be denoted by cithcr
i or j. Set aij := lija: 1 ---+ Jij . Thc stratum SOij has codimension onc in So., and this
way we get a11 coclitnension one adjunctions.

Let us define the category Qui(AI) as fo11ows. Hs objects are the collections of data (a),
(b) below.

(a) For each stratum So., a finite ditncnsional vector space Vo.'

(b) For each pair of codilnension olle acljacent strata (So, So.ij) and all ordering (i 1 j) of
the set {i, j}, a pair of linear operators aij: Vo ---+ VOij anel bij: VOij ---+ Va'

These operators shottld satisfy thc relations (c) - (h) below.

(c) aC!-· = -aCf.· bf?-· = -bCf.
I) )1 1 I) )1'

(cl) Für (a: 1 ---+ J) E Q(1) allel pairwise elistinct i, j, k, l in J,

0. _ 0.. bo. b - bO b
aijakl - aklaijl ij kl - kl ij·

(e) Für a as abüve, anel pairwise distinct i , j, k in J,

aijajk + ajkaki + akiaij = 0; bjkbij + bkibjk + bijbki = O.

(f) For a, i,j, k, l as in (d),

Here ß = akl·

(g) For a, i,j, k as in (e),
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Here ß = O:ij'

In these relations, we have suppressed the upper indexes in all but one the operators in
the products, the rernaining ones being restored uniquely.

To fonIlulate thc last relation, we need SOIne more notation. Let Q, i, j, k.l be as in (cl).
Let Jij;kl (resp., Jijkl ) denütc the quotient of J obtained by the iclentifieations i = j; k = l
(resp., i = j = k = l); let aijjkl (resp., Qijkl) denote the eomposition of a with the
quotient Inap J ---t Jijikl (resp., J ---t Jijkl ). \~le have the corresponding operators

CLijikl: '''ij;kl ---t lJijkl and bik;jl: l"ijkl ---t 'Jik;jl.

(h) For a, i, j, k, l as in (cl), bik;jlaij;kl =10.

These obj ects will be called quivers (corresponel ing to the stra t ification Sdiag). MorphisI11S
in the category Qui(A1) are defined in the natural way.

4.2. Let us define a duality funetor D: Qui(AI)opp ~ Qui(A1 ). For a quiver V =
(Va, aij, bij), we define DV = (Weil' aij,' bij) by Wa = V; (thc dual vector spaces), 'aij =
bij*, 'bi/ = aij*. Obviously, D is an equivalence and is involutive.

4.3. vVe are going to define a funetor

G: Qui(A1
) -----1M(AI

).

For (a: I ---t J) E Q(I) and j E J, define a vector field Bj on Al by

EfJ = L 84 ,
iEa-l(j)

For a quiver V = (Va,"') E Qui(A1
), G(V) is by definition thc quotient of the ffee

V AI -ll1odule V Al 0 (EBa Va) bc thc left ideal gencratecl by thc relations (a) and (b) below.

(a) For all (0:: I ---t J) E Q(1), j E J,

8jxo = L aij(xo ) (xo E Vo )'
i:pj

(b) Für all (ß: 1 ---t K) E Q(1), k E !(, p,q E ß-l(k),

(tp - tq)xß = L bij(xß) (xß E Vß)·

Here the sUIlllnation is takcIl over all Q: ! ---t !( such that ß = aij for SOIlle i i= j in J,
k is equal to the iInage of i in K, p E a-1(i), q E a-1(j).

4.4. Theorem. One has natural isomorphisms G(DV) = DG(V) (V E Qui(A1
)).

Hcre D in thc RHS is the duality on holonoIIlic 'V-modules.
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4.5. Assurne that we are given a set of conlplex numbers X= {Aij} (i i=- j in I) such
that Aij = Aji- For (0:: I --+ I() E Q(I), set

1
Aa = "2 L ( L Aij) .

kEK iJEa- 1 (k)

In other words, \ve have a collection of nUIubers Aij = A1/ assigned to all hyperplanes
H: t i = t j of our stratification, and

For two adjacent strata Sen Sß (0:: I --+ J, ß = aij (i i=- j) in J), set

A0 = Aerß := L Apq .

pEer-lei), qEo-1(j)

Let QuiX(AI) denote thc full subcatcgory oe" Qui(A.t) consisting of an V = (Val aij, bij)
such that an the operators bijaij - Aij Idvo are nilpotent.

The duality induces an equivalence D: QUiX(AI)OPP~ Qui_X(AI ).

Let us pick same most generic (with respect to our stratification) functions f 0 such that
f- 1(0) :;J Sa- Let MX(AI

) dcnote the fuH subcategory of M(A1
) consisting of an DAI­

Iuodules M such that for all a, the Dso -Inoelule <I> /0 (M) restrictecl to So is iSOlnorphic
to the lisse D so -Iuodule given by an integrable connection on a trivial vector bundle with
the connection form

L Aaßcllog f ß

where Aaß are canstant linear operators with the unique eigenvalue Aaß (Sß C So of
coeiimcnsion one). This conclition eioes not depencl on thc choice of functions fee

The functor G incluces the functor

4.6. Theorem. Assurne that the non-resonance assurnptian (NR) below haltls true.

(NR) For alt 0: E Q(J), An rt. (Z - {O}).

Then the functor GX is an equivalence 01 categories.

This theorem is provecI by the Inethocls of [Khl], [Kh2].

4.7. Remark. Set]* = IU *. Let HS consicler the space AI.. with the diagonal stratifica­
tion Sdiag as above, anel the space Al with thc stratification S clefined in 2.2. VVe have a
closed elubedding of stratifiecl varieties (Al, S) Y (A I *, Sdiag) given by the cquatioll t* = O.
It is evident that the pullback induces an equivalcllce M(Ar ;Sdiag) ~ M(A1

; S).
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4.8. Let I, J be finite sets, anel set I( := I"U J. Let us consieler the stratified space
A1(J), cf. 3.3. Its strata are nUlnbered by the subset Q(I;J) := {(,: !(-----t
](' such that , IJ is injective }.

Let us denote by Qui(A1 (J)) the category whose objects are thc collections of data (a)
- (c) below.

(a) For each ,: !( -t K' E Q(I; J), a finite dimensional vector space V"

(b) For each , as above, anel p =I q in JC such that {JJ, q} cj.. ,(J), a pair of linear operators

aJq: V, -t V/pq : bJq.

(c) For each , as above, and i =I j in J, an operator c7j : V, -----t V/.

The relations (d) - (i) below shotiiel hold.

(d) The operators a, b must satisfy the relations 4.1 (c) - (h).

(e) For each" p,q as in (b), anel i =I) in J such that {p,q} n {,(i),')'(j)} = 0,

n~ c' - r· ·a' b c' - r· ·b''"7q ij - '-1) pq' pq ij - '-1) pq .

(f) For each , l p, q as in (b), anel i =I j in J slIch that p = ')'(i) (then autornatically
q =I ')'(j)),

(g) For each " i,j as in (c),
c!. = -c'Y·1) )1 .

(h) For each ')' E Q(lj J) and pairwisc elistinct i, j, k,l in J,

(i) For each , E Q(I; J) and painvise distinct i,), k in J,

[cb, C7k + cJkl = 0 .

Morphisms are defined in the natural way.

In particular (setting I = 0), the category Qui(A(J)) is defined. Its object is a vector space
V together with endoll1orphisms Tij: V -t V (i =I j in J) satisfying the infinitesimal
braid 7'elations (g) - (i) above (olle should OIuit the upper index')' in them).

"VVe have a restrietion funetor

r: Qui(AK
) -----t Qlli(A1 (J))

which assignes to a quiver V = (Vo , aij, bij) E Qlli(AK
) a quiver r(V) = (Hf/, ...) with

lV/ = V, the operators a, b for r(V) coincieling with the corresponding oper~tors for V,
and cJjl := b~(jh(jl)a~(jh(jl)'
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For a collection of numbers X= {Akk/} (k i= k' in I<), we define QuiX(AI (l)) as the full
subcategory r(QuiX(AK)).

4.9. We have a gluing functor

G: Qui(AI (l)) -t M(A1 (J)).

The restriction functor r above corresponds t.o the restrietion of '0- 111oelules.

For Xas above, Ginduces a fUllctor G>.: QuiX(.") -t M x(. .. ). If Xsatisfies (NR)
thcn GX is an equivalence.

4.10. If Qui(Ad and Qui(Az) are quiver categories corresponding to stratified spaces as
above, we define their tensor product Qui(Ad C9 Qui(A2 ), also to be denoted by Qui(A I x
Az), as folIows.

Objeets of Qui(A i ) are eolleetions Vi = (lIai' aß:: FOi -t FßJ where ai numerate strata
of Si, and pairs (ai, ßi) nUInerate pairs of (adjaeent) strata.

By definition, an objeet of Qui(A I x A2 ) is a collection of

(a) finite diInensional vector spaces FO \02 indexed by strata of the produet stratification;

(b) linear operators

auel
"(L0102 . \1 --+ Tl

ß2 . 0111'2 V CQß2

Thc InorphisIns la (resp., "a) 1I111st satisfy the relations in Qui(A1 ) (resp., in Qui(A2 )).

Morphisms in Qui(A I x A2 ) are defined in the obvious Inanner.

A pair of gluing fllnetors Gi: Qui(A i ) --+ M(A i ) (i = 1,2) defines the functor G =
GI C9 G2 : Qui(A 1 x A2 ) ----+ M(A 1 x A2 ).

4.11. As an exalnple, we will need the eategories Qui(AI (*) x A(J)). Thus, an object of
this eategory is a collection W = (Hl0 ,aO

, bO; djj/) where (1IVo,aO,bO) E Qui(AI (*)) and
djj': 1110 ----+ WO' (j f j' in J). The operators d must corninute with the operators a, b.

We have a specialization functor

SpJ: Qui(AI (J)) -t Qui(AI (*) x A(J))

whieh assigns to V = (V" a;q, b7q, e]j') a quiver W = SPJ(V) = (vVo , a~q, b~q; djp). Namely,
for (a: 1* ----+ 1') E Q(I*) (we denote 1* := I U*), set 10 := a-1(a(*)) - * c I and
I" := l' - {o:(*)}. For a map 8: I a -t J, define a nlap ,

18: I Il J --+ I" Il J

as follows. On I - 10 it coineides with all-Tc. : I - Ia --+ I"; on 10 it coincides with 8
anel on J it is identical.
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By definition,

(a) vVo = 610 '1"51

the surn over all rnaps 8: I a ~ J.

Let p #- q in 1'. If]1, q #- a(*) then thc operators a~q, b~q in Ware indllced by thc operators
a;~, b7~ in V. If, say q = a(*), then a~q is induced by the surn

ffi a10.
WjEJ pj'

the saBle story with the operators b; the case ]J = 0'(*) is completely sirnilar.

Finally, the operators djp may be cxpressed as a sum djjl = 'djp + "djjl. The part I djj'
(the "diagonal" part with respect to thc decolnposition (a)) is the sum of thc operators
cJjt. The II off diagonal" part 11 d~q is the SUlll of the operators bjj'aJjl'

4.12. Theorem. For V E Qui(AI (J)), one has a natural isomo1phism SpJG (V) = GSpJ(V).

Here SPJ in the LHS is the specialization of 'V- Illodules, cf. 3.4 (a).

5. DRINFELD'S TENSOR CATEGORY AND EQUIVALENCE THEOREM

In this section we recall the definition of the Orillfelcl's tensor category Mod(g)K' anel state
thc Equivalence theorem 5.2, with the sketch of thc proof.

5.1. Let us return to the setup of Seetion 2. Let 9 be the cOlllplex semisiInple Lie algebra
corresponding to thc Cartan datulll (I, '), with Chevalley generators {ei, fi' hi} (i EI).
By definition, 9 comes equipped with a fixed invariant symmetrie form extcnding the given
scalar product on f) := EB Chi = C 0 Y. Let Mod(g) be the catcgory of finite dimensional
g-nloclules. An objeet of this category may be deseribed as a finite dinlensional X -graded
vector space !vI = EDx Al).. together with operators ei: 1V1>. ~ lV/:..+i' , fi: !v/:.. ~ A1>'_it

satisfying the usual relations.

Thc Orinfeld's tensor structure on Nlod(g) is definecl as folIows. We have to specify for
eaeh finite set J and a J-tuple {NIj } (j E J, Aij E Mocl(g)), a loeal system 01', what is the
sazne, a lisse regular V-module ®J M j over the space A( J). By clefinition, this 'V-module
is given by the integrable connection on the trivial vector buucllc on A(J) with a fiber
/\1 := ®JNIj (the product of /l.1j as vcctor spaces), with thc Knizhnik-Zalnolodchikov
connection form

1
WKZ = - L Oijellog(ti - tj).

21'\: "-/.."
Jr-J "

Here n E 9 0 9 is thc symmetrie tensor correponding to the bilinear fonn on gwhich
induces the linear operators nij (i #- j in J) on Ai in the usual way.

The factorization isolnorphisms (and their associativity property) have beeIl defined (resp.,
provecl) by Orinfeld in [0] (in a slightly different language; in fact, the Orinfeld's con­
struction was a starting point far thc Deligne's definition of braided tensor structures).
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Let t\1od(g)t\: denote t\1od(g) together with the above tensor structure. Recall that we
assurne that K, is irrational.

5.2. Equivalence theorem. One has a tensor equivalence

<P K : :FMt\:~ Mod(g)K'

One has natural isomorphism D<"PK = iP_t\:D.

Here D in the RH8 is the duality functor 2.9, anel D in the LH8 is the contravariant
duality functor D: Nlod(g)~PP~ Nlod(g)_K'

Let us explain briefty how the proof goes. Using the main Theorem 4.6, together with
the reInarks 2.3 and 4.7, one obtains a quiver description of the categories Mj:(AV), for

non-resonance collections X. Now, the notion of a factorizablc module translates iuto
that of a Jactorizable quiver which is a collection of quivers {VV} over the spaces AV
connected by factorization isoInorphisnls. The irrationality assuInption on K, guarantees
that the corresponding nlonodroInies Xare IloIl-resonan~e. After that, it is a matter of
an algebraic reformlliatioll to show that the category of factorizable qllivers is cquivalent
to Mod(g). This provides an equivalence <Pt\:.

Let M = (1", MV, ... ) E :FM,.., <Pt\: (M) = !vI anel VV be thc quivcr corrcsponding to MV.
The "CL-part" of V essentially coincides with the homogeneous part of the Lie algebra
chain complex C.(n_; A1),,-V' The "b-part" is restored in a siInilar way from the n+­
Inodulc structure, cf. [8J. Here n_ (resp., n+) is the Lie subalgebra of 9 generated by fi
(resp., by ei)'

Theorem 4.12 implies that <Pt\: is a tensor functor. Commutation with the duality is a
conseqllence of Theorem 4.4.

5.3. Let us look at the quasi-inverse to <P K • It assigns to a nlodule Ai a factorizable
Inodulc M = (J-L, MV, ... ) wherc each MV given by a gluing functor, as in 4.3. In
particular thc spaces A1Jj_v are the subspaces of the spaces r(AV; MV). For example, if
11/1 is thc contragradient to a Venna Illodule then MV is the *-extensiOll of I~· 1 so thc
space of its global sectioIlS is a subspace of rational fUIlctions on AV. If we pass froIll left
to right 'V-modules as usual - by multiplication by the the sheaf of vohune fornls, we
get a Illap frolll Mv to thc space of the top degrce rational differential forms on AV which
coincides with the Inap defined in [SV].

5.4. Corollary. Let LJj be the irreducible finite dirnensional representation 01 9 with the
highest weight J-L. Set.c~ := j!.I~ whe1'e j: AIJO Y AV is the open ernbedding. Wc have
an is01norphism
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Here the superscript in the RHS denotes the weight cOlnponcnt. In other words, thc
complexes of "fiag forms" (thc iInagc of thc map S) from [SV] (cf. ap. cit. 6.5.3)
compute the intersection COhOlllOlogy for an irrational K,.

5.5. Remark. If we drop the finiteness asslllnption frOlll thc definition of the category
:FS"", cf.2.8, wc get the category equivalent to thc category 0 of Bernstcin-Gelfand­
Gelfand (the proof is the same).
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