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Zariski pairs arising from elliptic K3 surfaces, II

Hiro-o TOKUNAGA

Introduction
In this article, we shall continue to study Zariski pairs which are defined by Artal
Bartolo in [1] as follows:

Definition 0.1. Let C; and C; be irreducible plane sextic curves. The pair (Cy,C?)
is called a Zariski pair of degree 6 if

(i) C1 and C; have the same set of topological types of singularities, and
(ii) P*\ C, is not homeomorphic to P*\ C,.

The first example of a Zariski pair is found by Zariski in [Z1] and [Z2]. Since then,
only a few examples have been known (see [A], [D2] and [T2]).

In the previous paper [T2], we studied Zariski pairs of degree 6 in terms of the
index, the sum of subindicies of types of singularities, of a sextic with at most simple
singularities. In this article, we shall focus our attention on a conjecture posed by
Degtyarev in [D2].

Conjecture 0.2. (Degtyarev) Consider irreducible sextics with a fixed singular set
of the form aa; + 5y fuaza-1+ves with Ty dBa+2y = 6. Put amax = 10—3; B[22} -3,
where [z] denotes the maximum integer not exceeding z. Then

(i) any two sextics with o« = amax are isotopic to each other, and

(ii) if & < amax, then there are exactly two isotopic classes.

Here, following to Degtyarev [D1], we call two irreducible sextics C; and C; are
isotopic if there exists one parameter family of homeomorphisms ¢, : P* — P2, t € [0, 1]
such that wp = id and ¢,(Cy) = C;. Thus Conjecture 0.2 implies that there is no
Zariski pair of degree 6 with @ = amax, while there is a unique Zariski pair for every
o < amax. We shall give a counter-example to Conjecture 0.2 (i) by using a theory of



dihedral Galois coverings developed in [T1], [T2], and {T3]. This is a consequence of the
following theorem.

Theorem 0.3. For every set of singularities described below, there exists a Zariski
pair of degree 6.

Set of singularities of '
aay +an+e (a=0,1)
aay +2a5+ e (a=0,1)
aay + ag + ag + €5 (C!'=0,].,2)
aay +as+2a,+e (@=0,1,2)
aay + 2az +2e¢ (a=0,1)

Theorem 0.3 shows that Conjecture 0.2 (i) is false in the cases in a; + a;; + es,
ay + as + e, 2ay + az + ag + ¢5 and ay + 2ay + 2e¢. Our proof of Theorem 0.3 is based
on the following two propositions.

Proposition 0.4. For every set of singularities as in Theorem 0.3, there exists an
irreducible sextic, C, such that

(i) C has the prescribed set of singularities, and

(ii) there exists no Galois covering of P? branched along C having the third symmetric
group as its Galois group.

Proposition 0.5. For every set of singularities as in Theorem 0.3, there exists an
irreducible sextic, C, such that

(i) C has the prescribed set of singularities, and

(ii) there exists a Galois covering of P? branched along C having the third symmetric
group as its Galois group.

Remark 0.6. (i) Theorem 0.3 implies nothing about uniqueness for Zariski pairs.
The uniqueness in Conjecture 0.2 (ii) is still unknown.

(i1) For the sets of singularities of the form aa; + 4a; + €5, 0 < @ < amax = 3, it is
known that there exist Zariski pairs in the cases when oa; + 4a; + €5, @ < 3 (see [T2]).
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for its hospitality.



Notations and Conventions.

Throughout this article, the ground field will always be the complex number field
C.
C(X) := the rational function field of X.
Let X be a normal variety, and let ¥ be a smooth variety. Let 7 : X = Y be a finite
morphism from X to Y. We define the branch locus, A(X/Y), of f as follows:

AX/Y)={y e Yli(n () < degr}.

For a divisor D on Y, 77}(D) denotes the set-theoretic inverse image of D, while
m*(D) denotes the ordinary pullback. Also, SuppD means the supporting set of D.

An S3 covering always means a Galois covering having the third symmetric group,
83, as it Galois group.

Let S be a finite double covering of a smooth projective surface £. The “canonical
resolution” of § always means the resolution given by Horikawa in [H].

Let S be an elliptic surface over C. S is said to be minimalif the fibration is relatively
minimal. In this paper, we always assume that an elliptic surface is minimal and has
a section sg. For singular fibers of an elliptic surface, we use the notation of Kodaira
[K]. For the configuration of singular fibers, we shall use the same notations as those in
[M-P2] and [P2].

We denote by F, a Hirzebruch surface of degree n.

A (—n)-curve always means a rational curve with self-intersection number —n.

Let Dy, D, be divisors.

D, ~ Dy: linear equivalence of divisors.

D) & Dy: algebraic equivalence of divisors.

D, ~Q D,: Q-algebraic equivalence of divisors.

For singularities of a plane curve, we shall use the same notation as in [P1]. Through-
out the article, we assume that singularities of a plane curve are at most simple.

§1 Preliminaries

[t is well-known that any elliptic K3 surface can be obtained as a double covering of
F, (For example, see [M2] 11I). In this section, we shall consider an elliptic K3 surface is
obtained as a double covering of P?. Details may be omitted since most results in this

section can be proved in a similar way as for the corresponding results of a K3 surface
obtained as a double covering of F4. For details, see [B], [N], [M2] and [P1].



Let C be a sextic such that (i) all singularities are at most simple and (ii} C has
an eg singularity, z. Let f : W — P? be a double covering branched along C, and let
i & = W be its canonical resolution, which satisfies the following diagram:

WL £
L (L1)
P: &£ %

where v : & — P? is a succession of blowing-ups and f is the induced finite double
covering. Let o be the covering transformation on € induced by f. Note that El{o) = K.

By our assumption, £ has an elliptic fibration arising from a pencil of lines through
z. We denote it by ¢, : £ — P'. Following to Persson [P1], we call ¢, the standard
fibration centered at z. Note that ¢, has a section, sg, which is an irreducible component
of the exceptional divisor of the Fg singularity, P, of W lying over z. By looking into
the canonical resolution, it is straightforward to see that other irreducible components
of the exceptional divisor of P are those of a singular fiber of type I, (n 2> 6). Thus
we obtain an elliptic K3 surface with a section sp having a singular fiber, Fj, of type I,
(n > 6) from C in a canonical way.

We shall next look into the converse of this construction. Namely let ¢ : &€ — P! be
an elliptic K3 surface with a section sy having a singular fiber, Fp, of type I, (n > 6).
We shall consider when £ satisfies the following properties:

(i) € is a double covering of P? branched along a sextic, C, with at most simple
singularities.

(ii) ¢ : £ = P! is the standard fibration centered at a triple point of C.

For this question, the following proposition holds:

Proposition 1.2.(Persson) Let ¢ : £ — P! be an elliptic K3 surface as above.
Then there exists a degree 2 morphism g : £ — P? such that (i) the branch locus of f is
a sextic curve, C, with at most simple singularities, and (ii) ¢ : £ — P! is the standard
fibration at an eg singularity, z, of C.

Proof of Proposition 1.1 is basically the same as that in [P1], p. 282. As ¢ has a
section $p, £ is considered as a double covering of F,. Let ¢’ be the covering transforma-
tion, and let £/{c’) be the quotient by ¢’. By looking into the action of ¢’ on a singular
fiber of type I, (cf. [B], §1, and [N], §2), if ¢ has a singular fiber of type I, (n > 6), we
can blow down £/(c’) to P? so that (i) the branch locus of £ = £/(c’) — P? is a sextic
curve, C, with an eg singularity, z, and (ii) ¢ is the standard fibration centered at «.

For details, see [P1}, [B], and [N].



As an consequence of Proposition 1.2, we obtain a sextic with an eg singularity from

& in a canonical way. By looking into the correspondence between C and £ given above,
we have the following (cf. [M2] or [MP1], Table 6.2):

Lemma 1.3. With the notations as above, if Fy = I or Iy, then there is a cor-
respondence between singular fibers of ¢ and singularities of C. More precisely, we
have

Type of a singular fiber | Fy | I, (n > 2), # Fy I I
Type of a singular point | eg Gy a smooth point | dyq4
I7 I Hr\rr|iv|iv:
a smooth point | eg | @ er | as | es

Reﬂmark 1.4. Consider £ as a double covering of Fy. Let £ be a Weierstrass model
of £. £ is a double covering of Fy with some rational double points, and £ is considered
as the canonical resolution of £. Hence we have the following diagram:

E « ¢
{ }
F4 - 3

where £’ — F, is a successton of blowing-ups. On the other hand, let C be the sextic
curve as in Proposition 0.2, and consider a double covering f : W — P? branched along
C. Then the canonical resolution of W coincides with £. Also, £’ coincides to % in the
diagram (1.1). Thus we have the following diagram:

W « & = £

! I ! (1.5)
P2 — E=E’ — F.;

where £ is a Weierstrass fibration of £.

Let ¢ : £ = P' and C be as in Proposition 1.2. Let MW(£) be the Mordell-Weil

group of £, i.e., the group of sections, with s¢ as the zero element.

Lemma 1.6. If there is no non-trivial 2-torsion element in MW (E), then C is
irreducible.

Proof. Consider £ as a double covering of Fy, and let Ag + T be the branch locus
of it. Then T is the image of C by the birational map from P? to F4 in the above



diagram. Hence if C is reducible, then T is also reducible. This means 7' contains a
section component. Therefore MW (&) has a non-trivial 2-torsion element.

We shall end this section with the following two propositions which will play a key
role in proving Propositions 0.4 and 0.5.

Proposition 1.7. Let £ be an elliptic K3 surface as in Proposition 1.2, and let C
be the corresponding sextic curve. If there exists an Ss covering of P? branched along
C, then there exists a non-trivial 3-torsion in MW (E).

For a proof, see [T2] Proposition 4.1.

Proposition 1.8. Let £ be an elliptic K3 surface as in Proposition 1.2, let C be
the corresponding sextic curve, and let = be the eg singularity in Proposition 1.2 (ii).
Suppose that

(i) the singular fiber arising from z, Fy, is of type Ig, and

(ii) there exists a non-trivial 3-torsion in MW (E).

Then there exists an S covering of P branched along C.

For a proof, see [T2], §5 and [T3], §3.

§2 Proof of Proposition 0.4

In this section, we shall use the notations of §1. We shall first reduce the existence
of a sextic curve with singularities described in Theorem 0.3 to that of an elliptic K3
surfaces with a prescribed singular fibers.

Lemma 2.1 Let £ be an elliptic K3 surface as in Proposition 1.2, and let C be the
corresponding sextic curve. Then we have the following table:



Singular fibers of € | Set of singularities of C
I7, Iz, Iy, 311 ay + a1 + e
17, [12, 5[1 11 + €g
I7, 2[6; Iz, 3]1 a1+205+ea
I’r, 216; 5[1 2(L5 + ¢g
Iz, Iy, I3, 203, I 2a; + a4+ ag + eg
Iy, Iy, I3, 1z, 31 @y -+ g + ag -+ eg
I?} IQ: [3: 5[1 Gz+as+66
[7; IV*, 213: I2; ]1 ay + 2‘12 + 266
17, 11/', 2[3, 3[1 2(12 + 266

This is immediate by Lemma 1.4. We shall show in §4 that every elliptic K3 surface
in the above table exists.

We now go on to prove Proposition 0.4. By Proposition 1.6, it is enough to show
the following two lemmas.

Lemma 2.2. Let ¢ : £ = P! be an arbitrary elliptic K3 surface as in Lemma 2.1.
Then there is no non-trivial three torsion element in MW (£).

Proof. Let ¢ : £ = P! be any elliptic K3 surface as in Lemma 2.1. If £ has only 1,
fibers, our statement casily follows from Proposition 0.2 in [T4]. We shall go on to the
case that ¢ has a singular fibers of type IV*. Suppose that MW(E) has a torsion of

order 3. Let s be the corresponding section, and let {,) denote Shioda’s pairing defined
in [S2]. Then, by Theorem 8.6 in [S2], we have

(s,s) =4+2sso— = — - — =

where @ € {0,6,10,12}, b € {0,2,4,6,8} and c € {0, 1}.
As s corresponds to a torsion, (s,s) = 0 by Theorem 8.4 in [S2]. This, however, is
impossible for any possible combination of a, b, ¢ as above.

Lemma 2.3. Every C in Lemma 2.1 is irreducible.

Proof. By Lemma 1.6, it is enough to show that MW{(&) of the corresponding
elliptic K3 surface has no non-trivial 2-torsion element. We can show it in the same way
as in the proof of Lemma 2.2, so we omit it.



§3 Proof of Proposition 0.5

In this section, we also use the notations of §1. We shall start with the following
lemma.

Lemma 3.1. Let £ be an elliptic K3 surface as in Proposition 1.2, and let C be the
corresponding sextic curve. Then we have the following table:

Singular fibers of £ | Set of singularities of C
ls, Iha, Iy, 41, ay -+ ayn + e
Is, I, 611 a1+ ¢s
3]6; 12,411 a1+2(15+66
31, 61, 2as + eg
ls, Iy, I3, 213, 21, 2ay 4 a4+ ag+ es
[6; ]9; [3; 12; 41 ay 4+ ag + ag + €g
16; [97 I3; 6Il a; + as + eg
Is, 1V*, 213, Iy, 21, ay + 2a; + 2eg
IS: IV", 2[3, 4[] 2(l2 -+ 286

This is straightforward by Lemma 1.3. By Proposition 1.7, in order to prove Propo-
sition 0.5, it is enough to show the following two lemmas.

Lemma 3.2. There exists an elliptic K3 surface, £, with a non-trivial 3-torsion
element in MW (E) for all cases in Lemma 3.1.

Lemma 3.3. Every C in Lemma 3.1 is irreducible.
We shall prove Lemma 3.2 in the next section.

Proof of Lemma 3.3. By Lemma 1.6, it is enough to show that there is no non-
trivial 2-torsion element in MW (). By Proposition 0.2 in [T4] and Remark 1.10 in [S1},
there is no non-trivial 2-torsion element in MW (&) except in the first 4 cases. We shall
show that if the configuration of singular fibers of £ is {/s, I12, Ig,41, }, then there is no
non-trivial 2 torsion element in MW (&). Suppose that there is a non-trivial 2-torsion
element in MW (E), and let s be the corresponding section. Let (,) denote Shioda’s
pairing. Then, by Lemma 1.2 in [T4] and Theorem 8.6 in {S2], we have

3 1
(s,s) =4 — Ea—3b—— ¢
where a,b,c € {0,1}. By Theorem 8.4 in [S2], the left hand side must be 0, but this
is impossible for all possible combinations of «, b, ¢. Similarly, we can disprove the

existence of a non-trivial 2-torsion element for remaining three cases.
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§4 Existence of elliptic K3 surfaces

In this section, we shall show that there exist elliptic K3 surfaces in Lemma 2.1
and Lemma 3.2. Our basic idea is to consider elliptic surfaces obtained as pull-backs of
rational elliptic surfaces. To this purpose, we shall first study morphisms form P! to P!.
Let f : P! = P! be a morphism of degree n. Let v; (i = 1,...,k) be the branch points
of f. We say that f has ramification type (egi), ey eg)) at v; if f~'(v;) = {u1,...,ux} and
the ramification index at u; is e?). With these notations, we have the following:

Lemma 4.1. There exist the following morphisms, f;, (i = 1,...5) from P! to P,

deg f; | Branch points Ramification types
h 2 V1, V2 v;:(2) (1 =1,2)
fz 3 vy, U2, U3 (75 (3), (27 (2,1) (2 = 2,3)
fs 4 V1, V2, U3 vi:(3,1) (:=1,2,3)
fa 4 Uty evey Us vy (3,1), v (2,1,1) 1 =2,...,5)
vy (3,3), vy 1 (3,2,1
fof 6 | vnvpvsve | (2f2, 1),1) vy : (2,(1,1,1,)1)

Proof. For morphisms of degrees 2 and 3 in the table, it is well-known that such
morphisms exist. For morphisms of degree d > 4, we denote loops around v; by é; and
by &; the d-th symmetric group. Then, by covering space theory and the Riemann
existence theorem ([F], Proposition 1.2 or [M2]), it is enough to give a map

X ‘n’l(P2 \ {v1,...,v:}) = 84,

such that _ ‘
(i) if the ramification type over v; is (e(l'), ...,eg)), then x(d;) has the cycle structure

(it) x(&) (2 = 1,...,7) generate a transitive subgroup of &y, and
(iii) x{(6,) - - x(é,) = 1 (Here we multiply permutations from right to left).

Hence the table below shows that morphisms described in Lemma 4.1 exist.
JE x(61) = (adb), x(42) = (abc), x(d3) = (cbd)

fa | x(é1) = (abe), x(62) = (ab), x(83) = (ac), x(81) = (cd), x(d5) = (cd)
fs | x(8)) = (abe)(dfe), x(92) = (acb)(de), x(s) = (ad)(ef), x(J4) = (ad)

With Lemma 4.1, we shall prove the following.

Lemma 4.2. For every configuration of singular fibers as below, there exists an
elliptic K3 surface, £, with a non-trivial 3-torsion in MW (£).

9



1. Is, Ig, Iz, AL, 2. Ig, I1a, 61, 3. 31, Ly, 41, 4. 315, 61,
5. Ie, 0o, I3, 205,211, 6. I, Io, Iy, Io, 41y, 7. Is, Io, 1,611, 8. Is, IV* 2[5, 15,214,
9. Is, IV*, 2I3, 41, 10. Iy, IV*, 213, I.

Proof. Let ¢ : Y — P! be a rational elliptic surface with a non-trivial 3-torsion in
MW(Y). Let f; : P! — P! be the morphism as in Lemma 4.1. Consider the pullback
surface Y X pt P! of Y by f;, and denote its smooth relatively minimal model by £. Since
there exists a non-trivial 3-torsion element in MW (Y), there also exists a non-trivial
3-torsion element in MW (E). Hence our problem is to investigate when £ becomes
an elliptic K3 surface with a prescribed singular fibers. For this problem, we have the

following by [MP1] Table 7.1.

fi | Singular fibers of Y Type of a fiber over v; Singular fibers of £
fl Iﬁ, 13, 3[1 (23 [3, Vg ! ]1 3]3, .[2, 4]1

h lg, I3, 314 vy fs,va 1 Iy 31, 614

fa IV, Ig, 21, vy IV, vy g, v3: Iy Lo, lg, I, 41)
fa IV, I, 21 v IV, vy Ig, v3 0 Iy Iig, Ig, 613

IA IV I, 1 vt IV vy L, vs 1 1 IV I, 213, 1,
fa v I L vy IV* vg i s, va i [y, vy, vs 0 Do | IV™, I, 215, 12, 21
f4 [V*, Ig, jl vy . IV., Ug [3, UV3,U04,U5 : ]0 IV"‘, Iﬁ, 2.[3, 411
fs v* I3, I, vy IV, v, vas I, va i I I, Ig, I3, 215, 214
fs IV I, I, vy IV* v i I3, v3: fo, vg 0 1y Iy, Is, I3, I3, 41,
fs IV*, Ig, ]1 (VA ]V‘, Vg . 13, U Io, (Z = 3,4) Ig, [6, Ig, 6[1

For every configuration of singular fibers Y in the above table, it is known that there
exists such a rational elliptic surface with a non-trivial 3-torsion in MW (Y') (see [M2]
and [P2]). Now Lemma 4.2 easily follows from this table.

Corollary 4.3. There exist elliptic K3 surfaces with the following configurations of
singular fibers:
1. Iy, I, I, 314, 2. I, Iig,5L, 8 In2ls, Iy, 31, 4. [r, 2Ig, 511,
3. I7,19,I3,21r2,11, 6. 17,19,13112,311, 7. .{7, f9,13,5[1, 8. I7,IV*,2I3,]2,11,
9. I, IV*, 213, 31,

Proof. For configurations with only I, fibers, our result is straightforward by [MP2].
For the cases 8 and 9, we obtain such elliptic K3 surfaces by applying the argument in
[M2], p.205 to an elliptic {3 surface having the configuration 10 in Lemma 4.2.
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