ON THE CANCELLATION OF HYPERBOLIC FORMS OVER ORDERS IN SEMISIMPLE ALGEBRAS

by

I. Hambleton and M. Kreck

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Germany

On the Cancellation of Hyperbolic Forms over Orders in Semisimple Algebras

I. Hambleton ${ }^{1}$ and M. Kreck

Let R be a Dedekind domain and K its field of quotients. The purpose of this note is to obtain an improvement in the stable range for cancellation of lattices over R -orders in separable K-algebras, assuming some local information about the lattices. Recall that a lattice over an R -order A is an A -module which is projective as an R -module. Our results are based on the work of H. Bass [2],[3], A. Bak [1] and L. N. Vaserstein [11].

The general stable range condition for cancellation of lattices over orders is free rank ≥ 2 for the linear case $[2 ;(3.5)$, p.184], and free hyperbolic rank ≥ 2 for the unitary case [3;(3.6),p.238]. To state our condition, let A and B be orders in separable algebras over K $[4 ; 71.1,75.1]$, and suppose that there is a surjective ring homomorphism $\epsilon: \mathrm{A} \longrightarrow \mathrm{B}$. We say that a finitely generated A -module L has (A, B)-free rank ≥ 1 at a prime $p \in \mathrm{R}$, if there exists an integer r such that $\left(B^{r} \oplus L\right)_{p}$ has free rank ≥ 1 over $A_{\mathfrak{p}}$. Here A_{p} denotes the localized order $A \otimes R_{(p)}$.

Theorem 1

Let L be an A-lattice and put $\mathrm{M}=\mathrm{L} \oplus \mathrm{A}$. Suppose that there exists a surjection of orders $\epsilon: A \longrightarrow B$ such that L has (A, B)-free rank ≥ 1 at all but finitely many primes. If $\mathrm{GL}_{2}(\mathrm{~A})$ acts transitively on unimodular elements in $\mathrm{B} \oplus \mathrm{B}$, then for any A-lattice N which is locally a direct summand of M^{n} for some integer $n, M \oplus N \cong M^{\prime} \oplus N$ implies $M \cong M^{\prime}$.

[^0]For the corresponding result in the unitary case there is a similar condition involving hyperbolic rank ≥ 1 and a locally (A, B)-free submodule. A quadratic module V has (A, B)hyperbolic rank ≥ 1 at a prime $\mathfrak{p} \in \mathrm{R}$ if there exists an integer r such that $\left(\mathbf{H}\left(\mathrm{B}^{\mathrm{F}}\right) \oplus \mathrm{V}\right)_{\mathfrak{p}}$ has free hyperbolic rank ≥ 1 over A_{p}. The other terms used in the statement are defined precisely in $\S 2$ or in. [3;pp. 80, 87]. Note in particular that a unitary module is a (λ, Λ)-quadratic form on a finitely-generated projective A-module. A totally isotropic submodule is one on which the quadratic form is identically zero.

Theorem 2

Let V be a (λ, Λ)-quadratic module over a unitary (R, λ) algebra (A, Λ) and put
 V has (A, B)-hyperbolic rank ≥ 1 at all but finitely many primes. If $\mathrm{U}_{2}(\mathrm{~A})$ acts transitively on the set of unimodular elements in $H(B \oplus B)$ of fixed length, then for any unitary module $\mathrm{N}, \mathrm{M} \perp \mathrm{N} \cong \mathrm{M}^{\prime} \perp \mathrm{N}$ implies $\mathrm{M} \cong \mathrm{M}^{\prime}$.

In our work [5], [6] on the topological classification of 4-manifolds and algebraic surfaces we encounter locally ($\mathbb{Z} \pi, \mathbb{Z})$-free modules, where $\mathbb{Z} \pi$ is the integral group ring of a finite group. We check that for $\mathrm{B}=\mathbb{Z}$, the conditions on "transitive action" in Theorems 1 and 2 are satisfied (see (1.4) and (2.10)), hence can be omitted from the statements.

For example consider the lattices arising from exact sequences

$$
\begin{equation*}
0 \longrightarrow \mathrm{~L} \longrightarrow \mathrm{C}_{2} \longrightarrow \mathrm{C}_{1} \longrightarrow \mathrm{C}_{0} \longrightarrow \mathbb{I} \longrightarrow 0 \tag{0.1}
\end{equation*}
$$

with C_{i} finitely generated projective $\mathbb{Z} \pi$ modules. Such lattices with minimal \mathbb{Z}-rank need not contain any free direct summands over $\mathbb{Z} \pi$, but rationally contain all the representations of π except the trivial one. The simplest case occurs for π cyclic and $\mathrm{L}=$ ker $\{\epsilon: \mathbb{I} \pi \longrightarrow \mathbb{Z}\}$ the augmentation ideal.

More generally, if M is a $\eta \pi$-lattice such that $M \otimes Q$ is a free module over $Q[\rho]$ for some $\rho \triangleleft \pi$, then M is ($\mathbb{Z} \pi, \mathbb{Z}[\pi / \rho]$)-locally free at all but finitely many primes.

In § 3 we discuss metabolic forms over group rings $\mathbb{I} \pi$, leading to examples of (A, B)hyperbolic rank ≥ 1 forms which contain no hyperbolic summand.

The purely algebraic results of this paper have consequences in several different geometric situations. These will be described elsewhere.

§ 1. The Linear Case

By an "A-module" we will mean a finitely generated right A-module. As above we suppose that $\epsilon: \mathrm{A} \longrightarrow \mathrm{B}$ is a surjective ring homomorphism of R -orders in (possibly different) separable K-algebras. If M is an A-lattice and $N=M \otimes_{A} B:=\epsilon_{*}(M)$, we get an induced homomorphism

$$
\epsilon_{*}: \mathrm{GL}(\mathrm{M}) \longrightarrow \mathrm{GL}(\mathrm{~N}) .
$$

If $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ is a direct sum splitting of an A-module then $\mathrm{E}\left(\mathrm{M}_{1}, \mathrm{M}_{2}\right)$ denotes the subgroup of $\mathrm{GL}(\mathrm{M})$ generated by the elementary automorphisms ([2;p.182]). Recall that for an element $x \in M, O_{M}(x)$ is the left ideal in A generated by

$$
\left\{\mathrm{f}(\mathrm{x}) \mid \mathrm{f} \in \operatorname{Hom}_{\mathrm{A}}(\mathrm{M}, \mathrm{~A})\right\} .
$$

If $\mathrm{O}_{\mathrm{M}}(\mathrm{x})=\mathrm{A}$ we say that x is unimodular.
The following result of Bass is an essential ingredient in the proofs of the cancellation theorems.
(1.1) Theorem [2;(3.1), p.178]: Let Q be a projective A-module and $\mathrm{P} \cong \mathrm{A} \oplus \mathrm{A}$. For any unimodular element $x=(p, q) \in P \oplus Q$, there exists an A-homomorphism $f: Q \longrightarrow P$ such that $O_{P}(p+f(q))=A$.

We also need two other facts.
(1.2) Lemma: Let M be a finitely generated right A -module, projective over R , and $\mathrm{A}^{\prime}=$ $A / A t$ for an ideal $t \in R$ such that the localized order A_{t} is maximal. Then the induced map

$$
\operatorname{Hom}_{A}(M, A) \longrightarrow \operatorname{Hom}_{A^{\prime}}\left(M^{\prime}, A^{\prime}\right)
$$

is surjective, where $\mathrm{M}^{\prime}=\mathrm{M} / \mathrm{Mt}$.

Proof: First note that M_{t} is projective over A_{t}. Since $A^{\prime}=A_{t} / A_{t} t$ we can lift any map $f^{\prime}: M^{\prime} \longrightarrow A^{\prime}$ to $f: M_{t} \longrightarrow A_{\mathfrak{t}}$. After restricting to $M \subseteq M_{\mathfrak{t}}$ and multiplying by an element $r \in R$ prime to t, we obtain a lifting of $r^{\prime} f^{\prime}$. But r^{\prime} (the image of r in R^{\prime}) is a unit in A^{\prime}.
(1.3) Lemma $[3 ;(2.5 .2), p .225]:$ If C is a semisimple algebra, then for each $a, b \in C$ there exists $r \in C$ such that $C(a+r b)=C a+C b$.

We now come to the main result of the section.
(1.4) Theorem: Let A be an R-order in a separable K-algebra. Suppose that $M=L \oplus P$ is an A-lattice, where $P=p_{0} A \oplus p_{1} A$ is free of rank 2 and L is (A, B)-free of rank ≥ 1 at all but finitely many primes. Let $G_{0} \subseteq G L(P)$ be a subgroup such that $\epsilon_{*}\left(G_{0}\right)$ acts transitively on the unimodular elements in $\epsilon_{*}(\mathrm{P})$. Then the group

$$
G=<G_{0}, E\left(p_{0} A, L \oplus p_{1} A\right), E\left(p_{1} A, L \oplus p_{0} A\right)>\subseteq G L(M)
$$

acts transitively on the unimodular elements in M .
(1.5) Remark: In some cases there may be no subgroup G_{0} with the required property. For example, if $B=\mathbb{Z} \pi$ is the integral group ring of a finite group π, then $\mathrm{GL}_{2}(\mathrm{~B})$ acts
transitively on unimodular elements in $B \oplus B$ if and only if the relation $I \oplus B \cong B \oplus B$ for a projective ideal I implies $I \cong$ B. In $[8 ; T h m .3]$ Swan shows that this is not true for a certain ideal in $\nexists \pi$ where π is the generalized quaternion group of order 32. Later in [10], extending the work of Jacobinski [7], Swan shows that cancellation in this sense fails for $\mathbb{I} \pi$ if and only if π has a binary polyhedral quotient group in an explicitly given list.

Proof: We divide the proof into several parts. Let $x=v+p \in M$ be a unimodular element, where $p=p_{0} a+p_{1} b \in P$ and $v \in L$. We move x first into P to control the projection $\epsilon_{*}(x)$, and then use the stability assumption on L to move x so that its component in $p_{0} A \oplus L$ is unimodular. Finally we move x to p_{0}.
(i) Since M has free rank ≥ 2 we may now perform the first step, to get $v=0$, so that x starts out in P. To see this note that $O(p)+O(v)=A, s o$ there exists $c \in O(v)$ such that $O(p)+c$ contains 1. Apply (1.2) to $A \oplus P$ and the element (c, p) to find $z \in P$ with $O(p$ $+z c)=A$. There exists $g: L \longrightarrow P$ with $g(v)=z c$, and $f: P \longrightarrow L$ with $f(p+z c)=v$. Extend by zero on the complements. Then

$$
\tau(\mathrm{x})=(1-\mathrm{f})(1+\mathrm{g})(\mathrm{x}) \in \mathrm{P}
$$

and $\tau \in \mathrm{E}(\mathrm{P}, \mathrm{L}) \subseteq<\mathrm{E}\left(\mathrm{p}_{0} \mathrm{~A}, \mathrm{~L} \oplus \mathrm{p}_{1} \mathrm{~A}\right), \mathrm{E}\left(\mathrm{p}_{1} \mathrm{~A}, \mathrm{~L} \oplus \mathrm{p}_{0} \mathrm{~A}\right)>\subseteq \mathrm{G}$.
(ii) Since G_{0} acts transitively on unimodular elements in $\epsilon_{*}(P)=B \oplus B$, we may assume that $\epsilon_{*}(\mathrm{x})=\epsilon_{*}\left(\mathrm{p}_{0}\right)$.
(iii) Write $\mathrm{x}=\mathrm{p}_{0} \mathrm{a}+\mathrm{p}_{1} \mathrm{~b}$, so that $\mathrm{O}(\mathrm{x})=\mathrm{Aa}+\mathrm{Ab}$. Consider the quotient ring $\overline{\mathrm{A}}=$ $A / g A$ where g is the ideal in R generated by all the primes $\mathfrak{p} \in R$ at which A is not maximal, or L does not have (A, B)-free rank ≥ 1. Then we claim that, after changing x by an element from G if necessary,

$$
\begin{equation*}
\mathrm{O}(\overline{\mathrm{x}})=\overline{\mathrm{A}} \overline{\mathrm{a}}=\dot{\mathrm{A}}, \text { and } \epsilon_{*}(\mathrm{x})=\epsilon_{*}\left(\mathrm{p}_{0}\right) \tag{1.6}
\end{equation*}
$$

or a projects to a unit in \bar{A} without disturbing step (ii). To see this note that the quotient ring $\overline{\mathrm{A}}=\overline{\mathrm{C}} \times \overline{\mathrm{C}}^{\prime}$, where $\overline{\mathrm{C}}$ is the smallest direct factor mapping onto $\overline{\mathrm{B}}$ by $\bar{\epsilon}$. But by lifting idempotents, $\bar{\epsilon}$ induces an isomorphism $\overline{\mathrm{B}} / \operatorname{Rad} \overline{\mathrm{B}} \cong \overline{\mathrm{C}} / \operatorname{Rad} \overline{\mathrm{C}}$. Therefore the $\overline{\mathrm{C}}$
component of a is already a unit since a projects to 1 in the semisimple quotient. Over the other factor we can apply $[2 ;(2.8), p .87]$: there exists $u \in A$, such that the element $a+u b$ projects to a unit in \bar{C}^{\prime} and to 1 in \bar{B}. Let $g: p_{1} A \longrightarrow p_{0} A \subseteq M$ such that $g\left(p_{1}\right)=p_{0} u$. Extend g to a map from M to M by zero on the complement. Then $\tau=1+\mathrm{g}$ is an element of G and $\tau(x)$ has the desired properties (1.6).
(iv) From step (iii) we have $A \mathfrak{a}+\mathfrak{g A}=\mathrm{A}$ and so $(\mathrm{Ab})_{\mathfrak{p}}=\mathrm{A}_{\mathfrak{p}}$ for all primes \mathfrak{p} dividing \mathfrak{g}. Therefore if $\mathfrak{t} \subseteq R$ denotes the largest ideal such that $A \mathfrak{f} \subseteq$ Aa, we see that \mathfrak{p} does not divide \mathfrak{t} for all primes \mathfrak{p} dividing \mathfrak{g} and in particular $\mathfrak{t} \neq 0$.
(v) Now we project to the semilocal ring $A^{\prime}=A / A t$, which is the quotient of a maximal order $A_{\mathfrak{t}}$ and so the projection $\epsilon^{\prime}: A^{\prime} \longrightarrow B^{\prime}$ splits and $A^{\prime}=B^{\prime} \times C^{\prime}$. Since over the B^{\prime} factor a projects to 1 , we have $(\mathrm{Aa})^{\prime}=\mathrm{A}^{\prime}$. Over the complementary factor C^{\prime} we use a suitable $\tau \in \mathrm{E}\left(\mathrm{p}_{1}^{\prime} \mathrm{C}^{\prime}, \mathrm{L}^{\prime}\right)$, so that after applying τ we achieve the condition

$$
\begin{equation*}
A^{\prime} a^{\prime}+O\left(v^{\prime}\right)=A^{\prime} \tag{1.7}
\end{equation*}
$$

over both factors of A^{\prime}. This is an application of (1.2) to the component of x in $L^{\prime} \oplus p_{1}^{\prime} C^{\prime}$ using the fact that $\mathrm{C}^{\prime} \subseteq \mathrm{L}^{\prime}$. The necessary homomorphism $\mathrm{g} \in \mathrm{Hom}_{\mathrm{A}^{\prime}}\left(\mathrm{P}_{1}^{\prime}, \mathrm{L}^{\prime}\right)$, which is the identity over B^{\prime}, can be lifted to $\operatorname{Hom}_{A}\left(P_{1}, L\right)$ since P_{1} is projective and extended to M by zero on $L \oplus p_{0} A$.
(vi) We now lift the relation (1.7) to A using (1.2) and obtain

$$
\mathrm{Aa}+\mathrm{O}(\mathrm{v})+\mathrm{At}=\mathrm{A}
$$

But At \subseteq Aa so we can assume that $v+p_{0} a$ is unimodular.
(vii) The argument of [2; pp 183-184] now shows that there is an element τ $\in E\left(p_{1} A, p_{0} A \oplus L\right)$ such that $\tau(x)=p_{0}$. In our situation start with the unimodular element $z=v+p_{0} a \in L \oplus P_{0}$. Write $L \oplus P_{0}=z A \oplus N$ and let $g_{2}(z)=p_{1}(1-a-b)$, with $g_{2}(N)=0$. Let $g_{3}\left(p_{1}\right)=p_{0}, g_{4}\left(p_{0}\right)=p_{1}(a-1), g_{5}\left(p_{0}\right)=p_{1}, g_{6}\left(p_{1}\right)=-v$, where the homomorphisms are extended to the obvious complements by zero. If $\tau_{i}=1+g_{i}$, then

$$
\tau_{6} \tau_{5} \tau_{4} \tau_{3} \tau_{2}(\mathrm{x})=\mathrm{p}_{0}
$$

This completes the proof.

Proof of Theorem 1: By Swan's Cancellation Theorem ([9; 9.7] and the discussion on $[9 ; p .169]), \mathrm{M} \oplus \mathrm{A} \cong \mathrm{M}^{\prime} \oplus \mathrm{A}$ since $\mathrm{M} \oplus \mathrm{A}$ is the direct sum of two faithful modules. We apply (1.4) following [2;IV,3.5] to cancel the free modules.

Remark: The method does not seem to prove either Swan's or Jacobinski's cancellation theorems independently.

§ 2. The Unitary Case

We adopt the notation and conventions of Bass in [3; pp.61-90,233] for (λ, Λ)quadratic modules over a unitary (R, λ)-algebra (A, Λ). A unitary module is a non-singular (λ, Λ)-quadratic form on a finitely generated projective A module. Since R is a Dedekind domain, $X=\max \left(R_{0}\right)$ has dimension $d=1$, where $R_{0} \subseteq R$ is the subring generated by all norms $t \bar{t}(t \in R)$. Note that $\lambda \bar{\lambda}=1$. The form parameter Λ is ample at $m \in X$ if given a, b $\in A[m]$, the semisimple quotient of A_{m}, there exists $r \in \Lambda[m]$ such that

$$
\begin{equation*}
\mathrm{A}[\mathrm{~m}](\mathrm{a}+\mathrm{rb})=\mathrm{A}[\mathrm{~m}] \mathrm{a}+\mathrm{A}[\mathrm{~m}] \mathrm{b} \tag{2.1}
\end{equation*}
$$

In [3; $\S 2, \mathrm{p} .218 \mathrm{ff}]$ there is a discussion of this condition. If $\mathrm{R}=\mathbb{Z}$ and $\Lambda=$ $\{a-\lambda \bar{a} \mid a \in A\}$, the minimal form parameter, then Λ is not ample at any prime when $\lambda=$ 1 and Λ is not ample at 2 if $\lambda=-1$. Let $\mathfrak{A}_{\Lambda} \subseteq R_{0}$ be the ideal such that Λ is ample at all m $\notin V\left(\mathfrak{A}_{\Lambda}\right)=\left\{\mathfrak{p} \in X \mid \mathfrak{A}_{\Lambda} \subseteq \mathfrak{p}\right\}$, and d_{Λ} the dimension of the closed set $V\left(\mathfrak{A}_{\Lambda}\right)$ in X. Note that $\mathrm{d}_{\Lambda} \leq 1$ for all Λ, and $\mathrm{d}_{\Lambda} \leq 0$ when Λ is ample at all but finitely many primes.

If ($\mathrm{M},[\mathrm{h}]$) is any (λ, Λ)-quadratic module over $\mathrm{A}[3 ; \mathrm{p} .80]$, then a transvection $[3 ; \mathrm{p} .91]$ is a unitary automorphism $\sigma=\sigma_{\mathrm{u}, \mathrm{a}, \mathrm{v}}: \mathrm{M} \longrightarrow \mathrm{M}$ given by

$$
\begin{equation*}
\sigma(x)=x+u<v, x\rangle-v \lambda<u, x\rangle-u \bar{\lambda} a<u, x\rangle, \tag{2.2}
\end{equation*}
$$

where $u, v \in M$ and $a \in A$ satisfy the conditions

$$
\begin{equation*}
h(u, u) \in \Lambda,\langle u, v\rangle=0, h(v, v) \equiv a(\bmod \Lambda) . \tag{2.3}
\end{equation*}
$$

Note that $\langle\mathrm{x}, \mathrm{y}\rangle=\mathrm{h}(\mathrm{x}, \mathrm{y})+\lambda \mathrm{h}(\mathrm{y}, \mathrm{x})$ is the associated hermitian form. For any submodule $\mathrm{L} \leqq \mathrm{M}$,

$$
L^{\perp}=\{x \in M \mid\langle x, y\rangle=0 \text { for all } y \in L\} .
$$

If $\mathrm{M}=\mathrm{M}^{\prime} \perp \mathrm{M}^{\prime}$ is an orthogonal direct sum, with $\mathrm{L}^{\prime} \subseteq \mathrm{M}^{\prime}$ a totally isotropic submodule (i.e. $h(x, y)=0(\bmod \Lambda)$ for all $\left.x, y \in L^{\prime}\right)$, then we define

$$
\begin{equation*}
\left.\operatorname{EU}\left(\mathrm{M}^{\prime}, \mathrm{L}^{\prime} ; \mathrm{M}^{\prime}\right)=\left\langle\sigma_{u, a, \mathrm{v}}\right| u \in \mathrm{~L}^{\prime} \text { and } \mathrm{v} \in \mathrm{M}^{\prime \prime}\right\rangle . \tag{2.4}
\end{equation*}
$$

We will need the relation (see [3;p.92]):

$$
\begin{equation*}
\text { if } \alpha:(\mathrm{M},[\mathrm{~h}]) \longrightarrow\left(\mathrm{M}^{\prime},\left[\mathrm{h}^{\prime}\right]\right) \text { is an isometry, then } \tag{2.5}
\end{equation*}
$$

$$
\alpha \circ \sigma_{\mathrm{u}, \mathrm{a}, \mathrm{v}} \circ \alpha^{-1}=\sigma_{\alpha \mathrm{u}, \mathrm{a}, \alpha \mathrm{v}}^{\prime}
$$

where $\sigma \in \mathrm{U}(\mathrm{M},[\mathrm{h}])$ and $\sigma^{\prime} \in \mathrm{U}\left(\mathrm{M}^{\prime},\left[\mathrm{h}^{\prime}\right]\right)$.
The hyperbolic rank of a (λ, Λ)-quadratic module ($\mathrm{M},[\mathrm{h}]$) is ≥ 1 if $(\mathrm{M},[\mathrm{h}])=$ $\mathbf{H}(\mathrm{A}) \perp\left(\mathrm{M}^{\prime},\left[\mathrm{h}^{\prime}\right]\right)$, where $\mathbf{H}(\mathrm{P})$ denotes the hyperbolic form on $\mathrm{P} \oplus \overline{\mathrm{P}}[3 ; \mathrm{p} .82]$ and elements denoted by pairs $\mathrm{x}=(\mathrm{p}, \mathrm{q})$ with $\mathrm{p} \in \mathrm{P}, \mathrm{q} \in \overline{\mathrm{P}}$. Here we are using the notation $\overline{\mathrm{P}}$ for the dual module P^{*} regarded as a right A -module in the usual way. Since we will always be working with P containing at least one A -free direct summand, we will often write $\mathrm{P}=$ $p_{0} A \oplus P_{1}, \bar{P}=q_{0} A \oplus \bar{P}_{1}$ and denote the element

$$
(\mathrm{p}, \mathrm{q})=\left(\mathrm{p}_{0} \mathrm{a}+\mathrm{p}_{1}, \mathrm{q}_{0} \mathrm{~b}+\mathrm{q}_{1}\right) .
$$

The main result of this section is a unitary analogue of (1.4), so we use some of the notation (e.g. A, ϵ, B). Before stating it, we need two lemmas.
(2.6) Lemma: Let V be a (λ, Λ) quadratic module which has (A, B)-hyperbolic rank ≥ 1 at a prime $\mathfrak{p} \in \mathrm{R}_{0}$, for which $\mathrm{A}_{\mathfrak{p}}$ is maximal. Then
(i) V contains a totally isotropic submodule L which has (A, B)-locally free rank ≥ 1 at all
but finitely many primes, and
(ii) if $x \in H(P) \subseteq V \perp H(P)$ with $P \cong A^{I}$ and $f: P \longrightarrow L$ is an A-homomorphism, then there are elements $q_{i} \in \bar{P}, v_{i} \in L(1 \leq i \leq r)$ such that

$$
\prod \sigma_{\mathrm{q}_{\mathrm{i}}, 0, \mathrm{v}_{\mathrm{i}}}(\mathrm{x})=\mathrm{x}+\mathrm{f}(\mathrm{x})
$$

Proof: (i) Since A_{p} is maximal, we can write $A_{p}=B^{\prime} \times C^{\prime}$ and work over the C^{\prime} factor V^{\prime} of $V_{p^{\prime}}$. Then V^{\prime} has free hyperbolic rank ≥ 1 and for L_{p} we choose a maximal rank totally isotropic C '-free direct summand. Let $L=L_{p} \cap \mathrm{~V}$ and compare it to a direct sum of copies of the A-lattice $C:=k e r\{\epsilon: A \longrightarrow B\}$. Since $C_{p} \xlongequal{\cong} C^{\prime}$ we may choose a direct $\operatorname{sum} N=C^{r}$ with the same R-rank as L and so $N_{p} \cong L_{p}$. Therefore N and L are full lattices on the same K-vector space (K is the quotient field of R), and hence agree at all but finitely many primes. If we further avoid all the primes where A is not maximal, then L has (A, B)-free rank ≥ 1 at the remaining primes.
(ii) Let $\left\{q_{1}, \ldots, q_{r}\right\}$ be a basis for \bar{P}. Then there exist $v_{1}, \ldots, v_{r} \in L$ such that $f(x)=$ $\Sigma \bar{\lambda} v_{i}<q_{i}, x>$ for all $x \in P$.
(2.7) Lemma [$3 ;(3.11)$, p.241]: Suppose that (C, Λ) is a semisimple unitary algebra over (R, λ). Assume either that (i) P has free rank ≥ 2, or (ii) Λ is ample in C and $P=C$. Write $x \in \mathbf{H}(P)$ as $x=\left(p_{0} a+p_{1}, q_{0} b+q_{1}\right)$. Then there is an element $\sigma \in$ $\mathbf{H}(\mathrm{E}(\mathrm{P})) \cdot \mathrm{EU}\left(\mathbf{H}(\mathrm{P})\right.$ such that $\sigma(\mathrm{x})=\left(\mathrm{p}_{0} \mathrm{a}^{\prime}+\mathrm{p}_{1}^{\prime}, \mathrm{q}_{0} \mathrm{~b}^{\prime}+\mathrm{q}_{1}^{\prime}\right)$ and $\mathrm{O}(\mathrm{x})=A \mathrm{a}^{\prime}$. In case (i), $\sigma \in \operatorname{EU}\left(\mathbf{H}\left(\mathrm{P}_{0}\right), \mathrm{Q} ; \mathbf{H}\left(\mathrm{P}_{1}\right)\right)$ where $\mathrm{Q}=\mathrm{P}_{0}$ or $\overline{\mathrm{P}}_{0}$.

Definition: Let ($\mathrm{M},[\mathrm{h}]$) be a (λ, Λ)-quadratic module. An element $\mathrm{x} \in \mathrm{M}$ is [h]-unimodular if there exists $\mathrm{y} \in \mathrm{M}$ such that $\langle\mathrm{x}, \mathrm{y}\rangle=1$.

If ($M,[\mathrm{~h}]$) is non-singular then an element is [h]-unimodular if and only if it is unimodular.

The following is our main result in the quadratic case.
(2.8) Theorem: Let V be a (λ, Λ)-quadratic module which has (A, B)-hyperbolic rank ≥ 1 at all but finitely many primes, and put $(\mathrm{M},[\mathrm{h}])=\mathrm{V} \perp \mathbf{H}(\mathrm{P})$ where P is A-free of rank 2. Suppose there exists a subgroup $\mathrm{G}_{1} \subseteq \mathrm{U}(\mathbf{H}(\mathrm{P}))$ such that $\epsilon_{*}\left(\mathrm{G}_{1}\right)$ acts transitively on the set of unimodular elements in $\mathbf{H}\left(\epsilon_{*}(P)\right)$ of fixed length $[h(x, x)]$. Then

$$
\left.\mathrm{G}=<\mathrm{G}_{1}, \mathrm{EU}(\mathbf{H}(\mathrm{P}), \mathrm{Q} ; \mathrm{V}), \mathbf{H}(\mathrm{E}(\mathrm{P})) \cdot \mathrm{EU}(\mathbf{H}(\mathrm{P}))\right\rangle
$$

where $\mathrm{Q}=\mathrm{P}$ or $\overline{\mathrm{P}}$, acts transitively on the set of $[\mathrm{h}]$-unimodular elements of a fixed length, and the set of hyperbolic pairs and hyperbolic planes in M.

Proof: The same reduction used in $[3 ;(3.5), \mathrm{p} .236]$ shows that it is enough to prove that G acts transitively on the set of [h]-unimodular elements of a fixed length in M. One can check that G contains all transvections $\sigma_{p_{0}, a, v}$ with $v \in\left(\mathrm{p}_{0}\right)^{\perp}=\mathrm{V} \oplus \mathbf{H}\left(\mathrm{P}_{1}\right) \oplus \mathrm{p}_{0} \mathrm{~A}$ (see [3;(3.11),p.143] and [3;(5.6),p.98]).
(i) Let $x=(v ; p, q) \in V \perp H(P)$ be an $[h]$-unimodular element. Since P is free of rank 2, it follows as in $[3 ; p .181]$ that we may assume (p, q) is unimodular. More precisely, there exists some $y \in M$ such that $\langle x, y\rangle=1$ and so $\langle V, v\rangle+O(p)+O(q)=A$. Choose w $\in \mathrm{V}$ so that $\langle\mathrm{v}, \mathrm{w}\rangle+\mathrm{O}(\mathrm{p})+\mathrm{O}(\mathrm{q})$ contains 1 ; put $\mathrm{c}=\langle\mathrm{v}, \mathrm{w}\rangle$. From (1.1) there is a p_{1} $\in P$ such that $O\left(p+p_{1} c\right)+O(q)=A$. Now apply the transvection $\sigma_{p_{1}, a, w}$ to x. This isometry lies in $\mathrm{EU}(\mathbf{H}(\mathrm{P}), \mathrm{P} ; \mathrm{V})$.
(ii) Since $\epsilon_{*}\left(\mathrm{G}_{1}\right)$ acts transitively on the set of unimodular elements of fixed length in $\mathbf{H}\left(\epsilon_{*}(\mathrm{P})\right)$ we may assume that $\epsilon_{*}(\mathrm{x})=\epsilon_{*}\left(\mathrm{v} ; \mathrm{p}_{0}, \mathrm{q}_{0} \mathrm{~b}\right)$, where $\overline{\mathrm{b}} \equiv \mathrm{h}_{\mathrm{P}}(\mathrm{x}, \mathrm{x}) \bmod \Lambda$.
(iii) We may now achieve " $\mathrm{O}(\mathrm{x})=\mathrm{Aa}$ over $\mathrm{A}[\mathfrak{g}]$ " using (2.7) and the fact that P is free of rank 2. Here $\mathfrak{g}=\Pi\{\mathfrak{m} \mid \mathfrak{m} \in S\}$ where S is a finite set in X containing all the primes at which A is not maximal or V does not have (A, B)-hyperbolic rank ≥ 1. Furthermore by
(2.6) we may assume that V contains a non-zero totally isotropic submodule L which has (A,B)-free rank ≥ 1 at all primes not in S. Note that after step (ii), nothing needs to be done over B and (p, q) is still unimodular. This step uses $\mathbf{H}(\mathrm{E}(\mathrm{P})) \cdot \mathrm{EU}(\mathrm{H}(\mathrm{P}))$.
(iv) Let $\mathfrak{t \subseteq} \mathrm{R}_{0}$ be the largest ideal such that $A \mathfrak{G} \subseteq A a$, and put $X^{\prime}=V(t), X_{\Lambda}^{\prime}=$ $\mathrm{V}\left(\mathrm{t}+\mathfrak{A}_{\Lambda}\right), \mathrm{d}_{\hat{\Lambda}}=\operatorname{dim} \mathrm{X}_{\dot{\Lambda}}^{\prime}$. Let $\pi: \mathrm{A} \longrightarrow \mathrm{A}^{\prime}=\mathrm{A} / \mathrm{At}$ be the natural projection and note that $\operatorname{dim} X^{\prime}=0$ and $\operatorname{dim} X_{\Lambda}^{\prime} \leq 0$. As in $[3 ; p .244]$ we see that $\mathfrak{m} \notin X^{\prime}$ for all $\mathfrak{m} \in S$, hence \mathfrak{t} $\neq 0$ and A^{\prime} is semilocal. We have $O\left(p_{1}, q_{1}+q_{0} b\right)+A a=A$ and so $O\left(\pi p_{1}, \pi\left(q_{1}+q_{0} b\right)\right)$ $+\pi(\mathrm{Aa})=\mathrm{A}^{\prime}$. Over $\mathrm{B}^{\prime}=\mathrm{B} / \mathrm{Bt}$ we do nothing. Over the complementary factor C^{\prime} of A^{\prime}, apply (1.2) to find an element $u \in \pi P_{1}$ such that u projects to zero over B^{\prime} and

$$
\mathrm{O}\left(\pi \mathrm{p}_{1}-\mathrm{ub}\right)+\mathrm{O}\left(\pi \mathrm{q}_{1}\right)+\pi(\mathrm{Aa})=\mathrm{A}^{\prime} .
$$

(Note that this already holds over B^{\prime} by step (ii)). Choose $z \in P_{1}$ such that $\pi z=u$ and $\epsilon_{*}(z)=0$. Since \mathfrak{t} and \mathfrak{g} are relatively prime, we can choose $z \in\left(P_{1}\right) \cdot g$.

Note that $\sigma_{p_{0}, 0, z} \in \operatorname{EU}(\mathbf{H}(\mathrm{P}))$ by [3;(3.10.2),p.142]. Then

$$
\begin{aligned}
\sigma(\mathrm{x}) & =\mathrm{x}+\mathrm{p}_{0}<\mathrm{z}, \mathrm{x}>-\mathrm{z}<\mathrm{p}_{0}, \mathrm{x}> \\
& =\left(\mathrm{v} ; \mathrm{p}_{1}-\mathrm{zb}+\mathrm{p}_{0}\left(\mathrm{a}+<\mathrm{z}, \mathrm{q}_{1}>\right), \mathrm{q}\right)
\end{aligned}
$$

Therefore

$$
\mathrm{O}\left(\mathrm{p}_{1}-\mathrm{zb}\right)+\mathrm{O}\left(\mathrm{q}_{1}\right)+\mathrm{A}\left(\mathrm{a}+<\mathrm{z}, \mathrm{q}_{1}>\right)+\mathrm{At}=\mathrm{A}
$$

But $A t \subseteq A a \subseteq O\left(q_{1}\right)+A\left(a+<z, q_{1}>\right)$, so after these changes, we may assume that

$$
\begin{equation*}
\mathrm{O}\left(\mathrm{p}_{1}\right)+\mathrm{O}\left(\mathrm{q}_{1}\right)+\mathrm{Aa}=\mathrm{A} \tag{2.9}
\end{equation*}
$$

(v) Since πV has hyperbolic rank ≥ 1 over C^{\prime} we can choose an isometry α : $\pi V \cong$ $\mathbf{H}\left(\mathrm{C}^{\prime}\right) \perp \mathrm{W}^{\prime}$ and extend it to an isometry of $\pi \mathrm{V} \perp \mathbf{H}(\pi \mathrm{P})$ by the identity on $\mathbf{H}(\pi \mathrm{P})$. We now apply the first case of (2.7) to the element $\alpha\left(\pi\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)\right) \in \mathbf{H}\left(\mathrm{C}^{\prime}\right) \perp \mathbf{H}\left(\pi \mathrm{P}_{1}\right)$ over the semisimple ring C^{\prime}, where $A^{\prime}=B^{\prime} \times C^{\prime}$. This uses an element $\sigma^{\prime} \epsilon$ $\operatorname{EU}\left(\mathbf{H}\left(\pi \mathrm{P}_{1}\right), \pi \mathrm{Q} ; \mathbf{H}\left(\mathrm{C}^{\prime}\right)\right)$ where $\mathrm{Q}=\mathrm{P}_{1}$ or $\overline{\mathrm{P}}_{1}$. By (2.5), $\quad \alpha^{-1} \circ \sigma^{\prime} \circ \alpha \in$ $\operatorname{EU}\left(\mathbf{H}\left(\pi \mathrm{P}_{1}\right), \pi \mathrm{Q} ; \pi \mathrm{V}\right)$. Then there exists a lift σ of $\alpha^{-1} \circ \sigma^{\prime} \circ \alpha$ to $\mathrm{U}(\mathrm{M},[\mathrm{h}])$ which lies in
$\operatorname{EU}\left(\mathbf{H}\left(\mathrm{P}_{1}\right), \mathrm{Q} ; \mathrm{V}\right)$. After moving $\mathrm{x}=(\mathrm{v} ; \mathrm{p}, \mathrm{q})$ by σ we get

$$
\mathrm{A}=\mathrm{O}\left(\mathrm{p}_{1}\right)+\mathrm{At} \subseteq \mathrm{O}\left(\mathrm{p}_{1}\right)+\mathrm{Aa}=\mathrm{O}(\mathrm{p})
$$

Finally note that after this change p is unimodular and $\epsilon_{*}(x)=\epsilon_{*}\left(v ; p_{0}, q_{0} b\right)$, where $\overline{\mathrm{b}} \equiv \mathrm{h}_{\mathrm{p}}(\mathrm{x}, \mathrm{x}) \bmod \Lambda$.
(vi) Since p is unimodular and $h(p, p)=0, \mathbf{H}(P)=\mathbf{H}(p A) \perp \mathbf{H}(p A)^{\perp} . \quad$ If $\mathbf{H}(p A)=$ $\mathrm{pA} \oplus \overline{\mathrm{p}} \mathrm{A}$, where $\overline{\mathrm{p}} \in \overline{\mathrm{P}}$ then $\sigma_{\overline{\mathrm{p}}, \mathrm{d}, \lambda \mathrm{v}} \in \operatorname{EU}(\mathbf{H}(\mathrm{P}), \overline{\mathrm{P}} ; \mathrm{V})$ and

$$
\begin{aligned}
\sigma_{\overline{\mathrm{p}}, \mathrm{~d}, \lambda \mathrm{v}}(\mathrm{x}) & =\mathrm{x}+\overline{\mathrm{p}}<\lambda \mathrm{v}, \mathrm{x}\rangle-\lambda \mathrm{v} \bar{\lambda}\langle\overline{\mathrm{p}}, \mathrm{x}\rangle-\overline{\mathrm{p}} \bar{\lambda} \mathrm{~d}\langle\overline{\mathrm{p}}, \mathrm{x}\rangle \\
& =\left(0 ; \mathrm{p}, \mathrm{q}^{\prime}\right) .
\end{aligned}
$$

(vii) We now have a hyperbolic element $x=(p, q) \in \mathbf{H}(P)$ with p unimodular. Recall that V contains a non-zero totally isotropic submodule L which has (A,B)-free rank ≥ 1 at all but finitely many primes. We claim that after applying a suitable transformation in G, we can assume that $x=\left(p_{0}, q\right)$, with a possibly different q. For this we need to refer to the proof of (1.4) to find which linear automorphisms of $L \oplus P$ are necessary to move p to p_{0}, and then show that they are induced by isometries in G.

Since our element p starts out in P steps (i) and (ii) of (1.3) are not necessary. Step (iii) requires an element of $E\left(p_{1} A, P_{0}\right)$ which is induced by a suitable element of $H(E(P)) \subseteq$ G. Step (v) uses an elementary transformation given by a homomorphism $\mathrm{f}: \mathrm{P}_{1} \longrightarrow \mathrm{~L}$, and these are induced elements of G using (2.6). Finally, in step (vi) we first construct a homomorphism $g_{2}: P_{0} \oplus \mathrm{~L} \longrightarrow \mathrm{P}_{1}$ by splitting $\mathrm{P}_{0} \oplus \mathrm{~L}=\mathrm{zA} \oplus \mathrm{N}$ where z is unimodular and $h(z, z)=0(\bmod \Lambda)$. To realise τ_{2} by an isometry, we find a unitary submodule $\mathbf{H}(\mathrm{zA})$ $\subseteq \mathrm{V} \perp \mathbf{H}\left(\mathrm{P}_{0}\right)$ and then work inside $\mathbf{H}(\mathrm{zA}) \perp \mathbf{H}\left(\mathrm{P}_{1}\right)$. By $\left[3 ;(3.10 .4)\right.$, p.143] $\mathbf{H}\left(\left.\tau_{2}\right|_{\mathrm{zA} \oplus \mathrm{P}_{1}}\right) \subseteq$ $\mathrm{EU}\left(\mathbf{H}(\mathrm{zA}), \overline{\mathrm{z}} \overline{\mathrm{A}} ; \mathrm{H}\left(\mathrm{P}_{1}\right)\right) \subseteq \mathrm{G}$. The remaining automorphisms $\tau_{3}, \tau_{4}, \tau_{5}$ are in $\mathrm{E}\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right)$ and τ_{6} is defined using $g_{6} \in \operatorname{Hom}\left(P_{1}, L\right)$. These are induced by elements of $\mathrm{H}(\mathrm{E}(\mathrm{P}))$ or $\mathrm{EU}(\mathbf{H}(\mathrm{P}), \overline{\mathrm{P}} ; \mathrm{V})$ using (2.6).

Write $\mathrm{q}=\mathrm{q}_{0} \mathrm{~b}-\mathrm{q}_{1} \in \mathrm{q}_{0} \mathrm{~A} \oplus \overrightarrow{\mathrm{P}}_{1}$. The transvection $\sigma_{q_{1}, 0, \mathrm{q}_{0}}$ belongs to $\mathrm{EU}(\mathbf{H}(\mathrm{P}))$ by
[3;(3.10.1), p.142], and

$$
\sigma x=x-q_{1}<q_{0}, x>-q_{0} \bar{\lambda}<q_{1}, x>
$$

Note that $\left\langle\mathrm{q}_{1}, \mathrm{x}\right\rangle=0$ since x has no component in $\overline{\mathrm{P}}_{1}$ and $\left\langle\mathrm{q}_{0}, \mathrm{x}\right\rangle=\left\langle\mathrm{q}_{0}, \mathrm{p}_{0}\right\rangle=1$, so $\sigma \mathrm{x}$ $=x+q_{1}=\left(p_{0}, q_{0} b\right)$. We are now finished if x was unimodular. If x was a hyperbolic element, then $h(\sigma x, \sigma x)=h\left(p_{0}, q_{0} b\right)=\bar{b}(\bmod \Lambda)$, and so $\bar{b} \in \Lambda$, since x and $\sigma(x)$ are isotropic.

In the hyperbolic plane $p_{0} A+q_{0} A$, the element $X_{+}(-b)=\left[\begin{array}{cc}I & -b \\ 0 & I\end{array}\right] \in \operatorname{EU}\left(\mathbf{H}\left(P_{0}\right)\right)$ transforms $p_{0}+q_{0} b$ into p_{0} (the notation X_{+}is from [3;p.130]).

Proof of Theorem 2: The argument is the same as for [3;(3.6), p.238] using our (2.8).
(2.10) Lemma: The group $\mathbf{H}\left(\mathrm{GL}_{2}(\mathbb{I})\right) \cdot \mathrm{EU}(\mathbf{H}(\mathbb{I} \oplus \mathbb{I}))$ acts transitively on unimodular elements in $\mathbf{H}(\mathbb{Z} \oplus \mathbb{I})$ of fixed length.

Proof: Let $P=p_{0} \mathbb{Z} \oplus p_{1} \mathbb{Z}$ (with dual basis q_{0}, q_{1} for $\left.\bar{P}\right)$ and let $x=\left(p_{0} a, p_{1} b ; q_{0} c, q_{1} d\right)$ be a unimodular element in $\mathbf{H}(\mathrm{P})$. We may assume that $\mathrm{d}=0$ after applying an element of $H(E(P))$, so there exists an integer r such that $b+r c$ is a unit (mod a). Then

$$
\mathrm{X}_{+}\left(\begin{array}{cc}
0-\lambda \mathbf{r} \\
\mathrm{r} & 0
\end{array}\right)(\mathrm{x})=\left(\mathrm{p}_{0} \mathrm{a}, \mathrm{p}_{1}(\mathrm{~b}+\mathrm{rc}) ; \mathrm{q}_{0} \mathrm{c}, 0\right)
$$

so that $O\left(p_{0} a\right)+O\left(p_{1}(b+r c)\right)=\mathbb{l}$. We may therefore assume in the beginning that for x $=\left(p_{0} a, p_{1} b ; q_{0} c, q_{1} d\right)$, a and b are relatively prime. Using a suitable element of $H(E(P))$ we get $x=\left(p_{0}, 0 ; q_{0} c, q_{1} d\right)$ and after applying $X_{-}\left(\begin{array}{cc}0 & \lambda d \\ -d & 0\end{array}\right)$ the result is $\left(p_{0}, 0 ; q_{0} c, 0\right)$, where [c] is the length of x.

§ 3. Metabolic Forms

One way to obtain quadratic modules V with (A, B)-hyperbolic rank ≥ 1 at all but finitely many primes is to assume that V has a submodule $\mathbf{H}(\mathrm{L})$ where L has (A, B)-free rank ≥ 1. A generalization of this would be to assume that V contains a "metabolic form" on L. In this section we define a suitable notion of metabolic forms general enough for our applications elsewhere. The notation and conventions of $\S 2$ will be used.

If N is an A-lattice and $\mathrm{g}: \overline{\mathrm{N}} \times \overline{\mathrm{N}} \longrightarrow \mathrm{A}$ is an R-bilinear form, let

$$
[\mathrm{g}]=\left\{\mathrm{g}_{\tau} \mid \mathrm{g}_{\tau}\left(\phi, \phi^{\prime}\right)=\mathrm{g}\left(\phi, \phi^{\prime}\right)+<\phi, \tau\left(\phi^{\prime}\right)>, \tau \in \operatorname{Hom}_{\mathrm{R}}(\overline{\mathrm{~N}}, \mathrm{~N})\right\}
$$

Any $\theta \in \operatorname{Ext}_{A}^{1}(\bar{N}, N)$ defines an extension

$$
\begin{equation*}
0 \longrightarrow \mathrm{~N} \xrightarrow{i} \mathrm{E} \stackrel{\mathrm{i}}{\mathrm{~N}} \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

of A-lattices which splits over R. We say that $[\mathrm{g}]$ is θ-sesquilinear if there is a cocycle $\gamma \in$ $\operatorname{Hom}_{R}\left(\overline{\mathrm{~N}} \otimes_{R} A, N\right)$ representing θ such that for all a $\in A$:

$$
\mathrm{g}\left(\phi \mathrm{a}, \phi^{\prime}\right)=\overline{\mathrm{a}} \mathrm{~g}\left(\phi, \phi^{\prime}\right)
$$

$$
\begin{equation*}
\mathrm{g}\left(\phi, \phi^{\prime} \mathrm{a}\right)=\mathrm{g}\left(\phi, \phi^{\prime}\right) \mathrm{a}-<\phi, \gamma\left(\phi^{\prime}, \mathrm{a}\right)> \tag{3.2}
\end{equation*}
$$

Note that any cocycle γ satisfies the relation:

$$
\gamma\left(\phi, \mathrm{a}_{1} \mathrm{a}_{2}\right)=\gamma\left(\phi, \mathrm{a}_{1}\right) \mathrm{a}_{2}+\gamma\left(\phi \mathrm{a}_{1}, \mathrm{a}_{2}\right)
$$

and serves as a way to specify the A-module structure E on the R -module $\mathrm{N} \oplus \overline{\mathrm{N}}$ given by $\theta:$ for $(\mathrm{x}, \phi) \in \mathrm{N} \oplus \overline{\mathrm{N}}$ define

$$
\begin{equation*}
(\mathrm{x}, \phi) \cdot \mathrm{a}=(\mathrm{xa}+\gamma(\phi, \mathrm{a}), \phi \mathrm{a}) . \tag{3.3}
\end{equation*}
$$

If we vary the choice of representative $\mathrm{g}_{\tau} \in[\mathrm{g}]$, then the new γ is $\gamma_{\tau}=\gamma+\delta \tau$, where

$$
(\delta \tau)(\phi, \mathrm{a})=\tau(\phi) \mathrm{a}-\tau(\phi \mathrm{a})
$$

for some $\tau \in \operatorname{Hom}_{\mathrm{R}}(\overline{\mathrm{N}}, \mathrm{N})$, and all a $\in \mathrm{A}$. Then $\mathrm{g}_{\tau}\left(\phi, \phi^{\prime}\right)=\mathrm{g}\left(\phi, \phi^{\prime}\right)+<\phi, \tau\left(\phi^{\prime}\right)>$ satisfies (3.2). Given an extension (N, θ) and a θ-sesquilinear form $[\mathrm{g}]$, we define the metabolic (λ, Λ)-quadratic form $\operatorname{Met}(N, \theta,[g])=(E,[q])$ as follows: pick a compatible γ, g
satisfying (3.2) and set

$$
\mathrm{q}\left((\mathrm{x}, \phi),\left(\mathrm{x}^{\prime}, \phi^{\prime}\right)\right)=<\phi, \mathrm{x}^{\prime}>+\mathrm{g}\left(\phi, \phi^{\prime}\right) .
$$

It is easy to check that q is sesquilinear in the usual sense if $[\mathrm{g}]$ is θ-sesquilinear.

These metabolic forms are non-singular when they exist but an arbitrary extension need not admit any such form. Suppose that N is reflexive and let τ denote the involution on $\operatorname{Ext}{ }_{A}^{1}(\bar{N}, N)$ given by dualizing exact sequences $(N, \theta) \mapsto(N, \theta)^{*}$. An extension (N, θ) is λ-selfdual if N is reflexive and there is a commutative diagram

$$
\begin{align*}
& 0 \longrightarrow \mathrm{~N} \xrightarrow{\mathrm{i}} \mathrm{E} \xrightarrow{\mathrm{j}} \overline{\mathrm{~N}} \longrightarrow 0 \\
& 0 \longrightarrow \mathrm{~N} \xrightarrow[\dot{\mathrm{i}}^{*}]{\| \mathrm{E} \xrightarrow{\mathfrak{i}^{*}} \stackrel{\|}{\mathrm{N}} \longrightarrow 0} \tag{3.4}
\end{align*}
$$

If $\mathrm{h}^{*}=\lambda \mathrm{h}$ then h is the adjoint of a metabolic hermitian form on E . We will define a homomorphism

$$
\rho:\left\{(\mathrm{N}, \theta)^{*}=\lambda(\mathrm{N}, \theta)\right\} \subseteq \operatorname{Ext}_{\mathrm{A}}^{1}(\overline{\mathrm{~N}}, \mathrm{~N}) \longrightarrow \mathrm{H}^{1}\left(\mathbb{Z} / 2 ; \operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{~N}}, \mathrm{~N})\right)
$$

where $\operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{N}}, \mathrm{N})$ has the involution $\alpha \mapsto \bar{\lambda} \alpha^{*}$. We will show that $\rho(\mathrm{N}, \theta)$ is the obstruction for finding a λ-self-dual map h. Choose an R -section $\mathrm{s}: \overline{\mathrm{N}} \longrightarrow \mathrm{E}$ inducing a cocycle γ and identify $\mathrm{E}=\mathrm{N} \oplus \overline{\mathrm{N}}$ as above. Then the lower sequence is split over R by s^{*} leading to an identification of $\overline{\mathrm{E}}=\mathrm{N} \oplus \overline{\mathrm{N}}$. In these coordinates, for any A-map h making the diagram (3.4) commute,

$$
\mathrm{h}(\mathrm{x}, \phi)=\left(\mathrm{x}+\mathrm{s}^{*} \mathrm{hs}(\phi), \bar{\lambda} \phi\right)
$$

and similarly

$$
\mathrm{h}^{*}(\mathrm{x}, \phi)=\left(\lambda \mathrm{x}+\mathrm{s}^{*} \mathrm{~h}^{*} \mathrm{~s}(\phi), \phi\right)
$$

Now $\left(\mathrm{h}^{*}\right)^{-1} \mathrm{o} \lambda \mathrm{h}(\mathrm{x}, \phi)=(\mathrm{x}+\rho(\mathrm{h})(\phi), \phi)$ where $\rho(\mathrm{h})=\mathrm{s}^{*} \mathrm{hs}-\bar{\lambda} \mathrm{s}^{*} \mathrm{~h}^{*} \mathrm{~s}$. Note that $\rho(\mathrm{h})$ is independent of the choice of the section s. Since $\left(h^{*}\right)^{-1} o \lambda h$ is an A-map, we can check using (3.3) that $\rho(\mathrm{h})$ is also an A-map. Similarly, by computing $h^{*} \circ\left(\bar{\lambda} h^{-1}\right)$ and comparing with the formula for the dual, we see that $\rho(\mathrm{h})^{*}=-\lambda \rho(\mathrm{h})$. Moreover the cohomology class

$$
[\rho(\mathrm{h})] \in \mathrm{H}^{1}\left(\mathbb{Z} / 2 ; \operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{~N}}, \mathrm{~N})\right)
$$

is independent of the choice of h. Define $\rho(N, \theta)=[\rho(\mathrm{h})]$ for any h making the diagram (3.4) commute.
(3.5) Proposition: If N is a reflexive A-module and (N, θ) is a self-dual extension, then (N, θ) admits a metabolic λ-hermitian form if and only if $\rho(\mathrm{N}, \theta)=0 \in$ $\mathrm{H}^{1}\left(\mathbb{Z} / 2 ; \operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{N}}, \mathrm{N})\right)$.

Note that a metabolic λ-hermitian form is unique up to isometry if it admits a quadratic refinement. We want to identify the obstruction to obtaining a quadratic refinement for a given metabolic λ-hermitian form h. Let
$\eta:$ ker $\rho \longrightarrow \operatorname{coker}\left\{\hat{\mathrm{H}}^{0}\left(\mathbb{Z} / 2 ; \operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{N}}, \mathrm{N})\right) \longrightarrow \hat{\mathrm{H}}^{0}\left(\mathbb{Z} / 2 ; \operatorname{Hom}_{\mathrm{R}}(\overline{\mathrm{N}}, \mathrm{N})\right)\right\}$. be the homomorphism defined by $\eta(\mathrm{h})=\left[\mathrm{s}^{*} \mathrm{hs}\right]$.
(3.6) Proposition: Suppose that (N, θ) admits a metabolic λ-hermitian form. Then (N, θ) admits a metabolic (λ, Λ)-quadratic form with respect to the minimal form parameter if and only if $\eta(\mathrm{N}, \theta)=0$.

Suppose now that $\mathrm{R}=\mathbb{Z}$ and $\mathrm{A}=\mathbb{Z} \pi$ where π is a finite group. Then each lattice L over A is reflexive. Let $N=\Omega^{k} \mathbb{Z}$, the kernel of a projective resolution F_{*} of \mathbb{I} of length k (see (0.1) for the case $k=3$). We will show that every element of $\operatorname{Ext}_{A}^{1}(\bar{N}, N)$ is $(-1)^{k+1}$ self-dual.
(3.7) Lemma: Let $\mathrm{N}=\Omega^{\mathrm{k}}$ II. The involution τ given by dualizing exact sequences induces multiplication by $(-1)^{k+1}$ on $\operatorname{Ext}{ }_{A}^{1}(\bar{N}, N)$.

Proof: Let $\overline{\mathrm{X}}$ be a projective resolution of $\overline{\mathrm{N}}$ and X the dual co-resolution of N . We have two isomorphisms $\alpha, \beta: \operatorname{Ext}^{1}(\overline{\mathrm{~N}}, \mathrm{~N}) \cong \mathrm{H}^{1}\left(\operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{X}}, \mathrm{X})\right)$ comparing an extension with $\overline{\mathrm{X}}$ or

X respectively. Note that over $\mathrm{A}=\mathbb{Z} \pi$ we can use X instead of an injective co-resolution for computing $\operatorname{Ext}^{\mathrm{i}}(\overline{\mathrm{N}}, \mathrm{N})$. It is not difficult to see that $\alpha=-\beta$. Let t be the involution on $\mathrm{H}^{1}\left(\operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{X}}, \mathrm{X})\right)$ induced by dualization. By construction, $\alpha \tau=\mathrm{t} \beta$ implying $\alpha \tau \alpha^{-1}=-\mathrm{t}$.

Note that $\operatorname{Hom}_{A}(\overline{\mathrm{X}}, \mathrm{X}) \cong \operatorname{Hom}_{\mathbb{I}}(\overline{\mathrm{X}}, \mathrm{X}){ }_{\mathrm{A}} \mathrm{A}^{\eta}$, and that $\mathrm{Hom}_{\eta}(\overline{\mathrm{X}}, \mathrm{X})$ is a co-resolution of $\mathrm{Hom}_{\mathbb{Z}}(\overline{\mathrm{N}}, \mathrm{N})$. Thus

$$
\mathrm{H}^{\mathrm{i}}\left(\operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{X}}, \mathrm{X})\right)=\mathrm{H}^{\mathrm{i}}\left(\operatorname{Hom}_{\mathbb{Z}}(\overline{\mathrm{X}}, \mathrm{X}) \otimes_{A} \mathbb{Z}\right)=\mathrm{H}^{\mathrm{i}}\left(\pi ; \mathrm{N} \otimes_{\mathbb{Z}} \mathrm{N}\right)
$$

and under these identifications t corresponds to the involution induced by the flip map s : $x 8 y \mapsto y * x$ on $N \otimes N$.

Now we follow an argument suggested by R. Swan. Extend the projective resolution

 the derived functors. We have the similar chain map on $\mathrm{F} \otimes_{\Pi} \mathrm{F}$ which on $\mathrm{F}_{2 \mathrm{k}}=\mathrm{N} \otimes \mathrm{N}$ is $(-1)^{\mathrm{k}}$ s. Now we consider $\mathrm{F} \otimes_{\mathbb{I}} \mathrm{F}$ as part of a co-resolution of $\mathrm{N} \otimes \mathrm{N}$ ending in \mathbb{Z}. Similarly we consider $\hat{\mathrm{F}} \otimes_{\mathbb{Z}} \hat{\mathrm{F}}$ a part of a complete co-resolution of \mathbb{I}. Then

$$
\mathrm{H}^{1}\left(\pi ; \mathrm{N} \otimes_{\mathbb{Z}} \mathrm{N}\right)=\mathrm{H}^{1}\left(\operatorname{Hom}_{\mathrm{A}}\left(\mathbb{Z}, \mathrm{~F} \otimes_{\mathbb{I}} \mathrm{F}\right)\right) \cong \mathrm{H}^{1}\left(\operatorname{Hom}_{\mathrm{A}}\left(\mathbb{Z}, \hat{\mathrm{~F}} \otimes_{\mathbb{Z}} \hat{\mathrm{F}}\right)\right)
$$

where the last isomorphism is induced by the obvious chain map $\hat{F} \longrightarrow F$. Thus

$$
\alpha \tau \alpha^{-1}=-\delta=(-1)^{k+1_{f}^{*}}=(-1)^{\mathrm{k}+1}
$$

(3.8) Example: Now we restrict to groups π of odd order. Since $\operatorname{Ext} \frac{1}{\mathbb{Z} \pi}(\overline{\mathbf{N}}, N)$ then has odd order $\rho(\mathrm{N}, \theta)$ and $\eta(\mathrm{N}, \theta)$ vanish for each λ-self-dual extension. In particular for $\mathrm{N}=\Omega^{\mathrm{k}} \eta$, each extension (N, θ) admits a metabolic (λ, Λ)-quadratic form whose λ-symmetrization is unique up to isometry.

References

[1] Bak, A., "The stable structure of quadratic modules", Thesis, Columbia University, 1969.
[2] Bass, H., Algebraic K-Theory, W.A. Benjamin, New York 1968
[3] Bass, H., "Unitary algebraic K-theory", Algebraic K-Theory III: Hermitian K-theory and Geometric Applications. Lect. Notes in Math. 343, 57-209, Springer Verlag, 1973.
[4] C.W.Curtis and I.Reiner. Representation Theory of Finite Groups and Associative Algebras. John Wiley \& Sons. New York, 1962.
[5] Hambleton, I., Kreck, M., "On the classification of topological 4-manifolds with finite fundamental group", Math. Ann. 280 (1988), 85-104.
[6] Hambleton, I., Kreck, M., "Smooth structures on algebraic surfaces with cyclic fundamental group", Invent. Math. 91 (1988), 53-59.
[7] Jacobinski, H., "Genera and decompositions of lattices over orders", Acta. Math. 121 (1968), 1-29.
[8] Swan, R.G., "Projective modules over group rings and maximal orders", Annals of Mathematics 76 (1962), 55-61.
[9] Swan, R. G., "K-theory of finite groups and orders", Notes by E.G.Evens. Lect. Notes in Math. 149, Springer-Verlag, Berlin 1970.
[10] Swan, R.G., "Projective modules over binary polyhedral groups", J. reine u. angew. Math. 342 (1983), 66-172.
[11] Vaserstein, L. N., "Stability of unitary and orthogonal groups over rings with involution", Math. Sbornik 81 (1970), 328-351.

McMaster University,
Hamilton, Ontario, Canada

Max-Planck Institut für Mathematik
Bonn, West Germany

December 15, 1989

ON THE CANCELLATION OF HYPERBOLIC FORMS OVER ORDERS IN SEMISIMPLE ALGEBRAS

by

I. Hambleton and M. Kreck

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Germany

References

[1] Bak, A., "The stable structure of quadratic modules", Thesis, Columbia University, 1969.
[2] Bass, H., Algebraic K-Theory, W.A. Benjamin, New York 1968
[3] Bass, H., "Unitary algebraic K-theory", Algebraic K-Theory III: Hermitian K-theory and Geometric Applications. Lect. Notes in Math. 343, 57-209, Springer Verlag, 1973.
[4] C.W.Curtis and I.Reiner. Representation Theory of Finite Groups and Associative Algebras. John Wiley \& Sons. New York, 1962.
[5] Hambleton, I., Kreck, M., "On the classification of topological 4-manifolds with finite fundamental group", Math. Ann. 280 (1988), 85-104.
[6] Hambleton, I., Kreck, M., "Smooth structures on algebraic surfaces with cyclic fundamental group", Invent. Math. 91 (1988), 53-59.
[7] Jacobinski, H., "Genera and decompositions of lattices over orders", Acta. Math. 121 (1968), 1-29.
[8] Swan, R.G., "Projective modules over group rings and maximal orders", Annals of Mathematics 76 (1962), 55-61.
[9] Swan, R. G., "K-theory of finite groups and orders", Notes by E.G.Evens. Lect. Notes in Math. 149, Springer-Verlag, Berlin 1970.
[10] Swan, R.G., "Projective modules over binary polyhedral groups", J. reine u. angew. Math. 342 (1983), 66-172.
[11] Vaserstein, L. N., "Stability of unitary and orthogonal groups over rings with involution", Math. Sbornik 81 (1970), 328-351.

McMaster University,
Hamilton, Ontario, Canada

Max-Planck Institut für Mathematik
Bonn, West Germany
.

On the Cancellation of Hyperbolic Forms over Orders in Semisimple Algebras

I. Hambleton ${ }^{1}$ and M. Kreck

Let R be a Dedekind domain and K its field of quotients. The purpose of this note is to obtain an improvement in the stable range for cancellation of lattices over R-orders in separable K-algebrias, assuming some local information about the lattices. Recall that a lattice over an R-order A is an A -module which is projective as an R -module. Our results are based on the work of H. Bass [2],[3], A. Bak [1] and L. N. Vaserstein [11].

The general stable range condition for cancellation of lattices over orders is free rank ≥ 2 for the linear case $[2 ;(3.5), \mathrm{p} .184]$, and free hyperbolic rank ≥ 2 for the unitary case [3;(3.6),p.238]. To state our condition, let A and B be orders in separable algebras over K $[4 ; 71.1,75.1]$, and suppose that there is a surjective ring homomorphism $\epsilon: \mathrm{A} \longrightarrow \mathrm{B}$. We say that a finitely generated A -module L has (A, B)-free rank ≥ 1 at a prime $\mathfrak{p} \in \mathrm{R}$, if there exists an integer r such that $\left(B^{r} \oplus L\right)_{p}$ has free rank ≥ 1 over A_{p}. Here A_{p} denotes the localized order $A \otimes R_{(p)}$.

Theorem 1

Let L be an A-lattice and put $M=L \oplus A$. Suppose that there exists a surjection of orders $\epsilon: A \longrightarrow B$ such that L has (A, B)-free rank ≥ 1 at all but finitely many primes. If $\mathrm{GL}_{2}(\mathrm{~A})$ acts transitively on unimodular elements in $\mathrm{B} \oplus \mathrm{B}$, then for any A-lattice N which is locally a direct summand of M^{n} for some integer $n, M \oplus N \cong M^{\prime} \oplus N$ implies $M \cong M^{\prime}$.

[^1]For the corresponding result in the unitary case there is a similar condition involving hyperbolic rank ≥ 1 and a locally (A, B)-free submodule. A quadratic module V has (A, B)hyperbolic rank ≥ 1 at a prime $\mathfrak{p} \in \mathrm{R}$ if there exists an integer r such that $\left(\mathrm{H}\left(\mathrm{B}^{\mathrm{r}}\right) \oplus \mathrm{V}\right)_{\mathfrak{p}}$ has free hyperbolic rank ≥ 1 over A_{p}. The other terms used in the statement are defined precisely in $\S 2$ or in $[3 ;$ pp. 80,87$]$. Note in particular that a unitary module is a (λ, Λ)-quadratic form on a finitely-generated projective A-module. A totally isotropic submodule is one on which the quadratic form is identically zero.

Theorem 2

Let V be a (λ, Λ)-quadratic module over a unitary (R, λ) algebra (A, Λ) and put $(M,[h])=V \perp H(A)$. Suppose that there exists a surjection of orders $\epsilon: A \longrightarrow B$ such that V has (A, B)-hyperbolic rank ≥ 1 at all but finitely many primes. If $U_{2}(A)$ acts transitively on the set of unimodular elements in $H(B \oplus B)$ of fixed length, then for any unitary module $\mathrm{N}, \mathrm{M} \perp \mathrm{N} \cong \mathrm{M}^{\prime} \perp \mathrm{N}$ implies $\mathrm{M} \cong \mathrm{M}^{\prime}$.

In our work [5], [6] on the topological classification of 4-manifolds and algebraic surfaces we encounter locally ($\mathbb{Z} \pi, \mathbb{Z})$-free modules, where $\mathbb{Z} \pi$ is the integral group ring of a finite group. We check that for $\mathrm{B}=\mathbb{Z}$, the conditions on "transitive action" in Theorems 1 and 2 are satisfied (see (1.4) and (2.10)), hence can be omitted from the statements.

For example consider the lattices arising from exact sequences

$$
\begin{equation*}
0 \longrightarrow \mathrm{~L} \longrightarrow \mathrm{C}_{2} \longrightarrow \mathrm{C}_{1} \longrightarrow \mathrm{C}_{0} \longrightarrow \mathbb{I} \longrightarrow 0 \tag{0.1}
\end{equation*}
$$

with C_{i} finitely generated projective $\mathbb{Z} \pi$ modules. Such lattices with minimal \mathbb{Z}-rank need not contain any free direct summands over $\mathbb{Z} \pi$, but rationally contain all the representations of π except the trivial one. The simplest case occurs for π cyclic and $\mathrm{L}=$ $\operatorname{ker}\{\epsilon: \mathbb{Z} \pi \longrightarrow \mathbb{Z}\}$ the augmentation ideal.

More generally, if M is a $\mathbb{Z} \pi$-lattice such that $\mathrm{M} \otimes \mathrm{Q}$ is a free module over $\mathrm{Q}[\rho]$ for some $\rho \triangleleft \pi$, then M is $(\mathbb{Z} \pi, \mathbb{Z}[\pi / \rho])$-locally free at all but finitely many primes.

In § 3 we discuss metabolic forms over group rings $\mathbb{Z} \pi$, leading to examples of (A,B)hyperbolic rank ≥ 1 forms which contain no hyperbolic summand.

The purely algebraic results of this paper have consequences in several different geometric situations. These will be described elsewhere.

§ 1. The Linear Case

By an "A-module" we will mean a finitely generated right A-module. As above we suppose that $\epsilon: A \longrightarrow B$ is a surjective ring homomorphism of R -orders in (possibly different) separable K-algebras. If M is an A-lattice and $N=M \otimes_{A} B:=\epsilon_{*}(M)$, we get an induced homomorphism

$$
\epsilon_{*}: \mathrm{GL}(\mathrm{M}) \longrightarrow \mathrm{GL}(\mathrm{~N})
$$

If $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ is a direct sum splitting of an A-module then $\mathrm{E}\left(\mathrm{M}_{1}, \mathrm{M}_{2}\right)$ denotes the subgroup of GL(M) generated by the elementary automorphisms ([2;p.182]). Recall that for an element $x \in M, O_{M}(x)$ is the left ideal in A generated by

$$
\left\{f(x) \mid f \in \operatorname{Hom}_{A}(M, A)\right\}
$$

If $\mathrm{O}_{\mathrm{M}}(\mathrm{x})=\mathrm{A}$ we say that x is unimodular.
The following result of Bass is an essential ingredient in the proofs of the cancellation theorems.
(1.1) Theorem $[2 ;(3.1)$, p.178]: Let Q be a projective $\mathrm{A}-$ module and $\mathrm{P} \cong \mathrm{A} \oplus \mathrm{A}$. For any unimodular element $x=(p, q) \in P \oplus Q$, there exists an A-homomorphism $f: Q \longrightarrow P$ such that $O_{P}(p+f(q))=A$.

We also need two other facts.
(1.2) Lemma: Let M be a finitely generated right A-module, projective over R, and $A^{\prime}=$ A/At for an ideal $t \in R$ such that the localized order A_{t} is maximal. Then the induced map

$$
\operatorname{Hom}_{A}(M, A) \longrightarrow \operatorname{Hom}_{A^{\prime}}\left(M^{\prime}, A^{\prime}\right)
$$

is surjective, where $\mathrm{M}^{\prime}=\mathrm{M} / \mathrm{Mt}$.

Proof: First note that $M_{\mathfrak{t}}$ is projective over $A_{\mathfrak{t}}$. Since $A^{\prime}=A_{\mathfrak{t}} / A_{\mathfrak{t}} t$ we can lift any map $f^{\prime}: M^{\prime} \longrightarrow A^{\prime}$ to $f: M_{t} \longrightarrow A_{t}$. After restricting to $M \subseteq M_{t}$ and multiplying by an element $r \in R$ prime to t, we obtain a lifting of $r^{\prime} f^{\prime}$. But r^{\prime} (the image of r in R^{\prime}) is a unit in A^{\prime}.
(1.3) Lemma [3;(2.5.2), p.225]: If C is a semisimple algebra, then for each $a, b \in C$ thereexists $r \in C$ such that $C(a+r b)=C a+C b$.

We now come to the main result of the section.
(1.4) Theorem: Let A be an R-order in a separable K-algebra. Suppose that $M=L \oplus P$ is an A-lattice, where $P=p_{0} A \oplus p_{1} A$ is free of rank 2 and L is (A, B)-free of rank ≥ 1 at all but finitely many primes. Let $G_{0} \subseteq G L(P)$ be a subgroup such that $\epsilon_{*}\left(G_{0}\right)$ acts transitively on the unimodular elements in $\epsilon_{*}(P)$. Then the group

$$
\mathrm{G}=<\mathrm{G}_{0}, \mathrm{E}\left(\mathrm{p}_{0} \mathrm{~A}, \mathrm{~L} \oplus \mathrm{p}_{1} \mathrm{~A}\right), \mathrm{E}\left(\mathrm{p}_{1} \mathrm{~A}, \mathrm{~L} \oplus \mathrm{p}_{0} \mathrm{~A}\right)>\subseteq \mathrm{GL}(\mathrm{M})
$$

acts transitively on the unimodular elements in M .
(1.5) Remark: In some cases there may be no subgroup G_{0} with the required property. For example, if $\mathrm{B}=\mathbb{Z} \pi$ is the integral group ring of a finite group π, then $\mathrm{GL}_{2}(\mathrm{~B})$ acts
transitively on unimodular elements in $B \oplus B$ if and only if the relation $I \oplus B \cong B \oplus B$ for a projective ideal I implies $I \cong B$. In [8;Thm.3] Swan shows that this is not true for a certain ideal in $\mathbb{Z} \pi$ where π is the generalized quaternion group of order 32. Later in [10], extending the work of Jacobinski [7], Swan shows that cancellation in this sense fails for $\mathbb{I} \pi$ if and only if π has a binary polyhedral quotient group in an explicitly given list.

Proof: We divide the proof into several parts. Let $x=v+p \in M$ be a unimodular element, where $p=p_{0} a+p_{1} b \in P$ and $v \in L$. We move x first into P to control the projection $\epsilon_{*}(x)$, and then use the stability assumption on L to move x so that its component in $p_{0} A \oplus L$ is unimodular. Finally we move x to p_{0}.
(i) Since M has free rank ≥ 2 we may now perform the first step, to get $v=0$, so that x starts out in P. To see this note that $O(p)+O(v)=A$, so there exists $c \in O(v)$ such that $O(p)+c$ contains 1. Apply (1.2) to $A \oplus P$ and the element (c, p) to find $z \in P$ with $O(p$. $+z c)=A$. There exists $g: L \longrightarrow P$ with $g(v)=z c$, and $f: P \longrightarrow L$ with $f(p+z c)=v$. Extend by zero on the complements. Then

$$
\tau(x)=(1-f)(1+g)(x) \in P
$$

and $\tau \in \mathrm{E}(\mathrm{P}, \mathrm{L}) \subseteq<\mathrm{E}\left(\mathrm{p}_{0} \mathrm{~A}, \mathrm{~L} \oplus \mathrm{p}_{1} \mathrm{~A}\right), \mathrm{E}\left(\mathrm{p}_{1} \mathrm{~A}, \mathrm{~L} \oplus \mathrm{p}_{0} \mathrm{~A}\right)>\subseteq \mathrm{G}$.
(ii) Since G_{0} acts transitively on unimodular elements in $\epsilon_{*}(P)=B \oplus B$, we may assume that $\epsilon_{*}(\mathrm{x})=\epsilon_{*}\left(\mathrm{p}_{0}\right)$.
(iii) Write $x=p_{0} a+p_{1} b$, so that $O(x)=A a+A b$. Consider the quotient ring $\bar{A}=$ $A / g A$ where \mathfrak{g} is the ideal in R generated by all the primes $p \in R$ at which A is not maximal, or L does not have (A,B)-free rank ≥ 1. Then we claim that, after changing x by an element from G if necessary,

$$
\begin{equation*}
O(\bar{x})=\bar{A} \bar{a}=\bar{A}, \text { and } \epsilon_{*}(x)=\epsilon_{*}\left(p_{0}\right) \tag{1.6}
\end{equation*}
$$

or a projects to a unit in \bar{A} without disturbing step (ii). To see this note that the quotient ring $\overline{\mathrm{A}}=\overline{\mathrm{C}} \times \overline{\mathrm{C}}^{\prime}$, where $\overline{\mathrm{C}}$ is the smallest direct factor mapping onto $\overline{\mathrm{B}}$ by $\bar{\epsilon}$. But by lifting idempotents, $\bar{\epsilon}$ induces an isomorphism $\overline{\mathrm{B}} / \operatorname{Rad} \overline{\mathrm{B}} \cong \bar{C} / \operatorname{Rad} \overline{\mathrm{C}}$. Therefore the $\overline{\mathrm{C}}$
component of a is already a unit since a projects to 1 in the semisimple quotient. Over the other factor we can apply $[2 ;(2.8), p .87]$: there exists $u \in A$, such that the element $a+u b$ projects to a unit in \bar{C}^{\prime} and to 1 in \bar{B}. Let $g: p_{1} A \longrightarrow p_{0} A \subseteq M$ such that $g\left(p_{1}\right)=p_{0} u$. Extend g to a map from M to M by zero on the complement. Then $\tau=1+\mathrm{g}$ is an element of G and $\tau(x)$ has the desired properties (1.6).
(iv) From step (iii) we have $A a+\mathfrak{g A}=A$ and so $(A b)_{p}=A_{p}$ for all primes \mathfrak{p} dividing \mathfrak{g}. Therefore if $t \subseteq R$ denotes the largest ideal such that $A t \subseteq A a$, we see that \mathfrak{p} does not divide \mathfrak{t} for all primes \mathfrak{p} dividing \mathfrak{g} and in particular $\mathfrak{t} \neq 0$.
(v) Now we project to the semilocal ring $A^{\prime}=A / A t$, which is the quotient of a maximal order A_{t} and so the projection $\epsilon^{\prime}: A^{\prime} \longrightarrow B^{\prime}$ splits and $A^{\prime}=B^{\prime} \times C^{\prime}$. Since over the B^{\prime} factor a projects to 1 , we have $(\mathrm{Aa})^{\prime}=\mathrm{A}^{\prime}$. Over the complementary factor C^{\prime} we use a suitable $\tau \in \mathrm{E}\left(\mathrm{p}_{1}^{\prime} \mathrm{C}^{\prime}, \mathrm{L}^{\prime}\right)$, so that after applying τ we achieve the condition

$$
\begin{equation*}
A^{\prime} a^{\prime}+O\left(v^{\prime}\right)=A^{\prime} \tag{1.7}
\end{equation*}
$$

over both factors of A^{\prime}. This is an application of (1.2) to the component of x in $L^{\prime} \oplus p_{1}^{\prime} C^{\prime}$ using the fact that $\mathrm{C}^{\prime} \subseteq \mathrm{L}^{\prime}$. The necessary homomorphism $g \in \operatorname{Hom}_{A^{\prime}}\left(\mathrm{P}_{1}^{\prime}, \mathrm{L}^{\prime}\right)$, which is the identity over B^{\prime}, can be lifted to $\mathrm{Hom}_{\mathrm{A}}\left(\mathrm{P}_{1}, L\right)$ since P_{1} is projective and extended to M by zero on $L \oplus p_{0} A$.
(vi) We now lift the relation (1.7) to A using (1.2) and obtain

$$
\mathrm{Aa}+\mathrm{O}(\mathrm{v})+\mathrm{At}=\mathrm{A}
$$

But $A t \subseteq A a$ so we can assume that $v+p_{0} a$ is unimodular.
(vii) The argument of $[2 ; \mathrm{pp}$ 183-184] now shows that there is an element τ $\in E\left(p_{1} A, p_{0} A \oplus L\right)$ such that $\tau(x)=p_{0}$. In our situation start with the unimodular element $z=v+p_{0} a \in L \oplus P_{0}$. Write $L \oplus P_{0}=z A \oplus N$ and let $g_{2}(z)=p_{1}(1-a-b)$, with $\mathrm{g}_{2}(\mathrm{~N})=0$. Let $\mathrm{g}_{3}\left(\mathrm{p}_{1}\right)=\mathrm{p}_{0}, \mathrm{~g}_{4}\left(\mathrm{p}_{0}\right)=\mathrm{p}_{1}(\mathrm{a}-1), \mathrm{g}_{5}\left(\mathrm{p}_{0}\right)=\mathrm{p}_{1}, \mathrm{~g}_{6}\left(\mathrm{p}_{1}\right)=-\mathrm{v}$, where the homomorphisms are extended to the obvious complements by zero. If $\tau_{\mathrm{i}}=1+\mathrm{g}_{\mathrm{i}}$, then

$$
\tau_{6} \tau_{5} \tau_{4} \tau_{3} \tau_{2}(\mathrm{x})=\mathrm{p}_{0}
$$

This completes the proof.

Proof of Theorem 1: By Swan's Cancellation Theorem ([9; 9.7] and the discussion on [9;p.169]), $\mathrm{M} \oplus \mathrm{A} \cong \mathrm{M}^{\prime} \oplus \mathrm{A}$ since $\mathrm{M} \oplus \mathrm{A}$ is the direct sum of two faithful modules. We apply (1.4) following [2;IV,3.5] to cancel the free modules.

Remark: The method does not seem to prove either Swan's or Jacobinski's cancellation theorems independently.

§ 2. The Unitary Case

We adopt the notation and conventions of Bass in [3; pp.61-90,233] for (λ, Λ)quadratic modules over a unitary (R, λ)-algebra (A, Λ). A unitary module is a non-singular (λ, Λ)-quadratic form on a finitely generated projective A module. Since R is a Dedekind domain, $X=\max \left(R_{0}\right)$ has dimension $d=1$, where $R_{0} \subseteq R$ is the subring generated by all norms $\mathrm{t} \overline{\mathrm{t}}(\mathrm{t} \in \mathrm{R})$. Note that $\lambda \bar{\lambda}=1$. The form parameter Λ is ample at $\mathrm{m} \in \mathrm{X}$ if given a, b $\in A[m]$, the semisimple quotient of A_{m}, there exists $r \in \Lambda[m]$ such that

$$
\begin{equation*}
\mathrm{A}[\mathrm{~m}](\mathrm{a}+\mathrm{rb})=\mathrm{A}[\mathrm{~m}] \mathrm{a}+\mathrm{A}[\mathrm{~m}] \mathrm{b} \tag{2.1}
\end{equation*}
$$

In [3;§2,p.218ff] there is a discussion of this condition. If $R=\mathbb{Z}$ and $\Lambda=$ $\{a-\lambda \bar{a} \mid a \in A\}$, the minimal form parameter, then Λ is not ample at any prime when $\lambda=$ 1 and Λ is not ample at 2 if $\lambda=-1$. Let $\mathfrak{A}_{\Lambda} \subseteq R_{0}$ be the ideal such that Λ is ample at all m $\notin V\left(\mathfrak{A}_{\Lambda}\right)=\left\{p \in X \mid \mathfrak{A}_{\Lambda} \subseteq p\right\}$, and d_{Λ} the dimension of the closed set $V\left(\mathfrak{A}_{\Lambda}\right)$ in X. Note that $\mathrm{d}_{\Lambda} \leq 1$ for all Λ, and $\mathrm{d}_{\Lambda} \leq 0$ when Λ is ample at all but finitely many primes.

If ($\mathrm{M},[\mathrm{h}]$) is any (λ, Λ)-quadratic module over $\mathrm{A}[3 ; \mathrm{p} .80]$, then a transvection $[3 ; \mathrm{p} .91]$ is a unitary automorphism $\sigma=\sigma_{\mathrm{u}, \mathrm{a}, \mathrm{v}}: \mathrm{M} \longrightarrow \mathrm{M}$ given by

$$
\begin{equation*}
\sigma(x)=x+u\langle v, x\rangle-v \bar{\lambda}\langle u, x\rangle-u \bar{\lambda} a\langle u, x\rangle \tag{2.2}
\end{equation*}
$$

where $u, v \in M$ and $a \in A$ satisfy the conditions

$$
\begin{equation*}
h(u, u) \in \Lambda,\langle u, v\rangle=0, h(v, v) \equiv a(\bmod \Lambda) . \tag{2.3}
\end{equation*}
$$

Note that $\langle x, y\rangle=h(x, y)+\lambda \overline{h(y, x)}$ is the associated hermitian form. For any submodule $\mathrm{L} \subseteq \mathrm{M}$,

$$
L^{\perp}=\{x \in M \mid\langle x, y\rangle=0 \text { for all } y \in L\}
$$

If $\mathrm{M}=\mathrm{M}^{\prime} \perp \mathrm{M}^{*}$ is an orthogonal direct sum, with $\mathrm{L}^{\prime} \subseteq \mathrm{M}^{\prime}$ a totally isotropic submodule (i.e. $h(x, y)=0(\bmod \Lambda)$ for all $x, y \in L^{\prime}$), then we define

$$
\begin{equation*}
\left.E U\left(M^{\prime}, L^{\prime} ; M^{\prime}\right)=<\sigma_{u, a, v} \mid u \in L^{\prime} \text { and } v \in M^{\prime}\right\rangle \tag{2.4}
\end{equation*}
$$

We will need the relation (see [3;p.92]):
if $\alpha:(\mathrm{M},[\mathrm{h}]) \longrightarrow\left(\mathrm{M}^{\prime},\left[\mathrm{h}^{\prime}\right]\right)$ is an isometry, then

$$
\begin{equation*}
\alpha \circ \sigma_{\mathrm{u}, \mathrm{a}, \mathrm{v}}{ }^{\circ \alpha^{-1}}=\sigma_{\alpha \mathrm{u}, \mathrm{a}, \alpha \mathrm{v}}^{\prime} \tag{2.5}
\end{equation*}
$$

where $\sigma \in \mathrm{U}(\mathrm{M},[\mathrm{h}])$ and $\sigma^{\prime} \in \mathrm{U}\left(\mathrm{M}^{\prime},\left[\mathrm{h}^{\prime}\right]\right)$.
The hyperbolic rank of a (λ, Λ)-quadratic module ($\mathrm{M},[\mathrm{h}]$) is ≥ 1 if ($\mathrm{M},[\mathrm{h}]$) = $\mathrm{H}(\mathrm{A}) \perp\left(\mathrm{M}^{\prime},\left[\mathrm{h}^{\prime}\right]\right)$, where $\mathrm{H}(\mathrm{P})$ denotes the hyperbolic form on $\mathrm{P} \oplus \overline{\mathrm{P}}[3 ; \mathrm{p} .82]$ and elements denoted by pairs $x=(p, q)$ with $p \in P, q \in \bar{P}$. Here we are using the notation \bar{P} for the dual module P^{*} regarded as a right A-module in the usual way. Since we will always be working with P containing at least one A -free direct summand, we will often write $\mathrm{P}=$ $p_{0} A \oplus P_{1}, \bar{P}=q_{0} A \oplus \bar{P}_{1}$ and denote the element

$$
(\mathrm{p}, \mathrm{q})=\left(\mathrm{p}_{0} \mathrm{a}+\mathrm{p}_{1}, \mathrm{q}_{0} \mathrm{~b}+\mathrm{q}_{1}\right)
$$

The main result of this section is a unitary analogue of (1.4), so we use some of the notation (e.g. A, ϵ, B). Before stating it, we need two lemmas.
(2.6) Lemma: Let V be a (λ, Λ) quadratic module which has (A, B)-hyperbolic rank ≥ 1 at a prime $p \in R_{0}$, for which A_{p} is maximal. Then
(i) V contains a totally isotropic submodule L which has (A,B)-locally free rank ≥ 1 at all
but finitely many primes, and
(ii) if $x \in H(P) \subseteq V_{\perp} H(P)$ with $P \cong A^{r}$ and $f: P \longrightarrow L$ is an A-homomorphism, then there are elements $q_{i} \in \bar{P}, v_{i} \in L(1 \leq i \leq r)$ such that

$$
\Pi \sigma_{\mathrm{q}_{\mathrm{i}}, 0, \mathrm{v}_{\mathrm{i}}}(\mathrm{x})=\mathrm{x}+\mathrm{f}(\mathrm{x})
$$

Proof: (i) Since A_{p} is maximal, we can write $A_{p}=B^{\prime} \times C^{\prime}$ and work over the C^{\prime} factor V^{\prime} of V_{p}. Then V^{\prime} has free hyperbolic rank ≥ 1 and for L_{p} we choose a maximal rank totally isotropic C^{\prime}-free direct summand. Let $L=L_{p} \cap \mathrm{~V}$ and compare it to a direct sum of copies of the A-lattice $C:=\operatorname{ker}\{\epsilon: A \longrightarrow B\}$. Since $C_{p} \cong C^{\prime}$ we may choose a direct sum $N=C^{r}$ with the same $R-r a n k$ as L and so $N_{p} \cong L_{p}$. Therefore N and L are full lattices on the same K -vector space (K is the quotient field of R), and hence agree at all but finitely many primes. If we further avoid all the primes where A is not maximal, then L has (A,B)-free rank ≥ 1 at the remaining primes.
(ii) Let $\left\{q_{1}, \ldots, q_{r}\right\}$ be a basis for \bar{P}. Then there exist $v_{1}, \ldots, v_{r} \in L$ such that $f(x)=$ $\Sigma \bar{\lambda} v_{i}<q_{i}, x>$ for all $x \in P$.
(2.7) Lemma $[3 ;(3.11), p .241]$: Suppose that (C, Λ) is a semisimple unitary algebra over (R, λ). Assume either that (i) P has free rank ≥ 2, or (ii) Λ is ample in C and $\mathrm{P}=\mathrm{C}$. Write $x \in H(P)$ as $x=\left(p_{0} a+p_{1}, q_{0} b+q_{1}\right)$. Then there is an element $\sigma \in$ $\mathrm{H}(\mathrm{E}(\mathrm{P})) \cdot \mathrm{EU}\left(\mathrm{H}(\mathrm{P})\right.$ such that $\sigma(\mathrm{x})=\left(\mathrm{p}_{0} \mathrm{a}^{\prime}+\mathrm{p}_{1}^{\prime}, \mathrm{q}_{0} \mathrm{~b}^{\prime}+\mathrm{q}_{1}^{\prime}\right)$ and $\mathrm{O}(\mathrm{x})=\mathrm{A} \mathrm{a}^{\prime}$. In case (i), $\sigma \in \mathrm{EU}\left(\mathbf{H}\left(\mathrm{P}_{0}\right), \mathrm{Q} ; \mathbf{H}\left(\mathrm{P}_{1}\right)\right)$ where $\mathrm{Q}=\mathrm{P}_{0}$ or $\overline{\mathrm{P}}_{0}$.

Definition: Let ($M,[h]$) be a (λ, Λ)-quadratic module. An element $x \in M$ is $[h]$-unimodular if there exists $\mathrm{y} \in \mathrm{M}$ such that $\langle\mathrm{x}, \mathrm{y}\rangle=1$.

If ($\mathrm{M},[\mathrm{h}]$) is non-singular then an element is [h]-unimodular if and only if it is unimodular.

The following is our main result in the quadratic case.
(2.8) Theorem: Let V be a (λ, Λ)-quadratic module which has (A, B)-hyperbolic rank ≥ 1 at all but finitely many primes, and put $(\mathrm{M},[\mathrm{h}])=\mathrm{V} \perp \mathrm{H}(\mathrm{P})$ where P is A-free of rank 2. Suppose there exists a subgroup $G_{1} \subseteq U(H(P))$ such that $\varepsilon_{*}\left(G_{1}\right)$ acts transitively on the set of unimodular elements in $\mathbf{H}\left(\epsilon_{*}(P)\right)$ of fixed length [$h(x, x)$]. Then

$$
\mathrm{G}=\left\langle\mathrm{G}_{1}, \mathrm{EU}(\mathrm{H}(\mathrm{P}), \mathrm{Q} ; \mathrm{V}), \mathrm{H}(\mathrm{E}(\mathrm{P})) \cdot \mathrm{EU}(\mathrm{H}(\mathrm{P}))\right\rangle
$$

where $\mathrm{Q}=\mathrm{P}$ or $\overline{\mathrm{P}}$, acts transitively on the set of $[\mathrm{h}]$-unimodular elements of a fixed length, and the set of hyperbolic pairs and hyperbolic planes in M .

Proof: The same reduction used in $[3 ;(3.5), \mathrm{p} .236]$ shows that it is enough to prove that G acts transitively on the set of [h]-unimodular elements of a fixed length in M. One can check that G contains all transvections $\sigma_{p_{0}, a, v}$ with $v \in\left(p_{0}\right)^{\perp}=V \oplus H\left(P_{1}\right) \oplus p_{0} A$ (see [3;(3.11),p.143] and [3;(5.6),p.98]).
(i) Let $x=(v ; p, q) \in V \perp H(P)$ be an $[h]$-unimodular element. Since P is free of rank 2 , it follows as in $[3 ; p .181]$ that we may assume (p, q) is unimodular. More precisely, there exists some $y \in M$ such that $\langle x, y\rangle=1$ and so $\langle V, v\rangle+O(p)+O(q)=A$. Choose w $\in \mathrm{V}$ so that $\langle\mathrm{v}, \mathrm{w}\rangle+\mathrm{O}(\mathrm{p})+\mathrm{O}(\mathrm{q})$ contains 1 ; put $\mathrm{c}=\langle\mathrm{v}, \mathrm{w}\rangle$. From (1.1) there is a p_{1} $\in P$ such that $O\left(p+p_{1} c\right)+O(q)=A$. Now apply the transvection $\sigma_{p_{1}, a, w}$ to x. This isometry lies in $\mathrm{EU}(\mathbf{H}(\mathrm{P}), \mathrm{P} ; \mathrm{V})$.
(ii) Since $\epsilon_{*}\left(\mathrm{G}_{1}\right)$ acts transitively on the set of unimodular elements of fixed length in $H\left(\epsilon_{*}(P)\right)$ we may assume that $\epsilon_{*}(x)=\epsilon_{*}\left(v ; p_{0}, q_{0} b\right)$, where $\bar{b} \equiv h_{P}(x, x) \bmod \Lambda$.
(iii) We may now achieve $" \mathrm{O}(\mathrm{x})=\mathrm{Aa}$ over $\mathrm{A}[\mathrm{g}]$ " using (2.7) and the fact that P is free of rank 2. Here $\mathfrak{g}=\Pi\{\mathrm{m} \mid \mathrm{m} \in \mathrm{S}\}$ where S is a finite set in X containing all the primes at which A is not maximal or V does not have (A, B)-hyperbolic rank ≥ 1. Furthermore by
(2.6) we may assume that V contains a non-zero totally isotropic submodule L which has (A,B)-free rank ≥ 1 at all primes not in S. Note that after step (ii), nothing needs to be done over B and (p, q) is still unimodular. This step uses $H(E(P)) \cdot E U(H(P))$.
(iv) Let $\mathfrak{t} \subseteq \mathrm{R}_{0}$ be the largest ideal such that $A \mathfrak{t} \subseteq A a$, and put $X^{\prime}=V(t), X_{\Lambda}^{\prime}=$ $\mathrm{V}\left(t+\mathfrak{A} \Lambda_{\Lambda}\right), \mathrm{d}_{\hat{\Lambda}}=\operatorname{dim} \mathrm{X}_{\dot{\Lambda}}$. Let $\pi: \mathrm{A} \longrightarrow \mathrm{A}^{\prime}=\mathrm{A} / \mathrm{At}$ be the natural projection and note that $\operatorname{dim} X^{\prime}=0$ and $\operatorname{dim} X_{\hat{\Lambda}} \leq 0$. As in $[3 ; p .244]$ we see that $m \notin X^{\prime}$ for all $m \in S$, hence \mathfrak{t} $\neq 0$ and A^{\prime} is semilocal. We have $O\left(p_{1}, q_{1}+q_{0} b\right)+A a=A$ and so $O\left(\pi p_{1}, \pi\left(q_{1}+q_{0} b\right)\right)$ $+\pi(\mathrm{Aa})=\mathrm{A}^{\prime}$. Over $\mathrm{B}^{\prime}=\mathrm{B} / \mathrm{Bt}$ we do nothing. Over the complementary factor C^{\prime} of A^{\prime}, apply (1.2) to find an element $u \in \pi \mathrm{P}_{1}$ such that u projects to zero over B^{\prime} and

$$
\mathrm{O}\left(\pi \mathrm{p}_{1}-\mathrm{ub}\right)+\mathrm{O}\left(\pi \mathrm{q}_{1}\right)+\pi(\mathrm{Aa})=\mathrm{A}^{\prime}
$$

(Note that this already holds over B^{\prime} by step (ii)). Choose $z \in P_{1}$ such that $\pi z=u$ and $\epsilon_{*}(z)=0$. Since t and g are relatively prime, we can choose $z \in\left(P_{1}\right) \cdot g$.

Note that $\sigma_{p_{0}, 0, z} \in \operatorname{EU}(\mathbf{H}(\mathrm{P}))$ by [3;(3.10.2),p.142]. Then

$$
\begin{aligned}
\sigma(x) & =x+p_{0}<z, x>-z<p_{0}, x> \\
& =\left(v ; p_{1}-z b+p_{0}\left(a+<z, q_{1}>\right), q\right)
\end{aligned}
$$

Therefore

$$
O\left(p_{1}-z b\right)+O\left(q_{1}\right)+A\left(a+<z, q_{1}>\right)+A t=A
$$

But $\left.A t \subseteq A a \subseteq O\left(q_{1}\right)+A\left(a+<z, q_{1}\right\rangle\right)$, so after these changes, we may assume that

$$
\begin{equation*}
O\left(p_{1}\right)+O\left(q_{1}\right)+A a=A \tag{2.9}
\end{equation*}
$$

(v) Since πV has hyperbolic rank ≥ 1 over C^{\prime} we can choose an isometry α : $\pi V \cong$ $\mathrm{H}\left(\mathrm{C}^{\prime}\right) \perp \mathrm{W}^{\prime}$ and extend it to an isometry of $\pi \mathrm{V} \perp \mathrm{H}(. \pi \mathrm{P})$ by the identity on $\mathrm{H}(\pi \mathrm{P})$. We now apply the first case of (2.7) to the element $\alpha\left(\pi\left(p_{1}, q_{1}\right)\right) \in H\left(C^{\prime}\right) \perp H\left(\pi P_{1}\right)$ over the semisimple ring C^{\prime}, where $A^{\prime}=B^{\prime} \times C^{\prime}$. This uses an element $\sigma^{\prime} \epsilon$ $\operatorname{EU}\left(\mathbf{H}\left(\pi \mathrm{P}_{1}\right), \pi \mathrm{Q} ; \mathbf{H}\left(\mathrm{C}^{\prime}\right)\right) \quad$ where $\quad \mathrm{Q}=\mathrm{P}_{1}$ or $\overline{\mathrm{P}}_{1}$. By (2.5), $\quad \alpha^{-1} \circ \sigma^{\prime} \circ \alpha \in$ $\operatorname{EU}\left(H\left(\pi \mathrm{P}_{1}\right), \pi \mathrm{Q} ; \pi \mathrm{V}\right)$. Then there exists a lift σ of $\alpha^{-1} \circ \sigma^{\prime} \circ \alpha$ to $\mathrm{U}(\mathrm{M},[\mathrm{h}])$ which lies in
$\operatorname{EU}\left(\mathrm{H}\left(\mathrm{P}_{1}\right), \mathrm{Q} ; \mathrm{V}\right)$. After moving $\mathrm{x}=(\mathrm{v} ; \mathrm{p}, \mathrm{q})$ by σ we get

$$
A=O\left(p_{1}\right)+A t \underline{C} O\left(p_{1}\right)+A a=O(p)
$$

Finally note that after this change p is unimodular and $\epsilon_{*}(x)=\epsilon_{*}\left(v ; p_{0}, q_{0} b\right)$, where $\overline{\mathrm{b}} \equiv \mathrm{h}_{\mathrm{P}}(\mathrm{x}, \mathrm{x}) \bmod \mathrm{A}$.
(vi) Since p is unimodular and $\mathrm{h}(\mathrm{p}, \mathrm{p})=0, \mathrm{H}(\mathrm{P})=\mathrm{H}(\mathrm{pA}) \perp \mathrm{H}(\mathrm{pA})^{\perp}$. If $\mathrm{H}(\mathrm{pA})=$ $\mathrm{pA} \oplus \overline{\mathrm{p}} \mathrm{A}$, where $\overline{\mathrm{p}} \in \overline{\mathrm{P}}$ then $\sigma_{\overline{\mathrm{p}}, \mathrm{d}, \lambda \mathrm{v}} \in \mathrm{EU}(\mathrm{H}(\mathrm{P}), \overline{\mathrm{P}} ; \mathrm{V})$ and

$$
\begin{aligned}
\sigma_{\overline{\mathrm{p}}, \mathrm{~d}, \lambda \mathrm{v}}(\mathrm{x}) & =\mathrm{x}+\overline{\mathrm{p}}<\lambda \mathrm{v}, \mathrm{x}\rangle-\lambda \mathrm{v} \bar{\lambda}\langle\overline{\mathrm{p}}, \mathrm{x}\rangle-\overline{\mathrm{p}} \bar{\lambda} \mathrm{~d}\langle\overline{\mathrm{p}}, \mathrm{x}\rangle \\
& =\left(0 ; \mathrm{p}, \mathrm{q}^{\prime}\right)
\end{aligned}
$$

(vii) We now have a hyperbolic element $x=(p, q) \in H(P)$ with p unimodular. Recall that V contains a non-zero totally isotropic submodule L which has (A, B)-free rank ≥ 1 at all but finitely many primes. We claim that after applying a suitable transformation in G, we can assume that $x=\left(p_{0}, q\right)$, with a possibly different q. For this we need to refer to the proof of (1.4) to find which linear automorphisms of $L \oplus P$ are necessary to move p to p_{0}, and then show that they are induced by isometries in G.

Since our element p starts out in P steps (i) and (ii) of (1.3) are not necessary. Step (iii) requires an element of $E\left(P_{1} A, P_{0}\right)$ which is induced by a suitable element of $H(E(P)) \subseteq$ G. Step (v) uses an elementary transformation given by a homomorphism $f: P_{1} \longrightarrow L$, and these are induced elements of G using (2.6). Finally, in step (vi) we first construct a homomorphism $g_{2}: P_{0} \oplus L \longrightarrow P_{1}$ by splitting $P_{0} \oplus L=z A \oplus N$ where z is unimodular and $h(z, z)=0(\bmod \Lambda)$. To realise τ_{2} by an isometry, we find a unitary submodule $H(z A)$ $\subseteq \mathrm{V}_{\perp} \mathrm{H}\left(\mathrm{P}_{0}\right)$ and then work inside $\mathrm{H}(\mathrm{zA}) \perp \mathrm{H}\left(\mathrm{P}_{1}\right)$. By $\left[3 ;(3.10 .4)\right.$, p.143] $\mathrm{H}\left(\left.\tau_{2}\right|_{z \mathrm{~A} \oplus \mathrm{P}_{1}}\right) \subseteq$ $\operatorname{EU}\left(\mathrm{H}(\mathrm{zA}), \overline{\mathrm{z}} \overline{\mathrm{A}} ; \mathrm{H}\left(\mathrm{P}_{1}\right)\right) \subseteq \mathrm{G}$. The remaining automorphisms $\tau_{3}, \tau_{4}, \tau_{5}$ are in $\mathrm{E}\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right)$ and τ_{6} is defined using $g_{6} \in \operatorname{Hom}\left(P_{1}, L\right)$. These are induced by elements of $H(E(P))$ or $\operatorname{EU}(\mathrm{H}(\mathrm{P}), \stackrel{\rightharpoonup}{\mathrm{P}} ; \mathrm{V})$ using (2.6).

Write $\mathrm{q}=\mathrm{q}_{0} \mathrm{~b}-\mathrm{q}_{1} \in \mathrm{q}_{0} \mathrm{~A} \oplus \overline{\mathrm{P}}_{1}$. The transvection $\sigma_{q_{1}, 0, q_{0}}$ belongs to $\mathrm{EU}(\mathrm{H}(\mathrm{P}))$ by
[3;(3.10.1), p.142], and

$$
\sigma x=x-q_{1}<q_{0}, x>-q_{0} \bar{\lambda}<q_{1}, x>
$$

Note that $\left\langle q_{1}, x\right\rangle=0$ since x has no component in \bar{P}_{1} and $\left\langle q_{0}, x\right\rangle=\left\langle q_{0}, p_{0}\right\rangle=1$, so σx $=x+q_{1}=\left(p_{0}, q_{0} b\right)$. We are now finished if x was unimodular. If x was a hyperbolic element, then $\mathrm{h}(\sigma \mathrm{x}, \sigma \mathrm{x})=\mathrm{h}\left(\mathrm{p}_{0}, \mathrm{q}_{0} \mathrm{~b}\right)=\overline{\mathrm{b}}(\bmod \Lambda)$, and so $\overline{\mathrm{b}} \in \Lambda$, since x and $\sigma(\mathrm{x})$ are isotropic.

In the hyperbolic plane $p_{0} A+q_{0} A$, the element $X_{+}(-b)=\left[\begin{array}{cc}I & -b \\ 0 & I\end{array}\right] \in \operatorname{EU}\left(H\left(P_{0}\right)\right)$ transforms $p_{0}+q_{0} b$ into p_{0} (the notation X_{+}is from [3; p.130]).

Proof of Theorem 2: The argument is the same as for [3;(3.6), p.238] using our (2.8).
(2.10) Lemma: The group $\mathrm{H}\left(\mathrm{GL}_{2}(\mathbb{Z})\right) \cdot \mathrm{EU}(\mathrm{H}(\mathbb{Z} \oplus \mathbb{Z}))$ acts transitively on unimodular elements in $H(\mathbb{Z} \oplus \mathbb{Z})$ of fixed length.

Proof: Let $P=p_{0} \mathbb{I} \oplus p_{1} \mathbb{I}$ (with dual basis q_{0}, q_{1} for $\left.\bar{P}\right)$ and let $x=\left(p_{0} a, p_{1} b ; q_{0} c, q_{1} d\right)$ be a unimodular element in $H(P)$. We may assume that $d=0$ after applying an element of $H(E(P))$, so there exists an integer r such that $b+r c$ is a unit $(\bmod a)$. Then

$$
X_{+}\left(\begin{array}{cc}
0 & -\lambda r \\
r & 0
\end{array}\right)(x)=\left(p_{0} a, p_{1}(b+r c) ; q_{0} c, 0\right)
$$

so that $O\left(p_{0} a\right)+O\left(p_{1}(b+r c)\right)=\mathbb{I}$. We may therefore assume in the beginning that for x $=\left(p_{0} a, p_{1} b ; q_{0} c, q_{1} d\right)$, a and b are relatively prime. Using a suitable element of $H(E(P))$ we get $x=\left(p_{0}, 0 ; q_{0} c, q_{1} d\right)$ and after applying $X_{-}\left(\begin{array}{cc}0 & \lambda d \\ -d & 0\end{array}\right)$ the result is $\left(p_{0}, 0 ; q_{0} c, 0\right)$, where $[c]$ is the length of x.

§ 3. Metabolic Forms

One way to obtain quadratic modules V with (A, B)-hyperbolic rank ≥ 1 at all but finitely many primes is to assume that V has a submodule $\mathrm{H}(\mathrm{L})$ where L has (A, B)-free rank ≥ 1. A generalization of this would be to assume that V contains a "metabolic form" on L. In this section we define a suitable notion of metabolic forms general enough for our applications elsewhere. The notation and conventions of $\S 2$ will be used.

If N is an A-lattice and $\mathrm{g}: \overline{\mathrm{N}} \times \overline{\mathrm{N}} \longrightarrow \mathrm{A}$ is an R-bilinear form, let

$$
[\mathrm{g}]=\left\{\mathrm{g}_{\tau} \mid \mathrm{g}_{\tau}\left(\phi, \phi^{\prime}\right)=\mathrm{g}\left(\phi, \phi^{\prime}\right)+<\phi, \tau\left(\phi^{\prime}\right)>, \tau \in \operatorname{Hom}_{\mathrm{R}}(\overline{\mathrm{~N}}, \mathrm{~N})\right\}
$$

Any $\theta \in \operatorname{Ext}_{\mathrm{A}}^{1}(\overline{\mathrm{~N}}, \mathrm{~N})$ defines an extension

$$
\begin{equation*}
0 \longrightarrow \mathrm{~N} \xrightarrow[\mathrm{i}]{\mathrm{E}} \stackrel{\text { i}}{\mathrm{N}} \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

of A-lattices which splits over R. We say that $[\mathrm{g}]$ is θ-sesquilinear if there is a cocycle $\gamma \in$ $\operatorname{Hom}_{R}\left(\overline{\mathrm{~N}}{ }^{\otimes}{ }_{R} A, N\right)$ representing θ such that for all $a \in A$:

$$
\begin{equation*}
\mathrm{g}\left(\phi \mathrm{a}, \phi^{\prime}\right)=\overline{\mathrm{a}} \mathrm{~g}\left(\phi, \phi^{\prime}\right) \tag{3.2}
\end{equation*}
$$

$$
\mathrm{g}\left(\phi, \phi^{\prime} \mathrm{a}\right)=\mathrm{g}\left(\phi, \phi^{\prime}\right) \mathrm{a}-<\phi, \gamma\left(\phi^{\prime}, \mathrm{a}\right)>.
$$

Note that any cocycle γ satisfies the relation:

$$
\gamma\left(\phi, a_{1} a_{2}\right)=\gamma\left(\phi, a_{1}\right) a_{2}+\gamma\left(\phi a_{1}, a_{2}\right)
$$

and serves as a way to specify the A-module structure E on the R -module $\mathrm{N} \oplus \overline{\mathrm{N}}$ given by $\theta:$ for $(\mathrm{x}, \phi) \in \mathrm{N} \oplus \overline{\mathrm{N}}$ define

$$
\begin{equation*}
(\mathrm{x}, \phi) \cdot \mathrm{a}=(\mathrm{xa}+\gamma(\phi, \mathrm{a}), \phi \mathrm{a}) \tag{3.3}
\end{equation*}
$$

If we vary the choice of representative $\mathrm{g}_{\tau} \in[\mathrm{g}]$, then the new γ is $\gamma_{\tau}=\gamma+\delta \tau$, where

$$
(\delta \tau)(\phi, \mathrm{a})=\tau(\phi) \mathrm{a}-\tau(\phi \mathrm{a}),
$$

for some $\tau \in \operatorname{Hom}_{\mathrm{R}}(\overline{\mathrm{N}}, \mathrm{N})$, and all $a \in \mathrm{~A}$. Then $\mathrm{g}_{\tau}\left(\phi, \phi^{\prime}\right)=\mathrm{g}\left(\phi, \phi^{\prime}\right)+<\phi, \tau\left(\phi^{\prime}\right)>$ satisfies (3.2). Given an extension ($\mathrm{N}, 0$) and a θ-sesquilinear form [g], we define the metabolic (λ, Λ)-quadratic form $\operatorname{Met}(\mathrm{N}, \theta,[\mathrm{g}])=(\mathrm{E},[\mathrm{q}])$ as follows: pick a compatible γ, g
satisfying (3.2) and set

$$
\mathrm{q}\left((\mathrm{x}, \phi),\left(\mathrm{x}^{\prime}, \phi^{\prime}\right)\right)=<\phi, \mathrm{x}^{\prime}>+\mathrm{g}\left(\phi, \phi^{\prime}\right)
$$

It is easy to check that q is sesquilinear in the usual sense if $[\mathrm{g}]$ is θ-sesquilinear.

These metabolic forms are non-singular when they exist but an arbitrary extension need not admit any such form. Suppose that N is reflexive and let τ denote the involution on $\operatorname{Ext}{ }_{\mathrm{A}}^{1}(\overline{\mathrm{~N}}, \mathrm{~N})$ given by dualizing exact sequences $(\mathrm{N}, \theta) \mapsto(\mathrm{N}, \theta)^{*}$. An extension (N, θ) is λ-selfdual if N is reflexive and there is a commutative diagram

$$
0 \longrightarrow \mathrm{~N} \text { i } \mathrm{E} \text { i} \overline{\mathrm{N}} \longrightarrow 0
$$

$$
\begin{equation*}
0 \longrightarrow \mathrm{~N} \xrightarrow[\dot{i}^{*}]{ } \stackrel{\downarrow_{\mathrm{E}}^{\mathrm{E}} \xrightarrow[\mathrm{i}^{*}]{ } \| \overline{\mathrm{N}} \longrightarrow 0}{ } \tag{3.4}
\end{equation*}
$$

If $h^{*}=\lambda h$ then h is the adjoint of a metabolic hermitian form on E. We will define a homomorphism

$$
\rho:\left\{(\mathrm{N}, \theta)^{*}=\lambda(\mathrm{N}, \theta)\right\} \subseteq \operatorname{Ext}_{\mathrm{A}}^{1}(\overline{\mathrm{~N}}, \mathrm{~N}) \longrightarrow \mathrm{H}^{1}\left(\mathbb{Z} / 2 ; \operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{~N}}, \mathrm{~N})\right)
$$

where $\operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{N}}, \mathrm{N})$ has the involution $\alpha \mapsto \bar{\lambda} \alpha^{*}$. We will show that $\rho(\mathrm{N}, \theta)$ is the obstruction for finding a λ-self-dual map h. Choose an R-section $s: \bar{N} \longrightarrow E$ inducing a cocycle γ and identify $\mathrm{E}=\mathrm{N} \oplus \overline{\mathrm{N}}$ as above. Then the lower sequence is split over R by $\mathrm{s}{ }^{*}$ leading to an identification of $\overline{\mathrm{E}}=\mathrm{N} \oplus \overline{\mathrm{N}}$. In these coordinates, for any A-map h making the diagram (3.4) commute,

$$
\mathrm{h}(\mathrm{x}, \phi)=\left(\mathrm{x}+\mathrm{s}^{*} \mathrm{hs}(\phi), \bar{\lambda} \phi\right)
$$

and similarly

$$
\mathrm{h}^{*}(\mathrm{x}, \phi)=\left(\lambda \mathrm{x}+\mathrm{s}^{*} \mathrm{~h}^{*} \mathrm{~s}(\phi), \phi\right)
$$

Now $\left(h^{*}\right)^{-1} o \lambda h(x, \phi)=(x+\rho(h)(\phi), \phi)$ where $\rho(\mathrm{h})=\mathrm{s}^{*} \mathrm{hs}-\bar{\lambda}^{*}{ }^{*} \mathrm{~h}^{*} \mathrm{~s}$. Note that $\rho(\mathrm{h})$ is independent of the choice of the section s. Since $\left(h^{*}\right)^{-1} \circ \lambda h$ is an A-map, we can check using (3.3) that $\rho(\mathrm{h})$ is also an A-map. Similarly, by computing $\mathrm{h}^{*} \circ\left(\bar{\lambda} \mathrm{~h}^{-1}\right)$ and comparing with the formula for the dual, we see that $\rho(\mathrm{h})^{*}=-\lambda \rho(\mathrm{h})$. Moreover the cohomology class

$$
[\rho(\mathrm{h})] \in \mathrm{H}^{1}\left(\mathbb{Z} / 2 ; \operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{~N}}, \mathrm{~N})\right)
$$

is independent of the choice of h . Define $\rho(\mathrm{N}, \theta)=[\rho(\mathrm{h})]$ for any h making the diagram (3.4) commute.
(3.5) Proposition: If N is a reflexive A-module and (N, θ) is a self-dual extension, then (N, θ) admits a metabolic λ-hermitian form if and only if $\rho(\mathrm{N}, \theta)=0 \in$ $\mathrm{H}^{1}\left(\mathbb{Z} / 2 ; \operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{N}}, \mathrm{N})\right)$.

Note that a metabolic λ-hermitian form is unique up to isometry if it admits a quadratic refinement. We want to identify the obstruction to obtaining a quadratic refinement for a given metabolic λ-hermitian form h. Let
$\eta:$ ker $\rho \longrightarrow$ coker $\left\{\hat{H}^{0}\left(\not Z / 2 ; \operatorname{Hom}_{A}(\overline{\mathrm{~N}}, \mathrm{~N})\right) \longrightarrow \dot{\mathrm{H}}^{0}\left(\not \square / 2 ; \operatorname{Hom}_{\mathrm{R}}(\overline{\mathrm{N}}, \mathrm{N})\right)\right\}$. be the homomorphism defined by $\eta(\mathrm{h})=\left[\mathrm{s}^{*} \mathrm{hs}\right]$.
(3.6) Proposition: Suppose that (N, θ) admits a metabolic λ-hermitian form. Then (N, θ) admits a metabolic (λ, Λ) -quadratic form with respect to the minimal form parameter if and only if $\eta(N, \theta)=0$.

Suppose now that $\mathrm{R}=\mathbb{I}$ and $\mathrm{A}=\mathbb{Z} \pi$ where π is a finite group. Then each lattice L over A is reflexive. Let $N=\Omega^{k} \mathbb{Z}$, the kernel of a projective resolution F_{*} of \mathbb{Z} of length k (see (0.1) for the case $k=3$). We will show that every element of $\operatorname{Ext}_{A}^{1}(\bar{N}, N)$ is $(-1)^{k+1}$ -self-dual.
(3.7) Lemma: Let $\mathrm{N}=\Omega^{\mathrm{k}} \not \underline{ }$. The involution τ given by dualizing exact sequences induces multiplication by $(-1)^{\mathrm{k}+1}$ on $\operatorname{Ext}_{\mathrm{A}}^{1}(\overline{\mathrm{~N}}, \mathrm{~N})$.

Proof: Let $\overline{\mathrm{X}}$ be a projective resolution of $\overline{\mathrm{N}}$ and X the dual co-resolution of N . We have two isomorphisms $\alpha, \beta: \operatorname{Ext}^{1}(\overline{\mathrm{~N}}, \mathrm{~N}) \cong \mathrm{H}^{1}\left(\operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{X}}, \mathrm{X})\right)$ comparing an extension with $\overline{\mathrm{X}}$ or

X respectively. Note that over $\mathrm{A}=\mathbb{Z} \pi$ we can use X instead of an injective co-resolution for computing $\operatorname{Ext}^{\mathrm{i}}(\overline{\mathrm{N}}, \mathrm{N})$. It is not difficult to see that $\alpha=-\beta$. Let t be the involution on $\mathrm{H}^{1}\left(\operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{X}}, \mathrm{X})\right)$ induced by dualization. By construction, $\alpha \tau=\mathrm{t} \beta$ implying $\alpha \tau \alpha^{-1}=-\mathrm{t}$.

Note that $\operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{X}}, \mathrm{X}) \cong \operatorname{Hom}_{\mathbb{Z}}(\overline{\mathrm{X}}, \mathrm{X}){ }_{\mathrm{A}}{ }^{\underline{I}}$, and that $\operatorname{Hom}_{\mathbb{Z}}(\overline{\mathrm{X}}, \mathrm{X})$ is a co-resolution of $\mathrm{Hom}_{I}(\overline{\mathrm{~N}}, \mathrm{~N})$. Thus

$$
\mathrm{H}^{\mathrm{i}}\left(\operatorname{Hom}_{\mathrm{A}}(\overline{\mathrm{X}}, \mathrm{X})\right)=\mathrm{H}^{\mathrm{i}}\left(\operatorname{Hom}_{\mathbb{Z}}(\overline{\mathrm{X}}, \mathrm{X}) \otimes_{\mathrm{A}} \mathbb{Z}\right)=\mathrm{H}^{\mathrm{i}}\left(\pi, \mathrm{~N} \otimes_{\mathbb{Z}} \mathrm{N}\right)
$$

and under these identifications t corresponds to the involution induced by the flip map s : $x \otimes y m y \otimes x$ on $N \otimes N$.

Now we follow an argument suggested by R. Swan. Extend the projective resolution F defining N to a projective resolution $\hat{\mathrm{F}}$ of \mathbb{Z}. Let f be the chain map on $\hat{\mathrm{F}}{ }_{\mathbb{Z}} \hat{\mathrm{F}}$ mapping $x \otimes y \mapsto(-1)^{\operatorname{deg}(x) \operatorname{deg}(y)} y \otimes x$. Since f induces the identity on \mathbb{Z} it induces the identity on all the derived functors. We have the similar chain map on $F \otimes_{[} F$ which on $F_{2 k}=N \otimes N$ is $(-1)^{\mathrm{k}}$ s. Now we consider $\mathrm{F} \otimes_{\mathbb{Z}} \mathrm{F}$ as part of a co-resolution of $\mathrm{N} \otimes \mathrm{N}$ ending in \mathbb{Z}. Similarly we consider $\hat{F} \otimes_{\mathbb{l}} \hat{\mathrm{F}}$ a part of a complete co-resolution of \mathbb{I}. Then

$$
\mathrm{H}^{1}\left(\pi ; \mathrm{N} \otimes_{\mathbb{Z}} \mathrm{N}\right)=\mathrm{H}^{1}\left(\operatorname{Hom}_{\mathrm{A}}\left(\mathbb{Z}, \mathrm{~F} \otimes_{\mathbb{Z}} \mathrm{F}\right)\right) \cong \mathrm{H}^{1}\left(\operatorname{Hom}_{\mathrm{A}}\left(\mathbb{Z}, \hat{\mathrm{~F}} \otimes_{\mathbb{Z}} \dot{\mathrm{F}}\right)\right)
$$

where the last isomorphism is induced by the obvious chain map $\hat{F} \longrightarrow F$. Thus

$$
\alpha \tau \alpha^{-1}=-s=(-1)^{\mathrm{k}+1_{\mathrm{f}}^{*}}=(-1)^{\mathrm{k}+1}
$$

(3.8) Example: Now we restrict to groups π of odd order. Since $\operatorname{Ext} \frac{1}{I} \pi(\bar{N}, N)$ then has odd order $\rho(\mathrm{N}, \theta)$ and $\eta(\mathrm{N}, \theta)$ vanish for each λ-self-dual extension. In particular for $\mathrm{N}=\Omega^{\mathrm{k}} \bar{I}$, each extension (N, θ) admits a metabolic (λ, Λ)-quadratic form whose λ-symmetrization is unique up to isometry.

References

[1] Bak, A., "The stable structure of quadratic modules", Thesis, Columbia University, 1969.
[2] Bass, H., Algebraic K-Theory, W.A. Benjamin, New York 1968
[3] Bass, H., "Unitary algebraic K-theory", Algebraic K-Theory III: Hermitian K-theory and Geometric Applications. Lect. Notes in Math. 343, 57-209, Springer Verlag, 1973.
[4] C.W.Curtis and I.Reiner. Representation Theory of Finite Groups and Associative Algebras. John Wiley \& Sons. New York, 1962.
[5] Hambleton, I., Kreck, M., "On the classification of topological 4-manifolds with finite fundamental group", Math. Ann. 280 (1988), 85-104.
[6] Hambleton, I., Kreck, M., "Smooth structures on algebraic surfaces with cyclic fundamental group", Invent. Math. 91 (1988), 53-59.
[7] Jacobinski, H., "Genera and decompositions of lattices over orders", Acta. Math. 121 (1968), 1-29.
[8] Swan, R.G., "Projective modules over group rings and maximal orders", Annals of Mathematics 76 (1962), 55-61.
[9] Swan, R. G., "K-theory of finite groups and orders", Notes by E.G.Evens. Lect. Notes in Math. 149, Springer-Verlag, Berlin 1970.
[10] Swan, R.G., "Projective modules over binary polyhedral groups", J. reine u. angew. Math. 342 (1983), 66-172.
[11] Vaserstein, L. N., "Stability of unitary and orthogonal groups over rings with involution", Math. Sbornik 81 (1970), 328-351.

McMaster University,
Hamilton, Ontario, Canada

Max-Planck Institut für Mathematik
Bonn, West Germany

December 15, 1989

[^0]: 1 Partially supported by NSERC grant A4000

[^1]: 1 Partially supported by NSERC grant A4000

