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On the Cancellation of Hyperbolic Fonns over

Orders in Semisimple Algebras

I. Hambleton 1 and M. Kreck

Let R be a Dedekind domain and K its field of quotients. The purpose of this note is

to obtain an improvement in the stable range for eaneellation of Iattiees over R~:>rders in

separable K-algebras, assuming some Ioeal information about the lattices. Reeall that a

lattice over an R-order A is an A-module which is projective as an R-module. Our results

are based on the work of H. Bass [2],[3], A. Bak [1] and L. N. Vaserstein [11].

The g~nera1 stable range condition for cancellation of Iattices over orders is Iree rank

~ 2 for the linear case [2;{3.5), p.184], and free hyperbolic rank ~ 2 for the unitary case

[3;{3.6),p.238]. To state our condition, let A and B be orders in separable algebras over K

[4;71.1,75.1], and suppose that there is a surjective ring homomorphism f: A~ B. We

say that a finitely generated A-module L has (A,B)-jree rank ~ 1 at a prime pER, if there

exists an integer r such that (Br
fB L)p has free rank ~ 1 over A~,. Here Al' denotes the

localized order A ~ R(p)'

Theorem 1

Let L be an A-Iattice and put M = L fB A. Suppose that there exists a surjection of

orders f: A -----+ B such that L has (A,B)-free rank ~ 1 at a1l but finitely many primes. If

GL2(A) acts transitivelyon unimodular elements in B fB B, then for any A-Iattice N which

is locally a direct summand of Mn for same integer n, M fB N ~ M' fB N implies M ~ M'.
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For the corresponding result in the unitary case there is a similar condition involving

hyperbolic rank ~ 1 and a locally (A,B)-free submodule. A quadratic module V has (A,B)

hyperbolic rank ~ 1 at a prime pER if there exists an integer r such that (H(Br) «I V)p has

free hyperbolic rank ~ lover Ap' The other terms used in the statement are defined

precisely in §2 or in. (3jpp. 80, 87]. Note in particular that a unitary module is a

(A,A)-quadratic form on a finitely-generated projective A-module. A totally isotropie

submodule is one on which the quadratic form is identically zero.

Theorem 2

Let V be a (A,A)-quadratic module over a unitary (R,A) algebra (A,A) and put

(M,(h]) = V .L H(A). Suppose that there exists a surjection of orders f: A --+ B such that

V has (A,B)-hyperbolic rank ~ 1 at all but finitely many primes. If U2(A) acts transitively

on the set of unimodular elements in H(B $ B) of fixed length, then for any unitary module

N, M.L N ~ M' .L N implies M ~ M'.

In our work (5], [6] on the topological c1assification of 4-manifolds and algebraic

surfaces we encounter locally (111fJl)-free modules, where 11 7r is the integral group ring of a

finite group. We check that for B = 11, the conditions on "transitive action ll in Theorems 1

and 2 are satisfied (see (1.4) and (2.10)), hence can be omitted from the statements.

For example consider the lattices arising from exact sequences

(0.1) 0 -----t L -----t C2 -----t Cl -----t Co -----t 11 -----t 0

with Ci finitely generated projective 711f modules. Such lattices with minimal 11-rank need

not contain any free direct summands over 111f, but rationally contain all the

representations of 1f except the trivial one. The simplest case occurs for 1r cyclic and L =

ker {f: 111r -----t 71} the augmentation ideal.
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More generally , if M is a l11r-lattiee such that M 8 Q is a free module over ~[P] for

sorne p <4 11'", then M is (7111) 71 (11'"/p])-loeally free at all but finitely many primes.

In § 3 we diseuss metabolie forms over group rings 711r) leading to examples of (A,B)

hyperbolie rank ~ 1 forms whieh contain no hyperbolie summand.

The purely algebraie results of this paper have eonsequenees in several different

geometrie situations. These will be deseribed e1sewhere.

§ 1. The Linear Case

By an 11 A-modulell we will mean a finitely generated right A-module. As above we

suppose that f: A -+ B is a surjeetive ring homomorphism of R-orders in (possibly

different) separable K-algebras. If M is an A-lattice and N = M 8 AB := f*(M), we get

an induced homomorphism

f* : GL(M) ----. GL(N).

If M = MI fB M2 ia a direet surn splitting of an A-module then E(M1, M2) denotes the

subgroup of GL(M) generated by the e1ementary automorphisms ((2iP.182]). Recall that

for an element x E M, 0M(x) is the left ideal in A generated by

{ f(x) I fE ROffiA(M, A) }.

If 0M(x) = A we say that xis unimodular.

The following result of Bass is an essential ingredient in the proofs of the eaneellation

theorems.

(1.1) Theorem [2;(3.1), p.178]: Let Q be a projeetive A-module and P r; A fB A. For auy

unimodular element. x = (p,q) E P fB Q, there exists an A-homomorphism f: Q~ P such

that 0p(p + f(q)) = A.



-4-

We also need two other facts.

(1.2) Lemma: Let M be a finitely generated right A-module, projective over R, and A' =

AIAt for an ideal t ERsuch that the localized order At is maximal. Then the induced map

HOIDA(M, A) ------. HomA,(M', A')

is surjective, where M' = MIMt.

Proof: First note that Mt ia projective over Ar Since A' = AtlAtt we can lift any map

f': M' -----+ A' to f: Mt ------. Ar After restricting to M ~ Mt and multiplying by an

element r E R prime to t, we obtain a lifting of r'f'. But r' (the image of r in R') is a unit

in A'.

(1.3) Lemma (3;(2.5.2),p.225]: If C is a semisimple algebra, then for each aJ b E C there

exists r E C such that C(a + rb) = Ca + Cb.

We now corne to the rnain result of the section.

(1.4) Theorem: Let A be an R-order in a separable K-algebra. Suppose that M = L lB P is

an A-lattice, where P = poA «9 PIA is free of rank 2 and L is (AJB)-free of rank ~ 1 at all

hut finitely many primes. Let GO ~ GL(P) be a Bubgroup Buch that f*{GO) acts transitively

on the unimodular elements in f*{P). Then the group

G = < GO' E{POA, L lD PIA), E(P1A, L lD POA» ~ GL{M)

actB transitivelyon the unimodular elements in M.

(1.5) Remark: In same cases there may be na subgroup GO with the required property.

For example, if B = 711r is the integral group ring of a finite group 71'", then GL2{B) acts
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transitivelyon unimodular elements in B lB B if and only if the relation I lB B ~ B fB B for

a projective ideal I implies I ~ B. In [8;Thm.3] Swan shows that this is not true for a

certain ideal in 711r where 1(" is the generalized quaternion group of order 32. Later in [10],

extencling the wark of Jacobinski [7], Swan shows .that cancellation in this sense faila for ll1f

if and only if 1f has a binary polyhedral quotient group in an explicitly given list.

Proof: We divide the proof into several parts. Let x = v + P E M be a unimodular

element, where p = POa + PIb E P and v E L. We move x first into P to contral the

projection f*(X), and then use the stability assumption on L to move x so that its

component in POA $ L is unimodular. Finally we move x to PO'

(i) Since M has free rank ~ 2 we may now perform the first step, to get v = 0, so that x

starts out in P. To see this note that O(p) + O(v) = A, so there exists c E O(v) such that

O(p) + c contains 1. Apply (1.2) ta A $ P and the element (c, p) to find z E P with O(p

+ zc) = A. There exists g: L -+ P with g(v) = zc, and f: P -+ L with f(p + zc) = v.

Extend by zero on the complements. Then

r(x) = (l-f) (1 + g) (x) E P,

and TE E(P, L) ~ < E(pOA, L $ PIA), E(PIA, L lD POA) > ~ G.

(ii) Since GO acts transitivelyon unimodular elements in f*(P) = B lB B, we may assume

that f*(X) = f*(PO)'

(iii) Write x = POa + PIb, so that O(x) = Aa + Ab. Consider the quotient ring Ä =

A/gA where 9 is the ideal in R generated by all the 'primes PER at which A is not

maximal, or L does not ~ave (A,B)-free rank ~ 1. Then we claim that, after changing x by .

an element from G if necessary,

(1.6) O(x) = Ää = Ä, and f*(X) = f*(PO)

or a projects to a unit in Ä without disturbing step (ii). Ta see this note that the quotient

ring Ä = C )( C', where C is the smallest direct factor rnapping onto B by E. But by

lifting idempotents, f induces an isomorphism B/Rad B ~ G/Rad C. Therefore the C



-6-

component of a is already a unit since a projects to I in the semisimple quotient. Over the

other factor we can apply [2;(2.8),p.87]: there exists u E A, such that the element a + ub

projects to a unit in C' and to I in B. 1et g: PIA ----t POA ~ M such that g(PI) = pou.

Extend g to a map from M to M by zero on the complement. Then T = 1 + gis an element

of G and T(X) has the desired properties (1.6).

(iv) From step (iii) we have Aa + gA = A and so (Ab)p = Ap for all primes p dividing

g. Therefore if t ~ R denotes the largest ideal such that At ~ Aa , we see that p does not

divide t for all primes p dividing g and in particu1ar t f O.

(v) Now we praject to the semilocal ring A' = AIAt, which is the quotient of a maximal

order At and so the projection e: A' ---+ B' splits and A' = B' )( C'. Since over the B'

factor a projects to I, we have (Aa)' = A'. Over the complementary factar C' we use a

suitable TE E(PiC', L'), so that after applying T we achieve the candition

(1.7) A'a' + O(v') = A'

aver both factors of A'. This is an application of (1.2) to the camponent of x in L' ED PiC,

using the fact that C' ~ L'. The necessary homomorphism g E HornA' (P i' L'), which is

the identity aver B', ca.n be lifted to HornA(P l' L) since PI is projective and extended to

M by zero on 1 Ei POA.

(vi) We now lift the relation (1. 7) to A using (1.2) and abtain

Aa + O(v) + At = A.

But At ~ Aa so we can assume that v + POa is unimodular.

(vii) The argument of [2; pp 183-184] now shows that there is an element T

E E(PIA, POA Ei 1) such that r(x) = PO' In our situation start with the unimodular

element z = v + POa E L fB PO' Write L fB Po = zA Ei N and let g2(z) = Pl(l-a-b), with

g2(N) = O. Let g3(Pl) = PO' g4(PO) = PI(a-l), g5(PO) = PI' g6(Pl) = -v, where the

homomorphisms are extended to the obvious complements by zero. If Ti = 1 + ~, then

TBTST4T3T2(X) = PO'

This campletes the proof.
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Proof of Theorem 1: Ey Swan's Cancellation Theorem ([9i 9.7] and the discU8sion on

[9jp.169J), M $ A ~ M' $ A since M $ A is the direct sum oi two iaithiul modules. We

apply (1.4) following [2jIV,3.5] to cancel the free modules.

Remark: The method does not seem to prove either Swan's or Jacobinski's cancellation

theorems independently.

§ 2. The Unitary Case

We adopt the notation and conventions of Bass in [3; pp.61-90,233] for (A,A)

quadratic modules over a unitary (R,A)-algebra (A,A). A unitary module is a non-singular

(A,A)-quadratic form on a finitely generated projective A module. Since R is a Dedekind

domain, X = max(RO) has dimension d = 1, where Ra ~ R is tbe subring generated by all

norms tt (t ER). Note that AÄ = 1. The form parameter A is ample at m E X if given a, b

E A[m], the semisimple quotient of Am' there exists r E A[m] such that

(2.1) A[m](a + rb) = A[m]a + A[m]b.

In [3;§2,P.218ff] there ia a discussion of this condition. If R = 7J. and A =

{ a-Aä I a E A }, the minimal form parameter, then A is not ample at any prime when A =

1 and A is not ample at 2 if " = -1. Let 21A ~ RObe the ideal such that A is ample at all m

;. V(21A) = { P E X I 21A ~ P}, and dA the dimension of the closed set V(21A) in X. Note

that dA ~ 1 for all A, and dA ~ 0 when A is ample at all but finitely many primes.

If (M,[hJ) is any (A,A)-quadratic module over A [3iP.80], then a transvection [3iP.91]

ia a unitary automorphism a = a : M~ M given byu,a,v
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o{x) = x + u<V,x> - V'x<U,x> - u'xa<u,x>,

where u, v e M and a E A satisfy the conditions

(2.3) h(u,u) E A, <u,v> = 0, h{v,v) =a (mod A).

Note that <x,Y> = h(x,y) + t\h(y,x) ia the associated hermitian form. For any submodule

L ~ M,

L1.={xeM I <x,y>=OforallyeL}.

If M = M' 1. M· is an orthogonal direct SUffi, with L' ~ M' a totaUy isotropie submodule

(Le. h(x,y) = 0 (mod A) for all x, y E L'), then we define

(2.4)

(2.5)

EU(M I L" M·) = < (J I UE L' and v EM· >." u,a,v

We will need the relation (see [3;p.92]):

if a :(M,[h]) ---+ (M' ,[h']) is an isometry, then

-1
Q'O(J oa = (J'

u,a,v ~,a,crv

where (J E U(M,[hJ) and (7' E U(M' ,[h/]).

The hyperbolic rank of a (t\,A)-quadratie module (M,[hJ) is ~ 1 if (M,[h]) =

H(A) .L (M' ,[h ']), where H(P) denotes the hyperbolie form on P $ P [3;p.82] and elements

denoted by pairs x = (p,q) with pEP, q E P. Here we are using the notation P for the

*dual module P regarded as a right A-module in the nsual way. Since we will always be

working with P eontaining at least one A-free direet summand, we will often write P =

POA $ P l' P = qoA $ P1 and denote the element

(p,q) = (pOa + pp qOb + q1)'

The main result of tms seetion is a unitary analogue of (1.4), so we use some of the

notation (e.g. A, f, B). BefoIe stating it , we need two lemmas.

(2.6) Lemma: Let V be a (t\,A) quadratie module whieh has (A,B)-hyperbolie rank ~ 1 at

a prime P E RO' for which Ap is maximal. Then

(i) V contains a totally isotropie submodule L which has (A,B)-locally free rank ~ 1 at all
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but finitely many primes, and

(ii) if x E H(P) ~ V .L H(P) with P ~ Ar and f: P ----+ L is an A-homomorphism, then there

are elements qi E P, vi E L (1 ~ i ~ r) such that

TT a 0 (x) = x + f(x).
qi' ,vi

Proof: (i) Since Ap is maximal, we can write Ap = B' )C C, and work over the C, factar

V' of Vp' Then V, has free hyperbolic rank ~ 1 and for Lp we choose a maximal rank

totally isotropie C I-free direct summand. Let L = Lp nV and carnpare it to a direct sum

of copies of the A-lattice C :=ker{ f: A ----t B}. Since Cp ~ C, we may choose a direct

surn N = Cr with the same R-rank as L and so Np ~ Lp' Therefore N and L are fulliattices

on the same K-vector space (K is the quotient field of R), and hence agree at all but

finitely many primes. If we further avoid all the primes where A is not maximal, then L

has (A,B)-free rank ~ 1 at the remaining primes.

(ii) Let {ql'".,Qr} be a basis for P. Then there exist VI' "., vr E L such that f(x) =

E Äv.<q., x> for all x E P.
1 1

(2.7) Lemma [3;(3.11),p.241]: Suppose that (C,A) is a semisimple unitary algebra over

(R,A). Assume either that (i) P has free rank ~ 2, cr (ii) A is ample in C and P = C.

Write x E H(P) as x = (pOa + pl'qob +ql)' Then there is an element u E

H(E(P)). EV(H(P) such that a(x) = (POa ' + Pi ,Qob' + qi) and O(x) = Aa I. In case (i),

u E EV(H(P0)' Q; H(P1)) where Q = Po or PO'

Definition: Let (M, [h]) be a (A,A)-quadratic module. An element x E M is [h]-uniID?dular

if there exists y E M such that <x, y> = 1.

If (M,[h]) is non-singular then an element is [h]-unimodular if and ooIy if it is unimodular.
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The following is our main result in the quadratic case.

(2.8) Theorem: Let V be a (..\,A)-quadratic module which has (A,B)-hyperbolic rank ~ 1

at all hut finitely many primes, and put (M, [hJ) = V .L H(P) where P is A-free of rank 2.

Suppose there exists a subgroup G1 ~ U(H(P)) such that f*(G 1) acts transitivelyon the set

of unimodular elements in H( f*(P)) of fixed length [h(x,x)). Then

G = < Gi' EU(H(P), Q; V), H(E(P))"EU(H(P))>

where Q = P or P, acts transitivelyon the set of [h)-unimodular elements of a fixed length,

and the set of hyperbolic pairs and hyperbolic planes in M.

Proof: The same reduction used in [3j(3.5),p.236] shows that it is enough to prove that G

acts transitivelyon the set of [h)-unimodular elements of a fixed length in M. One can

check that G contains all transvections a a with v E (PO).L = V fD H(P1) fD POA (see
PO' ,v

[3;(3.11),p.143) and [3j(5.6),p.9SJ).

(i) Let x = (Vj p,q) E V .L H(P) be an [h]-unimodular element. Since P is free of rank 2, it

follows as in [3;p.181) that we mayassUDle (p,q) is unimodular. More precisely, there

exists some y E M such that < x, y > = 1 and so <V, v> + O(p) + O(q) = A. Choose w

E V so that <v, w> + O(p) + O(q) contains 1j put c = <v, w>. From (1.1) there is a PI

E P such that O(p + PIc) + O(q) = A. Now apply the transvection a a to x. This
Pb ,w

isometry lies in EU(H(P), PjV).

(ii) Since f*(G 1) acts transitivelyon the set of unimodular elements of fixed length in

H( f*(P)) we may assume that f*(X) = f*(V; PO' qob), where 6 =hp(x,x) mod A.

(iii) We may now achieve "O(x) = Aa over A[g]" using (2.7) and the fact that P is free

of rank 2. Here 9 = TI {m I m E S} where S is a finite set in X containing all the primes at

which A is not maximal or V does not have (A,B)-hyperbolic rank ~ 1. Furthermore by
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(2.6) we may assume that V eontains a non-zero totally isotropie submodule L which has

(A,B)-free rank ~ 1 at all primes not in S. Note that after step (ii), nothing needs to be

done over Band (p,q) is still unimodular. This step uses H(E(P)).EU(H(P)).

(iv) Let t ~ RO be the largest ideal such that At ~ Aa, and put X' = V(t), XA =

V(t+2lA)' dA = dim XA' Let 11'": A ------t A' = AIAt be the natural projection and note

that dim X, = 0 and <!im XA ~ o. As in [3jp.244] we see that m ~ X, for all m E S, henee t

f 0 and A' is semilocal. We have O(Pl,q1 + qob) + Aa = A and so O(1rpl' 1r{q1+Clob))

+ 1r{Aa) = A'. Over B' = BIBt we do nothing. O.ver the complementary factar C' of A' ,

apply (1. 2) to find an element u E IfP1 such that u projects to zero aver B' and

O(?rp1 - ub) + O( 1rQ1) + 'K{Aa) = A'.

(Note that this already holdsover B' by step (ii)). Choose z E PIsueh that 1fZ = u and

f*(Z) = O. Sinee t and gare relatively prime, we can choose ZE (PI)· g.

Note that u 0 E EU(H(P)) by [3;(3.10.2),p.142]. Then
Po, ,z

u(x) = x + Po <Z,X~ - z<PO,x>

= (Vj PI - zb + PO(a + <z, ql»' q).

Therefore

Eut At ~ Aa ~ O(Ql) + A(a + <z,Ql»' so after these changes, we may assume that

(2.9) O(Pl) + O(Ql) + Aa = A.

(v) Sinee 1rV has hyperbolic rank ~ lover C' we can ehoose an isametry a: -,;V ~

H(C') J. W' and extend it to an isometry of 1rV J. H(1rP) by the identity on H(1rP). We

now apply ~he fi rst case of (2.7) to the element a( 1r{pl' q1)) E H( C') J. H(1rP1) over the

semisimple ring C' , where A' = B')( C' . This uses an element u' E

EU(H( 1rP1)' ?rQ; H(C')) where Q = PI or i\. By (2.5), Cl-lou' oa E

EU(H(1rP1), ~j 1rV). Then there exists a lift u of o-lou'oa to U(M, (h]) whieh lies in
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EU(H(P1)' Q; V). After moving x = (v; p,q) by u we get

A = O(Pl) + At ~ O(Pl) + Aa = O(p).

Finally note that after this change p is unimodular and E*(X) = E*(V; PO' qob), where

b =hp(x,x) mod A.

(vi) Since p ia unimodular and h(p,p) = 0, H(P) = H(pA).L H(pA).L. If H(pA) =
pA lB pA, where pEP then 0"- d \ E EU(H(P), P; V) and ,p, ,/\v

u- d \ (x) = X + p<,xv,x> - AV~<P,X> -pXd<p,x>p, ,/\v

= (0; p, q').

(vii) We now have a hyperbolic element x = (p, q) E H(P) with p ummodular. Reeall that

V eontains a non-zero totally isotropie submodule L whieh has (A,B)-free rank ~ 1 at all

but fini tely many primes. We claiIll; that after applying a suitable transformation in G, we

can assume that x = (po,q), with a possibly different q. For this we need to refer to the

proof of (1.4) to find whieh linear automorphisms of L lB P are neeessary to move p to PO'

and then show that they are induced by isometries in G.

Since our element p starts out in P steps (i) and (ii) of (1.3) are not neeessary. Step

(iii) requires an element of E(PIA, PO) whieh ia indueed by a suitable element of H(E(P)) ~

G. Step (v) uses an elementary transformation given by a homomorphism f: PI ------t L,

and these are indueed elements of G using (2.6). FinaIly, in step (vi) we first construct a

homomorphism g2: Po lB L -----i PI by splitting Po lB L = zA $ N where z is unimodular

and h(z,z) = 0 (mod A). To realise 72 by an isometry, we find a unitary submodule H(zA)

~ V .L H(P0) and then work inside H(zA) .L H(P1)' Ey [3j(3.10.4), p.143] H( 72 1zAlBP ) ~
1

EU(H(zA), zÄj H(P1)) ~ G. The remaining automorphisms 73, 74, 75 are in E(PO' PI)

and 76 is defined using g6 E Hom(Pl' L). These are induced by elements of H(E(P)) or

EU(H(P),Pj V) using (2.6).

Write q = qob - ql E a,.,A lB PI' The transveetion u 0 belongs to EU(H(P)) by
~ ql' ,qo
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[3j(3.10.1), p.142], and

ox = x - ql <qo'x> - Clo,x< ql'X >.

Note that <ql ,x> = 0 since x has no component in PI and <qo'x> = <qo'Po> = 1, so ox

= x + ql = (PO' Clob). We are now finished if x was unimodular. If x was a hyperbolic

element, then h(ox,ox) = h(pO' Qob) = 1) (mod A), and so 1) E A, since x and u(x) are

isotropic.

In the hyperbolic plane POA + qoA, the element X+(-b) = [~ -~] E EU(H(PO))

transfarms Po + qob into Po (the notation X+ is from [3j p.130]).

Proof of Theorem 2: The argument is the same as for [3;(3.6), p.238] using our (2.8).

(2.10) Lemma: The group H(GL2(1l))· EU{H(11lB 11)) acts transitivelyon unimodular

elements in H(ll lB 1l) of fixed length.

PIcof: Let P = POlZ lB PIlZ (with dual basis Qo' qI for P) and let x = (POa, PIb; qoc, qId)

be a ummodular element in H(P). We may aBBume that d = 0 after applying an element of

H(E{P)), so there exists an integer r such that b + rc is a unit (mod a). Then

X+(~ -~r)(x) = (pOa, PI(b+rc); <!oc, 0)

so that O{POa) + O(PI(b+rc)) = 11. We may therefore assume in the beginning that for x

= (pOa, PIb; qoc, qld), a and b are relatively· prime. Using a suitable element of H(E{P))

we get x = (PO' 0; qoc, qld) and after applying X_(j Ag) the result is (PO' Oj CIoc, 0),

where [cl is the length of x.
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§ 3. Metabolie Forms

One way to obtain quadratie modules V with (A,B)-hyperbolie rank ~ 1 at all but

. finitely many primes is to assume that V has a submodule H(L) where L has (A,B)-free

rank ~ 1. A generalization 01 this would be to assume that V eontains a "metabolie form ll

I

on L. In this seetion we define a suitable notion 01 metabolie forms general enough for our

applieations elsewhere. The notation and eonventions of § 2 will be used.

If N is an A-lattiee and g: N )( N ------t A is an R-bilinear form, let

[g] = {gr I gr(4),4>') = g(4),4>') + < 4>, r{4>'» J rE HomR(N, N)}.
1 -Any 0E ExtA(NJ N) defines an extension

(3.1) 0 ---t N~ E --i..t N ---t 0

oI A-lattiees whieh splits over R. We say that [g] is O-sesquilinear if there is a eoeycle 'Y E

HomR(N ~R A, N) representing Bsuch that for a11 a E A:

g( 4>a, 4>') = äg( 4>, rP')

(3.2)

Note that any cocycle ; satisfies the relation:

[(4), a1~) = T<.rP, a1)a2 + 1\<Pa1' a2)

and serves as a way to speeify the A-module strueture E on the R-module N $ N given by

B: for (x,4» E N $ N define

(3.3) (XJ <p). a = (xa + i. 4>, a)J 4>a).

If we vary the ehoiee of representative gr E [g], then the new ; is 1r = 'Y + or, w~ere

(or)( 4>, a) = r{ 4»a - r{ rPa),

for same r E HOIDR(:N, N), and all a E A. Then gr(4),4>') = g(rPJ4>') + < 4>, r(q;'»

satisfies (3.2). Given an extension (N, 0) and a 8-sesquilinear form [g], we define the

metabolie (..\,A)-quadratic form Met(N, 0, [g]) = (E, [q]) as folIows: piek a compatible 'Y, g
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satisfying (3.2) and set

q((x,(,6), (x' ,4>')) = < (,6, x' > + g( 4>, 4>').

It is easy to check that q is sesquilinear in the usua! sense if [g] is 8-sesquilinear.

These metabolie forms are non-singular when they exist but an arbitrary extension

need not admit any such form. Suppose that N is reflexive and let T denote the involution

on ExtÄCN, N) given by dualizing exaet sequenees (N,O) ...... (N,O)*. An extension (N, 0) ia

)...-sel}dual if N is reflexive and there is a eommutative diagram

0---+ N--i...tE-L.. N---+O

(3.4)
11 lh IIX

0---+ N~ E~ N---+ 0

*If h = >"h then h is the adjoint of a metabolie hermitian form on E. We will define a

homomorphism

* 1 - 1 -p: {(N,O) = >"(N,O) } ~ ExtA(N, N) ----i H (71/2; HOIDA(N, N))

- - *where HomA(N, N) has the involution 0 ...... >"0. We will show that p(N,O) is the

obstruction for flnding a >..-self-dual map h. Choose an R-seetion s: N ----+ E inducing a

- *eoeyc1e ; and identify E = N $ N as above. Then the lower sequenee is split over R by s

leading to an identifieation of E = N $ N. In these coordinates, for any A-map h making

the diagram (3.4) eommute,

* -h(x,(,6) = (x + s hs(4)),>''(,6)

and similarly

* * *h (x, 4» = (>..x + s h a((,6),4».

* 1 * * *Now (h )- o)"'h(x,t/» = (x + p(h)((,6), (,6) where p(h) = s hs - As h s. Note that p(h) is

independent of the ehoiee of the seetion s. Since (h*)-lo>"h is an A-map, we can check

using (3.3) that p(h) is also an A-map. Similarly, by computing h*o(Xh-1) and eomparing

*with the formula for the dual, we see that p(h) = -)...p(h). Moreover the eohoIDology dass

[P(h)] E H1(1l/2; HOIDA(N, N))
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is independent of the choiee of h. Define p(N, 0) = [p(h)] for any h making the diagram

(3.4) eommute.

(3.5) Proposition: If N is a reflexive A-module and (N, 0) ia a seIf-dual extension, then

(N, 0) admits a metabolie ..\-hermitian form if and only if p(N, 8) = ° E

H1(11/2; HornA(N, N)).

Note that a metabolie ..\-hermitian form is unique up to isometry if it admits a

quadratie refinement. We want to identify the obstruetion to obtaining a quadratie

refinement for a given metabolie ..\-hermitian form h. Let

TJ: ker p ---+ eoker {iIO(71/2; HOffiA(N, N)) --I iIO(71/2; HOIDR(N, N)) }.

*be the homomorphism defined by l1(h) = [s hs].

(3.6) Proposition: Suppose that (N,O) admits a metabolie ..\-hermitian form. Then (N,O)

admits a metabolie (A,A)-quadratie form with respeet to the minimal form parameter if

and only if TJ(N, 0) = o.

Suppose now that R = 71 and A = 711r where 1f is a finite group. Then eaeh lattiee L

over A is reflexive. Let N = Okll, the kernel of a projeetive" resolution F* of 11 of length k

(see (0.1) for the ease k = 3). We will show that every element of Extl(:N , N) is (_l)k+l_

self-dual.

(3.7) Lemma: Let N = nk71. The involution T given by dualizing exaet sequenees induces

multiplication by (_I)k+l on ExtÄCN, N).

Proof: Let X be a projeetive resolution of N and X the dual co-resolution of N. We have

two isomorphisms G, ß :Ext1(N, N) ~ H1(HoIDA(X, X)) comparing an extension with X or
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X respectively. Note that over A = 117r we can use X instead of an injective co-resolution

for computing Exti(N J N). It is not difficult to see that 0 = -ß. Let t be the involution on

H1(HomA(X, X)) induced by dualization. By construction, ar = tß implying ara-1 = -t.

Note that HomA(X J X) ~ HOID71 eXJ X)sAll, and that HOID71 (X, X) is a co-resolution

of HOffill (N, N). Thus

Hi(HomA(X, X)) = Hi(HOInll (X, X)sA11) = Bi(7r, N sll N)

and under these identifications t corresponds to the involution induced by the flip map S:

xay ....... ysx on N sN.

Now we follow an argument suggested by R. Swan. Extend the projective resolution

F defining N to a projective resolution F of 7l. Let f be the chain map on F 811F mapping

xSy 1-+ (-1 )de9(x)deS(Y)y8X. Since f induces the identity on 11 it induces the identity on all

the derived functors. We have the similar chain map on F sllF which on F2k = N e N is

(-1)ks. Now we consider F sllF as part of a co-resolution of N 8 N ending in ll. Similarly

we eonsider F fAll Fapart of a eomplete eo-resolution of 1l. Then

B1(?r; N 8 1lN) = H1(HOIDA(1l, F 8 1lF)) ~ H1(HomA(ll, FsllF)).

where the last isomorphism is induced by the obvious ehain map F-----t F. Thus

. oro-1 = --6 = (_l)k+lf* = (_l)k+l.

(3.8) Example: Now we restriet to groups 'K of odd order. Sinee Exti 7r(N,N) then has odd

order p(N, 0) and 1}(N, 0) vanish for eaeh .x-self-dual extension. In particular for N = nkll,

each extension (NJO) admits a metabolie (.x,A)-quadratic form whose .x-symmetrization ia

unique up to isometry.
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On the Cancellation of Hyperbolic Forms over
Orders in Semisimple Algebras

1. Hambleton 1 and M. Kreck

Let R be a Dedekind domain and K its field of quotients. The purpose of this note is

to obtain an improvement in the stable range for cancellation of lattices aver R-orders in

separable K-algebtas, assuming some loeal information about the lattices. Recall that a

lattice aver an R-order A ia an A-module which is projective as an R-module. Our results

are based on the work of H. Bass [2],[3], A. Bak [1] and L. N. Vaserstein {ll].

The general stable range condition for eancellation of lattices over orders is free rank

~ 2 for the linear case {2;(3.5), p.l84], and free hyperbolie rank ~ 2 for the unitary ease

[3;(3.6),p.238]. Ta state our condition, let A and B be orders in separable algebras over K

{4;71.1,75.1], and suppose that there is a surjective ring homomorphism f: A ---+ B. We

say that a finitely generated .A-module L has (A,B)-jree rank ~ 1 at a prime pER, if there

exists an integer r such that (Br e L)p has free rank ~ 1 over Al" Here Al' denates the

localized order A ~ R( p)'

Theorem 1

Let L be an A-Iattiee and put M = L e A. Suppase that there exists a surjection of

orders f: A --+ B such that L has (A,B)-free rank ~ 1 at all but finitely many primes. If

GL2(A) aets transitivelyon unimodular elements in B ~ B, then for any A-lattiee N whieh

is locally a clirect summand of Mn for same integer TI, M e N ~ M' e N implies M ~ M'.

1 Part; at t y supported by NSERC grant A4000
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For the corresponwng result in the unitary case there is a similar condition involving

hyperbolic rank ~ 1 and a locally (A,B)-free submodule. A quadratic module V has (A,B)

hyperbolic rank ~ 1 at a prime PER if there exists an' integer r such that (H(B1
) lB V)p has

free hyperbolic rank ~ lover Ap' The other terms used in the statement are defined

precisely in §2 or in [3;pp. 80, 87].. Note in particular that a unitary module is a

(-X,A)--quadratic form on a finitely-generated projective A-module. A totally isotropie

submodule is one on whieh the quadratie form is identieally zero.

Theorem 2

Let V be a (A,A)--quadratic module over a unitary (R,-X) algebra (A,A) and put

(M,[h]) = V ..L H(A). Suppose that there exists a surjection of orders €: A ---+ B such that

V has (A,B)-hyperbolic rank ~ 1 at all hut finitely many primes. If U2(A) acts transitively

on the set of unimodular elements in H(B e B) of fixed length, then for any unitary module

N, M..LN~M/..LN impliesM~M/.

In our work [5], [6] on the topological classification of 4-manifolds and algebraic

surfaces we encounter locally (1l 'K,7I )-free modules, where 7l1r is the integral group ring cf a

finite group. We check that for B = ll, the conditions on "transitive action" in Theorems 1

and 2 are satisfied (see (1.4) and (2.10)), hence can be omitted from the statements.

For example consider the lattices arising from exact sequences

(0.1) 0 ---+ L ---+ C2 ---+ Cl ---+ Co -----I II -----I 0

with Ci fini tely generated projeetive ll7r modules. Sueh latt ices wit h minimal ll-rank need

not contain any free direet summands over ll1f, hut rationally contain al1 the

representations of 11" except the trivial one. The simplest case oceurs for 71" cyclic and L =

ker {t:: 7l7r ---. ll} the augmentation ideal.
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More generally, if M is a 711T"-lat tiee sueh that M Q) Qis a free module over ~ [p] for

same p 4 1fJ then M is (717(', II [11"/pD-loeally free at a1l but fini tely many primes.

In § 3 we diseuss metabolie forms over group rings 711(', leading to examples of (A,B)

hyperbolie rank ~ 1 forms whieh eontain uo hyperbolie summand.

The purely algebraie results of this paper have consequenees in several different

geometrie situations. These will be described elsewhere.

§ 1. The Linear Case

Ey an !lA-modulell we will mean a finitely generated right A-module. As above we

suppose that E: A ----+ B is a surjective ring homomorphism of R-orders in (possibly

different) separable K-algebras. If M is an A-lattice and N = M ~AB := €*(M), we get

an induced homomorphis~

E* : GL(M) ----+ GL(N).

If M = MI lB M2 is a direet SUffi splitting of an A-module then E(Ml' M2) denotes the

subgroup of GL(M) generated by the elementary automorphisms ([2;p.182D. Recall that

for an element x E M, 0M(x) is the left ideal in A generated by

{f(x) I fe HomA(M, A)}.

If 0M(x) = A we say that xis unimodular.

The following result of Bass is an essential ingredient in the proofs of the cancellation

theorems.

(1.1) Theorem [2;(3.1), p.178]: Let Q, be a projective A-module and P ~ A EB A. For any

unimodular element x = (p,q) E P EB Q, there exists an A-homomorphism f: Q ----I P such

that Op(p + f(q)) = A.
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We also need two other facts.

(1.2) Lemma: Let M be a finitely generated right A-module, projective over R, and A' =

AIAt for an ideal t ERsuch that the localized order At is maximal. Then the induced map

HomA(M, A)~ HOIDA,(M', A')

is surjective, where M' = MIMt.

Proof' First note that Mt is projective over At" Since A' = AtlAtt we can lift any map

f': M' ----+ A' to f: Mt~ At' After restricting to M ~ Mt and multiplying by an

element r E R prime ta t, we abtain a lifting of r'f'. But r' (the image af r in R') ia a unit

in A'.

(1.3) Lemma [3;(2.5.2),p.225]: If C is a semisimple algebra, then for each a, b E C there·

exists r E C such that ·C(a + rb) = Ca + Cb.

We now carne to the main result of the section.

(1.4) Theorem: Let A be an R-order in a separable K-algebra. Suppose that !VI = L $ P is

an A-lattice, where P = poA lB Pl A is free of rank 2 and L is (A,B)-free of rank ~ 1 at all

but finitely many primes. Let GO ~ GL(P) be a subgroup such that E*(GO) acts transitively

on the unimodular elements in E*(P). Then the group

G = < GO' E(pOA, L e Pl A), E(Pl A, L e POA» ~ GL(M)

acts transitivelyon the unimodular elements in M.

(1.5) Remark: In some cases there may be 00 subgroup GO with the required property.

Far example, if B = 71. 7r is the integral group ring of a finite group 7r, then GL2(B) acts
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transitivelyon unimodular elements in B $ B if and only if the relation I $ B ~ B $ B for

a projective ideal I implies I ~ B. In [8;Thm.3] Swan shows that this is not true for a

certain ideal in 7J. 7r where 1f is the generalized quaternion group of order 32. Later in [10],

e~dending the work of Jacobinski [7], Swan shows that cancellation in this sense fails for 71. 7r

if and only if 7r has a binary polyhedral quotient group in an explicitly given list.

Proof: We -divide the proof into several parts. Let x = v + P E M be a unimodular

element, where p = POa + PIb E P and v E L. We move x first into P to control the

projection €*(x), and then use the stability assumption on L to move x so that its

component in POA $ L is unimodular. Finally we move x to PO'

(i) Since M has free rank ~ 2 we may now perform the first step, to get v = 0, so that x

starts out in P. Tc see this note that O(p) + O(v) = A, so there exists c E O(v) such that

O(p) + c contains 1. Apply (1.2) to A $ P and the element (c, p) to find z E P with O(p .

+ zc) = A. There exists g: L~ P with g(v) = zc, and f: P ~ L with f(p + zc) = v.

Extend by zero on the complements. Then

r{x) = (1 - f) (1 + g) (x) EP l

and TE E(P, L) ~ < E(pOA, L $ PIA), E(P1A, L $ POA) > ~ G.

(ii) Since GO acts transitivelyon unimodular elements in €*(P) = B $ B, we may assume

that €*(x) = €*(PO).

(iii) Write x = POa + PIb, so that O(x) = Aa + Ab. Consider the quotient ring Ä =

A/gA where 9 is the ideal in R generated by all the primes pER at which A is not

maximal, or L does not have (A,B)-free rank ~ 1. Then we claim that, after changing x by

an element from G if necessary,

(1.6) O(x) = Ää = Ä, and €*(x) = €*(PO)

cr a projects to a umt in Ä without disturbing step (ii). Ta see this note that the quotient

ring Ä = C )( C', where C is the smallest clirect factor mapping onto B by €. But by

lifting idempotents, € induces an isomorphism B/Rad B ~ C/Rad C. Therefore the C
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component of a is already a unit since a projects to I in the semisimple quotient. Over the

other factor we can apply [2;(2.8),p.87]: there exists u E A, such that the element a + ub

projects to a unit in C' and to I in H. Let g: PIA ----I poA ~ M such that g(PI) = POu.

Extend g to a map from M to M by zero on the complement. Then T = I + g is an element

of G and r(x) has the desired properties (1.6).

(iv) From step (iii) we have Aa + gA = A and so (Ab)p = Ap for a11 primes p dividing

g. Therefore if t ~ R denotes the largest ideal such that At ~ Aa , we see that p does not

divide t for all primes p clividing 9 and in particular t *o.

(v) Now we project to the semilocal ring A' = A/At, which is the quotient of a maximal

order At and so the projection E': A' ---I B' splits and A' = B' )( C'. Since over the B'

factor a projects to 1, we have (Aa)' = A'. Over the cornplemen~ary facta! C' we use a

sill table T E E(Pic' , L'), so that after applyjng r we achieve the condi tion

(1.7) A'a' + O(v') = A"

over both factors of A'. This is an application of (1.2) to the component of x in L' lB Pi C,

using the fact that C' ~ L'. The necessary hornomorphism g E HornA' (P i' L'), which is

the identity aver B', can be lifted t.o HornA(P I , L) since PI is projective and extended to

M by zero on L lB POA.

(vi ) We now lift the relation (1. 7) to A using (1. 2) and 0btain

Aa + O(v) + At = A.

But At ~ Aa so we can assume that v + POa is unimodular.

(vii) The argument of [2; pp 183-184] now shows that there is an element r

E E(PIA, POA &* L) such that r(x) = PO' In our situation start with the unimodular

element z = v + POa E L lB PO' Write L lB Po = zA &* N and let g2(z) = PI (I-a-b), with

g2(N) = O. Let g3(PI) = PO' g4(PO) = PI(a-l), gs(po) = PI' g6(PI) = -v, where the

homomorphisms are extended to the obvious complements by zero. If Ti = 1 + ~, then

T6TST4T3T2(X) = PO'

This completes the proof.
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Proof of Theorem 1: Ey Swan's Cancellation Theorem ([9; 9.7] and the cliscussion on

[9;p.169]), M $ A ~ M' $ A since M $ A is the clirect sum of two faithful modules. We

apply (1.4) following [2;IV ,3.5] to cancel the free modules.

Remark: The method does not seem to prove either Swan's or Jacobinski's cancellation

theorems independently.

§ 2. The Unitary Case

We adopt the notation and conventions of Bass in [3; pp.61-90,233] for (A,A)

quadratic modules over a unitary (R,A)-algebra (A,A). A unitary module is a non-singular

(A,A)-quadratic form on a finitely generated projective A module. Since R is a Dedekind

domain, X = max(RO) has dimension d = 1, where Ra ~ R is the subring generated by all

norInS t t (t ER). Note that ,,\~ = 1. The form parameter A is ample at m E X if given a, b

E A[m], the semisimple quotient of Am' there exists r E A[m] such that

(2.1) A[m](a + rb) = A(m]a + A[m]b.

In [3j§2,p.218ff] there is a discussion of this conclition. If R = 71. and A =
{ a-Aä I a E A }, the minimal form parameter, then A is not ample at any prime when A =

1 and A is not ample at 2 if A =-1. Let 21A ~ Ra be the ideal such that A is ample at all m

t. V(21A) = { p E X 1 211\ ~ P}, and dA the climension of the closed set V(21A) in X. Note

that dA $ 1 for all A, and dA $ 0 when A is ample at all but finitely many primes.

If (M,[h]) is any (A,A)-quadratic module over A (3;p.8a], then a transvection [3;p.91]

is a umtary automorphism q = (J : M ------. M given byll,a,V
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u(x) =x + u<v,x> - v~<u,x> - u~a<u,x>,

where u, v E M and a E A satisfy the conditions

(2.3) h{u,u) E A, <u,v> = 0, h{v,v) =a (mod A).

Note that <x,y> = h(x,y) + ..\h(y,x) is the associated hermitian form. For any submodule

L ~ M,

L.1. = {x E M I <x,y> = 0 for all y E L }.

If M = M' .1. M" is an orthogonal direct sum, with L' ~ M' a totally isotropie submodule

(i.e. h(x,y) = 0 (mod A) for all x, y E L'), then we define

(2.4)

(2.5)

EU(M I L" M") = < (J I u E LI and v E M" >." u,a,v

We will need the relat.ion (see [3;p.92]):

if a :(M,[h]) ---+ (M' ,[h ' ]) is an isometry, then

-1
00 (J' 0 0 = (J' Iu,a,v ou,a,crv

where a E U(M,[h]) and (J" E U(M' ,[h I]).

The hyperbolic rank of a (..\,A)-quadratic module (M,[h]) is ~ 1 if (M,[h]) 

H(A) .l (M' ,[h']), where H(P) denotes the hyperbolic form on PeP [3;p.82] and elements

denoted by pairs x = (p,q) with pEP, q E P. Here we are using the notation P for the

*dual module P regarded as a right A-module in the usual way. Sinee we will always be

working with P containing at least one A-free direct summand, we will often write P =

POA e P l' P = qoA $ P1 and denote the element

(p,q) = (pOa + Pl' qob + Ql)'

The main result of this section is a unitary analogue of (1.4), so we use same of the

notation (e.g. A, E, B). Before stating it, we need two lemmas.

(2.6) Lemma: Let V be a (A,A) quaclratic module which has (A,B)-hyperbolic rank ~ 1 at

a prime P E RO' for which Ap is maximal. Then

(i) V contains a totally isotropie submodule L which has (A,B)-locally free rank ~ 1 at all
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but finitely many primes, and

(ii) if x E H(P) ~ V J. H(P) with P r; Ar and f: P ---+ L is an A-homomorphisID, then there

are elements qi E P, vi E L (1 S i ~ r) such that

TI (J (x) = x + f(x).
qi'0,vi

Proof: (i) Since Ap is maximal, we can write Ap = B I )( C I and wark over the C I fact or

V I of Vp' Then V I has free hyperbolic rank ~ 1 and for Lp we choose a maximal rank

totally isotropie C I-free direet summand. Let L = Lp nV and eom~are it to a direet sum

of eopies of the A-lattiee C :=ker{ t: A -----+ B}. Sinee Cl.' r; CI we may ehoose a direet

SUffi N = Cr with the same R-rank as L and so Np ~ Lp' Therefore N and L are fulliattiees

on the same K-vector space (K is the quotient field of R), and hence agree at all but

finitely many primes. If we further avoid all the primes where A is not maximal, then L

has (A,B )-free rank ~ 1 at the remaining primes.

(ii) Let {ql' ... ,qr} be a basis for P. Then there exist v!' ... , vr E L such that f(x) =

E ~v.<q., x> for all x E P.
1 1 .

(2.7) Lemma (3j(3.11),p.241J: Suppose that (C,A) is a semisimple unitary algebra over

(R,A). Assume either that (i) P has free rank ~ 2, or (ii) A is ample in C and P = C.

Write x E H(P) as x = (pOa + pl'qob +ql)' Then there is an element (J E

H(E(P))·EU(H(P) such that (J(x) = (POa l + Pi,~b' + qi) and O(x) = Aal. In case (i),

(J E EU(H(PO)' Q; H(P 1)) where Q = Po or PO'

Definition: Let (M, [hJ) be a (..\,A)-quadratic module. An element x E M is [h]-unimodular

if there exists y E M such that <x, y> = 1.

If (M,[hJ) is non-singular then an element is [hJ-unimodular if and only if it is unimodular.
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The following is our main result in the quadratic case.

(2.8) Theorem: Let V be a (A,A)--quadratic module which has (A,B)-hyperbolic rank ~ 1

at all but finitely many primes, and put (M, [hD = V .L H(P) where P is A-free of rank 2.

Suppose there exists a subgroup G1 ~ U(H(P)) such that €*(G1) acts transitivelyon the set

of unimodular elements in H( €*(P)) of fixed length [h(x,x)]. Then

G = < GI' EU(H(P), Q; V), H(E(P))· EU(H(P))>

where Q= P or P, acts transitivelyon the set of [h]-unimodular elements of a fixed length,

and the set of hyperbolic pairs and hyperbolic planes in M.

Proof: The same reduction used in [3;(3.5),p.236] shows that it is enough to prove that G

acts transitivelyon the set of [h]-unimodular elements of a fixed length in M. One can

check that G contains all transvections U a with v E (PO).L = V mH(P1) mPOA (see
PO' ,v

[3;(3.11),p.143] and [3;(5.6) ,po 98]).

(i) Let x = (v; P,q) E V .L H(P) be an [h]-unimodular element. Since P is free of rank 2, it

follows as in [3;P.181J that we IIiay assume (p,q) is unimodular. More precisely, there

exists some y E M such that < x, y > = 1 and so <V, v> + O(p) + O(q) = A. Choose w

E V so that <v, W> + O(p) + O(q) contains 1; put c = <v, w>. From (1.1) there is a PI

E P such that O(p + PI c) + O(q) = A. Now apply the transvection U a to x. This
Pb ,w

isometry lies in EU(H(P), P;V).

(ii) Since €*(G1) acts transitivelyon the set of unimodular elements of fixed length in

H( €*(P)) we may assume that €*(x) = €*(v; PO' qob), where 6 :: hp(x,x) mod A.

(iii) We may now achieve "O(X) = Aa over A[g)" using (2.7) and the fact that P is free

of rank 2. Here 9 = rr {m I m E S} where S is a finite set in X containing all the primes at

which A is not maximal or V does not have (A,B)-hyperbolic rank ~ 1. Furthermore by
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(2.6) we may assume that V eontains a non-zero totally isotropie submodule L whieh has

(A,B)-free rank ~ 1 at all primes not in S. Note that after step (ii), nothing needs to be

done aver B and (p,q) is still unimodular. This step uses H(E(P)). EU(H(P)).

(iv) Let t ~ Ra be the largest ideal such that At ~ Aa, and put X, = V(t), XA =

V(t+2tA), dA = dim XA· Let 11": A ----+ A' = A/At be the natural projection and note

that dim X, = 0 and dim XA$ a. As in [3jp.244] we see that m ;. X' for all m E S, hence t

f 0 and A' is semiloeal. We have O(Pl'q1 + qob) + Aa = A and so O(7r}Jl' 1r{ql+Qob))

+ 7r{Aa) = A'. Over B' = BjBt we da nothing. Over the camplementary factar C' of A' ,

apply (1.2) to find an element u E ?rP I such that u projects to zero over B' and

O( 7r}JI - ub) + O( 7rql) + 1r{Aa) = A' .

(Note that trus already holds over B' by step (ii)). Choose z E PI such that 1rZ = u and

f* ( z) = O. Since t and 9 are relatively prime, we can ehoose Z E (P I ) .g.

Note that (Jp 0 E EU(H(P)) by [3j(3.10.2),p.142]. Then
0, ,Z

a(x) = x + Po <z,x> - z~Po'x>

= (Vj PI - zb + PO(a + <Z, ql»' q).

Therefore

But At ~ Aa ~ O(ql) + A(a + <z,ql»' so after these changes, we may assume that

(2.9) O(Pl) + O(ql) + Aa = A.

(v) Since 1fV has hyperbolie rank ~ lover C' we ean ehoose an isometry a: 1fV ~

H(C') .l W' and extend it to an isametry cf 7rV .l H,7rP) by the identity on H( 7rP). We

now apply the first ease of (2.7) to the element a{'iT(Pl' ql)) E H(C').l H(7rPI) over the

semisimple ring C' I where A' = B')C C'. This uses an element (J' E

EU(H(7rP 1), ?rQ; H(C')) where Q = PI cr 1\. By (2.5), a-
1

o(J'oa E

EU(H(7rP I ), 7rQ; 1rY). Then there exists a lift a of a-Ioa'oa to U(M, [h]) which lies in
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EU(H(P1)' Q; V). After moving x = (v; p,q) by (J we get

A = ü(P1) + At ~ ü(P1) + Aa = ü(p).

Finally note that after this change p is unimodular and €*(x) = €*(v; PO' qob), where

1) :: hp(x,x) mod A.

(vi) Sinee p is unimodular and h(p,p) = 0, H(P) = H(pA) 1. H(pA)J.. If H(pA) =

pA lB pA J where pEP then (7- d' E EU(H(P), Pj V) and
PJ ,I\V

(J- d ,(x) = x + p<AV,X> - AvA<p,x> -pÄd<p,x>p, ,I\V

= (0; p, q ').

(vii ) We now have a hyperbollc element x = (p, q) E H(P) wi th p unimodular. Recall that

V eontains a non-zero totally isotropie submodule L whieh has (A,E )-free rank ~ 1 at all

but finitely many primes_ We claim that after applYing a suitable transformation in G, we

ean assume that x = (po,q), with a possibly different q. For this we need to refer to the

proof of (1.4) to find whieh linear automorphisms of L lB P are neeessary to move p to PO'

and then show that they are lnduced by isometries in G.

Sinee our element p starts out in P steps (i) and (ii) of (1.3) are not neeessary. Step

(iii) requires an element of E(P1A, PO) whieh is indueed by a suitable element of H(E(P)) ~

G. Step (v) uses an elementary transformation given by a homomorphism f: P 1 --+ L,

and these are induced elements of G using (2.6). Finally, in step (vi) we first construet a

homomorphism g2: Po lB L -----t PI by splitting Po e L = zA lB N where z is unimodular

and h(z,z) = 0 (mod A). To realise T2 by an isometry, we find a unitary submodule H(zA)

~ V J. H(P0) and then work inside H(zA) 1. H(P 1)' Ey [3;(3.10.4), p.143] H( T21 zAeP ) ~
1

EU(H(zA), zÄ; H(P1)) ~ G. The remaining ~utomorphisms T3, T4, T5 are in E(PO' PI)

and T6 is defined using g6 E Hom(Pl' L). These are induced by elements cf H(E(P)) or

EU(H(P),P; V) using (2.6).

Write q = qOb - q1 E o... A e P1- The transveetion (J 0 belongs to EU(H(P)) by
'"U Q1' ,qo
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[3;(3.10.1), p.142], and

ax = x - ql <qo'x> - qOÄ< ql'x >.

Note that <ql'x> = 0 since x has no component in PI and <qo'x> = <qo'Po> = 1, so ox

= x + ql = (PO' Clo b). We are now finished if x was unimodular. If x was a hyperbolic

element, then h(ox,ox) = h(pO' Clob) = 6 (mod A), and so 6 E A, since x and a(x) are

isotropic.

In the hyperbolic plane POA + ClaA, the element X+(-b) = [~ -~] E EU(H(P0))

transfarms Po + qob into Po (the notation X+ is from [3; p.130]).

Proof of Theorem 2: The argument is the same as for [3;(3.6), p.238] using our (2.8).

(2.10) Lemma: The group H(GL2{71)). EU{H(71 $ 71)) acts transitivelyon unimodular

elements in H(ll $ ll) of fixed length.

Proof: Let P = POll e PI 71 (with dual basis Clo' ql for P) and let x = (pOa, PIb; qoc, qI d)

be a unimodular element in H{P): We mayassume that d = 0 after applying an element of

H(E(P)), so there exists an integer r such that b + rc is a unit (mod a). Then

X+(~ -8r
)(x) = (pOa, PI(b+rc); qoc, 0)

so that O(pOa) + O(PI(b+rc)) = 71. We may therefore assume in the beginning that for x

= (pOa, PIb; qoc, q1d), a and b are relatively prime. Using a suitable element of H(E(P))

we get x = (PO' 0; Cloc, qld) and after applying X_C~ Ag) the result is (PO' 0; Cloc, 0),

where [cl is the length of x.
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§ 3. Metabolie Fonns

One way to obtain quadratic modules V with (A,B)-hyperbolic rank ~ 1 at all but

fini tely many primes is to assume that V has a submodule H(L) where L has (A,B )-free

rank ~ 1. A generalization of this would be to assume that V eontains a "metabolie forml!
,

on L. In this seetion we define a suitable notion of metabolie forms general enough for our

applieations elsewhere. The notation and conventions of § 2 will be used.

If N is an A-lattice and g: N x N ----I A is an R-bilinear form, let

[g] = {gr I gr(if;,4>') =g(if;,if;') + < if;, -rl..if;'» , rE HomR(N, N)}.
1 -Any BE Ext A(N, N) defines an extension

(3.1) 0 --+ N -L. E~ N--+ 0

of A-Iattices whieh splits over R. We say that [g] is O-sesquilinear if there is a eocycle j E

HOIDR(N 0 R A, N) representing 0 such that for all a EA:

g( if;a, 4;') = ag( if;, 4;')

(3.2)

g(4;, if;'a) = g(if;, </J')a - < 4>, ;(4)', a) >.

Note that any eoeycle j satisfies the relation:

;( if;, a1a2) = "(( if;, a1)a2 + 1\4;al' ~)

and serves as a way to specify the A-module structure E on the R-module N Ii N given by

0.. for (x,4» E N 6) N define

(3.3) (x, 4;). a = (xa + 'Y( 4;, a), if;a).

If we vary the ehoice of representative gr E [g], then the new j ia 'r = 'Y + 01', w~ere

(07) ( if;, a) = i( 4» a - 7{ ljJa),

for some 7 E HOIDRCN, N), and all a E A. Then g7(f/J,4>') = g(</J,</J') + < 4>, r{4>'»

satisfies (3.2). Given an extension (N, 0) and a B-sesquilinear form [g], we define the

metabolie ("\,A)-quadratie form Met(N, B, [gD = (E, [qJ) as follows: pick a compatible 'Y, g
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satisfying (3.2) and set

q((x,1J), (x' Jt/J/)) = < 4>, x' > + g(lj>, 1J1).

It is easy to check that q is sesquilinear in the usua! sense if [g] ia 8-sesquilinear.

These metabolie forms are non-singular when they exist but an arbitrary extension

need not admit any such form. Suppose that N is reflexive and let T denote the involution

on ExtÄ(I'i, N) giyen by dualizing exaet sequenees (N, B) ....... (N, B)*. An extension (N, B) is

>..-selfdual if N is reflexive and there ia a commutative diagram

O----t N~ E~ N----t 0

(3.4)
11 Ih IIA

.* - .•
O~ N-Lt E~ N----t 0

*If h = >"h then h is the adjoint of a metabolie hermitian form on E. We will define a

homomorphism

p: { (N,O)* = >"(N,B) } ~ ExtÄ(N, N) ---.. H1(71/2; HomA(N, N))

- - *where HOffiA(N, N) has the involution Q ~ )..0. We will show that p(N,B) is the

obstruction for finding a )..-self-dual map h. Choose an R-section s: N ----+ E inducing a

- *cocycle I and identify E = N lB N as above. Then the lower sequence is split over R by s

leading to an identification of E = NEiN. In these coordinates, for any A-map h making

the diagram (3.4) commute,

*h(x,4» = (x + s hS(1J),At/J)

and similarly

* * *h (x,t/J) = ()..x + s h s( lj»,t/J).

* 1 * - * *Now (h )- o>"h(x,lj» = (x + p(h)( r!'), (1) where p(h) = s hs - >"8 h s. Note that p(h) is

independent of the choice of the section 8. Since (h*)-lo>"h is an A-map, we can check

usin~ (3.3) that p(h) is also an A-map. Similarly, by computing h*o(.~h-1) and comparing

*with the formula for the dual, we see that p(h) = ->..p(h). Moreover the cohomology dass

[p(h)] E H1(7I/2; HomA(N, N))



-16 -

is independent of the ehoiee of h. Define p(N, B) = [p(h)] for any h making the diagram

(3.4) eommute.

(3.5) Proposition: If N is a reflexive A-module and (N, 0) is a self-dual extension, then

(N, 0) admits a metabolie A-hermitian form if and only if p(N, 0) = 0 E

H1(71/2; HomA(N, N)).

Note that a metabolie A-hermitian form is unique up to isometry if it admits a

quadratie refinement. We want to identify the obstruetion to obtaining a quadratic

refinement for a given metabolie A-hermitian form h. Let

",: ker p~ eoker { ft°(71/2; HomA(N", N)) ---t ft°(71/2; HomR(N, N)) }.

*be the homomorphism defined by 1](h) = [s hs].

(3.6) Propo~ tion: Suppose that (N, 0) admits cL metabolie A-hermitian form. Then (N, B)

admits a metabolie (..\,A)-quadratic form with respect to the -mi nimal form parameter if

and only if ",(N, B) = O.

Suppose now that R = 71 and A = 7J. 7l" where 7r is a finite grcup. Then eaeh lattiee L

over A is reflexive. Let N = nk
7J., the kernel of a projeetive resolution F* of 71 of length k

(see (0.1) for the case k = 3). We will show that every element of ExtleN, N) is (_1)k+1_

self-dual.

(3.7) Lemma: Let N = nk71. The involution T giyen bydualizing exaet sequenees induces

multiplieation by (_1)k+ 1 on Ext1CN", N).

Proof: Let X be a projective resolution of N and X the dual co-resolution cf N. We have

two isomorpmsms ll, ß :Ext1(N, N) ~ H1(HomA(X, X)) comparing an extension with X cr
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X respectively. Note that over A = 717r we can use X instead of an injective co-resolution

for computing Ext1(N, N). lt is not difficult to see that er = -ß. Let t be the involution on

H1(HoIDA(X, X)) induced by dualization. By construction, Qr = tß implyjng ara-1 = -t.

Note that HomA(X, X) ~ HOffi71 (X, X)eA71., and that HOID7I (X, X) is a co-resolution

of HOID11 CN, N). Thus
i-i . - iH (HornA(X, X)) = H (Hom11 (X, X)1lJA11) = H (~ N IlJ71 N)

and under these identifications t corresponds to the involution indueed by the flip map s:

xey ...... yex on N e N.

Now we follow an argument suggested by R. Swan. Extend the projective resolution

F defining N to a projective resolution F of 11. Let f be the chain map on F0 11 Fmapping

x!lJy ...... (-1 )deg(X)deg(y)yex. Sinee f induces the identity on 71 it induces the identity on all

the derived functors. We have the similar chain map on F 0 11 F whieh on F2k = N 0 N is

(-1)ks. Now we consider F 8 71 F as part of a co-resolution of N e N ending in 71.. Similarly

we ccnsider FIlJllF apart of a complete co-resolution cf 11. Then

H1(7r, N e11 N) =H1(HoID A(1l, F 01l F)) ~ H1(HomA(ll, F IlJ11 F)).

where the last isomorphism is induced by the obvious chain map F----+ F. Thus

ora-1 = -s = (_l)k+lf* = (_l)k+l.

(3.8) Example: Now we restriet to groups 7r of odd order. Since Ext~ tr(N ,N) then has odd

order p(N, 0) and 1J(N, 0) vanish fcr each ..\-self-dual extension. In particular for N = nklI,

eaeh extension (N,O) admits a metabolie (..\,A)-quadratic form whose ..\-symmetrization is

unique up to isometry.
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