ON THE CANCELLATION OF HYPERBOLIC FORMS OVER ORDERS IN SEMISIMPLE ALGEBRAS

.

.

by

I. Hambleton and M. Kreck

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany

.

.

On the Cancellation of Hyperbolic Forms over Orders in Semisimple Algebras

I. Hambleton¹ and M. Kreck

Let R be a Dedekind domain and K its field of quotients. The purpose of this note is to obtain an improvement in the stable range for cancellation of lattices over R-orders in separable K-algebras, assuming some local information about the lattices. Recall that a *lattice* over an R-order A is an A-module which is projective as an R-module. Our results are based on the work of H. Bass [2],[3], A. Bak [1] and L. N. Vaserstein [11].

The general stable range condition for cancellation of lattices over orders is free rank ≥ 2 for the linear case [2;(3.5), p.184], and free hyperbolic rank ≥ 2 for the unitary case [3;(3.6),p.238]. To state our condition, let A and B be orders in separable algebras over K [4;71.1,75.1], and suppose that there is a surjective ring homomorphism ϵ : A \longrightarrow B. We say that a finitely generated A-module L has (A,B)-free rank ≥ 1 at a prime $p \in R$, if there exists an integer r such that $(B^{\Gamma} \oplus L)_p$ has free rank ≥ 1 over A_p . Here A_p denotes the localized order A $\otimes R_{(p)}$.

Theorem 1

Let L be an A-lattice and put $M = L \oplus A$. Suppose that there exists a surjection of orders ϵ : A \longrightarrow B such that L has (A,B)-free rank ≥ 1 at all but finitely many primes. If $GL_2(A)$ acts transitively on unimodular elements in B \oplus B, then for any A-lattice N which is locally a direct summand of M^n for some integer n, $M \oplus N \cong M' \oplus N$ implies $M \cong M'$.

¹ Partially supported by NSERC grant A4000

For the corresponding result in the unitary case there is a similar condition involving hyperbolic rank ≥ 1 and a locally (A,B)-free submodule. A quadratic module V has (A,B)hyperbolic rank ≥ 1 at a prime $p \in R$ if there exists an integer r such that $(H(B^{\Gamma}) \oplus V)_p$ has free hyperbolic rank ≥ 1 over A_p . The other terms used in the statement are defined precisely in §2 or in [3;pp. 80, 87]. Note in particular that a unitary module is a (λ, Λ) -quadratic form on a finitely-generated projective A-module. A totally isotropic submodule is one on which the quadratic form is identically zero.

Theorem 2

Let V be a (λ,Λ) -quadratic module over a unitary (\mathbf{R},λ) algebra (\mathbf{A},Λ) and put $(\mathbf{M},[\mathbf{h}]) = \mathbf{V} \perp \mathbf{H}(\mathbf{A})$. Suppose that there exists a surjection of orders $\epsilon: \mathbf{A} \longrightarrow \mathbf{B}$ such that V has (\mathbf{A},\mathbf{B}) -hyperbolic rank ≥ 1 at all but finitely many primes. If $\mathbf{U}_2(\mathbf{A})$ acts transitively on the set of unimodular elements in $\mathbf{H}(\mathbf{B} \oplus \mathbf{B})$ of fixed length, then for any unitary module N, $\mathbf{M} \perp \mathbf{N} \cong \mathbf{M}' \perp \mathbf{N}$ implies $\mathbf{M} \cong \mathbf{M}'$.

In our work [5], [6] on the topological classification of 4-manifolds and algebraic surfaces we encounter locally $(\mathbb{I}\pi,\mathbb{I})$ -free modules, where $\mathbb{I}\pi$ is the integral group ring of a finite group. We check that for $B = \mathbb{I}$, the conditions on "transitive action" in Theorems 1 and 2 are satisfied (see (1.4) and (2.10)), hence can be omitted from the statements.

For example consider the lattices arising from exact sequences

 $(0.1) 0 \longrightarrow L \longrightarrow C_2 \longrightarrow C_1 \longrightarrow C_0 \longrightarrow \mathbb{Z} \longrightarrow 0$

with C_i finitely generated projective $\mathbb{I}\pi$ modules. Such lattices with minimal \mathbb{I} -rank need not contain any free direct summands over $\mathbb{I}\pi$, but rationally contain all the representations of π except the trivial one. The simplest case occurs for π cyclic and L =ker { $\epsilon: \mathbb{I}\pi \longrightarrow \mathbb{I}$ } the augmentation ideal. More generally, if M is a $\mathbb{Z}\pi$ -lattice such that $M \otimes \mathbb{Q}$ is a free module over $\mathbb{Q}[\rho]$ for some $\rho \triangleleft \pi$, then M is $(\mathbb{Z}\pi, \mathbb{Z}[\pi/\rho])$ -locally free at all but finitely many primes.

In § 3 we discuss metabolic forms over group rings $\mathbb{I}\pi$, leading to examples of (A,B)hyperbolic rank ≥ 1 forms which contain no hyperbolic summand.

The purely algebraic results of this paper have consequences in several different geometric situations. These will be described elsewhere.

§ 1. The Linear Case

By an "A-module" we will mean a finitely generated right A-module. As above we suppose that $\epsilon: A \longrightarrow B$ is a surjective ring homomorphism of R-orders in (possibly different) separable K-algebras. If M is an A-lattice and $N = M \otimes_A B := \epsilon_*(M)$, we get an induced homomorphism

$$\epsilon_* : \operatorname{GL}(M) \longrightarrow \operatorname{GL}(N).$$

If $M = M_1 \oplus M_2$ is a direct sum splitting of an A-module then $E(M_1, M_2)$ denotes the subgroup of GL(M) generated by the elementary automorphisms ([2;p.182]). Recall that for an element $x \in M$, $O_M(x)$ is the left ideal in A generated by

$$\{ f(\mathbf{x}) \mid f \in Hom_{\mathbf{A}}(\mathbf{M}, \mathbf{A}) \}.$$

If $O_{\mathbf{M}}(\mathbf{x}) = \mathbf{A}$ we say that \mathbf{x} is unimodular.

The following result of Bass is an essential ingredient in the proofs of the cancellation theorems.

(1.1) Theorem [2;(3.1), p.178]: Let Q be a projective A-module and $P \cong A \oplus A$. For any unimodular element $x = (p,q) \in P \oplus Q$, there exists an A-homomorphism f: $Q \longrightarrow P$ such that $O_P(p + f(q)) = A$.

We also need two other facts.

(1.2) Lemma: Let M be a finitely generated right A-module, projective over R, and A' = A/At for an ideal $t \in R$ such that the localized order A_t is maximal. Then the induced map

$$\operatorname{Hom}_{A}(M, A) \longrightarrow \operatorname{Hom}_{A'}(M', A')$$

is surjective, where M' = M/Mt.

Proof: First note that M_{t} is projective over A_{t} . Since $A' = A_{t}/A_{t}t$ we can lift any map $f': M' \longrightarrow A'$ to $f: M_{t} \longrightarrow A_{t}$. After restricting to $M \subseteq M_{t}$ and multiplying by an element $r \in \mathbb{R}$ prime to t, we obtain a lifting of r'f'. But r' (the image of r in \mathbb{R}') is a unit in A'.

(1.3) Lemma [3;(2.5.2),p.225]: If C is a semisimple algebra, then for each a, $b \in C$ there exists $r \in C$ such that C(a + rb) = Ca + Cb.

We now come to the main result of the section.

(1.4) Theorem: Let A be an R-order in a separable K-algebra. Suppose that $M = L \oplus P$ is an A-lattice, where $P = p_0 A \oplus p_1 A$ is free of rank 2 and L is (A,B)-free of rank ≥ 1 at all but finitely many primes. Let $G_0 \subseteq GL(P)$ be a subgroup such that $\epsilon_*(G_0)$ acts transitively on the unimodular elements in $\epsilon_*(P)$. Then the group

$$G = \langle G_0, E(p_0A, L \oplus p_1A), E(p_1A, L \oplus p_0A) \rangle \subseteq GL(M)$$

acts transitively on the unimodular elements in M.

(1.5) Remark: In some cases there may be no subgroup G_0 with the required property. For example, if $B = I \pi$ is the integral group ring of a finite group π , then $GL_2(B)$ acts transitively on unimodular elements in $\mathbb{B} \oplus \mathbb{B}$ if and only if the relation $\mathbf{I} \oplus \mathbf{B} \cong \mathbf{B} \oplus \mathbf{B}$ for a projective ideal I implies $\mathbf{I} \cong \mathbf{B}$. In [8;Thm.3] Swan shows that this is not true for a certain ideal in $\mathbb{Z}\pi$ where π is the generalized quaternion group of order 32. Later in [10], extending the work of Jacobinski [7], Swan shows that cancellation in this sense fails for $\mathbb{Z}\pi$ if and only if π has a binary polyhedral quotient group in an explicitly given list.

Proof: We divide the proof into several parts. Let $x = v + p \in M$ be a unimodular element, where $p = p_0 a + p_1 b \in P$ and $v \in L$. We move x first into P to control the projection $\epsilon_*(x)$, and then use the stability assumption on L to move x so that its component in $p_0 A \oplus L$ is unimodular. Finally we move x to p_0 .

(i) Since M has free rank ≥ 2 we may now perform the first step, to get v = 0, so that x starts out in P. To see this note that O(p) + O(v) = A, so there exists $c \in O(v)$ such that O(p) + c contains 1. Apply (1.2) to $A \oplus P$ and the element (c, p) to find $z \in P$ with O(p + zc) = A. There exists g: L $\longrightarrow P$ with g(v) = zc, and f: P \longrightarrow L with f(p + zc) = v. Extend by zero on the complements. Then

$$\tau(x) = (1 - f) (1 + g) (x) \in P,$$

and $\tau \in E(P, L) \subseteq \langle E(p_0A, L \oplus p_1A), E(p_1A, L \oplus p_0A) \rangle \subseteq G.$

(ii) Since G_0 acts transitively on unimodular elements in $\epsilon_*(P) = B \oplus B$, we may assume that $\epsilon_*(x) = \epsilon_*(p_0)$.

(iii) Write $x = p_0 a + p_1 b$, so that O(x) = Aa + Ab. Consider the quotient ring $\overline{A} = A/gA$ where g is the ideal in R generated by all the primes $p \in R$ at which A is not maximal, or L does not have (A,B)-free rank ≥ 1 . Then we claim that, after changing x by an element from G if necessary,

(1.6)
$$O(\bar{x}) = \bar{A}\bar{a} = \bar{A}, \text{ and } \epsilon_*(x) = \epsilon_*(p_0)$$

or a projects to a unit in \bar{A} without disturbing step (ii). To see this note that the quotient ring $\bar{A} = \bar{C} \times \bar{C}'$, where \bar{C} is the smallest direct factor mapping onto \bar{B} by $\bar{\epsilon}$. But by lifting idempotents, $\bar{\epsilon}$ induces an isomorphism $\bar{B}/Rad \ \bar{B} \cong \bar{C}/Rad \ \bar{C}$. Therefore the \bar{C} component of a is already a unit since a projects to 1 in the semisimple quotient. Over the other factor we can apply [2;(2.8),p.87]: there exists $u \in A$, such that the element a + ub projects to a unit in $\overline{C'}$ and to 1 in \overline{B} . Let $g: p_1A \longrightarrow p_0A \subseteq M$ such that $g(p_1) = p_0u$. Extend g to a map from M to M by zero on the complement. Then $\tau = 1 + g$ is an element of G and $\tau(x)$ has the desired properties (1.6).

(iv) From step (iii) we have Aa + gA = A and so $(Ab)_p = A_p$ for all primes p dividing g. Therefore if $t \subseteq R$ denotes the largest ideal such that $At \subseteq Aa$, we see that p does not divide t for all primes p dividing g and in particular $t \neq 0$.

(v) Now we project to the semilocal ring A' = A/At, which is the quotient of a maximal order A_t and so the projection $\epsilon' \colon A' \longrightarrow B'$ splits and $A' = B' \times C'$. Since over the B' factor a projects to 1, we have (Aa)' = A'. Over the complementary factor C' we use a suitable $\tau \in E(p'_1C', L')$, so that after applying τ we achieve the condition

$$(1.7) A'a' + O(v') = A'$$

over both factors of A'. This is an application of (1.2) to the component of x in L' $\oplus p_1'C'$ using the fact that C' \subseteq L'. The necessary homomorphism $g \in \operatorname{Hom}_{A'}(P_1', L')$, which is the identity over B', can be lifted to $\operatorname{Hom}_A(P_1, L)$ since P_1 is projective and extended to M by zero on L $\oplus p_0A$.

(vi) We now lift the relation (1.7) to A using (1.2) and obtain

$$Aa + O(v) + At = A.$$

But At \subseteq Aa so we can assume that $v + p_0$ a is unimodular.

(vii) The argument of [2; pp 183-184] now shows that there is an element $\tau \in E(p_1A, p_0A \oplus L)$ such that $\tau(x) = p_0$. In our situation start with the unimodular element $z = v + p_0a \in L \oplus P_0$. Write $L \oplus P_0 = zA \oplus N$ and let $g_2(z) = p_1(1-a-b)$, with $g_2(N) = 0$. Let $g_3(p_1) = p_0$, $g_4(p_0) = p_1(a-1)$, $g_5(p_0) = p_1$, $g_6(p_1) = -v$, where the homomorphisms are extended to the obvious complements by zero. If $\tau_i = 1 + g_i$, then

$$\tau_6 \tau_5 \tau_4 \tau_3 \tau_2(\mathbf{x}) = \mathbf{p}_0.$$

This completes the proof.

Proof of Theorem 1: By Swan's Cancellation Theorem ([9; 9.7] and the discussion on [9;p.169]), $M \oplus A \cong M' \oplus A$ since $M \oplus A$ is the direct sum of two faithful modules. We apply (1.4) following [2;IV,3.5] to cancel the free modules.

Remark: The method does not seem to prove either Swan's or Jacobinski's cancellation theorems independently.

§ 2. The Unitary Case

We adopt the notation and conventions of Bass in [3; pp.61-90,233] for (λ, Λ) quadratic modules over a unitary (R, λ) -algebra (A, Λ) . A unitary module is a non-singular (λ, Λ) -quadratic form on a finitely generated projective A module. Since R is a Dedekind domain, $X = \max(R_0)$ has dimension d = 1, where $R_0 \subseteq R$ is the subring generated by all norms $t\bar{t}$ ($t \in R$). Note that $\lambda \bar{\lambda} = 1$. The form parameter Λ is ample at $m \in X$ if given a, b $\in A[m]$, the semisimple quotient of A_m , there exists $r \in \Lambda[m]$ such that $(2.1) \qquad A[m](a + rb) = A[m]a + A[m]b.$

In [3;§2,p.218ff] there is a discussion of this condition. If $R = \mathbb{I}$ and $\Lambda = \{a-\lambda \bar{a} \mid a \in A\}$, the minimal form parameter, then Λ is not ample at any prime when $\lambda = 1$ and Λ is not ample at 2 if $\lambda = -1$. Let $\mathfrak{A}_{\Lambda} \subseteq R_{0}$ be the ideal such that Λ is ample at all m $\notin V(\mathfrak{A}_{\Lambda}) = \{p \in X \mid \mathfrak{A}_{\Lambda} \subseteq p\}$, and d_{Λ} the dimension of the closed set $V(\mathfrak{A}_{\Lambda})$ in X. Note that $d_{\Lambda} \leq 1$ for all Λ , and $d_{\Lambda} \leq 0$ when Λ is ample at all but finitely many primes.

If (M,[h]) is any (λ,Λ) -quadratic module over A [3;p.80], then a transvection [3;p.91] is a unitary automorphism $\sigma = \sigma_{u,a,v}$: $M \longrightarrow M$ given by

(2.2)
$$\sigma(\mathbf{x}) = \mathbf{x} + \mathbf{u} \langle \mathbf{v}, \mathbf{x} \rangle - \mathbf{v}\overline{\lambda} \langle \mathbf{u}, \mathbf{x} \rangle - \mathbf{u}\overline{\lambda}\mathbf{a} \langle \mathbf{u}, \mathbf{x} \rangle,$$

where $u, v \in M$ and $a \in A$ satisfy the conditions

(2.3)
$$h(u,u) \in \Lambda, \quad \langle u,v \rangle = 0, \quad h(v,v) \equiv a \pmod{\Lambda}.$$

Note that $\langle x,y \rangle = h(x,y) + \lambda \overline{h(y,x)}$ is the associated hermitian form. For any submodule $L \subseteq M$,

$$L^{\perp} = \{ x \in M \mid \langle x, y \rangle = 0 \text{ for all } y \in L \}$$

If $M = M' \perp M'$ is an orthogonal direct sum, with $L' \subseteq M'$ a totally isotropic submodule (i.e. $h(x,y) = 0 \pmod{\Lambda}$ for all $x, y \in L'$), then we define

(2.4)
$$\operatorname{EU}(M', L'; M') = \langle \sigma_{u,a,v} \mid u \in L' \text{ and } v \in M' \rangle.$$

We will need the relation (see [3; p.92]):

(2.5) if
$$\alpha : (M,[h]) \longrightarrow (M',[h'])$$
 is an isometry, then
 $\alpha \circ \sigma_{u,a,v} \circ \alpha^{-1} = \sigma'_{\alpha u,a,\alpha v}$

where $\sigma \in U(M,[h])$ and $\sigma' \in U(M',[h'])$.

The hyperbolic rank of a (λ,Λ) -quadratic module (M,[h]) is ≥ 1 if $(M,[h]) = H(A) \perp (M',[h'])$, where H(P) denotes the hyperbolic form on $P \oplus \bar{P}$ [3;p.82] and elements denoted by pairs x = (p,q) with $p \in P$, $q \in \bar{P}$. Here we are using the notation \bar{P} for the dual module P^* regarded as a right A-module in the usual way. Since we will always be working with P containing at least one A-free direct summand, we will often write $P = p_0 A \oplus P_1$, $\bar{P} = q_0 A \oplus \bar{P}_1$ and denote the element

$$(p,q) = (p_0a + p_1, q_0b + q_1).$$

The main result of this section is a unitary analogue of (1.4), so we use some of the notation (e.g. A, ϵ , B). Before stating it, we need two lemmas.

(2.6) Lemma: Let V be a (λ, Λ) quadratic module which has (A,B)-hyperbolic rank ≥ 1 at a prime $p \in R_0$, for which A_p is maximal. Then

(i) V contains a totally isotropic submodule L which has (A,B)-locally free rank ≥ 1 at all

but finitely many primes, and

(ii) if $x \in H(P) \subseteq V \perp H(P)$ with $P \cong A^{r}$ and $f: P \longrightarrow L$ is an A-homomorphism, then there are elements $q_{i} \in \overline{P}$, $v_{i} \in L$ $(1 \leq i \leq r)$ such that

$$\prod \sigma_{\mathbf{q}_i,\mathbf{o},\mathbf{v}_i}(\mathbf{x}) = \mathbf{x} + \mathbf{f}(\mathbf{x}).$$

Proof: (i) Since A_p is maximal, we can write $A_p = B' \times C'$ and work over the C' factor V' of V_p . Then V' has free hyperbolic rank ≥ 1 and for L_p we choose a maximal rank totally isotropic C'-free direct summand. Let $L = L_p \cap V$ and compare it to a direct sum of copies of the A-lattice C :=ker{ $\epsilon: A \longrightarrow B$ }. Since $C_p \cong C'$ we may choose a direct sum $N = C^r$ with the same R-rank as L and so $N_p \cong L_p$. Therefore N and L are full lattices on the same K-vector space (K is the quotient field of R), and hence agree at all but finitely many primes. If we further avoid all the primes where A is not maximal, then L has (A,B)-free rank ≥ 1 at the remaining primes.

(ii) Let $\{q_1, ..., q_r\}$ be a basis for \overline{P} . Then there exist $v_1, ..., v_r \in L$ such that $f(x) = \sum \overline{\lambda} v_i < q_i, x > \text{ for all } x \in P$.

(2.7) Lemma [3;(3.11),p.241]: Suppose that (C,Λ) is a semisimple unitary algebra over (R,λ) . Assume either that (i) P has free rank ≥ 2 , or (ii) Λ is ample in C and P = C. Write $x \in H(P)$ as $x = (p_0a + p_1,q_0b + q_1)$. Then there is an element $\sigma \in H(E(P)) \cdot EU(H(P)$ such that $\sigma(x) = (p_0a' + p'_1,q_0b' + q'_1)$ and O(x) = Aa'. In case (i), $\sigma \in EU(H(P_0), Q; H(P_1))$ where $Q = P_0$ or \bar{P}_0 .

Definition: Let (M, [h]) be a (λ, Λ) -quadratic module. An element $x \in M$ is [h]-unimodular if there exists $y \in M$ such that $\langle x, y \rangle = 1$.

If (M,[h]) is non-singular then an element is [h]-unimodular if and only if it is unimodular.

The following is our main result in the quadratic case.

(2.8) Theorem: Let V be a (λ, Λ) -quadratic module which has (A,B)-hyperbolic rank ≥ 1 at all but finitely many primes, and put $(M, [h]) = V \perp H(P)$ where P is A-free of rank 2. Suppose there exists a subgroup $G_1 \subseteq U(H(P))$ such that $\epsilon_*(G_1)$ acts transitively on the set of unimodular elements in $H(\epsilon_*(P))$ of fixed length [h(x,x)]. Then

$$G = \langle G_1, EU(H(P), Q; V), H(E(P)) \cdot EU(H(P)) \rangle$$

where Q = P or \overline{P} , acts transitively on the set of [h]-unimodular elements of a fixed length, and the set of hyperbolic pairs and hyperbolic planes in M.

Proof: The same reduction used in [3;(3.5),p.236] shows that it is enough to prove that G acts transitively on the set of [h]-unimodular elements of a fixed length in M. One can check that G contains all transvections $\sigma_{p_0,a,v}$ with $v \in (p_0)^{\perp} = V \oplus \mathbf{H}(P_1) \oplus p_0 A$ (see [3;(3.11),p.143] and [3;(5.6),p.98]).

(i) Let $x = (v; p,q) \in V \perp H(P)$ be an [h]-unimodular element. Since P is free of rank 2, it follows as in [3;p.181] that we may assume (p,q) is unimodular. More precisely, there exists some $y \in M$ such that $\langle x, y \rangle = 1$ and so $\langle V, v \rangle + O(p) + O(q) = A$. Choose $w \in V$ so that $\langle v, w \rangle + O(p) + O(q) = A$. Choose $w \in V$ so that $\langle v, w \rangle + O(p) + O(q) = A$. Now apply the transvection $\sigma_{p_1,a,w}$ to x. This isometry lies in EU(H(P), P;V).

(ii) Since $\epsilon_*(G_1)$ acts transitively on the set of unimodular elements of fixed length in $\mathbf{H}(\epsilon_*(P))$ we may assume that $\epsilon_*(x) = \epsilon_*(v; p_0, q_0 b)$, where $\bar{b} \equiv h_P(x, x) \mod \Lambda$.

(iii) We may now achieve "O(x) = Aa over A[g]" using (2.7) and the fact that P is free of rank 2. Here $g = \Pi \{m | m \in S\}$ where S is a finite set in X containing all the primes at which A is not maximal or V does not have (A,B)-hyperbolic rank ≥ 1 . Furthermore by

ł

(2.6) we may assume that V contains a non-zero totally isotropic submodule L which has (A,B)-free rank ≥ 1 at all primes not in S. Note that after step (ii), nothing needs to be done over B and (p,q) is still unimodular. This step uses $H(E(P)) \cdot EU(H(P))$.

(iv) Let $t \subseteq R_0$ be the largest ideal such that $At \subseteq Aa$, and put X' = V(t), $X'_{\Lambda} = V(t+\mathfrak{A}_{\Lambda})$, $d'_{\Lambda} = \dim X'_{\Lambda}$. Let $\pi: A \longrightarrow A' = A/At$ be the natural projection and note that dim X' = 0 and dim $X'_{\Lambda} \leq 0$. As in [3;p.244] we see that $m \notin X'$ for all $m \in S$, hence t $\neq 0$ and A' is semilocal. We have $O(p_1, q_1 + q_0 b) + Aa = A$ and so $O(\pi p_1, \pi(q_1 + q_0 b)) + \pi(Aa) = A'$. Over B' = B/Bt we do nothing. Over the complementary factor C' of A', apply (1.2) to find an element $u \in \pi P_1$ such that u projects to zero over B' and

$$O(\pi p_1 - ub) + O(\pi q_1) + \pi(Aa) = A'$$

(Note that this already holds over B' by step (ii)). Choose $z \in P_1$ such that $\pi z = u$ and $\epsilon_*(z) = 0$. Since t and g are relatively prime, we can choose $z \in (P_1) \cdot g$.

Note that
$$\sigma_{p_0,0,z} \in EU(H(P))$$
 by [3;(3.10.2),p.142]. Then
 $\sigma(x) = x + p_0 < z, x > -z < p_0, x >$
 $= (v; p_1 - zb + p_0(a + < z, q_1 >), q).$

Therefore

$$O(p_1 - zb) + O(q_1) + A(a + \langle z, q_1 \rangle) + At = A.$$

But $At \subseteq Aa \subseteq O(q_1) + A(a + \langle z, q_1 \rangle)$, so after these changes, we may assume that (2.9) $O(p_1) + O(q_1) + Aa = A.$

(v) Since πV has hyperbolic rank ≥ 1 over C' we can choose an isometry α : $\pi V \cong \mathbf{H}(C') \perp W'$ and extend it to an isometry of $\pi V \perp \mathbf{H}(\pi P)$ by the identity on $\mathbf{H}(\pi P)$. We now apply the first case of (2.7) to the element $\alpha(\pi(\mathbf{p}_1, \mathbf{q}_1)) \in \mathbf{H}(C') \perp \mathbf{H}(\pi P_1)$ over the semisimple ring C', where $\mathbf{A}' = \mathbf{B}' \times \mathbf{C}'$. This uses an element $\sigma' \in \mathbf{EU}(\mathbf{H}(\pi P_1), \pi \mathbf{Q}; \mathbf{H}(\mathbf{C}'))$ where $\mathbf{Q} = \mathbf{P}_1$ or \mathbf{P}_1 . By (2.5), $\alpha^{-1} \circ \sigma' \circ \alpha \in \mathbf{EU}(\mathbf{H}(\pi \mathbf{P}_1), \pi \mathbf{Q}; \pi \mathbf{V})$. Then there exists a lift σ of $\alpha^{-1} \circ \sigma' \circ \alpha$ to U(M, [h]) which lies in

 $EU(\mathbf{H}(P_1), Q; V)$. After moving $\mathbf{x} = (\mathbf{v}; \mathbf{p}, \mathbf{q})$ by σ we get

$$A = O(p_1) + At \subseteq O(p_1) + Aa = O(p).$$

Finally note that after this change p is unimodular and $\epsilon_*(x) = \epsilon_*(v; p_0, q_0 b)$, where $\bar{b} \equiv h_p(x,x) \mod \Lambda$.

(vi) Since p is unimodular and h(p,p) = 0, $H(P) = H(pA) \perp H(pA)^{\perp}$. If $H(pA) = pA \oplus \bar{p}A$, where $\bar{p} \in \bar{P}$ then $\sigma_{\bar{p},d,\lambda v} \in EU(H(P), \bar{P}; V)$ and

$$\sigma_{\mathbf{\bar{p}},\mathbf{d},\lambda\mathbf{v}}(\mathbf{x}) = \mathbf{x} + \mathbf{\bar{p}} < \lambda \mathbf{v}, \mathbf{x} > -\lambda \mathbf{v} \mathbf{\bar{\lambda}} < \mathbf{\bar{p}}, \mathbf{x} > -\mathbf{\bar{p}} \mathbf{\bar{\lambda}} \mathbf{d} < \mathbf{\bar{p}}, \mathbf{x} >$$
$$= (0; \mathbf{p}, \mathbf{q}').$$

(vii) We now have a hyperbolic element $x = (p, q) \in H(P)$ with p unimodular. Recall that V contains a non-zero totally isotropic submodule L which has (A,B)-free rank ≥ 1 at all but finitely many primes. We claim that after applying a suitable transformation in G, we can assume that $x = (p_0,q)$, with a possibly different q. For this we need to refer to the proof of (1.4) to find which linear automorphisms of L \oplus P are necessary to move p to p_0 , and then show that they are induced by isometries in G.

Since our element p starts out in P steps (i) and (ii) of (1.3) are not necessary. Step (iii) requires an element of $E(p_1A, P_0)$ which is induced by a suitable element of $H(E(P)) \subseteq$ G. Step (v) uses an elementary transformation given by a homomorphism f: $P_1 \longrightarrow L$, and these are induced elements of G using (2.6). Finally, in step (vi) we first construct a homomorphism $g_2: P_0 \oplus L \longrightarrow P_1$ by splitting $P_0 \oplus L = zA \oplus N$ where z is unimodular and $h(z,z) = 0 \pmod{\Lambda}$. To realise τ_2 by an isometry, we find a unitary submodule H(zA) $\subseteq V \perp H(P_0)$ and then work inside $H(zA) \perp H(P_1)$. By [3;(3.10.4), p.143] $H(\tau_2|_{zA \oplus P_1}) \subseteq$ $EU(H(zA), \bar{z}\bar{A}; H(P_1)) \subseteq G$. The remaining automorphisms τ_3, τ_4, τ_5 are in $E(P_0, P_1)$ and τ_6 is defined using $g_6 \in Hom(P_1, L)$. These are induced by elements of H(E(P)) or $EU(H(P),\bar{P}; V)$ using (2.6).

Write $q = q_0 b - q_1 \in q_0 A \oplus \overline{P}_1$. The transvection $\sigma_{q_1,0,q_0}$ belongs to EU(H(P)) by

[3;(3.10.1), p.142], and

$$\sigma \mathbf{x} = \mathbf{x} - \mathbf{q}_1 < \mathbf{q}_0, \mathbf{x} > - \mathbf{q}_0 \bar{\lambda} < \mathbf{q}_1, \mathbf{x} >.$$

Note that $\langle q_1, x \rangle = 0$ since x has no component in \bar{P}_1 and $\langle q_0, x \rangle = \langle q_0, p_0 \rangle = 1$, so $\sigma x = x + q_1 = (p_0, q_0b)$. We are now finished if x was unimodular. If x was a hyperbolic element, then $h(\sigma x, \sigma x) = h(p_0, q_0b) = \bar{b} \pmod{\Lambda}$, and so $\bar{b} \in \Lambda$, since x and $\sigma(x)$ are isotropic.

In the hyperbolic plane $p_0A + q_0A$, the element $X_+(-b) = \begin{bmatrix} I & -b \\ 0 & I \end{bmatrix} \in EU(\mathbf{H}(P_0))$ transforms $p_0 + q_0b$ into p_0 (the notation X_+ is from [3; p.130]).

Proof of Theorem 2: The argument is the same as for [3;(3.6), p.238] using our (2.8).

(2.10) Lemma: The group $H(GL_2(\mathbb{Z})) \cdot EU(H(\mathbb{Z} \oplus \mathbb{Z}))$ acts transitively on unimodular elements in $H(\mathbb{Z} \oplus \mathbb{Z})$ of fixed length.

Proof: Let $P = p_0 \mathbb{I} \oplus p_1 \mathbb{I}$ (with dual basis q_0 , q_1 for \overline{P}) and let $x = (p_0 a, p_1 b; q_0 c, q_1 d)$ be a unimodular element in H(P). We may assume that d = 0 after applying an element of H(E(P)), so there exists an integer r such that b + rc is a unit (mod a). Then

$$X_{+} \begin{pmatrix} 0 & -\lambda r \\ r & 0 \end{pmatrix} (x) = (p_0 a, p_1 (b+rc); q_0 c, 0)$$

so that $O(p_0a) + O(p_1(b+rc)) = \mathbb{I}$. We may therefore assume in the beginning that for $x = (p_0a, p_1b; q_0c, q_1d)$, a and b are relatively prime. Using a suitable element of H(E(P)) we get $x = (p_0, 0; q_0c, q_1d)$ and after applying $X_{-}(\begin{array}{c}0 & \lambda d\\ -d & 0\end{array})$ the result is $(p_0, 0; q_0c, 0)$, where [c] is the length of x.

§ 3. Metabolic Forms

One way to obtain quadratic modules V with (A,B)-hyperbolic rank ≥ 1 at all but finitely many primes is to assume that V has a submodule H(L) where L has (A,B)-free rank ≥ 1 . A generalization of this would be to assume that V contains a "metabolic form" on L. In this section we define a suitable notion of metabolic forms general enough for our applications elsewhere. The notation and conventions of § 2 will be used.

If N is an A-lattice and g: $\overline{N} \times \overline{N} \longrightarrow A$ is an R-bilinear form, let

$$[\mathbf{g}] = \{\mathbf{g}_{\tau} \mid \mathbf{g}_{\tau}(\phi, \phi') = \mathbf{g}(\phi, \phi') + \langle \phi, \tau(\phi') \rangle, \tau \in \operatorname{Hom}_{\mathbf{R}}(\bar{\mathbf{N}}, \mathbf{N})\}.$$

Any $\theta \in \operatorname{Ext}^{1}_{A}(\bar{N}, N)$ defines an extension

 $(3.1) 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{j} \overline{N} \longrightarrow 0$

of A-lattices which splits over R. We say that [g] is θ -sesquilinear if there is a cocycle $\gamma \in \text{Hom}_{R}(\bar{N} \otimes_{R} A, N)$ representing θ such that for all $a \in A$:

$$g(\phi a, \phi') = \bar{a}g(\phi, \phi')$$

(3.2)

$$g(\phi, \phi'a) = g(\phi, \phi')a - \langle \phi, \gamma(\phi', a) \rangle.$$

Note that any cocycle γ satisfies the relation:

$$\gamma(\phi, \mathbf{a}_1 \mathbf{a}_2) = \gamma(\phi, \mathbf{a}_1)\mathbf{a}_2 + \gamma(\phi \mathbf{a}_1, \mathbf{a}_2)$$

and serves as a way to specify the A-module structure E on the R-module N $\oplus \overline{N}$ given by θ : for $(x, \phi) \in N \oplus \overline{N}$ define

(3.3)
$$(\mathbf{x}, \phi) \cdot \mathbf{a} = (\mathbf{x}\mathbf{a} + \gamma(\phi, \mathbf{a}), \phi\mathbf{a})$$

If we vary the choice of representative $g_{\tau} \in [g]$, then the new γ is $\gamma_{\tau} = \gamma + \delta \tau$, where

$$(\delta \tau)(\phi, \mathbf{a}) = \tau(\phi)\mathbf{a} - \tau(\phi \mathbf{a}),$$

for some $\tau \in \operatorname{Hom}_{R}(\bar{N}, N)$, and all $a \in A$. Then $g_{\tau}(\phi, \phi') = g(\phi, \phi') + \langle \phi, \tau(\phi') \rangle$ satisfies (3.2). Given an extension (N, θ) and a θ -sesquilinear form [g], we define the *metabolic* (λ, Λ) -quadratic form $\operatorname{Met}(N, \theta, [g]) = (E, [q])$ as follows: pick a compatible γ , g satisfying (3.2) and set

 $q((\mathbf{x},\phi),\,(\mathbf{x}^{\,\prime},\phi^{\,\prime}\,))=<\,\phi,\,\mathbf{x}^{\,\prime}\,>\,+\,g(\,\phi,\,\phi^{\,\prime}\,).$

It is easy to check that q is sesquilinear in the usual sense if [g] is θ -sesquilinear.

These metabolic forms are non-singular when they exist but an arbitrary extension need not admit any such form. Suppose that N is reflexive and let τ denote the involution on $\operatorname{Ext}^{1}_{A}(\bar{N}, N)$ given by dualizing exact sequences $(N, \theta) \mapsto (N, \theta)^{*}$. An extension (N, θ) is λ -self-dual if N is reflexive and there is a commutative diagram

If $h^* = \lambda h$ then h is the adjoint of a metabolic hermitian form on E. We will define a homomorphism

$$\rho: \{ (\mathbf{N}, \theta)^* = \lambda(\mathbf{N}, \theta) \} \subseteq \operatorname{Ext}_{\mathbf{A}}^1(\bar{\mathbf{N}}, \mathbf{N}) \longrightarrow \operatorname{H}^1(\mathbb{Z}/2; \operatorname{Hom}_{\mathbf{A}}(\bar{\mathbf{N}}, \mathbf{N}))$$

where $\operatorname{Hom}_{A}(\bar{N}, N)$ has the involution $\alpha \mapsto \bar{\lambda} \alpha^{*}$. We will show that $\rho(N, \theta)$ is the obstruction for finding a λ -self-dual map h. Choose an R-section s: $\bar{N} \longrightarrow E$ inducing a cocycle γ and identify $E = N \oplus \bar{N}$ as above. Then the lower sequence is split over R by s^{*} leading to an identification of $\bar{E} = N \oplus \bar{N}$. In these coordinates, for any A-map h making the diagram (3.4) commute,

$$h(x,\phi) = (x + s^* hs(\phi), \bar{\lambda}\phi)$$

and similarly

$$\mathbf{h}^{*}(\mathbf{x},\phi) = (\lambda \mathbf{x} + \mathbf{s}^{*}\mathbf{h}^{*}\mathbf{s}(\phi),\phi).$$

Now $(h^*)^{-1} \circ \lambda h(x,\phi) = (x + \rho(h)(\phi), \phi)$ where $\rho(h) = s^* hs - \bar{\lambda}s^* h^*s$. Note that $\rho(h)$ is independent of the choice of the section s. Since $(h^*)^{-1} \circ \lambda h$ is an A-map, we can check using (3.3) that $\rho(h)$ is also an A-map. Similarly, by computing $h^* \circ (\bar{\lambda}h^{-1})$ and comparing with the formula for the dual, we see that $\rho(h)^* = -\lambda \rho(h)$. Moreover the cohomology class $[\rho(h)] \in H^1(\mathbb{Z}/2; \operatorname{Hom}_{\Lambda}(\bar{N}, N))$

is independent of the choice of h. Define $\rho(N, \theta) = [\rho(h)]$ for any h making the diagram (3.4) commute.

(3.5) Proposition: If N is a reflexive A-module and (N, θ) is a self-dual extension, then (N, θ) admits a metabolic λ -hermitian form if and only if $\rho(N, \theta) = 0 \in$ $H^{1}(\mathbb{Z}/2; \operatorname{Hom}_{A}(\bar{N}, N)).$

Note that a metabolic λ -hermitian form is unique up to isometry if it admits a quadratic refinement. We want to identify the obstruction to obtaining a quadratic refinement for a given metabolic λ -hermitian form h. Let

 $\eta: \ker \rho \longrightarrow \operatorname{coker} \{ \hat{\mathrm{H}}^{0}(\mathbb{Z}/2; \operatorname{Hom}_{A}(\bar{\mathrm{N}}, \mathrm{N})) \longrightarrow \hat{\mathrm{H}}^{0}(\mathbb{Z}/2; \operatorname{Hom}_{R}(\bar{\mathrm{N}}, \mathrm{N})) \}.$ be the homomorphism defined by $\eta(\mathrm{h}) = [s^{*} \mathrm{hs}].$

(3.6) Proposition: Suppose that (N, θ) admits a metabolic λ -hermitian form. Then (N, θ) admits a metabolic (λ, Λ) -quadratic form with respect to the minimal form parameter if and only if $\eta(N, \theta) = 0$.

Suppose now that $R = \mathbb{I}$ and $A = \mathbb{I}\pi$ where π is a finite group. Then each lattice L over A is reflexive. Let $N = \Omega^k \mathbb{I}$, the kernel of a projective resolution F_* of \mathbb{I} of length k (see (0.1) for the case k = 3). We will show that every element of $\operatorname{Ext}_A^1(\overline{N}, N)$ is $(-1)^{k+1}$ -self-dual.

(3.7) Lemma: Let $N = \Omega^k \mathbb{I}$. The involution τ given by dualizing exact sequences induces multiplication by $(-1)^{k+1}$ on $\operatorname{Ext}^1_A(\bar{N}, N)$.

Proof: Let \bar{X} be a projective resolution of \bar{N} and X the dual co-resolution of N. We have two isomorphisms α , β : Ext¹(\bar{N} , N) \cong H¹(Hom_A(\bar{X} , X)) comparing an extension with \bar{X} or X respectively. Note that over $A = \mathbb{I}\pi$ we can use X instead of an injective co-resolution for computing $\operatorname{Ext}^{i}(\bar{N}, N)$. It is not difficult to see that $\alpha = -\beta$. Let t be the involution on $\operatorname{H}^{1}(\operatorname{Hom}_{A}(\bar{X}, X))$ induced by dualization. By construction, $\alpha \tau = t\beta$ implying $\alpha \tau \alpha^{-1} = -t$.

Note that $\operatorname{Hom}_{A}(\bar{X}, X) \cong \operatorname{Hom}_{\mathbb{I}}(\bar{X}, X) \otimes_{A} \mathbb{I}$, and that $\operatorname{Hom}_{\mathbb{I}}(\bar{X}, X)$ is a co-resolution of $\operatorname{Hom}_{\eta}(\bar{N}, N)$. Thus

$$\mathrm{H}^{i}(\mathrm{Hom}_{A}(\bar{\mathrm{X}}, \mathrm{X})) = \mathrm{H}^{i}(\mathrm{Hom}_{\underline{\mathcal{I}}}(\bar{\mathrm{X}}, \mathrm{X}) \otimes_{A} \underline{\mathcal{I}}) = \mathrm{H}^{i}(\pi; \mathrm{N} \otimes_{\underline{\mathcal{I}}} \mathrm{N})$$

and under these identifications t corresponds to the involution induced by the flip map s: $x \otimes y \mapsto y \otimes x$ on N \otimes N.

Now we follow an argument suggested by R. Swan. Extend the projective resolution F defining N to a projective resolution \hat{F} of \mathbb{Z} . Let f be the chain map on $\hat{F} \otimes_{\mathbb{Z}} \hat{F}$ mapping $x \otimes y \mapsto (-1)^{\deg(x)\deg(y)} y \otimes x$. Since f induces the identity on \mathbb{Z} it induces the identity on all the derived functors. We have the similar chain map on $F \otimes_{\mathbb{Z}} F$ which on $F_{2k} = N \otimes N$ is $(-1)^k$ s. Now we consider $F \otimes_{\mathbb{Z}} F$ as part of a co-resolution of N \otimes N ending in \mathbb{Z} . Similarly we consider $\hat{F} \otimes_{\mathbb{Z}} \hat{F}$ a part of a complete co-resolution of \mathbb{Z} . Then

$$\mathrm{H}^{1}(\pi; \mathrm{N} \otimes_{\mathbb{I}} \mathrm{N}) = \mathrm{H}^{1}(\mathrm{Hom}_{\mathrm{A}}(\mathbb{I}, \mathrm{F} \otimes_{\mathbb{I}} \mathrm{F})) \cong \mathrm{H}^{1}(\mathrm{Hom}_{\mathrm{A}}(\mathbb{I}, \hat{\mathrm{F}} \otimes_{\mathbb{I}} \hat{\mathrm{F}})).$$

where the last isomorphism is induced by the obvious chain map $F \longrightarrow F$. Thus

 $\alpha \tau \alpha^{-1} = -s = (-1)^{k+1} f^* = (-1)^{k+1}.$

(3.8) Example: Now we restrict to groups π of odd order. Since $\operatorname{Ext}_{\mathbb{Z}\pi}^1(\bar{N},N)$ then has odd order $\rho(N,\theta)$ and $\eta(N,\theta)$ vanish for each λ -self-dual extension. In particular for $N = \Omega^k \mathbb{Z}$, each extension (N,θ) admits a metabolic (λ,Λ) -quadratic form whose λ -symmetrization is unique up to isometry.

References

- [1] Bak, A., "The stable structure of quadratic modules", Thesis, Columbia University, 1969.
- [2] Bass, H., <u>Algebraic K-Theory</u>, W.A. Benjamin, New York 1968
- Bass, H., "Unitary algebraic K-theory", <u>Algebraic K-Theory III:</u> Hermitian K-theory and Geometric Applications. Lect. Notes in Math. 343, 57-209, Springer Verlag, 1973.
- [4] C.W.Curtis and I.Reiner. <u>Representation Theory of Finite Groups and</u> <u>Associative Algebras</u>. John Wiley & Sons. New York, 1962.
- [5] Hambleton, I., Kreck, M., "On the classification of topological 4-manifolds with finite fundamental group", Math. Ann. 280 (1988), 85-104.
- [6] Hambleton, I., Kreck, M., "Smooth structures on algebraic surfaces with cyclic fundamental group", Invent. Math.91 (1988), 53-59.
- Jacobinski, H., "Genera and decompositions of lattices over orders", Acta. Math. 121 (1968), 1-29.
- [8] Swan, R.G., "Projective modules over group rings and maximal orders", Annals of Mathematics 76 (1962), 55-61.
- [9] Swan, R. G., "K-theory of finite groups and orders", Notes by E.G.Evens. Lect. Notes in Math. 149, Springer-Verlag, Berlin 1970.
- Swan, R.G., "Projective modules over binary polyhedral groups", J. reine u. angew. Math. 342 (1983), 66-172.
- [11] Vaserstein, L. N., "Stability of unitary and orthogonal groups over rings with involution", Math. Sbornik 81 (1970), 328-351.

McMaster University, Hamilton, Ontario, Canada Max-Planck Institut für Mathematik Bonn, West Germany

December 15, 1989

ON THE CANCELLATION OF HYPERBOLIC FORMS OVER ORDERS IN SEMISIMPLE ALGEBRAS

by

I. Hambleton and M. Kreck

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany

,

.

•

References

[1] Bak, A., "The stable structure of quadratic modules", Thesis, Columbia University, 1969. [2] Bass, H., Algebraic K-Theory, W.A. Benjamin, New York 1968 Bass, H., "Unitary algebraic K-theory", Algebraic K-Theory III: Hermitian [3] K-theory and Geometric Applications. Lect. Notes in Math. 343, 57-209, Springer Verlag, 1973. [4] Representation Theory of Finite Groups and C.W.Curtis and I.Reiner. Associative Algebras. John Wiley & Sons. New York, 1962. [5] Hambleton, I., Kreck, M., "On the classification of topological 4-manifolds with finite fundamental group", Math. Ann. 280 (1988), 85-104. [6] Hambleton, I., Kreck, M., "Smooth structures on algebraic surfaces with cyclic fundamental group", Invent. Math.91 (1988), 53-59. [7] Jacobinski, H., "Genera and decompositions of lattices over orders", Acta. Math. 121 (1968), 1-29. Swan, R.G., "Projective modules over group rings and maximal orders", [8] Annals of Mathematics 76 (1962), 55-61. [9] Swan, R. G., "K-theory of finite groups and orders", Notes by E.G.Evens. Lect. Notes in Math. 149, Springer-Verlag, Berlin 1970. [10] Swan, R.G., "Projective modules over binary polyhedral groups", J. reine u. angew. Math. 342 (1983), 66-172. [11] Vaserstein, L. N., "Stability of unitary and orthogonal groups over rings with involution", Math. Sbornik 81 (1970), 328-351.

McMaster University, Hamilton, Ontario, Canada Max-Planck Institut für Mathematik Bonn, West Germany

December 15, 1989

. .

On the Cancellation of Hyperbolic Forms over Orders in Semisimple Algebras

I. Hambleton¹ and M. Kreck

Let R be a Dedekind domain and K its field of quotients. The purpose of this note is to obtain an improvement in the stable range for cancellation of lattices over R-orders in separable K-algebras, assuming some local information about the lattices. Recall that a *lattice* over an R-order A is an A-module which is projective as an R-module. Our results are based on the work of H. Bass [2],[3], A. Bak [1] and L. N. Vaserstein [11].

The general stable range condition for cancellation of lattices over orders is free rank ≥ 2 for the linear case [2;(3.5), p.184], and free hyperbolic rank ≥ 2 for the unitary case [3;(3.6),p.238]. To state our condition, let A and B be orders in separable algebras over K [4;71.1,75.1], and suppose that there is a surjective ring homomorphism ϵ : A \longrightarrow B. We say that a finitely generated A-module L has (A,B)-free rank ≥ 1 at a prime $p \in R$, if there exists an integer r such that $(B^{r} \oplus L)_{p}$ has free rank ≥ 1 over A_{p} . Here A_{p} denotes the localized order A $\otimes R_{(p)}$.

Theorem 1

Let L be an A-lattice and put $M = L \oplus A$. Suppose that there exists a surjection of orders ϵ : A \longrightarrow B such that L has (A,B)-free rank ≥ 1 at all but finitely many primes. If $GL_2(A)$ acts transitively on unimodular elements in B \oplus B, then for any A-lattice N which is locally a direct summand of M^n for some integer n, $M \oplus N \cong M' \oplus N$ implies $M \cong M'$.

¹ Partially supported by NSERC grant A4000

For the corresponding result in the unitary case there is a similar condition involving hyperbolic rank ≥ 1 and a locally (A,B)-free submodule. A quadratic module V has (A,B)hyperbolic rank ≥ 1 at a prime $p \in R$ if there exists an integer r such that $(H(B^{I}) \oplus V)_{p}$ has free hyperbolic rank ≥ 1 over A_{p} . The other terms used in the statement are defined precisely in §2 or in [3;pp. 80, 87]. Note in particular that a unitary module is a (λ,Λ) -quadratic form on a finitely-generated projective A-module. A totally isotropic submodule is one on which the quadratic form is identically zero.

Theorem 2

Let V be a (λ,Λ) -quadratic module over a unitary (R,λ) algebra (A,Λ) and put $(M,[h]) = V \perp H(A)$. Suppose that there exists a surjection of orders ϵ : A \longrightarrow B such that V has (A,B)-hyperbolic rank ≥ 1 at all but finitely many primes. If $U_2(A)$ acts transitively on the set of unimodular elements in $H(B \oplus B)$ of fixed length, then for any unitary module N, $M \perp N \cong M' \perp N$ implies $M \cong M'$.

In our work [5], [6] on the topological classification of 4-manifolds and algebraic surfaces we encounter locally $(\mathbb{I}\pi,\mathbb{I})$ -free modules, where $\mathbb{I}\pi$ is the integral group ring of a finite group. We check that for $B = \mathbb{I}$, the conditions on "transitive action" in Theorems 1 and 2 are satisfied (see (1.4) and (2.10)), hence can be omitted from the statements.

For example consider the lattices arising from exact sequences

 $(0.1) 0 \longrightarrow L \longrightarrow C_2 \longrightarrow C_1 \longrightarrow C_0 \longrightarrow \mathbb{I} \longrightarrow 0$

with C_i finitely generated projective $\mathbb{I}\pi$ modules. Such lattices with minimal \mathbb{I} -rank need not contain any free direct summands over $\mathbb{I}\pi$, but rationally contain all the representations of π except the trivial one. The simplest case occurs for π cyclic and L =ker { $\epsilon: \mathbb{I}\pi \longrightarrow \mathbb{I}$ } the augmentation ideal. More generally, if M is a $\mathbb{I}\pi$ -lattice such that $M \otimes \mathbf{Q}$ is a free module over $\mathbf{Q}[\rho]$ for some $\rho \triangleleft \pi$, then M is $(\mathbb{I}\pi, \mathbb{I}[\pi/\rho])$ -locally free at all but finitely many primes.

In § 3 we discuss metabolic forms over group rings $\mathbb{I}\pi$, leading to examples of (A,B)hyperbolic rank ≥ 1 forms which contain no hyperbolic summand.

The purely algebraic results of this paper have consequences in several different geometric situations. These will be described elsewhere.

§ 1. The Linear Case

By an "A-module" we will mean a finitely generated right A-module. As above we suppose that $\epsilon: A \longrightarrow B$ is a surjective ring homomorphism of R-orders in (possibly different) separable K-algebras. If M is an A-lattice and $N = M \otimes_A B := \epsilon_*(M)$, we get an induced homomorphism

$$\epsilon_* : \operatorname{GL}(M) \longrightarrow \operatorname{GL}(N).$$

If $M = M_1 \oplus M_2$ is a direct sum splitting of an A-module then $E(M_1, M_2)$ denotes the subgroup of GL(M) generated by the elementary automorphisms ([2;p.182]). Recall that for an element $x \in M$, $O_M(x)$ is the left ideal in A generated by

$$\{ f(\mathbf{x}) \mid f \in Hom_{\mathbf{A}}(\mathbf{M}, \mathbf{A}) \}.$$

If $O_M(x) = A$ we say that x is unimodular.

The following result of Bass is an essential ingredient in the proofs of the cancellation theorems.

(1.1) Theorem [2;(3.1), p.178]: Let Q be a projective A-module and $P \cong A \oplus A$. For any unimodular element $x = (p,q) \in P \oplus Q$, there exists an A-homomorphism f: $Q \longrightarrow P$ such that $O_P(p + f(q)) = A$.

We also need two other facts.

(1.2) Lemma: Let M be a finitely generated right A-module, projective over R, and A' = A/At for an ideal $t \in R$ such that the localized order A_t is maximal. Then the induced map

 $\operatorname{Hom}_{A}(M, A) \longrightarrow \operatorname{Hom}_{A'}(M', A')$

is surjective, where M' = M/Mt.

Proof: First note that M_{t} is projective over A_{t} . Since $A' = A_{t}/A_{t}t$ we can lift any map $f': M' \longrightarrow A'$ to $f: M_{t} \longrightarrow A_{t}$. After restricting to $M \subseteq M_{t}$ and multiplying by an element $r \in R$ prime to t, we obtain a lifting of r'f'. But r' (the image of r in R') is a unit in A'.

(1.3) Lemma [3;(2.5.2),p.225]: If C is a semisimple algebra, then for each a, b \in C there exists $r \in C$ such that C(a + rb) = Ca + Cb.

We now come to the main result of the section.

(1.4) Theorem: Let A be an R-order in a separable K-algebra. Suppose that $M = L \oplus P$ is an A-lattice, where $P = p_0 A \oplus p_1 A$ is free of rank 2 and L is (A,B)-free of rank ≥ 1 at all but finitely many primes. Let $G_0 \subseteq GL(P)$ be a subgroup such that $\epsilon_*(G_0)$ acts transitively on the unimodular elements in $\epsilon_*(P)$. Then the group

$$G = \langle G_0, E(p_0A, L \oplus p_1A), E(p_1A, L \oplus p_0A) \rangle \subseteq GL(M)$$

acts transitively on the unimodular elements in M.

(1.5) Remark: In some cases there may be no subgroup G_0 with the required property. For example, if $B = I \pi$ is the integral group ring of a finite group π , then $GL_2(B)$ acts transitively on unimodular elements in $B \oplus B$ if and only if the relation $I \oplus B \cong B \oplus B$ for a projective ideal I implies $I \cong B$. In [8;Thm.3] Swan shows that this is not true for a certain ideal in $\mathbb{Z}\pi$ where π is the generalized quaternion group of order 32. Later in [10], extending the work of Jacobinski [7], Swan shows that cancellation in this sense fails for $\mathbb{Z}\pi$ if and only if π has a binary polyhedral quotient group in an explicitly given list.

Proof: We divide the proof into several parts. Let $x = v + p \in M$ be a unimodular element, where $p = p_0 a + p_1 b \in P$ and $v \in L$. We move x first into P to control the projection $\epsilon_*(x)$, and then use the stability assumption on L to move x so that its component in $p_0 A \oplus L$ is unimodular. Finally we move x to p_0 .

(i) Since M has free rank ≥ 2 we may now perform the first step, to get v = 0, so that x starts out in P. To see this note that O(p) + O(v) = A, so there exists $c \in O(v)$ such that O(p) + c contains 1. Apply (1.2) to $A \oplus P$ and the element (c, p) to find $z \in P$ with O(p + zc) = A. There exists g: L $\longrightarrow P$ with g(v) = zc, and f: P $\longrightarrow L$ with f(p + zc) = v. Extend by zero on the complements. Then

$$\tau(\mathbf{x}) = (1 - f) (1 + g) (\mathbf{x}) \in \mathbf{P},$$

and $\tau \in E(P, L) \subseteq \langle E(p_0A, L \oplus p_1A), E(p_1A, L \oplus p_0A) \rangle \subseteq G.$

(ii) Since G_0 acts transitively on unimodular elements in $\epsilon_*(P) = B \oplus B$, we may assume that $\epsilon_*(x) = \epsilon_*(p_0)$.

(iii) Write $x = p_0 a + p_1 b$, so that O(x) = Aa + Ab. Consider the quotient ring $\overline{A} = A/gA$ where g is the ideal in R generated by all the primes $p \in R$ at which A is not maximal, or L does not have (A,B)-free rank ≥ 1 . Then we claim that, after changing x by an element from G if necessary,

(1.6)
$$O(\bar{x}) = \bar{A}\bar{a} = \bar{A}, \text{ and } \epsilon_*(x) = \epsilon_*(p_0)$$

or a projects to a unit in \bar{A} without disturbing step (ii). To see this note that the quotient ring $\bar{A} = \bar{C} \times \bar{C}'$, where \bar{C} is the smallest direct factor mapping onto \bar{B} by $\bar{\epsilon}$. But by lifting idempotents, $\bar{\epsilon}$ induces an isomorphism $\bar{B}/Rad \ \bar{B} \cong \bar{C}/Rad \ \bar{C}$. Therefore the \bar{C} component of a is already a unit since a projects to 1 in the semisimple quotient. Over the other factor we can apply [2;(2.8),p.87]: there exists $u \in A$, such that the element a + ub projects to a unit in \overline{C}' and to 1 in \overline{B} . Let $g: p_1A \longrightarrow p_0A \subseteq M$ such that $g(p_1) = p_0u$. Extend g to a map from M to M by zero on the complement. Then $\tau = 1 + g$ is an element of G and $\tau(x)$ has the desired properties (1.6).

(iv) From step (iii) we have Aa + gA = A and so $(Ab)_p = A_p$ for all primes p dividing g. Therefore if $t \subseteq R$ denotes the largest ideal such that $At \subseteq Aa$, we see that p does not divide t for all primes p dividing g and in particular $t \neq 0$.

(v) Now we project to the semilocal ring A' = A/At, which is the quotient of a maximal order A_t and so the projection $\epsilon' \colon A' \longrightarrow B'$ splits and $A' = B' \times C'$. Since over the B' factor a projects to 1, we have (Aa)' = A'. Over the complementary factor C' we use a suitable $\tau \in E(p'_1C', L')$, so that after applying τ we achieve the condition

(1.7)
$$A'a' + O(v') = A'$$

over both factors of A'. This is an application of (1.2) to the component of x in L' $\oplus p'_1C'$ using the fact that C' \subseteq L'. The necessary homomorphism $g \in \operatorname{Hom}_{A'}(P'_1, L')$, which is the identity over B', can be lifted to $\operatorname{Hom}_A(P_1, L)$ since P_1 is projective and extended to M by zero on L $\oplus p_0A$.

(vi) We now lift the relation (1.7) to A using (1.2) and obtain

$$Aa + O(v) + At = A.$$

But At \underline{c} Aa so we can assume that $\mathbf{v} + \mathbf{p}_0$ a is unimodular.

(vii) The argument of [2; pp 183-184] now shows that there is an element $\tau \in E(p_1A, p_0A \oplus L)$ such that $\tau(x) = p_0$. In our situation start with the unimodular element $z = v + p_0a \in L \oplus P_0$. Write $L \oplus P_0 = zA \oplus N$ and let $g_2(z) = p_1(1-a-b)$, with $g_2(N) = 0$. Let $g_3(p_1) = p_0$, $g_4(p_0) = p_1(a-1)$, $g_5(p_0) = p_1$, $g_6(p_1) = -v$, where the homomorphisms are extended to the obvious complements by zero. If $\tau_i = 1 + g_i$, then

$$\tau_6 \tau_5 \tau_4 \tau_3 \tau_2(\mathbf{x}) = \mathbf{p}_0.$$

This completes the proof.

Proof of Theorem 1: By Swan's Cancellation Theorem ([9; 9.7] and the discussion on [9;p.169]), $M \oplus A \cong M' \oplus A$ since $M \oplus A$ is the direct sum of two faithful modules. We apply (1.4) following [2;IV,3.5] to cancel the free modules.

Remark: The method does not seem to prove either Swan's or Jacobinski's cancellation theorems independently.

§ 2. The Unitary Case

We adopt the notation and conventions of Bass in [3; pp.61-90,233] for (λ,Λ) quadratic modules over a unitary (R,λ) -algebra (A,Λ) . A unitary module is a non-singular (λ,Λ) -quadratic form on a finitely generated projective A module. Since R is a Dedekind domain, $X = \max(R_0)$ has dimension d = 1, where $R_0 \subseteq R$ is the subring generated by all norms $t\bar{t}$ ($t \in R$). Note that $\lambda\bar{\lambda} = 1$. The form parameter Λ is ample at $m \in X$ if given a, b $\in A[m]$, the semisimple quotient of A_m , there exists $r \in \Lambda[m]$ such that

(2.1) A[m](a + rb) = A[m]a + A[m]b.

In $[3;\S2,p.218ff]$ there is a discussion of this condition. If $R = \mathbb{I}$ and $\Lambda = \{a-\lambda \bar{a} \mid a \in A\}$, the minimal form parameter, then Λ is not ample at any prime when $\lambda = 1$ and Λ is not ample at 2 if $\lambda = -1$. Let $\mathfrak{A}_{\Lambda} \subseteq R_{0}$ be the ideal such that Λ is ample at all m $\notin V(\mathfrak{A}_{\Lambda}) = \{p \in X \mid \mathfrak{A}_{\Lambda} \subseteq p\}$, and d_{Λ} the dimension of the closed set $V(\mathfrak{A}_{\Lambda})$ in X. Note that $d_{\Lambda} \leq 1$ for all Λ , and $d_{\Lambda} \leq 0$ when Λ is ample at all but finitely many primes.

If (M,[h]) is any (λ,Λ) -quadratic module over A [3;p.80], then a transvection [3;p.91] is a unitary automorphism $\sigma = \sigma_{u,a,v}$: M \longrightarrow M given by

(2.2)
$$\sigma(\mathbf{x}) = \mathbf{x} + \mathbf{u} \langle \mathbf{v}, \mathbf{x} \rangle - \mathbf{v}\bar{\lambda} \langle \mathbf{u}, \mathbf{x} \rangle - \mathbf{u}\bar{\lambda}\mathbf{a} \langle \mathbf{u}, \mathbf{x} \rangle,$$

where $u, v \in M$ and $a \in A$ satisfy the conditions

(2.3)
$$h(u,u) \in \Lambda, \quad \langle u,v \rangle = 0, \quad h(v,v) \equiv a \pmod{\Lambda}.$$

Note that $\langle x,y \rangle = h(x,y) + \lambda \overline{h(y,x)}$ is the associated hermitian form. For any submodule $L \subseteq M$,

$$L^{\perp} = \{ x \in M \mid \langle x, y \rangle = 0 \text{ for all } y \in L \}.$$

If $M = M' \perp M'$ is an orthogonal direct sum, with $L' \subseteq M'$ a totally isotropic submodule (i.e. $h(x,y) = 0 \pmod{\Lambda}$ for all $x, y \in L'$), then we define

(2.4)
$$\mathrm{EU}(\mathrm{M}', \mathrm{L}'; \mathrm{M}') = \langle \sigma_{\mathrm{u},\mathrm{a},\mathrm{v}} \mid \mathrm{u} \in \mathrm{L}' \text{ and } \mathrm{v} \in \mathrm{M}' \rangle.$$

We will need the relation (see [3;p.92]):

(2.5) if
$$\alpha : (M, [h]) \longrightarrow (M', [h'])$$
 is an isometry, then
 $\alpha \circ \sigma_{u,a,v} \circ \alpha^{-1} = \sigma'_{\alpha u,a,\alpha v}$

where $\sigma \in U(M,[h])$ and $\sigma' \in U(M',[h'])$.

The hyperbolic rank of a (λ,Λ) -quadratic module (M,[h]) is ≥ 1 if $(M,[h]) = H(A) \perp (M',[h'])$, where H(P) denotes the hyperbolic form on $P \oplus \bar{P}$ [3;p.82] and elements denoted by pairs x = (p,q) with $p \in P$, $q \in \bar{P}$. Here we are using the notation \bar{P} for the dual module P^* regarded as a right A-module in the usual way. Since we will always be working with P containing at least one A-free direct summand, we will often write $P = p_0 A \oplus P_1$, $\bar{P} = q_0 A \oplus \bar{P}_1$ and denote the element

$$(p,q) = (p_0a + p_1, q_0b + q_1).$$

The main result of this section is a unitary analogue of (1.4), so we use some of the notation (e.g. A, ϵ , B). Before stating it, we need two lemmas.

(2.6) Lemma: Let V be a (λ, Λ) quadratic module which has (A,B)-hyperbolic rank ≥ 1 at a prime $p \in R_0$, for which A_p is maximal. Then

(i) V contains a totally isotropic submodule L which has (A,B)-locally free rank ≥ 1 at all

but finitely many primes, and

(ii) if $x \in H(P) \subseteq V \perp H(P)$ with $P \cong A^r$ and f: $P \longrightarrow L$ is an A-homomorphism, then there are elements $q_i \in \overline{P}$, $v_i \in L$ $(1 \le i \le r)$ such that

$$\prod \sigma_{q_i,o,v_i}(x) = x + f(x).$$

Proof: (i) Since A_p is maximal, we can write $A_p = B' \times C'$ and work over the C' factor V' of V_p . Then V' has free hyperbolic rank ≥ 1 and for L_p we choose a maximal rank totally isotropic C'-free direct summand. Let $L = L_p \cap V$ and compare it to a direct sum of copies of the A-lattice $C := \ker\{\epsilon: A \longrightarrow B\}$. Since $C_p \cong C'$ we may choose a direct sum $N = C^r$ with the same R-rank as L and so $N_p \cong L_p$. Therefore N and L are full lattices on the same K-vector space (K is the quotient field of R), and hence agree at all but finitely many primes. If we further avoid all the primes where A is not maximal, then L has (A,B)-free rank ≥ 1 at the remaining primes.

(ii) Let $\{q_1, ..., q_r\}$ be a basis for \tilde{P} . Then there exist $v_1, ..., v_r \in L$ such that $f(x) = \sum \bar{\lambda} v_i < q_i$, $x > \text{ for all } x \in P$.

(2.7) Lemma [3;(3.11),p.241]: Suppose that (C,A) is a semisimple unitary algebra over (R, λ). Assume either that (i) P has free rank ≥ 2 , or (ii) A is ample in C and P = C. Write $x \in H(P)$ as $x = (p_0a + p_1,q_0b + q_1)$. Then there is an element $\sigma \in H(E(P)) \cdot EU(H(P)$ such that $\sigma(x) = (p_0a' + p'_1,q_0b' + q'_1)$ and O(x) = Aa'. In case (i), $\sigma \in EU(H(P_0), Q; H(P_1))$ where $Q = P_0$ or \bar{P}_0 .

Definition: Let (M, [h]) be a (λ, Λ) -quadratic module. An element $x \in M$ is [h]-unimodular if there exists $y \in M$ such that $\langle x, y \rangle = 1$.

If (M,[h]) is non-singular then an element is [h]-unimodular if and only if it is unimodular.

The following is our main result in the quadratic case.

(2.8) Theorem: Let V be a (λ, Λ) -quadratic module which has (A,B)-hyperbolic rank ≥ 1 at all but finitely many primes, and put $(M, [h]) = V \perp H(P)$ where P is A-free of rank 2. Suppose there exists a subgroup $G_1 \subseteq U(H(P))$ such that $\epsilon_*(G_1)$ acts transitively on the set of unimodular elements in $H(\epsilon_*(P))$ of fixed length [h(x,x)]. Then

$$G = \langle G_1, EU(H(P), Q; V), H(E(P)) \cdot EU(H(P)) \rangle$$

where Q = P or \overline{P} , acts transitively on the set of [h]-unimodular elements of a fixed length, and the set of hyperbolic pairs and hyperbolic planes in M.

Proof: The same reduction used in [3;(3.5),p.236] shows that it is enough to prove that G acts transitively on the set of [h]-unimodular elements of a fixed length in M. One can check that G contains all transvections $\sigma_{p_0,a,v}$ with $v \in (p_0)^{\perp} = V \oplus H(P_1) \oplus p_0 A$ (see [3;(3.11),p.143] and [3;(5.6),p.98]).

(i) Let $x = (v; p,q) \in V \perp H(P)$ be an [h]-unimodular element. Since P is free of rank 2, it follows as in [3;p.181] that we may assume (p,q) is unimodular. More precisely, there exists some $y \in M$ such that $\langle x, y \rangle = 1$ and so $\langle V, v \rangle + O(p) + O(q) = A$. Choose $w \in V$ so that $\langle v, w \rangle + O(p) + O(q) = A$. Choose $v \in V$ so that $\langle v, w \rangle + O(p) + O(q)$ contains 1; put $c = \langle v, w \rangle$. From (1.1) there is a $p_1 \in P$ such that $O(p + p_1c) + O(q) = A$. Now apply the transvection $\sigma_{p_1,a,w}$ to x. This isometry lies in EU(H(P), P; V).

(ii) Since $\epsilon_*(G_1)$ acts transitively on the set of unimodular elements of fixed length in $\mathbf{H}(\epsilon_*(P))$ we may assume that $\epsilon_*(x) = \epsilon_*(v; p_0, q_0 b)$, where $\bar{b} \equiv h_P(x, x) \mod \Lambda$.

(iii) We may now achieve "O(x) = Aa over A[g]" using (2.7) and the fact that P is free of rank 2. Here $g = \prod \{m | m \in S\}$ where S is a finite set in X containing all the primes at which A is not maximal or V does not have (A,B)-hyperbolic rank ≥ 1 . Furthermore by (2.6) we may assume that V contains a non-zero totally isotropic submodule L which has (A,B)-free rank ≥ 1 at all primes not in S. Note that after step (ii), nothing needs to be done over B and (p,q) is still unimodular. This step uses $H(E(P)) \cdot EU(H(P))$.

(iv) Let $t \in R_0$ be the largest ideal such that At \in Aa, and put X' = V(t), $X'_{\Lambda} = V(t+\mathfrak{A}_{\Lambda})$, $d'_{\Lambda} = \dim X'_{\Lambda}$. Let $\pi: A \longrightarrow A' = A/At$ be the natural projection and note that dim X' = 0 and dim $X'_{\Lambda} \leq 0$. As in [3;p.244] we see that $m \notin X'$ for all $m \in S$, hence t $\neq 0$ and A' is semilocal. We have $O(p_1, q_1 + q_0 b) + Aa = A$ and so $O(\pi p_1, \pi(q_1 + q_0 b)) + \pi(Aa) = A'$. Over B' = B/Bt we do nothing. Over the complementary factor C' of A', apply (1.2) to find an element $u \in \pi P_1$ such that u projects to zero over B' and

$$O(\pi p_1 - ub) + O(\pi q_1) + \pi(Aa) = A'$$

(Note that this already holds over B' by step (ii)). Choose $z \in P_1$ such that $\pi z = u$ and $\epsilon_*(z) = 0$. Since t and g are relatively prime, we can choose $z \in (P_1) \cdot g$.

Note that
$$\sigma_{p_0,0,z} \in EU(H(P))$$
 by $[3;(3.10.2),p.142]$. Then
 $\sigma(x) = x + p_0 < z, x > - z < p_0, x >$
 $= (v; p_1 - zb + p_0(a + < z, q_1 >), q).$

Therefore

$$O(p_1 - zb) + O(q_1) + A(a + \langle z, q_1 \rangle) + At = A.$$

But $Ai \subseteq Aa \subseteq O(q_1) + A(a + \langle z, q_1 \rangle)$, so after these changes, we may assume that (2.9) $O(p_1) + O(q_1) + Aa = A.$

(v) Since πV has hyperbolic rank ≥ 1 over C' we can choose an isometry α : $\pi V \cong H(C') \perp W'$ and extend it to an isometry of $\pi V \perp H(\pi P)$ by the identity on $H(\pi P)$. We now apply the first case of (2.7) to the element $\alpha(\pi(p_1, q_1)) \in H(C') \perp H(\pi P_1)$ over the semisimple ring C', where $A' = B' \times C'$. This uses an element $\sigma' \in EU(H(\pi P_1), \pi Q; H(C'))$ where $Q = P_1$ or \bar{P}_1 . By (2.5), $\alpha^{-1} \circ \sigma' \circ \alpha \in EU(H(\pi P_1), \pi Q; \pi V)$. Then there exists a lift σ of $\alpha^{-1} \circ \sigma' \circ \alpha$ to U(M, [h]) which lies in

 $EU(H(P_1), Q; V)$. After moving x = (v; p,q) by σ we get

$$A = O(p_1) + At \subseteq O(p_1) + Aa = O(p).$$

Finally note that after this change p is unimodular and $\epsilon_*(x) = \epsilon_*(v; p_0, q_0 b)$, where $\bar{b} \equiv h_P(x,x) \mod \Lambda$. (vi) Since p is unimodular and h(p,p) = 0, $H(P) = H(pA) \perp H(pA)^{\perp}$. If $H(pA) = pA \oplus \bar{p}A$, where $\bar{p} \in \bar{P}$ then $\sigma_{\bar{p},d,\lambda v} \in EU(H(P), \bar{P}; V)$ and

$$\sigma_{\bar{p},d,\lambda v}(x) = x + \bar{p} < \lambda v, x > -\lambda v \bar{\lambda} < \bar{p}, x > -\bar{p} \bar{\lambda} d < \bar{p}, x >$$
$$= (0; p, q').$$

(vii) We now have a hyperbolic element $x = (p, q) \in H(P)$ with p unimodular. Recall that V contains a non-zero totally isotropic submodule L which has (A,B)-free rank ≥ 1 at all but finitely many primes. We claim that after applying a suitable transformation in G, we can assume that $x = (p_0,q)$, with a possibly different q. For this we need to refer to the proof of (1.4) to find which linear automorphisms of L \oplus P are necessary to move p to p_0 , and then show that they are induced by isometries in G.

Since our element p starts out in P steps (i) and (ii) of (1.3) are not necessary. Step (iii) requires an element of $E(p_1A, P_0)$ which is induced by a suitable element of $H(E(P)) \subseteq$ G. Step (v) uses an elementary transformation given by a homomorphism f: $P_1 \longrightarrow L$, and these are induced elements of G using (2.6). Finally, in step (vi) we first construct a homomorphism $g_2: P_0 \oplus L \longrightarrow P_1$ by splitting $P_0 \oplus L = zA \oplus N$ where z is unimodular and $h(z,z) = 0 \pmod{\Lambda}$. To realise τ_2 by an isometry, we find a unitary submodule H(zA) $\subseteq V \perp H(P_0)$ and then work inside $H(zA) \perp H(P_1)$. By [3;(3.10.4), p.143] $H(\tau_2|_{zA \oplus P_1}) \subseteq$ $EU(H(zA), \bar{z}\bar{A}; H(P_1)) \subseteq G$. The remaining automorphisms τ_3, τ_4, τ_5 are in $E(P_0, P_1)$ and τ_6 is defined using $g_6 \in Hom(P_1, L)$. These are induced by elements of H(E(P)) or $EU(H(P),\bar{P}; V)$ using (2.6).

Write $q = q_0 b - q_1 \in q_0 A \oplus \overline{P}_1$. The transvection $\sigma_{q_1,0,q_0}$ belongs to EU(H(P)) by

[3;(3.10.1), p.142], and

$$\sigma \mathbf{x} = \mathbf{x} - \mathbf{q}_1 < \mathbf{q}_0, \mathbf{x} > - \mathbf{q}_0 \bar{\lambda} < \mathbf{q}_1, \mathbf{x} > 0$$

Note that $\langle q_1, x \rangle = 0$ since x has no component in \overline{P}_1 and $\langle q_0, x \rangle = \langle q_0, p_0 \rangle = 1$, so $\sigma x = x + q_1 = (p_0, q_0 b)$. We are now finished if x was unimodular. If x was a hyperbolic element, then $h(\sigma x, \sigma x) = h(p_0, q_0 b) = \overline{b} \pmod{\Lambda}$, and so $\overline{b} \in \Lambda$, since x and $\sigma(x)$ are isotropic.

In the hyperbolic plane $p_0A + q_0A$, the element $X_+(-b) = \begin{bmatrix} I & -b \\ 0 & I \end{bmatrix} \in EU(H(P_0))$ transforms $p_0 + q_0b$ into p_0 (the notation X_+ is from [3; p.130]).

Proof of Theorem 2: The argument is the same as for [3;(3.6), p.238] using our (2.8).

(2.10) Lemma: The group $H(GL_2(\mathbb{Z})) \cdot EU(H(\mathbb{Z} \oplus \mathbb{Z}))$ acts transitively on unimodular elements in $H(\mathbb{Z} \oplus \mathbb{Z})$ of fixed length.

Proof: Let $P = p_0 \mathbb{Z} \oplus p_1 \mathbb{Z}$ (with dual basis q_0 , q_1 for \overline{P}) and let $x = (p_0 a, p_1 b; q_0 c, q_1 d)$ be a unimodular element in H(P). We may assume that d = 0 after applying an element of H(E(P)), so there exists an integer r such that b + rc is a unit (mod a). Then

$$X_{+} \begin{pmatrix} 0 & -\lambda r \\ r & 0 \end{pmatrix} (x) = (p_0 a, p_1 (b+rc); q_0 c, 0)$$

so that $O(p_0a) + O(p_1(b+rc)) = \mathbb{Z}$. We may therefore assume in the beginning that for $x = (p_0a, p_1b; q_0c, q_1d)$, a and b are relatively prime. Using a suitable element of H(E(P)) we get $x = (p_0, 0; q_0c, q_1d)$ and after applying $X_{-}(\begin{array}{c}0 & \lambda d\\-d & 0\end{array})$ the result is $(p_0, 0; q_0c, 0)$, where [c] is the length of x.

§ 3. Metabolic Forms

One way to obtain quadratic modules V with (A,B)-hyperbolic rank ≥ 1 at all but finitely many primes is to assume that V has a submodule H(L) where L has (A,B)-free rank ≥ 1 . A generalization of this would be to assume that V contains a "metabolic form" on L. In this section we define a suitable notion of metabolic forms general enough for our applications elsewhere. The notation and conventions of § 2 will be used.

If N is an A-lattice and g: $\overline{N} \times \overline{N} \longrightarrow A$ is an R-bilinear form, let

$$[\mathbf{g}] = \{\mathbf{g}_{\tau} \mid \mathbf{g}_{\tau}(\phi, \phi') = \mathbf{g}(\phi, \phi') + \langle \phi, \tau(\phi') \rangle, \tau \in \operatorname{Hom}_{\mathbf{R}}(\mathbf{\bar{N}}, \mathbf{N})\}.$$

Any $\theta \in \operatorname{Ext}_{A}^{1}(\bar{N}, N)$ defines an extension

$$(3.1) 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{j} \overline{N} \longrightarrow 0$$

of A-lattices which splits over R. We say that [g] is θ -sesquilinear if there is a cocycle $\gamma \in \text{Hom}_{R}(\bar{N} \otimes_{R} A, N)$ representing θ such that for all $a \in A$:

$$g(\phi a, \phi') = \bar{a}g(\phi, \phi')$$

(3.2)

$$g(\phi, \phi'a) = g(\phi, \phi')a - \langle \phi, \gamma(\phi', a) \rangle.$$

Note that any cocycle γ satisfies the relation:

$$\gamma(\phi, \mathbf{a}_1 \mathbf{a}_2) = \gamma(\phi, \mathbf{a}_1) \mathbf{a}_2 + \gamma(\phi \mathbf{a}_1, \mathbf{a}_2)$$

and serves as a way to specify the A-module structure E on the R-module N \oplus \overline{N} given by θ : for $(x, \phi) \in N \oplus \overline{N}$ define

(3.3)
$$(\mathbf{x}, \phi) \cdot \mathbf{a} = (\mathbf{x}\mathbf{a} + \gamma(\phi, \mathbf{a}), \phi\mathbf{a}).$$

If we vary the choice of representative $g_{\tau} \in [g]$, then the new γ is $\gamma_{\tau} = \gamma + \delta \tau$, where

$$(\delta \tau)(\phi, \mathbf{a}) = \tau(\phi)\mathbf{a} - \tau(\phi \mathbf{a}),$$

for some $\tau \in \operatorname{Hom}_{\mathbb{R}}(\overline{N}, N)$, and all $a \in A$. Then $g_{\tau}(\phi, \phi') = g(\phi, \phi') + \langle \phi, \tau(\phi') \rangle$ satisfies (3.2). Given an extension (N, θ) and a θ -sesquilinear form [g], we define the *metabolic* (λ, Λ) -quadratic form $\operatorname{Met}(N, \theta, [g]) = (E, [q])$ as follows: pick a compatible γ , g satisfying (3.2) and set

$$q((\mathbf{x},\phi),\,(\mathbf{x}^{\,\prime},\phi^{\,\prime}\,))=<\,\phi,\,\mathbf{x}^{\,\prime}\,>\,+\,g(\,\phi,\,\phi^{\,\prime}\,).$$

It is easy to check that q is sesquilinear in the usual sense if [g] is θ -sesquilinear.

These metabolic forms are non-singular when they exist but an arbitrary extension need not admit any such form. Suppose that N is reflexive and let τ denote the involution on $\operatorname{Ext}^{1}_{A}(\bar{N}, N)$ given by dualizing exact sequences $(N, \theta) \mapsto (N, \theta)^{*}$. An extension (N, θ) is λ -self-dual if N is reflexive and there is a commutative diagram

If $h^* = \lambda h$ then h is the adjoint of a metabolic hermitian form on E. We will define a homomorphism

$$p: \{ (\mathbf{N}, \theta)^* = \lambda(\mathbf{N}, \theta) \} \subseteq \operatorname{Ext}_{A}^{1}(\bar{\mathbf{N}}, \mathbf{N}) \xrightarrow{*} \operatorname{H}^{1}(\mathbb{Z}/2; \operatorname{Hom}_{A}(\bar{\mathbf{N}}, \mathbf{N}))$$

where $\operatorname{Hom}_{A}(\bar{N}, N)$ has the involution $\alpha \mapsto \bar{\lambda} \alpha^{*}$. We will show that $\rho(N, \theta)$ is the obstruction for finding a λ -self-dual map h. Choose an R-section s: $\bar{N} \longrightarrow E$ inducing a cocycle γ and identify $E = N \oplus \bar{N}$ as above. Then the lower sequence is split over R by s^{*} leading to an identification of $\bar{E} = N \oplus \bar{N}$. In these coordinates, for any A-map h making the diagram (3.4) commute,

$$h(x,\phi) = (x + s^* hs(\phi), \bar{\lambda}\phi)$$

and similarly

$$h^*(x,\phi) = (\lambda x + s^* h^* s(\phi),\phi).$$

Now $(h^*)^{-1} \circ \lambda h(x, \phi) = (x + \rho(h)(\phi), \phi)$ where $\rho(h) = s^* hs - \bar{\lambda}s^* h^*s$. Note that $\rho(h)$ is independent of the choice of the section s. Since $(h^*)^{-1} \circ \lambda h$ is an A-map, we can check using (3.3) that $\rho(h)$ is also an A-map. Similarly, by computing $h^* \circ (\bar{\lambda}h^{-1})$ and comparing with the formula for the dual, we see that $\rho(h)^* = -\lambda \rho(h)$. Moreover the cohomology class $[\rho(h)] \in H^1(\mathbb{Z}/2; \operatorname{Hom}_{\Lambda}(\bar{N}, N))$ is independent of the choice of h. Define $\rho(N, \theta) = [\rho(h)]$ for any h making the diagram (3.4) commute.

(3.5) Proposition: If N is a reflexive A-module and (N, θ) is a self-dual extension, then (N, θ) admits a metabolic λ -hermitian form if and only if $\rho(N, \theta) = 0 \in H^1(\mathbb{Z}/2; \operatorname{Hom}_A(\bar{N}, N)).$

Note that a metabolic λ -hermitian form is unique up to isometry if it admits a quadratic refinement. We want to identify the obstruction to obtaining a quadratic refinement for a given metabolic λ -hermitian form h. Let

 $\eta: \ker \rho \longrightarrow \operatorname{coker} \{ \hat{H}^0(\mathbb{I}/2; \operatorname{Hom}_A(\bar{N}, N)) \longrightarrow \hat{H}^0(\mathbb{I}/2; \operatorname{Hom}_R(\bar{N}, N)) \}.$ be the homomorphism defined by $\eta(h) = [s^*hs].$

(3.6) Proposition: Suppose that (N,θ) admits a metabolic λ -hermitian form. Then (N,θ) admits a metabolic (λ,Λ) -quadratic form with respect to the minimal form parameter if and only if $\eta(N,\theta) = 0$.

Suppose now that $R = \mathbb{I}$ and $A = \mathbb{I}\pi$ where π is a finite group. Then each lattice L over A is reflexive. Let $N = \Omega^k \mathbb{I}$, the kernel of a projective resolution F_* of \mathbb{I} of length k (see (0.1) for the case k = 3). We will show that every element of $\operatorname{Ext}_A^1(\bar{N}, N)$ is $(-1)^{k+1}$ -self-dual.

(3.7) Lemma: Let $N = \Omega^k \mathbb{Z}$. The involution τ given by dualizing exact sequences induces multiplication by $(-1)^{k+1}$ on $\operatorname{Ext}^1_A(\bar{N}, N)$.

Proof: Let \bar{X} be a projective resolution of \bar{N} and X the dual co-resolution of N. We have two isomorphisms $\alpha, \beta : \operatorname{Ext}^{1}(\bar{N}, N) \cong \operatorname{H}^{1}(\operatorname{Hom}_{A}(\bar{X}, X))$ comparing an extension with \bar{X} or X respectively. Note that over $A = I\pi$ we can use X instead of an injective co-resolution for computing $\operatorname{Ext}^{i}(\bar{N}, N)$. It is not difficult to see that $\alpha = -\beta$. Let t be the involution on $\operatorname{H}^{1}(\operatorname{Hom}_{A}(\bar{X}, X))$ induced by dualization. By construction, $\alpha \tau = t\beta$ implying $\alpha \tau \alpha^{-1} = -t$.

Note that $\operatorname{Hom}_{A}(\bar{X}, X) \cong \operatorname{Hom}_{I}(\bar{X}, X) \otimes_{A} I$, and that $\operatorname{Hom}_{I}(\bar{X}, X)$ is a co-resolution of $\operatorname{Hom}_{I}(\bar{N}, N)$. Thus

$$\mathrm{H}^{i}(\mathrm{Hom}_{A}(\bar{\mathrm{X}}, \mathrm{X})) = \mathrm{H}^{i}(\mathrm{Hom}_{\mathcal{I}}(\bar{\mathrm{X}}, \mathrm{X}) \otimes_{A} \mathbb{Z}) = \mathrm{H}^{i}(\pi, \mathrm{N} \otimes_{\mathcal{I}} \mathrm{N})$$

and under these identifications t corresponds to the involution induced by the flip map s: $x \otimes y \mapsto y \otimes x$ on N \otimes N.

Now we follow an argument suggested by R. Swan. Extend the projective resolution \hat{F} defining N to a projective resolution \hat{F} of \mathbb{I} . Let f be the chain map on $\hat{F} \otimes_{\mathbb{I}} \hat{F}$ mapping $x \otimes y \mapsto (-1)^{\deg(x)\deg(y)} y \otimes x$. Since f induces the identity on \mathbb{I} it induces the identity on all the derived functors. We have the similar chain map on $F \otimes_{\mathbb{I}} F$ which on $F_{2k} = N \otimes N$ is $(-1)^k s$. Now we consider $F \otimes_{\mathbb{I}} F$ as part of a co-resolution of N \otimes N ending in \mathbb{I} . Similarly we consider $\hat{F} \otimes_{\mathbb{I}} \hat{F}$ a part of a complete co-resolution of \mathbb{I} . Then

$$\mathrm{H}^{1}(\pi; \mathrm{N} \otimes_{\underline{\mathcal{I}}} \mathrm{N}) = \mathrm{H}^{1}(\mathrm{Hom}_{\mathrm{A}}(\mathbb{I}, \mathrm{F} \otimes_{\underline{\mathcal{I}}} \mathrm{F})) \cong \mathrm{H}^{1}(\mathrm{Hom}_{\mathrm{A}}(\mathbb{I}, \hat{\mathrm{F}} \otimes_{\underline{\mathcal{I}}} \hat{\mathrm{F}})).$$

where the last isomorphism is induced by the obvious chain map $\hat{F} \longrightarrow F$. Thus

$$\alpha \tau \alpha^{-1} = -s = (-1)^{k+1} f^* = (-1)^{k+1}.$$

(3.8) Example: Now we restrict to groups π of odd order. Since $\operatorname{Ext}_{\mathbb{Z}\pi}^{1}(\bar{N},N)$ then has odd order $\rho(N,\theta)$ and $\eta(N,\theta)$ vanish for each λ -self-dual extension. In particular for $N = \Omega^{k}\mathbb{Z}$, each extension (N,θ) admits a metabolic (λ,Λ) -quadratic form whose λ -symmetrization is unique up to isometry.

References

[1]	Bak, A., "The stable structure of quadratic modules", Thesis, Columbia
	University, 1969.
[2]	Bass, H., Algebraic K-Theory, W.A. Benjamin, New York 1968
[3]	Bass, H., "Unitary algebraic K-theory", <u>Algebraic K-Theory III:</u> Hermitian
	K-theory and Geometric Applications. Lect. Notes in Math. 343, 57-209,
	Springer Verlag, 1973.
[4]	C.W.Curtis and I.Reiner. <u>Representation Theory of Finite Groups and</u>
	Associative Algebras. John Wiley & Sons. New York, 1962.
[5]	Hambleton, I., Kreck, M., "On the classification of topological 4-manifolds
	with finite fundamental group", Math. Ann. 280 (1988), 85–104.
[6]	Hambleton, I., Kreck, M., "Smooth structures on algebraic surfaces with
	cyclic fundamental group", Invent. Math.91 (1988), 53-59.
[7]	Jacobinski, H., "Genera and decompositions of lattices over orders", Acta.
	Math. 121 (1968), 1–29.
[8]	Swan, R.G., "Projective modules over group rings and maximal orders",
	Annals of Mathematics 76 (1962), 55–61.
[9]	Swan, R. G., "K-theory of finite groups and orders", Notes by E.G.Evens.
	Lect. Notes in Math. 149, Springer–Verlag, Berlin 1970.
[10]	Swan, R.G., "Projective modules over binary polyhedral groups", J. reine u.
	angew. Math. 342 (1983), 66-172.
[11]	Vaserstein, L. N., "Stability of unitary and orthogonal groups over rings with
	involution", Math. Sbornik 81 (1970), 328-351.

McMaster University, Hamilton, Ontario, Canada

.

.

Max-Planck Institut für Mathematik Bonn, West Germany

December 15, 1989

..