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On the Cancellation of Hyperbolic Forms over
Orders in Semisimple Algebras

1. Hambleton! and M. Kreck

Let R be a Dedekind domain and K its field of quotients. The purpose of this note is
to obtain an improvement in the stable range for cancellation of lattices over R—orders in
separable K-algebras, assuming some local information about the lattices. Recall that a
lattice over an R—order A is an A—module which is projective as an R—module. Our results
are based on the work of H. Bass [2],{3], A. Bak [1] and L. N. Vaserstein {11)].

The géneral stable range condition for cancellation of lattices over orders is free rank
> 2 for the linear case [2;(3.5), p.184], and free hyperbolic rank > 2 for the unitary case
[3;(3.6),p.238]. To state our condition, let A and B be orders in separable algebras over K
[4;71.1,75.1], and suppose that there is a surjective ring homomorphism ¢: A —— B. We
say that a finitely generated A-module L has (A,B)-free rank > 1 at a prime p € R, if there

has free rank > 1 over A_. Here A _ denotes the

exists an integer r such that (B" e L) . b

p
localized order A ® R(p).

Theorem 1

Let L be an A-lattice and put M = L ® A. Suppose that there exists a surjection of
orders e: A -—— B such that L has (A,B)-free rank > 1 at all but finitely many primes. If
GLy(A) acts transitively on unimodular elements in B @ B, then for any A-lattice N which

is locally a direct summand of M" for some integern, M@ N~ M’ @ N implies M ¥ M’.
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For the corresponding result in the unitary case there is a similar condition involving
hyperbolic rank > 1 and a locally (A,B)—free submodule. A quadratic module V has (A,B)-
hyperbolic rank > 1 at a prime p € R if there exists an integer r such that (H(B") e V)p has
free hyperbolic rank > 1 over Ap' The other terms used in the statement are defined
precisely in §2 or in.(3;pp. 80, 87]. Note in particular that a unitary module is a
(A,A)—quadratic form on a finitely-generated projective A-module. A totally isotropic

submodule is one on which the quadratic form is identically zero.

Theorem 2

Let V be a (A,A)—quadratic module over a unitary (R,A) algebra (A,A) and put
(M,[h]}) = V L H(A). Suppose that there exists a surjection of orders ¢: A — B such that
V has (A,B)-hyperbolic rank > 1 at all but finitely many primes. If U2(A) acts transitively
on the set of unimodular elements in H(B @ B) of fixed length, then for any unitary module

N, M. N~®M’ 1N implies M~ M".

In our work [5], [6] on the topological classification of 4-manifolds and algebraic
surfaces we encounter locally (Z,Z)—free modules, where I is the integral gfoup ring of a
finite group. We check that for B = Z, the conditions on "transitive action" in Theorems 1
and 2 are satisfied (see (1.4) and (2.10)), hence can be omitted from the statements.

For example consider the lattices arising from exact sequences

y C :CO y I v Q-

(0.1) 0 v L » C, 1
with Ci finitely generated projective Zx modules. Such lattices with minimal Z-rank need
not contain any free direct summands over Zx, but rationally contain all the
representations of 7 except the trivial one. The simplest case occurs for 7 cyclic and L =

ker {e: Im —— I} the augmentation ideal.



More generally, if M is a Zrlattice such that M @  is a free module over Q[p] for
some p < 7, then M is (Zx, Z{n/p])-locally free at all but finitely many primes.

In § 3 we discuss metabolic forms over group rings Zn, leading to examples of (A,B)-
hyperbolic rank > 1 forms which contain no hyperbolic summand.

The purely algebraic results of this paper have consequences in several different

geometric situations. These will be described elsewhere.

§ 1. The Linear Case

By an "A-module" we will mean a finitely generated right A~module. As above we
suppose that e A —— B is a surjective ring homomorphism of R-orders in (possibly
different) separable K-algebras. If M is an A-latticeand N=M@e AB = ex(M), we get
an induced homomorphism

ex : GL(M) — GL(N).
If M = M, @M, is a direct sum splitting of an A-module then E(M, M,) denotes the
subgroup of GL(M) generated by the elementary automorphisms ([2;p.182])). Recall that
for an element x € M, Oy r(x) is the left ideal in A generated by
{f(x) | fe HomA(M, A)}
If Opq(x) = A we say that x is unimodular.
The following result of Bass is an essential ingredient in the proofs of the cancellation

theorems.

(1.1) Theorem [2;(3.1), p.178]: Let Q be a projective A-module and P ¥ A @ A. For any
unimodular element. x = (p,q) € P @ Q, there exists an A-homomorphism f: Q —— P such

that Op(p + f(q)) = A.



We also need two other facts.

(1.2) Lemma: Let M be a finitely generated right A-module, projective over R, and A’ =
A/At for an ideal t € R such that the localized order A, is maximal. Then the induced map
HOmA(M, A)— HomA,(M', A’)

is surjective, where M’ = M/Mt.

Proof: First note that Mt is projective over At' Since A’ = Atl Att we can lift any map
f': M — A’ to £ M, — At‘ After restricting to M ¢ M, and multiplying by an
element r € R prime to t, we obtain a lifting of r/f/. But r’ (the image of r in R*) is a unit

in A’.

(1.3) Lemma {3;(2.5.2),p.225]: If C is a semisimple algebra, then for each a, b € C there
exists r € C such that C(a + tb) = Ca + Cb.

We now come to the main result of the section.

(1.4) Theorem: Let A be an R-order in a separable K-algebra. Suppose that M =L e P is
an A-lattice, where P = p_ A ® p, A is free of rank 2 and L is (A,B)-free of rank > 1 at all
but finitely many primes. Let G0 C GL(P) be a subgroup such that e*(GO) acts transitively
on the unimodular elements in e4(P). Then the group

G=< GO, E(pOA, Le plA), E(plA, Le pOA)> ¢ GL(M)

acts transitively on the unimodular elements in M.

1.5) Remark: In some cases there may be no subgroup G, with the required property.
& 0

For example, if B = I is the integral group ring of a finite group =, then GL2(B) acts



transitively on unimodular elements in B e B if and only if the relation Ie B¥ Be B for
a projective ideal I implies I ¥ B. In [8;Thm.3]) Swan shows that this is not true for a
certain ideal in I where 7 is the generalized quaternion group of order 32. Later in [10],
extending the work of Jacobinski [7], Swan shows that cancellation in this sense fails for Zx

if and only if 7 has a binary polyhedral quotient group in an explicitly given list.

Proof: We divide the proof into several parts. Let x = v + p € M be a unimodular
element, where p = Py + plb € P and v € L. We move x first into P to control the
projection e4(x), and then use the stability assumption on L to move x so that its
component in pOA ® L is unimodular. Finally we move x to Py
(i) Since M has free rank > 2 we may now perform the first step, to get v = 0, so that x
starts out in P. To see this note that O(p) + O(v) = A, so there exists ¢ € O(v) such that
O(p) + c contains 1. Apply (1.2) to A @ P and the element (c, p) to find z € P with O(p
+ zc) = A. There exists g L — P with g(v) = zc, and f: P — L with {(p + zc) = v.
Extend by zero on the complements. Then

r(x) = (1-0 (1 +g) (x) €P,
and 7 € E(P, L) € < E(pyA, L@ p;A), E(p A, Le pgA) > € G.
(ii) Since G, acts transitively on unimodular elements in ¢4(P) = B @ B, we may assume
that ex(x) = ex(p;)-
(iii) Write x = pja + p;b, so that O(x) = Aa + Ab. Consider the quotient ring A=
A/gA where gis the ideal in R generated by all the primes p € R at which A is not
maximal, or L does not have (A,B)—free rank > 1. Then we claim that, after changing x by
an element from G if necessary,
(1.6) O®) = Aa = &, and ex(x) = ex(py)
or a projects to a unit in A without disturbing step (ii). To see this note that the quotient
ring A = C x C, where C is the smallest direct factor mapping onto B by & But by
lifting idempotents, € induces an isomorphism B/Rad B ¥ C/Rad C. Therefore the C



component of a is already a unit since a projects to 1 in the semisimple quotient. Over the
other factor we can apply [2;(2.8),p.87]: there exists u € A, such that the element a + ub
projects to a unit in C/ and to 1in B. Let g: pjA — pyA ¢ M such that g(p;) = pju.
Extend g to a map from M to M by zero on the complement. Then 7 = 1 + g is an element
of G and 7(x) has the desired properties (1.6).

(iv) From step (iii) we have Aa + gA = A and so (Ab)p = A, for all primes p dividing

g. Therefore if £ C R denotes the largest ideal such that At C Az , we see that p does not
divide t for all primes p dividing g and in particular { # 0.
(v) Now we project to the semilocal ring A’ = A/At, which is the quotient of a maximal
order A,‘ and so the projection ¢’: A — B’ splits and A’ = B’ x C’. Since over the B*
factor a projects to 1, we have (Aa)’ = A‘. Over the complementary factor C’ we use a
suitable 7 € E(p{C~, L"), so that after applying  we achieve the condition
(1.7) A'a’ +O(v') = A’
over both factors of A’. This is an application of (1.2) to the component of x in L’ @ piC’
using the fact that C- ¢ L’. The necessary homomorphism g € Hom A'(Pi’ L‘), which is
the identity over B, can be lifted to HomA(Pl, L) since P, is projective and extended to
M by zeroon L @ pOA.
(vi) We now lift the relation (1.7) to A using (1.2) and obtain
Aa + O(v) + At = A.
But At C Aa so we can assume that v + Py is unimodular.
(vil) The argument of [2; pp 183-184] now shows that there is an element 7
€ E(p;A, pyA ® L) such that r(x) = Py In our situation start with the unimodular
element z = v + pja € Le P). Write Lo Py = zA © N and let gy(z) = p;(1-a-b), with
8o(N) = 0. Let ga(p;) = Py, 84(Pg) = py(a-1), 8s(py) = Py 8g(P;) = -v, where the
homomorphisms are extended to the obvious complements by zero. If T, = 1+g, then
TeT5T4T37o(X) = Py
This completes the proof.



Proof of Theorem 1: By Swan’s Cancellation Theorem ([9; 9.7] and the discussion on
[9;p.169]), M® A ®» M’ ® A since M ® A is the direct sum of two faithful modules. We
apply (1.4) following [2;IV,3.5] to cancel the free modules.

Remark: The method does not seem to prove either Swan’s or Jacobinski’s cancellation

theorems independently.

§ 2. The Unitary Case

We adopt the notation and conventions of Bass in [3; pp.61-90,233] for (A,A)-
quadratic modules over a unitary (R,A)-algebra (A,A). A wunitary module is a non-singular
(A,A)-quadratic form on a finitely generated projective A module. Since R is a Dedekind
domain, X = max(R,)) has dimension d = 1, where Ry € R is the subring generated by all
norms tt (t € R). Note that AX = 1. The form parameter A is ample at m € X if given a, b
€ A[m], the semisimple quotient of A_, there exists r € A[m] such that
(2.1) A[m](a + rb) = A[m]a + A[m]b.

In [3;82,p.218ff] there is a discussion of this condition. If R = Z and A =
{a-Aa | a€ A }, the minimal form parameter, then A is not ample at any prime when A =
1 and A is not ample at 2if A =-1. Let !ZlA C RO be the ideal such that A is ample at all m
V(™) ={peX |2, Cp} and d, the dimension of the closed set V(%) in X. Note
that d A <1lforall A,and d A 0 when A is ample at all but finitely many primes.

If (M,[h]) is any (A,A)-quadratic module over A [3;p.80], then a transvection [3;p.91]

is a unitary automorphism o = ¢ v M —— M given by

u,a,



(2.2) o(x) = x + u<v,x> — vA<u,x> — ula<u,x>,
where u, v € M and a € A satisfy the conditions
(2.3) h(u,u) € A, <u,v> =0, h(v,v) =a (mod A).
Note that <x,y> = h(x,y) + Ah{y,x] is the associated hermitian form. For any submodule
LM, |
L'={xeM| <xy>=0forallyeL}.
If M = M’ . M’ is an orthogonal direct sum, with L’ C M’ a totally isotropic submodule
(i.e. h(x,y) = 0 (mod A) for all x, y € L"), then we define

(2.4) EUM',L';M")=<o¢ | ue L’ and ve M* >.

u,a,v
We will need the relation (see [3;p.92]):

(2.5) if a :(M,[h}) —— (M ,[h"}) is an isometry, then

-1
g 0 =0’
uav® au,a,av

where ¢ € U(M,[h]) and o7 € U(M",[h’]).

oo

The hyperbolic rank of a (A,A)quadratic module (M,[h]) is > 1 if (M,[h]) =
H(A) + (M/,[h"]), where H(P) denotes the hyperbolic form on P ® P {3;p.82] and elements
denoted by pairs x = (p,q) with p € P, q € P. Here we are using the notation P for the
dual module P* regarded as a right A—module in the usual way. Since we will always be
working with P containing at least one A-free direct summand, we will often write P =

ppA @ Py, P= qh @ Pl and denote the element

The main result of this section is a unitary analogue of (1.4), so we use some of the

notation (e.g. A, ¢, B). Before stating it, we need two lemmas.

(2.6) Lemma: Let V be a (A,A) quadratic module which has (A,B)-hyperbolic rank > 1 at
a prime p € RO’ for which Ap is maximal. Then

(i) V contains a totally isotropic submodule L which has (A,B)-locally free rank > 1 at all



but finitely many primes, and
(i) if x € H(P) ¢ V » H(P) with P A" and f: P —— L is an A-homomorphism, then there
are elements q, € P, v, € L (1 <i <) such that

1T qu’o’vi(X) = x + {(x).

Proof: (i) Since A_is maximal, we can write A, = B’ x C’ and work over the C’ factor

p p

VvV’ of Vp' Then V-’ has free hyperbolic rank > 1 and for Lp we choose a maximal rank

totally isotropic C’-free direct summand. Let L = L NV and compare it to a direct sum

p
of copies of the A-lattice C :=ker{e: A —— B}. Since Cp » C’ we may choose a direct
sum N = C with the same R-rank as L and so Np N Lp. Therefore N and L are full lattices

on the same K-vector space (K is the quotient field of R), and hence agree at all but
finitely many primes. If we further avoid all the primes where A is not maximal, then L
has (A,B)-free rank > 1 at the remaining primes.

(ii) Let {q,...,q } be a basis for P. Then there exist Vi, - v, € L such that i(x) =

b )_\vi<qi, x> for all x € P.

(2.7) Lemma [3;(3.11),p.241]: Suppose that (C,A) is a semisimple unitary algebra over
(R,A). Assume either that (i) P has free rank > 2, or (ii) A is ample in C and P = C.
Write x € H(P) as x = (poa + pl,qob +q1). Then there is an element o €
H(E(P))-EU(H(P) such that o(x) = (pya’ + pi,qpb” + q1) and O(x) = Aa’. In case (i),
o € EU(H(P,), Q; H(P,)) where Q = P or PO.

Definition: Let (M, [h]) be a (A,A)quadratic module. An element x € M is [h]-unimodular

if there exists y € M such that <x, y> = 1.

If (M,[h}) is non-singular then an element is [h}-unimodular if and only if it is unimodular.
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The following is our main result in the quadratic case.

(2.8) Theorem: Let V be a (A,A)—quadratic module which has (A,B)-hyperbolic rank > 1
at all but finitely many primes, and put (M, [h]) = V .+ H(P) where P is A-free of rank 2.
Suppose there exists a subgroup G1 ¢ U(H(P)) such that e*(Gl) acts transitively on the set
of unimodular elements in H(e«(P)) of fixed length [h(x,x)}. Then

G = < Gy, EU(H(P), Q; V), H(E(P))-EU(H(P))>
where Q = P or P, acts transitively on the set of [h]-unimodular elements of a fixed length,

and the set of hyperbolic pairs and hyperbolic planes in M.

Proof: The same reduction used in [3;(3.5),p.236] shows that it is enough to prove that G
acts transitively on the set of [h]-unimodular elements of a fixed length in M. One can

check that G contains all transvections o with v € (py)* = Vo H(P,) @ p,A (see
Py:a,V 0 1) ® Py

3;(3.11),p.143] and [3;(5.6),p.98]).

(i) Let x = (v; p,q) € V + H(P) be an [h]-unimodular element. Since P is free of rank 2, it
follows as in (3;p.181] that we may assume (p,q) is8 unimodular. More precisely, there
exists some y € M such that < x,y > = 1 and s0 <V, v> + O(p) + O(q) = A. Choose w
€ V so that <v, w> + O(p) + O(q) contains 1; put ¢ = <v, w>. From (1.1) thereis a p,
€ P such that O(p + plc) + O(q) = A. Now apply the transvection Oh 8w to x. This
isometry lies in EU(H(P), P;V).

(ii) Since ex(G;) acts transitively on the set of unimodular elements of fixed length in
. H(e«(P)) we may assume that ex(x) = ex(v; py, qb), where b= hp(x,x) mod A.

(iii) We may now achieve "O(x) = Aa over A[g]" using (2.7) and the fact that P is free

of rank 2. Here g = IT {m| m € S} where S is a finite set in X containing all the primes at

which A is not maximal or V does not have (A,B)-hyperbolic rank > 1. Furthermore by
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(2.6) we may assume that V contains a non-zero totally isotropic submodule L which has
(A,B)-free rank > 1 at all primes not in S. Note that after step (ii), nothing needs to be
done over B and (p,q) is still unimodular. This step uses H(E(P))- EU(H(P)).
(iv) Let t C R, be the largest ideal such that At C Aa, and put X’ = V(t), X A=
V(t+2,), dj = dim X{. Let m A — A’ = A/At be the natural projection and note
that dim X = 0 and dim X < 0. As in [3;p.244] we see that m ¢ X’ for all m € S, hence t
# 0 and A’ is semilocal. We have O(p;,q; + qpb) + Aa = A and s0 O(mpy, m(a;+q4b))
+ m(Aa) = A’. Over B’ = B/Bt we do nothing. Over the complementary factor C’ of A,
apply (1.2) to find an element u € 7P, such that u projects to zero over B~ and

O(7p; —ub) + O(nq ) + x(Aa) = A~
(Note that this already holds over B by step (ii)). Choose z € P, such that = = u and
ex(z) = 0. Since t and g are relatively prime, we can choose z € (Pl)-g.

Note that %50,0,2 € EU(H(P)) by [3;(3.10.2),p.142]. Then
o(x) =x+ Py <2X> — 2<py,X>

= (v; p, —zb+ pO(a + <z, q1>), Q).

Therefore

O(p; —2zb) + O(q) + A(a + <z,q;>) + At = A.

But AtC AacC O(ql) + Ala + <z,q1>), so after these changes, we may assume that

(2.9) O(p;) + O(q) + Aa = A.

(v) Since 7V has hyperbolic rank > 1 over C’ we can choose an isometry a: 7V ¥
H(C’) + W’ and extend it to an isometry of #V + H(#P) by the identity on H(#P). We
now apply the first case of (2.7) to the element o(n(p,, q;)) € H(C) + H(#P,) over the
semisimple ring C’, where A = B’ x(C’. This uses an element o’ €
EU(H(#P,), 7Q; H(C’)) where Q = P; or 131. By (2.5), o looioa ¢
EU(H(#P,), 7Q; 7V). Then there exists a lift o of o loo’oa to U(M, [h]) which lies in
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EU(H(Pl), Q; V). After moving x = (v; p,q) by ¢ we get
A =0(p,) + AtC O(p;) + Aa = O(p).

Finally note that after this change p is unimodular and ex(x) = ex(v; Py’ qOb), where
b= hp(x,x) mod A.
(vi) Since p is unimodular and h(p,p) = 0, H(P) = H(pA) . H(pA)*. If H(pA) =
pA ® DA, where p € P then %5.d Ay € EU(H(P), P; V) and .

af),d,)\v(x) = X + P<AV,X> — AVALP, x> —PAd<p,x>
= (0p0q)

(vil) We now have a hyperbolic element x = (p, q) € H(P) with p unimodular. Recall that
V contains a non—zero totally isotropic submodule L which has (A,B)-free rank > 1 at all
but finitely many primes. We claim that after applying a suitable transformation in G, we
can assume that x = (po,q), with a possibly different q. For this we need to refer to the
proof of (1.4) to find which linear automorphisms of L ® P are necessary to move p to Py
and then show that they are induced by isometries in G.

Since our element p starts out in P steps (i) and (ii) of (1.3) are not necessary. Step
(iii) requires an element of E(p; A, P) which is induced by a suitable element of H(E(P)) ¢
G. Step (v) uses an elementary transformation given by a homomorphism f: P; — L,
and these are induced elements of G using (2.6). Finally, in step (vi) we first construct a
homomorphism 8o’ P0 oL — P1 by splitting P0 ® L = zA ® N where z is unimodular
and h(z,z) = 0 (mod A). To realise T, by an isometry, we find a unitary submodule H(zA)
€ V. H(P,) and then work inside H(zA) + H(P,). By [3;(3.10.4), p.143] H(T2IZA$P1) C

EU(H(zA), zA; H(P,)) C G. The remaining automorphisms 74, 7,, 7, are in E(Pg, P,)
and 7 is defined using g4 € Hom(P,, L). These are induced by elements of H(E(P)) or
EU(H(P),P; V) using (2.6).

Write q = q,b - q, € q,A @ P,. The transvection o belongs to EU(H(P)) by
0° =% =9 1

q;,0,9;
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[3;(3.10.1), p.142], and
ox =X - q) <qpX> - q0X< ap.x >
Note that <q x> = 0 since x has no component in 131 and <qp,x> = <qy,p,> = 1, so ox
=x+gq; = (pO, q{)b) We are now finished if x was unimodular. If x was a hyperbolic
element, then h(ox,0x) = h(p, q4b) = b (mod A), and s0 b € A, since x and ofx) are
isotropic.
In the hyperbolic plane pjA + q A, the element X (-b) = [ (I] —II) ] € EU(H(P,))

transforms Py + 4y into py (the notation X, is from [3; p.130]).

+

Proof of Theorem 2: The argument is the same as for [3;(3.6), p.238] using our (2.8).

2.10) Lemma: The group H GL,(I))-EU(H(Z ® I)) acts transitively on unimodular
( 8 9 y
elements in H(Z ® 7) of fixed length.

Proof: Let P = pyl @ p; I (with dual basis 4y 9y for P) and let x = (poa, p;b; Q¢ qld)
be a unimodular element in H(P). We may assume that d = 0 after applying an element of
H(E(P)), so there exists an integer r such that b + rc is a unit (mod a). Then
0-\
X, (; T01)(x) = (pya, py(b+rc); gy, 0)
so that O(pya) + O(p;(b+1c)) = I. We may therefore assume in the beginning that for x
= Py, P;b; q4¢, 9;d), a and b are relatively prime. Using a suitable element of H(E(P))
we get x = (pO, 0; qq¢, qld) and after applying X_(_g )‘g) the result is (pO, 0; qqc, 0),

where [c] is the length of x.
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§ 3. Metabolic Forms

One way to obtain quadratic modules V with (A,B)-hyperbolic rank > 1 at all but
_finitely many primes is to assume that V has a submodule H(L) where L has (A,B)-free
rank > 1. A generalization of this would be to assume that V contains a "metabolic form"
on L. In this section we define a suitable noti:)n of metabolic forms general enough for our
applications elsewhere. The notation and conventions of § 2 will be used.
If N is an A-lattice and g: N x N —— A is an R-bilinear form, let
6] = {g, | 8, (¢.¢") = 8(¢:¢") + < ¢, "(¢’)>, T € Homp(N, N)}.
Any f ¢ Extk(N, N) defines an extension
(3.1) 0—N-HELN—0
of A-lattices which splits over R. We say that [g] is f—sesquilinear if there is a cocyéle 7€
HomR(N g A, N) representing 0 such that for all a € A:
g(¢a, ¢*) = ag(4, ¢’)
(3.2)
g(, ¢°a) = g(¢, ¢")a—< ¢, A¢", 3) >.
Note that any cocycle 7 satisfies the relation:
0, ay89) = 1@ 8 )ag + 1(day, ay)
and serves as a way to specify the A-module structure E on the R-module N @ N given by
g: for (x,¢) € N ® N define
(3.3) (x, ¢)-a = (xa + 7(4, a), ¢a).
If we vary the choice of representative g_ € [g], then the new 7 is T,=71+ 67, where
(67)(¢, a) = m(g)a - 7(¢a),
for some 7 € HomR(N, N), and all a € A. Then g (4,¢') = g($,¢") + < 4, (¢’ )>
satisfies (3.2). Given an extension (N, §) and a f-sesquilinear form [g], we define the

metabolic (A,A)-quadratic form Met(N, 0, [g]) = (E, [q]) as follows: pick a compatible v, g
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satisfying (3.2) and set
q((x7¢)’ (x’7¢l)) = < ¢3 x’ > + g(¢) ¢’)'

It is easy to check that q is sesquilinear in the usual sense if [g] is f-sesquilinear.

These metabolic forms are non-singular when they exist but an arbitrary extension
need not admit any such form. Suppose that N is reflexive and let 7 denote the involution
on Ext‘i(ﬁ, N) given by dualizing exact sequences (N,f) — (N,B)*. An extension (N, §) is
A-self-dual if N is reflexive and there is a commutative diagram

0— N-L EJd N— 0
2 | B
0— NS E4S R—io
If h* = Ah then h is the adjoint of a metabolic hermitian form on E. We will define a
homomorphism
g { (N,0) = A(N,0) } € Bxt L(N, N) — H(2/2; Hom, (N, N))
where Hom A(N, N) has the involution a fa. We will show that p(N,6) is the
obstruction for finding a A-self-dual map h. Choose an R-section s: N —— E inducing a
cocycle v and identify E = N ® N as above. Then the lower sequence is split over R by s*
leading to an identification of E = N @ N. In these coordinates, for any A-map h making
the diagram (3.4) commute,
h(x,6) = (x + 5 hs(4),39)
and similarly
h'(x,6) = (Mx +5 b 5(9),0).
Now (h*)_loAh(x,(ﬁ) = (x + p(h)(4), ) where p(h) = shs—Xs h's. Note that p(h) is
independent of the choice of the section s. Since (h*)_lo)\h is an A-map, we can check
using (3.3) that p(h) is also an A-map. Similarly, by computing h*O(Xh_l) and comparing
with the formula for the dual, we see that p(h)* = -)p(h). Moreover the cohomology class
[p(h)] € B'(/2; Hom (N, N))
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is independent of the choice of h. Define p(N, 8) = {p(h)] for any h making the diagram

(3.4) commute.

(3.5) Proposition: If N is a reflexive A-module and (N, 6) is a seli-dual extension, then

(N, §) admits a metabolic A-hermitian form if and only if p(N,§) = 0 €
1 _

H'(Z/2; Hom, (N, N)).

Note that a metabolic A-hermitian form is unique up to isometry if it admits a
quadratic refinement. We want to identify the obstruction to obtaining a quadratic
refinement for a given metabolic A-hermitian form h. Let

- ker p — coker { H'(2/2; Hom ,(N, N)) — H%(2/2; Homg (K, N)) }.
be the homomorphism defined by n(h) = {s*hs].

(3.6) Proposition: Suppose that (N,f) admits a metabolic A-hermitian form. Then (N,6)
admits a metabolic (,A)-quadratic form with respect to the minimal form parameter if

and only if #(N,d) = 0.

Suppose now that R = 7 and A = Ir where 7 is a finite group. Then each lattice L
over A is reflexive. Let N = lel, the kernel of a projective' resolution Fy of 7 of length k
(see (0.1) for the case k = 3). We will show that every element of Ext}l(N, N) is (—l)k"' L

self-dual.

k

(3.7) Lemma: Let N = Q°Z. The involution 7 given by dualizing exact sequences induces

multiplication by (—1)k+1 on Ext}\(N, N).

Proof: Let X be a projective resolution of N and X the dual co-resolution of N. We have

two isomorphisms a, :Extl(N, N) & Hl(HomA(X, X)) comparing an extension with X or
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X respectively. Note that over A = I7 we can use X instead of an injective co-resolution
for computing Exti(N, N). It is not difficult to see that & = —3. Let t be the involution on
Hl(Hom A(X’ X)) induced by dualization. By construction, ar = tf implying ara ™t = -t.

Note that Hom 4 (X, X) & Homy(X, X)e, 7, and that Homy(X, X) is a co-resolution
of Homy(N, N). Thus

H'(Hom , (X, X)) = H'(Homy(X, X)8,7) = H(r; N &;N)

and under these identifications t corresponds to the involution induced by the flip map s:
x@y +— y®x on N @ N.

Now we follow an argument suggested by R. Swan. Extend the projective resolution
F defining N to a projective resolution F of Z. Let f be the chain map on F eﬂf‘ mapping
x8y > (—1)%9299Wvey  Since f induces the identity on Z it induces the identity on all
the derived functors. We have the similar chain map on F ®,F which on sz =NeNis
(-l)ks. Now we consider F @/ F as part of a co-resolution of N @ N ending in Z. Similarly
we consider F @HF a part of a complete co-resolution of Z. Then

Hl(r; N e,N) = H'(Hom (1, F &;F)) ¢ H'(Hom, (T, F e, ).

where the last isomorphism is induced by the obvious chain map F —— F. Thus

_ *
ara = 5 = (c1)kHI = (kL

(3.8) Example: Now we restrict to groups = of odd order. Since ExtzllW(N,N) then has odd
order p(N,f) and 7(N,6) vanish for each A-self-dual extension. In particular for N = Qkﬂ,
each extension (N,f) admits a metabolic (A,A)-quadratic form whose A-symmetrization is

unique up to isometry.
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On the Cancellation of Hyperbolic Forms over
Orders in Semisimple Algebras

[. Hambleton! and M. Kreck

Let R be a Dedekind domain and K its field of quotients. The purpose of this note is
to obtain an improvement in the stable range for cancellation of lattices over R-orders in
separable K—algebras, assuming some local information about the lattices. Recall that a
lattice over an R—order A is an A-module which is projective as an R—module. Our results
are based on the work of H. Bass [2],[3], A. Bak [1] and L. N. Vaserstein [11].

The general stable range condition for cancellation of lattices over orders is free rank
> 2 for the linear case [2;(3.5), p.184], and free hyperbolic rank > 2 for the unitary case
(3;(3.6),p.238]. To state our condition, let A and B be orders in separable algebras over K
[4;71.1,75.1], and suppose that there is a surjective ring homomorphism ¢: A —— B. We
say that a finitely generated A-module L has (A,B)-free rank > 1 at a prime p € R, if there

has free rank > 1 over A,. Here A_ denotes the

exists an integer r such that (B" e L) . b

p
localized order A @ R(

p)
Theorem 1

Let L be an A-lattice and put M = L ® A. Suppose that there exists a surjection of
orders e¢ A — B such that L has (A,B)-free rank > 1 at all but finitely many primes. If
GL2(A) acts transitively on unimodular elements in B @ B, then for any A-lattice N which

is locally a direct summand of M™ for some integern, M@ N ¥ M’ & N implies M & M".

1 partially supported by NSERC grant A4000



For the corresponding result in the unitary case there is a similar condition involving
hyperbolic rank > 1 and a locally (A,B)—free submodule. A quadratic module V has (A,B)-
hyperbolic rank > 1 at o prime p € R if there exists an integer r such that (H(B') @ V)p has
free hyperbolic rank > 1 over Ap‘ The other terms used in the statement are defined
precisely in §2 or in [3;pp. 80, 87]. Note in particular that a unitary module is a
(A, A)—quadratic form on a finitely-generated projective A-module. A totally isotropic

submodule is one on which the quadratic form is identically zero.

Theorem 2

Let V be a (A,A)—quadratic module over a unitary (R,\) algebra (A,A) and put
(M,[h]) = V L H(A). Suppose that there exists a surjection of orders e A — B such that
V has (A,B)-hyperbolic rank > 1 at all but finitely many primes. If U2(A) acts transitively
on the set of unimodular elements in H(B @ B) of fixed length, then for any unitary module

N, M. N¥M’ L N implies M ¥ M-,

In our work [5], [6] on the topological classification of 4—-manifolds and algebraic
surfaces we encounter locally (Z#,1)—free modules, where I is the integral group ring of a
finite group. We check that for B = I, the conditions on "transitive action" in Theorems 1
and 2 are satisfied (see (1.4) and (2.10)), hence car be omitted from the statements.

For example consider the lattices arising from exact sequences

(0.1) 0—L » C » C » Cpy — I » 0

2 1 0
with Ci finitely generated projective Z7 modules. Such lattices with minimal Z-rank need

not contain any free direct summands over Zx, but rationally contain all the
representations of r except the trivial one. The simplest case occurs for 7 cyclic and L =

ker {¢: 17 —— I} the augmentation ideal.



More generally, if M is a Imlattice such that M @ Q is a free module over §[p] for
some p « 7, then M is (I, I[x/p])-locally free at all but finitely many primes.

In § 3 we discuss metabolic forms over gl:'oup rings I, leading to examples of (A,B)-
hyperbolic rank > 1 forms which contain no hyperbolic summand.

The purely algebraic results of this paper have consequences in several different

geometric situations. These will be described elsewhere. -

§ 1. The Linear Case

By an "A-module" we will mean a finitely generated right A-module. As above we
suppose that ¢ A —— B is a surjective ring homomorphism of R-orders in (possibly
different) separable K-algebras. If M is an A-lattice and N = M@, B := €x(M), we get
an induced homomorphism '

ex : GL(M) — GL(N).
IM= M1 ® M2 is a direct sum splitting of an A-module then E(Ml’ M2) denotes the
subgroup of GL(M) generated by the elementary automorphisms ([2;p.182]). Recall that
for an element x € M, O,(x) is the left ideal in A generated by /
{f(x) | fe Hom , (M, A) }.
If OM(x) = A we say that x is unimodular.
The following result of Bass is an essential ingredient in the proofs of the cancellation

theorems.

(1.1) Theorem [2;(3.1), p.178]: Let Q be a projective A-module and P ¥ A @ A. For any
unimodular element x = (p,q) € P @ Q, there exsts an A-homomorphism f: Q —— P such

that Op(p + f(q)) = A.



We also need two other facts.

(1.2) Lemma: Let M be a finitely generated right A-module, projective over R, and A‘ =
A/At for an ideal t € R such that the localized order A is maximal. Then the induced map
Hom , (M, A) — Hom, ,(M*, A’)

is surjective, where M’ = M/Mt.

Proof: First note that Mt is projective over At‘ Since A’ = At/ Att we can lift any map
f': M’ —— A’ to £ M, —— A, After restricting to M ¢ M; and multiplying by an
element r € R prime to {, we obtain a lifting of r’f’. But r* (the image of r in R”) is a unit

in A’.

(1.3) Lemma [3;(2.5.2),p.225]): If C is a semisimple algebra, then for each a, b € C there-
exists r € C such that C(a + rb) = Ca + Cb.

We now come to the main result of the section.

(1.4) Theorem: Let A be an R—order in a separable K—algebra. Suppose that M =L @ P is
an A-lattice, where P = pOA @p,Ais free of rank 2 and L is (A,B)—free of rank > 1 at all
but finitely many primes. Let G, ¢ GL(P) be a subgroup such that ex(G) acts transitively
on the unimodular elements in e4(P). Then the group

G=x< GO’ E(pOA, Le plA): E(plA, Le pOA)> ¢ GL(M)

acts transitively on the unimodular elements in M.

(1.5) Remark: In some cases there may be no subgroup G, with the required property.

For example, if B = I is the integral group ring of a finite group , then GL2(B) acts



transitively on unimodular elements in B @ B if and only if the relation Ie B¥ Be B for
a projective ideal I implies I ¥ B. In [8;Thm.3] Swan shows that this is not true for a
certain ideal in Zr where 7 is the generalized quaternion group of order 32. Later in [10],
extending the work of Jacobinski [7], Swan shows that cancellation in this sense fails for I7

if and only if 7 has a binary polyhedral quotient group in an explicitly given list.

Proof: We divide the proof into several parts. Let x = v + p € M be a unimodular
element, where p = Py + plb € Pand v € L. We move x first into P to control the
projection €4(x), and then use the stability assumption on L to move x so that its
component in pOA ® L is unimodular. Finally we move x to Py
(i) Since M has free rank > 2 we may now perform the first step, to get v = 0, so that x
starts out in P. To see this note that O(p) + O(v) = A, so there exists ¢ € O(v) such that
O(p) + c contains 1. Apply (1.2) to A @ P and the element (c, p) to find z € P with O(p -
+ zc) = A. There exists g: L — P with g(v) = z¢c, and f P — L with f(p + z¢) = v.
Extend by zero on the complements. Then

r(x) = (1-1) (1 +8) (x) €P,
and 7€ E(P,L) C < E(pOA, Lep,A), E(p;A, LepyA)>CG.
(ii) Since Gy, acts transitively on unimodular elements in e«(P) = B @ B, we may assume
 that ex(x) = ex(py)-
(iii) Write x = Pgd + p;b, so that O(x) = Aa + Ab. Consider the quotient ring A=
A/gA where g is the ideal in R generated by all the primes p € R at which A is not
maximal, or L does not have (A,B)—free rank > 1. Then we claim that, after changing x by
an element from G if necessary,
(1.6) O(X) = AZ = A, and €(x) = e*(po)
or a projects to a unit in A without disturbing step (ii). To see this note that the quotient
ring A = C x C’, where C is the smallest direct factor mapping onto B by ¢ But by
lifting idempotents, & induces an isomorphism B/Rad B v C/Rad C. Therefore the C



component of a is already a unit since a projects to 1 in the semisimple quotient. Over the
other factor we can apply [2;(2.8),p.87]: there exists u € A, such that the element a + ub
projects to a unit in € and to 1in B. Let g: pjA — pyA C M such that g(p,) = pju.
Extend g to a map from M to M by zero on the complement. Then 7 =1 + g is an element
of G and m(x) has the desired properties (1.6).
(iv) From step (iii) we have Aa + gA = A and so (Ab),J = A]J for all primes p dividing
g. Therefore if t C R denotes the largest ideal such that At C Aa , we see that p does not
divide t for all primes p dividing g and in particular t # 0.
(v) Now we project to the semilocal ring A’ = A/At, which is the quotient of a maximal
order A£ and so the projection ¢’: A — B~ splits and A = B’ x C’. Since over the B’
factor a projects to 1, we have (Aa)’ = A’. Over the complementary factor C’ we use a
suitable 7 € E(piC', L"), so that after applying 7 we achieve the condition
(1.7) Aa’ +0O(v')= A"
over both factors of A”. This is an application of (1.2) to the component of x in L.” @ p;C~
using the fact that C/ C L’. The necessary homomorphism g € Hom A'(Pi’ L-), which is
the identity over B, can be lifted to Hom , (P, L) since P, is projective and extended to
M by zeroon L @ pOA. |
(vi) We now lift the relation (1.7) to A using (1.2) and obtain

Aa + O(v) + At = A,
But At g'Aa SO we can assume that v + Ppd is unimodular.
(vii) The argument of [2; pp 183-184] now shows that there is an element 7
€ E(plA, pOAeL) such that v(x) = py. In our situation start with the unimodular
element z = v + ppa € Le Py, Write Lo Py = zA @ N and let g,(z) = p;(1-a-b), with
8o(N) = 0. Let gg(py) = Py, 84(py) = py(a-1), 85(py) = Py, 8g(Py) = —v, where the
homomorphisms are extended to the obvious complements by zero. If T, = 1+ B;s then

1’67'57'47‘37’2(1() = py-
This completes the proof.



Proof of Theorem 1: By Swan’s Cancellation Theorem ({9; 9.7] and the discussion on
[9;p.169]), M@ A ¥ M’ ® A since M @ A is the direct sum of two faithful modules. We
apply (1.4) following [2;IV,3.5] to cancel the free modules.

Remark: The method does not seem to prove either Swan’s or Jacobinski’s cancellation

theorems independently.

§ 2. The Unitary Case

We adopt the notation and conventions of Bass in {3; pp.61-90,233] for (A,A)-
quadratic modules over a unitary (R,))-algebra (A,A). A unitary module is a non-singular
(A,A)-quadratic form on a finitely generated projective A module. Since R is a Dedekind
domain, X = max(R)) has dimension d = 1, where R, € R is the subring generated by all
norms tt (t € R). Note that A} = 1. The form parameter A is ample at m € X if given a, b
€ A[m], the semisimple quotient of A, there exists r € A[m] such that
(2.1) A[m]{(a + 1b) = A[m]a + A[m]b.

In [3;§2,p.218ff] there is a discussion of this condition. If R = I and A =
{a-A3 | a € A }, the minimal form parameter, then A is not ample at any prime when A =
1 and A is not ample at 2if A = -1. Let QlA c R0 be the ideal such that A is ample at all m
¢ V(QlA) ={peX| U, Cp} and d, the dimension of the closed set V(QIA) in X. Note
that dA < 1forall A, and dA < 0 when A is ample at all but finitely many primes.

If (M,[h]) is any (A,A)-quadratic module over A [3;p.80], then a transvection [3;p.91]

is a unitary automorphism ¢ = ¢ v M —— M given by

u,a,



(2.2) o(x) = X + u<v,x> - vA<u,x> - uda<u,x>,
where u, v € M and a € A satisfy the conditions
(2.3) h(u,u) € A, <u,v> =0, h(v,v) =a (mod A).
Note that <x,y> = h(x,y) + Ah{y,x] is the associated hermitian form. For any submodule
LCM,
L'={xeM| <xy>=0foralyeL}.
If M = M’ . M* is an orthogonal direct sum, with L’ C M’ a totally isotropic submodule
(i.e. h(x,y) = 0 (mod A) for all x, y € L"), then we define

(24) EUM', L M*)=<o,, | uel andveM >
We will need the relation (see [3;p.92]):
(2.5) if o :(M,[h]) — (M",[h’]) is an isometry, then
-1 ,
®%,av°% T Tamaav

where g € U(M,[h]) and ¢’ € U(M",[h’]).

The hyperbolic rank of a (A,A)-quadratic module (M,[h]) is > 1 if (M,[h]) =
H(A) + (M”,[h’]), where H(P) denotes the hyperbolic form on P @ P [3;p.82] and elements
denoted by pairs x = (p,q) with p € P, q ¢ P. Here we are using the notation P for the
dual module P* regarded as a right A-module in the usual way. Since we will always be
working with P containing at least one A-free direct summand, we will often write P =

ppA@Py, P= qpA @ 13l and denote the element

(p,a) = (pg2 + Py, gpb + qy).

The main result of this section is a unitary analogue of (1.4), so we use some of the

notation (e.g. A, ¢, B). Before stating it, we need two lemmas.

(2.6) Lemma: Let V be a (),A) quadratic module which has (A,B)-hyperbolic rank » 1 at

a prime p € RO’ for which Ap is maximal. Then

(1) V contains a totally isotropic submodule L which has (A,B)-locally free rank > 1 at all



but finitely many primes, and
(ii) if x € H(P) ¢ V L H(P) with P ¥ AT and f: P — L is an A~homomorphism, then there
are elements g, € P, v, €L (1 <i<r1)such that

Me (x) = x + {(x).

4,,0,¥

Proof: (i) Since A _ is maximal, we can write Ap = B’ x C’ and work over the C’ factor

p

V-’ of Vp. Then V-’ has free hyperbolic rank > 1 and for Lp we choose a maximal rank

totally isotropic C’-free direct summand. Let L = L_N V and compare it to a direct sum

p
of copies of the A-lattice C :=ker{e: A —— B}. Since Cp| ~ C’ we may choose a direct
sum N = C" with the same R-rank as L and so N_~ L. Therefore N and L are full lattices

p=p
on the same K-vector space (K is the quotient field of R}, and hence agree at all but

finitely many primes. If we further avoid all the primes where A is not maximal, then L
has (A,B)-free rank > 1 at the remaining primes.
(i) Let {qy,.-,q,} be a basis for P. Then there exst vV - Vo € L such that f(x) =

pX Xvi<qi, x> forall x € P.

(2.7) Lemma (3;(3.11),p.241]: Suppose that (C,A) is a semisimple unitary algebra over
(R,A). Assume either that (i) P has free rank > 2, or (ii) A is ample in C and P = C.
Write x ¢ H(P) as x = (poa. + ppqpb +q1). Then there is an element ¢ €
H(E(P))-EU(H(P) such that o(x) = (pga” + p{,qpb” + qj) and O(x) = Aa’. In case (i),
o € EU(H(P), Q; H(P,)) where Q = P or PO'
Definition: Let (M, [h]) be a (A\,A)-quadratic module. An element x € M is [h]-unimodular

if there exists y € M such that <x, y> = 1.

If (M,[h]) is non-singular then an element is [h]-unimodular if and only if it is unimodular.
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The following is our main result in the quadratic case.

(2.8) Theorem: Let V be a (A,A)—quadratic module which has (A,B)-hyperbolic rank > 1
at all but finitely many primes, and put (M, [h]) = V L H(P) where P is A-free of rank 2.
Suppose there exists a subgroup Gy C U(H(P)) such that ex(G ) acts transitively on the set
of unimodular elements in H(¢e,(P)) of fixed length [h(x,x)]. Then

G = < G, EU(H(P), Q; V), B(E(P))-EU(H(P))>
where Q = P or P, acts transitively on the set of [h]-unimodular elements of a fixed length,

and the set of hyperbolic pairs and hyperbolic planes in M.

Proof: The same reduction used in [3;(3.5),p.236] shows that it is enough to prove that G
acts transitively on the set of [h]-unimodular elements of a fixed length in M. One can

check that G contains all transvections o .  with v € (po)* = Ve H(P,)e pbA (see
03 3

[3;(3.11),p.143] and [3;(5.6),p.98]).

(i) Let x = (v; p,q) € V + H(P) be an [h]-unimodular element. Since P is free of rank 2, it
follows as in [3;p.181] that we may assume (p,q) is unimodular. More precisely, there
exists some y € M such that < x,y > = 1 and so <V, v> + O(p) + O(q) = A. Choose w
€ V so that <v, w> + O(p) + O(q) contains 1; put ¢ = <v, w>. From (1.1) thereis a p,
€ P such that O(p + plc) + O(q) = A. Now apply the transvection e w to x. This
isometry lies in EU(H(P), P;V).

(ii) Since e*(Gl) acts transitively on the set of unimodular elements of fixed length in
H(e4(P)) we may assume that ex(x) = ex(v; py, qyb), where b = hp(x,x) mod A.

(i) We may now achieve "O(x) = Aa over A[g]" using (2.7) and the fact that P is free

of rank 2. Here g = IT {m| m € S} where S is a finite set in X containing all the primes at

which A is not maximal or V does not have (A,B)-hyperbolic rank > 1. Furthermore by
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(2.6) we may assume that V contains a non-zero totally isotropic submodule L which has
(A,B)-free rank > 1 at all primes not in S. Note that after step (ii), nothing needs to be
done over B and (p,q) is still unimodular. This step uses H(E(P))- EU(H(P)).
(iv) Let t C Ry be the largest ideal such that At ¢ Aa, and put X’ = V(t), X4 =
V(t+2,), dj = dim X{. Let m A —— A’ = A/At be the natural projection and note
that dim X = 0 and dim X < 0. Asin [3;p.244] we see that m ¢ X’ for all m € S, hence ¢
# 0 and A’ is semilocal. We have O(p;,q; + q;b) + Aa = A and so0 O(mp;, r(ql-i-qob))
+ 7m(Aa) = A’. Over B’ = B/Bt we do nothing. Over the complementary factor G- of A,
apply (1.2) to find an element u € 7P, such that u projects to zero over B* and

O(7p; —ub) + O(rq,) + m{Aa) = A".
(Note that this already holds over B* by step (ii)). Choose z € P, such that 7z = u and
eéx(z) = 0. Since t and g are relatively prime, we can choose z € (Pl)- g.

Note that 700,02 € EU(H(P)) by [3;(3.10.2),p.142]. Then
ox) =x+ Py <zxX> —2<pg,x>

= (v; py—zb + po(a + <z, 4;>), Q).

Therefore

O(p; —2b) + O(qy) + Ala + <z,q;>) + At = A

But AtC AacC O(ql) + Aa + <z,q1>), so after these changes, we may assume that

(2.9) O(p;) + O(q)) + Aa = A,

(v)  Since 7V has hyperbolic rank > 1 over C’ we can choose an isometry a: 7V ¥
H(C’) + W and extend it to an isometry of »V . H(#P) by the identity on H(aP). We
now apply the first case of (2.7) to the element o((p;, q;)) € H(C’) » H(xP ) over the
semisimple ring C‘, where A’ = B’ xC-. This uses an element ¢’ €
EU(H(P)), 7Q; H(C’)) where Q = P, or 151.
EU(H(P,), nQ; V). Then there exists a lift ¢ of ¢ Loo 0a to U(M, [h]) which lies in

By (2.5), dlogroa ¢
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EU(H(Pl), Q; V). After moving x = (v; p,q) by o we get
A =0(p;) + AtC O(py) + Aa = O(p).

Finally note that after this change p is unimodular and ex(x) = &(v; py, qqb), where
b = hp(x,x) mod A.
(vi) Since p is unimodular and h(p,p) = 0, H(P) = H(pA) . H(pA)*. If H(pA) =
pA ® PA, where p € P then T5 d.Av € EU(H(P), P; V) and

Uf),d,,\v(x) = X + P<Av, x> — AvA<P, x> -pAd<p,x>
= (0;pq)

(vii) We now have a hyﬁerbolic element x = (p, q) € H(P) with p unimodular. Recall that
V contains a non—zero totally isotropic submodule L which has (A,B)-free rank > 1 at all
but finitely many primes. We claim that after applying a suitable transformation in G, we
can assume that x = (po,q), with a possibly different q. For this we need to refer to the
proof of {(1.4) to find which linear automorphisms of L. ® P are necessary to move p to p,
and then show that they are induced by isometries in G.

Since our element p starts out in P steps (i) and (ii) of (1.3) are not necessary. Step
(iii) requires an element of E(p,A, PO) which is induced by a suitable element of H(E(P)) C
G. Step (v) uses an elementary transformation given by a homomorphism f: P, — 1L,
and these are induced elements of G using (2.6). Finally, in step {vi) we first construct a
homomorphism gy: Py@L — P, by splitting Pye L = zA @ N where z is unimodular
and h(z,z) = 0 (mod A). To realise T by an isometry, we find a unitary submodule H(zA)
¢ V1 H(P,) and then work inside H(zA) » H(P;). By [3;(3.10.4), p.143] H(T2|ZA®P1) C

EU(H(zA), zA; H(P,)) C G. The remaining automorphisms 7,, 7, 7g are in E(Pg, P))
and 74 is defined using g € Hom(P,, L). These are induced by elements of H(E(P)) or
EU(H(P),P; V) using (2.6).

Write q = qpb —q; € qjA @ P,. The transvection o belongs to EU(H(P)) by

Q]_:O:QO
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[3;(3.10.1), p.142], and

ox = X~ q; <, x> - q0X< Q% >
Note that <Qqy x> = 0 since x has no component in 131 and <qpx> = <qy,P,> = 1, so ox
=x+q = (po, qob). We are now finished if x was unimodular. If x was a hyperbolic
element, then h(ox,0x) = h(p;, q4b) = b (mod A), and so b € A, since x and o(x) are
isotropic.

. I -b
In the hyperbolic plane pjA + q A, the element X +(—b) = [ 0 I ] € EU(H(PO))
transforms py + qob into py (the notation X N is from [3; p.130]).

Proof of Theorem 2: The argument is the same as for [3;(3.6), p.238] using our (2.8).

(2.10) Lemma: The group H(GL,(I))-EU(H(I ® 1)) acts transitively on unimodular
elements in H(Z ® ) of fixed length.

Proof: Let P = pyZ @ p;I (with dual basis g, q; for P) and let x = (Po2, P15 qqc, q,d)
be a unimodular element in H(P). We may assume that d = 0 after applying an element of
H(E(P)), so there exists an integer r such that b + Tc is a unit (mod a). Then
0-A
X+(r Or)(x) = (pgaa Pl(b+rc)§ qp% 0)
so that O(pya) + O(p(b+rc)) = 1. We may therefore assume in the beginning that for x
= (pya, Pyb; 9,¢, q;d), a and b are relatively prime. Using a suitable element of H(E(P))
we get x = (pg, 0; q,¢, q;d) and after applying X_(_g ’\g) the result is (pg, 0; qyc, 0),

where [c] is the length of x.
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§ 3. Metabolic Forms

One way to obtain quadratic modules V with (A,B)-hyperbolic rank > 1 at all but
finitely many primes is to assume that V has a submodule H(L) where L has (A,B)-free
rank > 1. A generalization of this would be to assume that V contains a "metabolic form"
on L. In this section we define a suitable notit')n of metabolic forms general enough for our
applications elsewhere. The notation and conventions of § 2 will be used. |

If N is an A-lattice and g: § x N —— A is an R-bilinear form, let

8] = {g, | 8,(8,¢") =g(8,6") + < ¢, (¢")>, 7 € Homp(N, N)}.

Any f ¢ Exti(N, N) defines an extension
(3.1) 0— N--HE-LN—0
of A-lattices which splits over R. We say that [g] is §—sesquilinear if there is a cocycle vy €
HomR(N ®p A, N) representing 6 such that for all a € A:

g(ga, ) = ag(¢, ¢')
(3.2)

g(¢, ¢7a) = g(¢, ¢')a—< ¢, 74", a) >.
Note that any cocycle 7 satisfies the relation:

A4, ay8,) = A ay)a + A day, ao)
and serves as a way to specify the A-module structure E on the R-module N @ N given by
¢: for (x,¢) € N @ N define
(3.3) (x, 9)-3 = (xa + 78, 2), da).
If we vary the choice of representative 8, € (g], then the new 7yis v ;= 7+ ér, where
(67)(¢, a) = r{¢)a - 7(¢a),

for some 7 € Homg(N, N), and all a € A. Then §.(6.¢°) = g(¢.¢") + <, 1(¢)>
satisfies (3.2). Given an extension (N, §) and a #-sesquilinear form [g], we define the

metabolic (A,A)-quadratic form Met(N, 4, [g]) = (E, [q]) as follows: pick a compatible 7, g
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satisfying (3.2) and set
qa(x,9), (x",¢°)) = < ¢, x" > + (4, ¢*).

It is easy to check that q is sesquilinear in the usual sense if [g] is f-sesquilinear.

These metabolic forms are non-singular when they exist but an arbitrary extension
need not admit any such form. Suppose that N is reflexive and let 7 denote the involution
on Exti(N, N) given by dualizing exact sequences (N,§) — (N,B)*. An extension (N, §) is
A-self-dual if N is reflexive and there is a commutative diagram

0— N E4L N—0
2 | b
0— N B N—0
If h* = Ah then h is the adjoint of a metabolic hermitian form on E. We will define a
homomorphism
g {(N,0) = A(N,0) } € Ext } (N, N) — H}(2/2; Hom, (R, N))
.whefe HomA(N, N) has the involution o — Xa*. We will show that p(N,8) is.the
obstruction for finding a A-self-dual map h. Choose an R-section s: N —— E inducing a
cocycle 7 and identify E = N ® N as above. Then the lower sequence is split over R by s*
leading to an identification of E = N @ N. In these coordinates, for any A-map h making
© the dia.gr'am (3.4) commute,
h(x,¢) = (x + s hs($),X¢)
and similarly
h'(x,6) = (\x +5 b 5(6),).
Now (h*)_lo/\h(x,qﬂ) = (x + p(h)(¢), ¢) where p(h) = shs — Js h's. Note that p(h) is
independent of the choice of the section s. Since (h*)_lo,\h is an A-map, we can check
usiné (3.3) that p(h) is also an A-map. Similarly, by computing h*o()-\h_l) and comparing
with the formula for the dual, we see that p(h)* = =-Ap(h). Moreover the cohomology class
[o(8)] € B'(2/2; Hom,y(, N))
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is independent of the choice of h. Define p(N, ) = [p(h)] for any h making the diagram

(3.4) commute.

(3.5) Proposition: If N is a reflexive A-module and (N, §) is a self-dual extension, then

(N, §) admits a metabolic A-hermitian form if and only if p(N,6) = 0 ¢
1 —~

H*(Z/2; Hom, (N, N)).

Note that a metabolic A-hermitian form is unique up to isometry if it admits a
quadratic refinement. We want to identify the obstruction to obtaining a quadratic
refinement for a given metabolic A-hermitian form h. Let

7: ker p —— coker { H(1/2; Bom , (N, N)) — #%(2/2; Homg(N, N)) }.
be the homomorphism defined by n(h) = [s*hs].

(3.6) Proposition: Suppose that (N,f) admits a metabolic A-hermitian form. Then (N,f)
admits a metabolic (A,A)quadratic form with respect to the minimal form parameter if

and only if n(N,§) = 0.

Suppose now that R = 7 and A = Ir where 7 is a finite group. Then each lattice L
over A is reflexive. Let N = lel, the kernel of a projective resolution ¥y of Z of length k
(see (0.1) for the case k = 3). We will show that every element of Exti(N, N) is (—1)k+1—

self-dual.

(3.7) Lemma: Let N = k. The involution 7 given by dualizing exact sequences induces

multiplication by (=1)¥*! on Ext } (¥, N).

Proof: Let X be a projective resolution of N and X the dual co-resolution of N. We have

two isomorphisms a, § :Extl(N, N)v Hl(HomA(}-{, X)) comparing an extension with X or
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X respectively. Note that over A = Ix we can use X instead of an injective co-resolution
for computing Exti(N, N). It is not difficult to see that @ = —f. Let t be the involution on
Hl(Hom A()_(, X)) induced by dualization. By construction, ar = tf implying ara ! = .

Note that Hom A(X, X) ¥ Homl(i, X)®,I, and that Homﬂ(}-(, X) is a co-resolution
of Homy (N, N). Thus

H'(Bom, (X, X)) = H'(Bomy(X, X)8, 1) = H'(r, N e;N)

and under these identifications t corresponds to the involution induced by the flip map s:
x®y »+ y®x on N @ N,

Now we follow an argument suggested by R. Swan. Extend the projective resolution
F defining N to a projective resolution F of Z. Let f be the chain map on F eﬂf‘ mapping
x®y — (<1)%99 9 voy  Gince f induces the identity on Z it induces the identity on all
the derived functors. We have the similar chain map on F o F which on Fop =Ne N is
(-l)ks. Now we consider F ®,F as part of a co-resolution of N ® N ending in Z. Similarly
we consider F @RF a part of a complete co-resolution of I. Then .

H'(r; N e;N) = H'(Hom (7, F ¢;F)) ¥ H'(Hom, (I, F e;F)).

where the last isomorphism is induced by the obvious chain map F —— F. Thus

ara L = = (-1)k+1f* = (—-1)k+1.

(3.8) Example: Now we restrict to groups = of odd order. Since Ext%w(ﬁ,N) then has odd
order p(N,f) and n(N,6) vanish for each A-self-dual extension. In particular for N = lel,
each extension (N,§) admits a metabolic (A,A)<quadratic form whose A-symmetrization is

unique up to isometry.
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