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Abstract. In this article we give a conceptual definition of Manin products in any category
endowed with two coherent monoidal products. This construction can be applied to associa-
tive algebras, non-symmetric operads, operads, colored operads, and properads presented by
generators and relations. These two products, called black and white, are dual to each other
under Koszul duality functor. We study their properties and compute several examples of black
and white products for operads. These products allow us to define natural operations on the
chain complex defining cohomology theories. With these operations, we are able to prove that
Deligne’s conjecture holds for a general class of operads and is not specific to the case of asso-
ciative algebras. Finally, we prove generalized versions of a few conjectures raised by M. Aguiar
and J.-L. Loday related to the Koszul property of operads defined by black products. These
operads provide infinitely many examples for this generalized Deligne’s conjecture.

Introduction

In his works on quantum groups and non-commutative geometry, Yu. I. Manin defined two prod-
ucts in the category of quadratic algebras. An associative algebra A is called quadratic if it is
isomorphic to a quotient algebra of the form A = T (V )/(R), where T (V ) is the free algebra on V
and where (R) is the ideal generated by R ⊂ V ⊗2. Let A = T (V )/(R) and B = T (W )/(S) be two
quadratic algebras. Any quadratic algebra generated by the tensor product V ⊗W is determined
by a subspace of (V ⊗W )⊗2. Since R ⊂ V ⊗2 and S ⊂W⊗2, one has to introduce the isomorphism
(23) : V ⊗ V ⊗W ⊗W → V ⊗W ⊗ V ⊗W defined by the permutation of the second and third
terms. The black and white products were defined by Manin as follows

A •B := T (V ⊗W )/
(
(23)(R⊗ S)

)
,

A ◦B := T (V ⊗W )/
(
(23)(R⊗W⊗2 + V ⊗2 ⊗ S)

)
.

Since (23) is an isomorphism, many properties of the algebras A and B remain true for their
black and white products. For instance, the white product of two quadratic algebras is equal to
their degreewise tensor product A⊗B := ⊕n≥0An⊗Bn. Therefore, one can apply the method of
J. Backelin [Bac] to prove that the white product of two Koszul algebras is again a Koszul algebra.

Koszul duality theory is a homological algebra theory developed by S. Priddy [Pri70] in 1970
for quadratic algebras. To a quadratic algebra A = T (V )/(R) generated by a finite dimensional
vector space V , one can associate the Koszul dual algebra A! := T (V ∗)/(R⊥). Under this finite
dimensional hypothesis, we have (A◦B)! = A! •B!, that is black and white constructions are dual
to each other under Koszul duality functor. The main result of Manin is the following adjunction
in the category of finitely generated quadratic algebras

HomQ.Alg(A •B
!, C) ∼= HomQ.Alg(A, B ◦ C).

1The title of this paper can be read “How to use Manin’s products to prove Deligne’s conjecture for Loday
algebras with Koszul property”
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Using the general properties of internal cohomomorphisms, Manin proved that A • A! is a Hopf
algebra and was able to realize well known quantum groups as black products of an algebra with
its Koszul dual. For more properties of Manin’s products for quadratic algebras, we refer the
reader to the book of A. Polishchuk and L. Positselski [PP05].

Koszul duality theory was later generalized to binary quadratic operads by V. Ginzburg and
M. Kapranov [GK95] in 1994. This generalization comes from the fact that an operad, like an
associative algebra, is a monoid in a monoidal category. A quadratic operad P = F(V )/(R) is
a quotient of a free operad by an ideal generated by a sub-S-module R of F(2)(V ), the part of
weight 2 of F(V ). Let P = F(V )/(R) and Q = F(W )/(S) be two quadratic operads. A quadratic
operad generated by the tensor product V ⊗W is determined by a subspace of F(2)(V ⊗W ). Since
R ⊂ F(2)(V ) and S ⊂ F(2)(W ), we need a map from F(2)(V ) ⊗F(2)(W ) to F(2)(V ⊗W ). In the
binary case, Ginzburg and Kapranov mentioned in [GK95’] two maps Ψ : F(2)(V ) ⊗ F(2)(W ) →
F(2)(V ⊗W ) and Φ : F(2)(V ⊗W )→ F(2)(V )⊗F(2)(W ) and defined the black and white products
for binary quadratic operads as follows.

P • Q := F(V ⊗W )/
(
Ψ(R⊗ S)

)
,

P ◦ Q := F(V ⊗W )/
(
Φ−1(R ⊗W⊗2 + V ⊗2 ⊗ S)

)
.

When the operad P = F(V )/(R) is a binary quadratic operad generated by a finite dimensional S-
module V , they defined a Koszul dual operad by the formula P ! := F(V ∨)/(R⊥), where V ∨(2) :=
V ∗(2) ⊗ sgnS2

is the dual representation twisted by the signature representation. As in the case

of algebras, they proved that (P ◦ Q)! = P ! • Q! and they showed the adjunction

HomBin.Q.Op.(P • Q
!, R) ∼= HomBin.Q.Op.(P , Q ◦R),

in the category of finitely generated binary quadratic operads.

From the properties of black and white products for associative algebras and binary quadratic
operads, a few natural questions arise. Where do the functors Ψ and Φ conceptually come from
? Is the black or white product of two binary Koszul operads still a Koszul operad ? Can one do
non-commutative geometry with an operad of the form P • P ! ? One can also add : is it possible
to recover classical operads as black or white products of more simple operads? Can black and
white products help to describe the natural operations acting on cohomological spaces ? The aim
of this paper is to answer these questions.

Let us recall that Koszul duality theory of associative algebras and binary quadratic operads was
extended to various other monoidal categories in the last few years. The following diagram shows
these monoidal categories were Koszul duality holds. They are represented by the name of their
monoids.

Associative Algebras // //
**

**TTTTTTTTTTTTTTTTT
Non-symmetric Operads

Σ

��
Operads // //

��

��

Colored operads

Dioperads
��

��
Properads

Koszul duality for dioperads was proved by W.L. Gan in [Gan03], it was proved by P. Van der
Laan in [VdL] for colored operads and by the author for properads in [Val1]. A properad is an
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object slightly smaller than a prop which encodes faithfully a large variety of algebraic structures
like bialgebras or Lie bialgebras, for instance (see Appendix A for more details). We would like to
emphasize that the Koszul dual that appears naturally, without finite dimensional assumptions,
is a comonoid (coalgebra, cooperad, coproperad, etc ...). See Section 2 for more details.

To answer the first question about the conceptual definition of the functors Ψ and Φ, we introduce
a new notion of category endowed with 2 coherent monoidal products. It is called 2-monoidal
category in Section 1. This definition generalizes previous notions given by A. Joyal and R. Street
in [JS93] in the framework of braided tensor categories and by C. Balteanu, Z. Fiedorowicz, R.
Schwänzl and R. Vogt in [BFSV03] in the framework of iterated monoidal category and iterated
loop spaces. All the examples given above are monoids in a 2-monoidal category. In a 2-monoidal
category, we define the functors Ψ and Φ by universal properties. This allows us to define white
products for monoids presented by generators and relations in Section 3. Since the Koszul dual is
a comonoid, we define a black product for comonoids presented by generators and relations. (This
notion is introduced and detailed in Appendix B).

The white product defined here coincides with the one of Y. Manin for quadratic algebras A ◦B,
with the one of Ginzburg-Kapranov for binary quadratic operads P ◦ Q and with the one of R.
Berger, M. Dubois-Violette and M. Wambst [BDVW03] for N -homogenous algebras. Note that
the white product is defined without homogenous assumption. Therefore, one could apply them
to non-homogenous cases. In this sense, it would be interesting to study the properties of the
white products of Artin-Schelter algebras [AS87, LPWZ04].

Under finite dimensional assumptions, the twisted linear dual of the Koszul dual cooperad gives
the Koszul dual operad defined by [GK95]. Using this relation, we define a black product for op-
erads in Section 4. We do several computations of black and white products and show that some
classical operads can be realized as products of simpler operads. All these examples are products
of Koszul operads and the result is again a Koszul operad. This fact is not true in general and we
provide a counterexample in Section 4.5. Whereas this property holds for associative algebras, it
is not true here because the functors Φ and Ψ are not isomorphisms.

We extend the adjunction of Manin and Ginzburg-Kapranov and prove that P • P ! is a Hopf
operad. Since operads are non-linear generalizations of associative algebras, the notion of Hopf
operad can be seen as a non-linear generalization of bialgebras. Hopf operads of the form P • P !

can provide new examples of “quantum groups”, in the philosophy of [Man88]. This adjunction
also allows us to understand the algebraic structures on tensor products or spaces of morphisms
of algebras. For instance, it gives a description of the structure of cohomology spaces.

Non-symmetric operads are operads without the action of the symmetric group. One can sym-
metrize a non-symmetric operad to get an operad. (It corresponds to the functor Σ in the diagram
above). The image of a non-symmetric operad under functor is called a regular operad. We de-
fine black � and white � square products for regular operads as the image of black and white
products of non-symmetric operads in Section 5. In the case of binary quadratic regular operads,
the black square product given here corresponds to the one introduced by K. Ebrahimi-Fard and
L. Guo in [EFG05] (see also J.-L. Loday [Lod04]). We prove the same kind of results for regular
operads and square products than the ones for operads and Manin’s products.

The adjunction for black and white square products allows us to construct natural operations on
the chain complex defining the cohomology of an algebra over a non-symmetric (regular) operad.
The example of associative algebras is very classical. Since the introduction of this (co)chain
complex by Hochschild in 1945, it has been extensively studied. M. Gerstenhaber proved in the
sixties that the cohomology of any associative algebra is endowed with two coherent products :
the commutative cup product and a Lie bracket. This structure is now called a Gerstenhaber
algebra. (Gerstenhaber also used this Lie bracket to study deformations of associative algebras.
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This led to the work of Kontsevich on deformation-quantization of Poisson manifold thirty years
latter). In homotopy theory, there is a topological operad, formed by configurations of disks in
the plane and called the little disks operad, whose action allows to recognize two-fold loop spaces.
In 1976, F. Cohen proved that the operad defined by the homology of the little disks operad is
equal to the operad coding Gerstenhaber algebras. Therefore the Hochschild cohomology space
is an algebra over the homology of the little disks operad. This surprising link between algebra,
topology and geometry led Deligne to formulate the conjecture that this relation can be lifted
on (co)chain complexes, that is the singular chain complex of the little disks operad acts on the
Hochschild (co)chain complex of an associative algebra. This conjecture was proved by several
researchers using different methods. In the present paper, we take a transversal approach. We
prove that Deligne’s conjecture holds for a general class of operads and is not specific to the case
of associative algebras. Using Manin’s products, we construct operations on the chain complex
of any algebra over an operad of this class. (To be more precise, finitely generated binary non-
symmetric Koszul operads form this class). Since these operations verify the same relations than
the ones on the Hochschild (co)chain complex, Deligne’s conjecture is then proved with the same
methods.

Since the white square product is the Koszul dual of the black square product, we can compute
the Koszul duals of operads defined by black square product. The first example is the operad
Quad = Dend�Dend defined by M. Aguiar and J.-L. Loday in [AL04]. Using the explicit de-
scription of its Koszul dual and the method of partition posets of [Val2], we prove that it is Koszul
over Z, which answers a conjecture of Aguiar-Loday. Actually, with the same methods we show
that the families Dend�n, Dias�n and T riDend�n, T rias�n are Koszul over Z. These families
provide infinitely many examples for which Deligne’s conjecture hold over Z.

Appendix A is a survey on the notions of operads and properads. Appendix B yields a categorical
approach of algebra with monoids and comonoids ((co)ideal, (co)modules).

Unless stated otherwise, we work over a field k of characteristic 0.
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1. 2-monoidal categories

In this section, we define the general framework of 2-monoidal category verified by the examples
studied throughout the text. The notion of 2-monoidal category given here is a lax and more
general version of the one given by A. Joyal and R. Street in [JS93] and the one given by C.
Balteanu, Z. Fiedorowicz, R. Schwänzl and R. Vogt in [BFSV03].

1.1. Monoidal category. We recall briefly the definitions of monoidal category, lax monoidal
functor and monoid in order to settle the notations for the next section. We refer to the book of
S. MacLane [MacL98] Chapter VII and to the article of J. Bénabou [Be63] for full references on
the subject.

Definition (Monoidal category). A monoidal category (A, �, I, α, r, l) is a category A equipped
with a bifunctor � : A×A → A and a family of isomorphisms

αA,B,C : (A�B) � C
∼
−→ A� (B � C),

for every A, B and C in A. These isomorphisms are supposed to verify the pentagon axiom. For
every object A in A, there exists two isomorphisms la : I�A→ A and ra : A�I → A compatible
with α.

Example. Let (A, �, I, α, r, l) be a monoidal category. The cartesian product A × A is a
monoidal category where the monoidal product �

2 is defined by (A, B) �
2 (A′, B′) := (A �

B, A′
�B′). The unit is (I, I). The associative isomorphisms are given by

(
(A, B) �

2 (A′, B′)
)

�
2 (A′′, B′′) =

(
(A�A′) �A′′, (B �B′) �B′′

)

(αA,A′,A′′ , αB,B′,B′′ )

��
(A, B) �

2
(
(A′, B′) �

2 (A′′, B′′)
)

=
(
A� (A′

�A′′), B � (B′
�B′′)

)
.

The other isomorphisms are l(A,B) := (lA, lB) and r(A,B) := (rA, rB).
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Definition (Monoid). Let (A, �, I) be a monoidal category. A monoid (M, µ, u) is an object
M of A endowed with two morphisms : an associative product µ : M � M → M and a unit
u : I →M .

Definition (Lax monoidal functor). A lax monoidal functor is a functor F between two monoidal
categories (A, �A, IA)→ (B, �B, IB) such that there exists a map ι : IB → F (IA) and a natural
transformation

ϕA,A′ : F (A) �B F (A′)→ F (A�A A′),

for every A,A′ in A. This natural transformation is supposed to be compatible with the associa-
tivity and the units of the monoidal categories :

• Associativity condition : For every A, A′ and A′′ in A, the following diagram is commu-
tative

(
F (A) �B F (A′)

)
�B F (A′′)

ϕA,A′�Bid

��

αB
F (A),F (A′),F (A′′) // F (A) �B

(
F (A′) �B F (A′′)

)

id�BϕA′,A′′

��
F (A�A A′) �B F (A′′)

ϕA�AA′,A′′

��

F (A) �B F (A′
�A A′′)

ϕA,A′�AA′′

��
F
(
(A�A A′) �A A′′

) F(αA
A,A′,A′′)

// F
(
A�A (A′

�A A′′)
)
.

• Unit condition : For every A in A, the following diagram is commutative

IB �B F (A)

lBF (A)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

ι�BF (A) // F (IA) �B F (A)
ϕIA,A // F (IA �A A)

F (lAA)

��
F (A).

The same statement holds on the right hand side.

The purpose of the definition of lax monoidal functors is to preserve monoids.

Proposition 1 ([Be63]). Let F : (A, �A, IA) → (B, �B, IB) be a lax monoidal functor and let
(M, µ, u) be a monoid in A. The image of M under F is a monoid in B. The product µ̃ is defined
by

µ̃ : F (M) �B F (M)
ϕM,M

−−−−→ F (M �A M)
F (µ)
−−−→ F (M).

And the unit ũ is defined by

ũ : IB
ι
−→ F (IA)

F (u)
−−−→ F (M).

1.2. Definition of lax 2-monoidal category. Motivated by the examples treated in the sequel,
we define a general notion of category with two compatible monoidal products.

Definition (Lax 2-monoidal category). A lax 2-monoidal category is a category (A, �, I, ⊗, K),
such that both (A, �, I) and (A, ⊗, K) are monoidal categories and such that the bifunctor
⊗ : A×A → A is a lax monoidal functor with respect to the monoidal products �

2 and �.

The last assumption of the definition describes the compatibility between the two monoidal struc-
tures. The next proposition makes it more explicit.

Proposition 2. A lax 2-monoidal category is a category (A, �, I, ⊗, K), such that both (A, �, I)
and (A, ⊗, K) are monoidal categories. These two monoidal structures are related by a natural
transformation called the interchange law

(A⊗A′) � (B ⊗B′)
ϕA,A′,B,B′

−−−−−−−→ (A�B)⊗ (A′
�B′),
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where A, A′, B and B′ are in A. This interchange law is supposed to be compatible with the
associativity of the first monoidal product �, that is

(
(A⊗A′) � (B ⊗B′)

)
� (C ⊗ C ′)

ϕA,A′,B,B′�id

��

α�

A⊗A′,B⊗B′,C⊗C′
// (A⊗A′) �

(
(B ⊗B′) � (C ⊗ C ′)

)

id�ϕB,B′,C,C′

��(
(A�B)⊗ (A′

�B′)
)

� (C ⊗ C ′)

ϕA�B,A′�B′,C,C′

��

(A⊗A′) �
(
(B � C)⊗ (B′

� C ′)
)

ϕA,A′,B�C,B′�C′

��(
(A�B) � C

)
⊗
(
(A′

�B′) � C ′
) α�

A,B,C⊗α�

A′,B′,C′
//
(
A� (B � C)

)
⊗
(
A′

� (B′
� C ′)

)
,

where α�
A,B,C is the associativity morphism for the monoidal product � : (A � B) � C

∼
−→

A� (B � C).

There exists a map ι : I → I ⊗ I such that for every A and A′ in A, the following diagram is
commutative

I � (A⊗ A′)

l�
(A⊗A′)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
ι�id // (I ⊗ I) � (A⊗A′)

ϕI,I,A,A′
// (I ⊗A) � (I ⊗A′)

l⊗
A

�l⊗
A′

��
F (A).

The same statement holds on the right hand side.

Proof. The proof is a straightforward application of the definition. �

Proposition 3. Let (A, �, I, ⊗, K) be a lax 2-monoidal category. Consider two �-monoids M
and N in A. Their ⊗-product M ⊗N is a �-monoid.

Proof. It is a direct corollary of Definition 2 and Proposition 1. �

Motivated by the example of braided monoidal categories, A. Joyal and R. Street gave the first
notion of a category endowed with two compatible monoidal products in [JS93]. In their definition,
the monoidal categories are non-necessarily strict but the interchange law is supposed to be a
natural isomorphism. This last condition forces the two monoidal products to be isomorphic.
In order to model n-fold loop spaces, C. Balteanu, Z. Fiedorowicz, R. Schwänzl and R. Vogt
introduced in [BFSV03] the notions of n-fold monoidal category. Their notion of 2-fold monoidal
category is, in some sense, a lax version of the one given by Joyal and Street since they do not
assume the interchange law to be an isomorphism. But they require the monoidal structures to
be strict and the two units are equal.
In the definition of a lax 2-monoidal category, we do not ask the monoidal structures to be strict.
The two units need not be isomorphic. And the interchange law is not an isomorphism. Therefore,
the notion given here is a lax version of the one of Joyal-Street and the one of Balteanu-Fiedorowicz-
Schwänzl-Vogt. The definition of lax 2-monoidal category was suggested by our natural examples,
that we make explicit in Section 1.4.

1.3. Definition of 2-monoidal category. Working in the opposite category, we get the dual
notion of colax 2-monoidal category. Finally, we call a 2-monoidal category a category which is
both lax and colax 2-monoidal.

Definition (Comonoid). A comonoid C is a monoid in the opposite category. It is endowed with
two morphisms : a coassociative coproduct C → C � C and a counit C → I .

Definition (Colax monoidal functor). A colax monoidal functor is a functor F between two
monoidal categories (A, �A, IA) → (B, �B, IB) such that there exists a map IB ← F (IA) and a
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natural transformation

ψA,A′ : F (A) �B F (A′)← F (A�A A′).

This natural transformation is supposed to be compatible with the associativity and the units
of the monoidal categories. Explicitly, these compatibilities are given by the reversed diagrams
defining a lax monoidal functor.

The purpose of the definition of colax monoidal functors is to preserve comonoids.

Proposition 4 (Be). Let F : (A, �A, IA)→ (B, �B, IB) be a colax monoidal functor and let C
be a comonoid in A. The image of C under F is a comonoid in B.

Definition (Colax 2-monoidal category). A colax 2-monoidal category is a category (A, �, I, ⊗, K),
such that both (A, �, I) and (A, ⊗, K) are monoidal categories and such that the bifunctor
⊗ : A×A → A is a colax monoidal functor.

A category (A, �, I, ⊗, K) is a colax 2-monoidal category if it is endowed with natural transfor-
mations, called the interchange laws,

(A⊗A′) � (B ⊗B′)
ψA,A′,B,B′

←−−−−−−− (A�B)⊗ (A′
�B′),

verifying the same commutative diagram than the one defining a lax 2-monoidal category, with
the maps ϕ replaced by the maps ψ.

Proposition 5. Let (A, �, I, ⊗, K) be a colax 2-monoidal category. Consider two �-comonoids
M and N in A. Their ⊗-product M ⊗N is a �-comonoid.

Proof. It is a direct corollary of Definition 1.3 and Proposition 4. �

Definition (2-monoidal category). A 2-monoidal category is a category (A, �, I, ⊗, K), such
that both (A, �, I) and (A, ⊗, K) are two monoidal categories and such that the bifunctor
⊗ : A×A → A is a lax and colax monoidal functor.

Definition (Strong 2-monoidal category). A strong 2-monoidal category is a 2-monoidal category
where the bifunctor ⊗ : A × A → A is a strong monoidal functor, that is the interchange laws
are isomorphisms.

1.4. Examples of 2-monoidal categories. In the this section, we study the relation between
the composition product � and the Hadamard product ⊗H in the category of S-bimodules and in
the subcategories of S-modules and k-modules. These notions are recalled in Appendix A.

Proposition 6. The categories (k-Mod, ⊗k, k), (S-Mod, ◦, I) and (S-biMod,�, I) endowed with
the Hadamard tensor products are 2-monoidal categories. The first one is a strong 2-monoidal
category and it is a full sub-2-monoidal category of the second one, which is a full sub-2-monoidal
category of the last one.

Proof.

• In the first category, the two monoidal products are equal , that is � = ⊗ = ⊗k. The
interchange laws are given by the twisting isomorphism (23) : V1 ⊗ V2 ⊗ V3 ⊗ V4

∼
−→

V1 ⊗ V3 ⊗ V2 ⊗ V4.
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• In the category of S-modules with � = ◦, ⊗ = ⊗H the first interchange law ϕV,V ′,W,W ′

map comes from the well defined natural map

(V ⊗ V ′) ◦ (W ⊗W ′)(n) :=(
⊕

i1+···+il=n

(V ⊗ V ′)(l)⊗k
(
(W ⊗W ′)(i1)⊗k · · · ⊗k (W ⊗W ′)(il)

)
⊗Si1×···×Sil

k[Sn]

)

Sl

↓(
⊕

i1+···+il=n

V (l)⊗k
(
W (i1)⊗k · · · ⊗k W (il)

)
⊗Si1×···×Sil

k[Sn]

)

Sl

⊗

(
⊕

i1+···+il=n

V ′(l)⊗k
(
W ′(i1)⊗k · · · ⊗k W

′(il)
)
⊗Si1×···×Sil

k[Sn]

)

Sl

=

(V ◦W )⊗ (V ′ ◦W ′)(n).

The other map corresponds to the transpose of this one. It is well defined on invariants
instead of coinvariants. Since we work over a field k of characteristic 0, we use the classical
isomorphism between invariants and coinvariants to fix this.

• In the last case, which includes the two first, the interchange law map is the direct gener-
alization of the one written above. Its explicit description is

(
V ⊗ V ′

)
�
(
W ⊗W ′

)
(m, n) :=

⊕
N∈N∗

(⊕
l̄, k̄, ̄, ı̄ k[Sm]⊗Sl̄

(
V ⊗ V ′

)
(l̄, k̄)⊗Sk̄

k[Sc
k̄, ̄

]⊗S̄

(
W ⊗W ′

)
(̄, ı̄)⊗Sı̄

k[Sn]
)

S
op
b

×Sa

↓
⊕

N∈N∗

(⊕
l̄, k̄, ̄, ı̄

(
k[Sm]⊗Sl̄

V (l̄, k̄)⊗Sk̄
k[Sc

k̄, ̄
]⊗S̄

W (̄, ı̄)⊗Sı̄
k[Sn]

)
⊗

(
k[Sm]⊗Sl̄

V ′(l̄, k̄)⊗Sk̄
k[Sc

k̄, ̄
]⊗S̄

W ′(̄, ı̄)⊗Sı̄
k[Sn]

))
S
op
b

×Sa

=

↓
⊕

N∈N∗

(⊕
l̄, k̄, ̄, ı̄ k[Sm]⊗Sl̄

V (l̄, k̄)⊗Sk̄
k[Sc

k̄, ̄
]⊗S̄

W (̄, ı̄)⊗Sı̄
k[Sn]

)
S
op
b

×Sa

⊗

⊕
N∈N∗

(⊕
l̄, k̄, ̄, ı̄ k[Sm]⊗Sl̄

V ′(l̄, k̄)⊗Sk̄
k[Sc

k̄, ̄
]⊗S̄

W ′(̄, ı̄)⊗Sı̄
k[Sn]

)
S
op
b

×Sa

=

(
V �W

)
⊗
(
V ′

�W ′
)
(m, n).

Note that the first map preserves the shape of the underlying graph of the composition, whereas the
second one does not. Therefore, this interchange law map is injective but not an isomorphism. The
reverse natural transformation

(
V �W

)
⊗
(
V ′

�W ′
)
(m, n) �

(
V ⊗V ′

)
�
(
W ⊗W ′

)
(m, n) is given

by the projection on pairs of composition of
(
V �W

)
⊗
(
V ′

�W ′
)

based on the same 2-levelled graph

(see A.3). To such pairs, it is straightforward to associate an element of
(
V ⊗V ′

)
�
(
W⊗W ′

)
. This

map is the transpose of the first one. It is the composite of an epimorphism with an isomorphism,
therefore it is an epimorphism. �

Remark. In the same way, we can also show that the underlying category of non-symmetric
operads, 1

2 -props [MV03], dioperads [Gan03], colored operads are 2-monoidal categories. We refer
to [Val3] Section 5 and to [Mar06] Section 9 for surveys of these notions.

1.5. Bimonoids. In this section, we define the notion of bimonoid that generalizes the notion of
bialgebra in any lax 2-monoidal category.

Let (A,�, I,⊗,K) be a lax 2-monoidal category. Proposition 1 shows that the category of �-
monoids, denoted byMon�

A, is a monoidal category for the monoidal product ⊗.

Definition (Bimonoid). A bimonoid is a comonoid in the monoidal category (Mon�
A,⊗,K).
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Examples. The examples of the categories (k-Mod, ⊗k, k), (S-Mod, ◦, I) and (S-biMod,�, I)
endowed with the Hadamard tensor products, give the following notions.

• In the case of k-modules, we find the classical notion of bialgebras.
• In the case of S-modules, we find the notion of Hopf operads. We refer the reader to the

recent preprint of M. Aguiar and S. Mahajan [AM06] for a study of Hopf monoids in the
category of species which is a very close notion.

• In the case of S-bimodules, this generalizes the notion of Hopf operads to properads. We
call them Hopf properads.

When P is a Hopf operad, the category of P-algebras is stable under the tensor product(see A).

Proposition 7. Let P be a Hopf properad. The tensor product A⊗ B of two P-gebra is again a
P-gebra.

Proof. The proof is straightforward. �

2. Koszul duality pattern

We work in the abelian monoidal category
(
dg-S-biMod, �, I

)
of dg-S-bimodules (see Appen-

dix A). A monoid in this category is called a (dg-)properad. Since the abelian monoidal categories
of differential graded vector spaces and dg-S-modules are abelian monoidal subcategories of dg-
S-bimodules, the sequel includes the cases of (dg-)associative algebras and (dg-)operads. In the
following of the text, we will implicitly work in the differential graded context without writing
“dg”, for the sake of simplicity. We use a very general language since most of what follows can
be generalized to another examples (colored operads, non-symmetric operads, for instance). De-
note by F(V ) the free properad (monoid) on V and by F c(V ) the cofree connected coproperad
(comonoid) on V (see Appendix A for more details).

The Koszul dual coproperad is usually defined by the top homology groups of the bar construction.
The purpose of this section is to prove that the construction of the Koszul dual can be described
with a pure categorical or algebraic point of view. This section is a generalization of Section 2.4
of E. Getzler and J.D.S. Jones preprint [GJ94].

2.1. Quadratic (co)properads. Let (V, R) be a quadratic data, that is R ⊂ F(2)(V ). Since the
underlying S-bimodule of the free properad F(V ) and the cofree connected coproperad F c(V ) are
isomorphic 2, we consider the following sequence in S-biMod

R � F(2)(V ) � F(V ) ∼= Fc(V ) � Fc(2)(V ) � Fc(2)(V )/R =: R.

A quadratic data will be written (V,R) or equivalently (V,R). To such a sequence, we can naturally
define a quotient properad of F(V ) and a subcoproperad of F c(V ) (see Appendix B.4).

Definition (Quadratic properad generated by V and R). The quadratic properad generated by V
and R is the quotient properad of F(V ) by the ideal generated by R � F(V ). We denote it by
P(V, R) = F(V )/(R).

Definition (Quadratic coproperad generated by V and R). The quadratic coproperad generated
by V and R is the subcoproperad of F c(V ) generated by Fc(V ) � R. We denote it by C(V, R).

For example, the quadratic coalgebra generated by (V,R) is equal to

C(V,R) = k ⊕ V ⊕
⊕

n≥2

n−2⋂

i=0

V ⊗i ⊗R⊗ V ⊗n−2−i.

Remark. We proved in [Val1] Corollary 7.5 that when a properad is Koszul, it is necessarily
quadratic. Therefore, there is no restriction to study only the quadratic case.

2This should also come from the fact that the colored operad coding properads is Koszul-autodual.
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2.2. Definition of the Koszul dual revisited. Koszul duality theory comes from homological
algebra, when one tries to find small resolutions (minimal models) of algebraic structures (asso-
ciative algebras, operads, properads, colored operads, for instance).

The Koszul dual cooperad of an operad P is defined by the top homology of the bar construction
B(P) (see [Fre04] Section 5 and [GJ94] Section 2.4). In [Val1] Section 7, we used the same idea to
define the Koszul dual coproperad of a properad. The purpose of this section is to prove that the
Koszul dual coproperad is a quadratic coproperad and to prove the dual statement.

Let P = P(V, R) be a quadratic properad. Recall from [Val1] Section 4 that the bar construction
B(P) of P is the chain complex defined on F c(sP) by the unique coderivation δ which extends
the partial composition of P . Dually, the cobar construction of a coproperad is the chain complex
F(s−1C̄), where the differential d is the unique derivation which extends the partial composition
coproduct of C.

When P = P(V, R) is a quadratic properad, it is weight graded. Denote this grading by (ω). In
this case, the bar construction of P decomposes with respect to this grading. The part of weight
(ω) of B•(P) begins with

B•(P)(ω) : 0→ Fc(ω)(sP(1))
δ
−→ · · · .

Let P ¡
(ω) be its top homology group Hω

(
B•(P)(ω)

)
and P ¡ :=

⊕
(ω) P

¡
(ω). Using Hω

(
B•(P)(ω)

)
=

ker δ, we proved in [Val1] Proposition 7.2, that P ¡ is a subcoproperad of Fc(sP(1)) ∼= F
c(V ).

Dually, let C = C(V, R) be a quadratic coproperad. It is a connected coproperad, that is weight
graded and such that C(0) = k. Once again, its cobar construction is the direct sum of subcomplexes
indexed by the weight

Ω•(C)(ω) : · · ·
d
−→ F(ω)(s

−1C(1))→ 0.

Define C¡ to be the top homology groups of the cobar construction of C, that is C ¡ :=
⊕

(ω)H−ω

(
Ω•(C)(ω)

)
.

Since H−ω

(
Ω•(C)(ω)

)
= cokerd, C¡ is a quotient properad of F(s−1C(1)) ∼= F(V ).

Theorem 8. Let (V, R) be a quadratic data. Denote by s2R the image of R in F(2)(sV ) and by

s−2R the quotient of Fc(2)(s
−1V ) by s−2R.

The Koszul dual coproperad of P(V,R) is equal to P(V,R)¡ = C(sV, s2R). Dually, the Koszul dual
properad of C(V,R) is equal to C ¡ := P(s−1V, s−2R). Therefore, we have P ¡¡ = P and C¡¡ = C.

Proof. The cobar construction of C has the following form

Ω•(C)(ω) : · · · → F(ω)(s
−1C(1) + s−1C(2)︸ ︷︷ ︸

1

)
d
−→ F(ω)(s

−1C(1))→ 0,

where F(ω)(s
−1C(1) + s−1C(2)︸ ︷︷ ︸

1

) stands for the sub-S-bimodule of F(ω)(s
−1C(1) + s−1C(2)) composed

by graphs with ω − 1 vertices indexed by elements of s−1C(1) and just one vertex indexed by

an element of s−1C(2). The image of d is the kernel of the cokernel F(ω)(s
−1V ) � C¡

(ω) of d.

Since C¡ is a quotient properad of F(s−1V ), Im d � F(s−1V ) is an ideal monomorphism. From
the shape of Ω•(C), we see that the image of d is made of graphs indexed by s−1V with at
least one subgraph graph in s−2R. Therefore, the image of d is equal to the image of µ2 :
F(s−1V ) � (F(s−1V ) + s−2R) �F(s−1V ), that is the ideal generated by s−2R by Proposition 57
of Appendix A.
We dualize the arguments (in the opposite category) to get the dual statement. The last assertion
is easily verified. �

A properad is called a Koszul properad when the homology of its bar construction is concentrated
in top dimension, that is when H•

(
B(P)

)
= P ¡.
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2.3. Relation with the Koszul dual properad. To an S-bimodule M , we associate its linear
dual M∗ := {M(m,n)∗}m,n. The linear dual ∗ of a coproperad (C,∆) is always a properad :

define the composition product by the formula C∗ � C∗ → (C � C)∗
∆t

−−→ C∗. But we need a
finite dimensional assumption on the underlying S-bimodule to have the dual result. The main
explanation for such a phenomenon is that there exists a map V ∗ ⊗W ∗ → (V ⊗W )∗, which is an
isomorphism when V and W are finite dimensional vector spaces.

Definition (Locally finite S-bimodule). An S-bimodule M is locally finite if for every m and n in
N, the dimension of the module M(m,n) is finite over k.

Proposition 9. When V is a locally finite S-bimodule, the linear dual of the quadratic coproperad
C(V,R) generated by V and R is the quadratic properad F(V ∗)/(R⊥), where R⊥ ⊂ F(2)(V )∗ ∼=
F(2)(V

∗).

Proof. The image under ∗ of the terminal object (see Appendix B.4)

Fc(2)(V )/R

Fc(V )/C(V, R)

OOOO

Fc(V )oooo

ffffMMMMMMMMMM

C(V, R)oooo

0

hh

gives the initial object of

(
Fc(2)(V )/R

)∗

0

,,

&&

&&MMMMMMMMMMM��

��

(Fc(V )/C(V, R))
∗ // // Fc(V )∗ // // C(V, R)∗.

Since V is locally finite, we can identify (F c(V ))
∗

with the free properad on V ∗ : F(V ∗). (The
(co)free (co)properad on V is given by a direct sum of particular tensor powers of V ). Therefore,(
Fc(2)(V )/R

)∗
is isomorphic to the orthogonal ofR, that is R⊥ := {f ∈ F(2)(V )∗ ∼= F(2)(V

∗) | fR =

0}. We conclude by the uniqueness property of the initial object. �

When P(V,R) is a quadratic properad generated by a locally finite S-bimodule, we consider

the linear dual of the Koszul dual coproperad P ¡∗. By Proposition 9, we have P(V,R)!
∗

=
P(s−1V ∗, s−2R⊥). In the case of finitely generated associative algebra, it is the definition given
by S. Priddy [Pri70]. In the case of binary quadratic operads, V. Ginzburg and M. Kapranov
([GK95] Section 2) defined a twisted Koszul dual operad by the formula P ! := P(V ∨, R⊥), where
M∨(n) := M∗(n)⊗ sgnSn

. The reason for this lies in Quillen functors which are the bar and cobar
constructions between P-algebras and P ¡-coalgebras (see [Qui69] and [GJ94] Section 2). The bar
construction of a P-algebra A is the cofree P ¡-coalgebra on the suspension of A, that is P ¡(sA).
When A is concentrated in degree 0, we have

P ¡(sA) =
⊕

n≥1

P ¡(n)⊗Sn
(sA)⊗n =

⊕

n≥1

snP ¡(n)⊗ sgnSn
⊗Sn

A⊗n.

We define the suspension operad by S(n) := sn−1.k ⊗ sgnSn
, with the signature action of the

symmetric group. Actually, S is equal to the operad of endomorphisms of s−1k, that is S =
End(s−1k). We have P ¡(sA) = s(S ⊗ P ¡)(A). Up to suspensions, P ¡(sA) is the cofree “P !-
coalgebra” on A. The operad P is Koszul if and only if P ¡ is Koszul, which is also equivalent to
P ! is Koszul.
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3. Manin products

The aim of this section is to provide a general and intrinsic framework for the definitions of
Manin’s black and white products. We first give the conceptual definition of Manin’s white prod-
uct of monoids in any lax 2-monoidal category. Then, we dualize the arguments to get the notion
of black product of comonoids in any colax 2-monoidal category.

We make explicit all the constructions in the category of S-bimodules. But they remain valid
in general 2-monoidal categories with mild assumptions (existence of the free monoid, cofree
comonoid, for instance). These constructions also hold for non-symmetric operads (see Section
5) and colored operads, for instance. We denote the vertical connected composition product of
S-bimodules and the Hadamard horizontal tensor ⊗H by ⊗, to lighten the notations.

3.1. A canonical map between free monoids. V. Ginzburg and M.M. Kapranov mentioned in
[GK95’] a morphism of operads Φ : F(V ⊗W )→ F(V )⊗F(W ) “which reflects the fact that the
tensor product of an F(V )-algebra and an F(W )-algebra is an F(V ⊗W )-algebra”. We describe
and extend this map Φ to a more general setting.

Proposition 10. Let (A, �, I, ⊗,K) be a lax 2-monoidal category such that (A, �, I) admits
free monoids. There exists a natural morphism of monoids Φ : F(V ⊗W )→ F(V )⊗F(W ).

Proof. Let V and W be two objects in A. There is a natural map uF(V ) ⊗ uF(W ) : V ⊗W →
F(V ) ⊗ F(W ). Using Proposition 3, we know that F(V ) ⊗ F(W ) is a monoid for �. By the
universal property of the free monoid on V ⊗W , there exists a unique morphism of monoids Φ
which factors the previous map

V ⊗W

uv⊗uW ''OOOOOOOOOOOO

uV ⊗W // F(V ⊗W )

∃!Φ

���
�
�

F(V )⊗F(W ).

�

Examples.

• When A is the category of k-modules, the map Φ is the direct sum of the isomorphisms
(V ⊗W )⊗n ∼= V ⊗n ⊗W⊗n induced by the twisting map.

• In the category of S-modules, the map Φ corresponds to the injective morphism of operads
F(V ⊗W ) � F(V )⊗F(W ) mentioned in [GK95’].

• For S-bimodules, the previous construction gives a morphism of properads between the
free properad F(V ⊗W )and the Hadamard product F(V )⊗F(W ). Once again, this map
is always injective but not an isomorphism in general.

One remark before to conclude this section. The purpose of this paragraph was to show that the
definition of the map Φ is canonical and does not depend on the bases of the modules involved
here. Now, if we choose a basis for the free operad, for instance, we can make the map Φ more
explicit. In this case, the image of a tree T with vertices indexed by elements of V ⊗W under Φ
is the tensor product of the same tree T with vertices indexed by the corresponding elements of
V with the tree T whose vertices are indexed by the corresponding elements of W .

3.2. Definition of the white product. In this section we define the white product for every
pair of properads defined by generators and relations. When the two properads are quadratic,
the resulting white product is again quadratic. Since an associative algebra is an operad and
an operad is a properad, this construction summarizes what can be found in the literature. In
the case of quadratic associative algebras, it corresponds to the original notions introduced by Y.
Manin [Man88] and in the case of binary quadratic operads, it corresponds to the definitions of
V. Ginzburg and M. Kapranov [GK95, GK95’].
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The properties of the morphism Φ lead directly to the definition of the white product. Let P and
Q be two properads defined by generators and relations, P = F(V )/(R) and Q = F(W )/(S).
And denote the projections πP : F(V ) � P and πQ : F(W ) � Q.
Consider the following composite of morphisms of properads

πP ⊗ πQ ◦ Φ : F(V ⊗W ) � F(V )⊗F(W ) � P ⊗Q.

Since it is a morphism of properads, its kernel is an ideal of F(V ⊗W ). It is the ideal generated
by Φ−1(R ⊗F(W ) + F(V )⊗ S) in F(V ⊗W ).

Definition (White product). Let P = F(V )/(R) and Q = F(W )/(S) be two properads defined
by generators and relations. The quotient properad

P ◦ Q := F(V ⊗W )/
(
Φ−1(R ⊗F(W ) + F(V )⊗ S)

)

is called the white product of P and Q.

The definition of the white product of two properads shows that the morphism Φ factors through
a natural morphism of properads Φ̄ : P ◦ Q → P ⊗Q. In the abelian category S-bimodules, Φ̄ is
the image of πP ⊗ πQ ◦ Φ. Hence, it is a monomorphism.

F(V ⊗W ) // Φ //

++ ++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
F(V )⊗F(W )

πP⊗πQ // // P ⊗Q

P ◦ Q

OO
Φ̄

OO

Let A be a P-gebra and B a Q-gebra, since the tensor A⊗B is a P⊗Q -gebra, we get the following
result.

Proposition 11. The tensor product A⊗B is a gebra over the white product P ◦ Q.

Example. Let P and Q be two operads. The tensor product of a P-algebra with a Q-algebra
is a P ⊗ Q-algebra. We can partially dualize this statement. Let C be a Q-coalgebra and A be
a P-algebra, the space of morphism Homk(C,A) is P ⊗ Q-algebra (see [BM03] Proposition 1.1).
It is also a P ◦ Q-algebra by Proposition 11. As explained by G. Barnich, R. Fulp, T. Lada, and
J. Stasheff in [BFLS00], when C is a cocommutative coalgebra, Homk(C,A) is always a P-algebra.
This comes from the fact that Com is the unit object for ⊗ and ◦. Motivated by structures
appearing in Lagrangian field theories in physics, these authors studied the algebraic structures of
Homk(C,A) when C is a coassociative coalgebra and A a Lie algebra or a Poisson algebra. Since
Homk(C,A) is a P ◦ Q-algebra, Manin’s white product for operads gives a way to describe such
structures.

The white product is a construction that preserves the grading of the properads.

Proposition 12. If S ⊂
⊕N

ω=0 F(ω)(V ) and R ⊂
⊕M

ω=0 F(ω)(W ), the white product of P and Q

is a properad generated by V ⊗W with relations in
⊕max(N,M)

ω=0 F(ω)(V ⊗W ).
If S and R are homogenous of weight N , that is S, R ⊂ F(N)(V ), then P ◦ Q is once again a
properad defined by homogenous relations of weight N .

Proof. It comes from the definition of the morphism Φ which preserves the grading. �

Examples.

• Let A and B be two quadratic associative algebras. The white product A ◦ B is equal
to T (V ⊗ W )/

(
(23)(R ⊗W⊗2 + V ⊗2 ⊗ S)

)
, which is the definition given by Manin in

[Man88, Man87]. It is isomorphic via Φ̄ to the Hadamard (or Segre) product A⊗H B :=⊕
nA(n) ⊗k B(n). This crucial property allowed J. Backelin to prove in his thesis [Bac]

that the white product of two Koszul algebras is a Koszul algebra.
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• An associative algebra A = T (V )/(R) is N -homogenous if R ⊂ V ⊗N . R. Berger, M.
Dubois-Violette and M. Wambst generalized Manin’s black and white products to N -
homogenous algebras in [BDVW03]. For two N -homogenous algebras, the definition given
above coincide with their definition. Note that the definition given here can be applied to
non-homogenous algebras. The class of Artin-Schelter algebras [AS87] provide interesting
examples of non-homogenous algebras. It would be interesting to study the properties
of the white product of such algebras, for instance the ones of global dimension 4 of
[LPWZ04].

• When P and Q are binary quadratic operads, the modules F(2)(V ) and F(2)(W ) are
equal to F(V )(3) and F(W )(3). In that case, we get R ⊗ F(W ) = R ⊗ F(W )(3) and
F(V )⊗S = F(V )(3)⊗S. This construction is the original one described by Ginzburg and
Kapranov in [GK95, GK95’]. Note that in this case, the white product is not, in general,
equal to the Hadamard product. (The morphism Φ̄ is not an isomorphism in general).
A direct consequence of this fact is that the white product of two Koszul operads is not
necessarily a Koszul operad again. See section 4.5 for a counterexample.

3.3. The black product. We dualize the arguments and work in the opposite category. This
gives the definition black product of coproperads.

Proposition 13. Let (A, �, I, ⊗,K) be a colax 2-monoidal category such that (A, �, I) admits
cofree comonoids. There exists a natural morphism of comonoids Ψ : F c(V ⊗W ) ← Fc(V ) ⊗
Fc(W ).

Definition (Black product). The black product of two coproperads C(V,R) and C(W,S) is the
image of the morphism of comonoids Ψ ◦ (ι ⊗ ι)

Fc(V ⊗W ) Fc(V )⊗Fc(W )
Ψoooo C(V,R)⊗ C(W,S)ooι⊗ιoo

Ψ̄
����

C(V,R) • C(W,S).
ll

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

It is equal to C(V,R) • C(W,S) = C(V ⊗W,Ψ(R⊗ S)).

Black and white constructions are dual to each other under linear duality.

Theorem 14. Let (V, R) and (W, S) be two quadratic data, with V and W locally finite. We
have the following isomorphism of properads (C(V, R) • C(W, S))

∗ ∼= C(V, R)∗ ◦ C(W, S)∗.

Proof. Since ψ is the transpose of ϕ, we have Ψ = tΦV ∗,W∗ , up to isomorphism like
(
F(V ∗)⊗

F(W ∗)
)∗ ∼= F(V )⊗F(W ). Therefore, we get Ψ(R⊗S)⊥ = Φ−1

V ∗,W∗(R⊥⊗F(W ∗)+F(V ∗)⊗S⊥).
By Proposition 9, we have

(C(V, R) • C(W, S))∗ ∼= P(V ∗ ⊗W ∗,Ψ(R⊗ S)⊥)

∼= P(V ∗ ⊗W ∗,Φ−1
V ∗,W∗(R

⊥ ⊗F(W ∗) + F(V ∗)⊗ S⊥))

∼= P(V ∗, R⊥) ◦ P(W ∗, S⊥)
∼= C(V, R)∗ ◦ C(W, S)∗.

�

One of the main interest of the classical notions of black and white products is that one gives the
other via the Koszul dual functor. In the next sections, we define a black product for monoids
(operad and non-symmetric operads). The translation of Theorem 14 in this framework will give
the relation with Koszul dual functor.

4. Manin products for operads

In this section, we study Manin products for (symmetric) operads. We first give a sufficient
condition for the white product to be equal to the Hadamard product. Then, we recall the bases
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used to describe binary quadratic operads and their Koszul dual operad. We refer the reader
to [GK95], [Lod96] and [MSS02] for complete references. We make our constructions explicit for
binary quadratic operads in order to do computations. The linear dual version of the black product
for cooperads defines a product for operads which corresponds to the definition of Ginzburg and
Kapranov, where we make the signs precise. We give an example of a pair of Koszul operads such
that their products is not Koszul. This shows that black and white products for operads do not
behave like black and white products for associative algebras. Following Y. Manin, we prove that
P • P ! is always a Hopf operad. Finally, we describe the relation between unary operators and
black products.

4.1. Relation between the Hadamard product and the white product. We saw in the
previous section that the composite (πP ⊗ πQ) ◦Φ factors through its image Φ̄ : P ◦Q� P ⊗Q.
Therefore, Φ̄ is an isomorphism if and only if the composite (πP ⊗πQ) ◦Φ is an epimorphism. We
shall give a sufficient condition for this.

Consider the case of binary quadratic operads, that is quadratic operads generated by binary
operations (V (n) = 0 for n 6= 2). In this case, the free operad on V is given by (non-planar)
binary trees with vertices labelled by operations of V . Denote by T such a tree with n− 1 vertices
and the induced label morphism by LV

T
: V ⊗(n−1) → F(V )(n).

Proposition 15. Let P be a binary quadratic operad such that for every n ≥ 3 and every binary
tree T with n− 1 vertices, the composite πP ◦ LVT : V ⊗(n−1) → F(V )(n) � P(n) is surjective.
For every binary quadratic operad Q, the white product P ◦ Q is equal to the Hadamard product
P ⊗Q.

Proof. It is enough to prove that (πP ⊗ πQ) ◦Φ is an epimorphism. Let p⊗ q be an elementary
tensor of P(n) ⊗ Q(n), where Q = F(W )/(S). The element q of Q(n) can be written q =∑k

i=1 πQ ◦ L
W
Ti

(wi1, . . . , w
i
n−1), with {Ti} a finite set of trees and {wij} elements of W (2). By the

assumption, there exists vi1, . . . , v
i
n−1 in V (2) such that p = πP ◦ LVTi

(vi1, . . . , v
i
n−1), for every Ti.

Therefore, we have p =
1

k

k∑

i=1

πP ◦ L
V
Ti

(vi1, . . . , v
i
n−1). Finally, it shows that

p⊗ q = (πP ⊗ πQ) ◦ Φ

(
1

k

k∑

i=1

LV⊗W
Ti

(vi1 ⊗ w
i
1, . . . , v

i
n−1 ⊗ w

i
n−1)

)
.

�

The condition of this proposition means that every operation of P can be written by any type of
composition of generating operations. In the next corollary, we show that the operads Com, Perm
and ComT rias are examples of such operads. Recall briefly that Com is the operad for commuta-
tive algebras. The operad Perm was introduced by F. Chapoton in [Cha01] and ComT rias was
defined in [Val2] Appendix A.

Corollary 16. For every binary quadratic operad Q, we have

• Com◦Q = Com⊗Q = Q. The operad Com is neutral for the white product in the category
of binary quadratic operads.

• Perm ◦ Q = Perm⊗Q and ComT rias ◦ Q = ComT rias⊗Q

Proof. The operad Com is generated by V (2) = k with trivial action of S2 and the associativity
relation. Hence, we have only one commutative operation with arity n, that is Com(n) = k.
Therefore, for every tree T, the morphism LT is a surjection on k and Com ◦ Q = Com⊗Q = Q.
The operad Perm corresponds to commutative operations with one input emphasized (see [Val2]
4.2 and [CV06] 1.3.2). In arity n, we have n operations Perm(n) = k.en1 ⊕ · · · k.e

n
n where eni

corresponds to the corolla with n inputs such that the ith input (or branch) is emphasized. The
composition of corollas gives a corolla where the leaf emphasized is the one with a path to the
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root via emphasized branches.

1

AA
AA

A 2 3

}}
}}

}
4

AA
AA

A 5 6

}}
}}

}

llllllllll

llllllllll

RRRRRRRRRR
7→ e65

Let T be a binary tree with n − 1 vertices. To get eni , it is enough the look at the unique path
from the ith leaf to the root and index the vertices on this path with the relevant operations.

1 2
@@

@@

@@
@@

3 4

��
��

::
::

: e21

��
��

��
��

e22
==

==

==
==

��
��

�

e21

7→ e42

The operations of ComT rias(n) are corollas with at least one leaf emphasized and the proof is
the same. �

This corollary shows that the Hadamard product of one operad Com, Perm or ComT rias with any
other binary quadratic operad is again a binary quadratic operad. For Com, the result is obvious.
In the particular case of Perm this result was proved directly by F. Chapoton in [Cha01]. For every
binary quadratic operad Q, he constructed by hand a quadratic operad isomorphic to Perm⊗Q.
This construction is actually the white product Perm ◦ Q.

Proposition 17. We have Perm ◦ As = Dias.

Proof. Using the complete description of Perm, As and Dias, Chapoton proved in [Cha01] that
Perm⊗As = Dias. Apply the previous corollary to conclude. �

4.2. Binary quadratic operad and Koszul dual operad. The preceding section gives a
method for computing the white product for a particular class of operads. When we cannot
apply this method, we need the explicit form of the products to compute them. In this section,
we describe a basis for binary quadratic operads and their Koszul dual operads.

Recall that the free operad F(V ) on V is given by trees with the vertices indexed by elements
of V , with respect to the action of the symmetric groups. When V is an S2-module, that is a
module over the symmetric group S2, we have F(2)(V ) = F(V )(3), the part with 3 inputs of the
free operad on V which is isomorphic to

F(V )(3) =
(
V ⊗S2 (V ⊗ k ⊕ k ⊗ V )

)
⊗S2 k[S3],

where the summand V ⊗(V ⊗k) corresponds to the compositions on the left
??�� ��??�� and the summand

V ⊗ (k⊗V ) corresponds to the compositions on the right
??

? ??��
�� . Since the action of S2 maps one to

the other, we choose the one on the left and F(V )(3) is isomorphic to the induced representation

IndS3

S2×S1
(V ⊗ (V ⊗ k)). Therefore, F(V )(3) can be identify with 3 copies of V ⊗ V represented

by the following types of tree :

I :

x
@@

@@
y

~~
~~

z

��
��

��
��

�

ν
@@

@

µ
II :

y
??

? z

~~
~~

x

��
��

��
��

�

ν
@@

@

µ
III :

z
??

??
x

~~
~~

y

��
��

��
��

�

ν
@@

@

µ
.
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Denote them by µ ◦I ν, µ ◦II ν and µ ◦III ν.

The action of the permutation (12) is given by (µ ◦I ν)
(12)

= µ ◦I ν
(12), (µ ◦II ν)

(12)
= µ ◦III ν

(12),

(µ ◦III ν)
(12)

= µ ◦II ν(12) and the action of (132) is given by (µ ◦α ν)
(123)

= µ ◦(α+I) ν.

Remark. This basis is different from the one in [GK95] p. 228. The one given here has nice
symmetric properties with respect to the action of S3 that we will use in 4.4 to simplify the
computations.

The dual representation V ∗ of an Sn-module V is the vector space V ∗ = Hom(V, k) endowed
with the following right action of the symmetric group. For f : V → k and σ ∈ Sn, we have

(fσ) (x) := f(xσ
−1

). We will need to twist the dual representation by the signature, that is
V ∨ := V ∗ ⊗ sgnSn

.

Let V be an S-module concentrated in arity 2, that is an S2-module. When V is a finite dimen-
sional k-vector space, denote by µ, ν, η, ζ, . . . one of its basis, stable by the action of S2, and by
µ∗, ν∗, η∗, ζ∗, . . . the dual basis. Therefore µ∨ = µ∗, ν∨ = ν∗, η∨ = η∗, ζ∨ = ζ∗, . . . forms a basis
of V ∨ such that (µ∨)(12) = −(µ(12))∨.We define the following non-degenerate bilinear form

F(V )(3)⊗F(V ∨)(3)
< ,>
−−−→ k

< µ ◦α ν, η
∨ ◦β ζ

∨ >:=

{
1 if α = β, µ = η and ν = ζ,
0 otherwise.

For a sub-S3-module R of F(V )(3), we consider its orthogonalR⊥ := {Ω ∈ F(V ∨)(3) | < ω, Ω >=
0, ∀ ω ∈ R} for this bilinear form.
Since the action of S3 on the bilinear form < , > is given by the signature < ωσ, Ωσ >= sgn(σ). <
ω, Ω > we have that R⊥ is a sub-S3-module of F(V ∨)(3). Note that the non-degenerate bilinear
form < , > defines an isomorphism of S3-modules from F(V )(3)∨ to F(V ∨)(3).

Recall from 2.3 that under finite dimensional assumptions, the Koszul dual operad of F(V )/(R)
is P ! = F(V ∨)/(R⊥). This bilinear form provides a method for computing it. The canonical

isomorphism (V ∨)∨ ∼= V induces (R⊥)⊥ ∼= R and
(
P !
)!

= P .

Examples. The operad Com for commutative (associative) algebras (A, ∗) is generated by the
one dimensional S2-module V := k.∗ with trivial action. Denote by t1 = ∗ ◦I ∗, t2 = ∗ ◦II ∗
and t3 = ∗ ◦III ∗ the elements of the basis of F(V )(3). The associativity relation is the qua-
dratic relation t1 = t2 = t3. Therefore, the operad Com has the following presentation Com =
F(k.∗)/(t1 − t2, t2 − t3).

The operad Lie for Lie algebras (L, [ , ]) is generated by the one dimensional S2-module V ′ := k.[ , ]
where the action is given by the signature. If we denote by t′1, t

′
2 and t′3 the elements of the basis

of F(V ′)(3), the Jacobi relation corresponds to t′1 + t′2 + t′3 = 0 and the operad Lie is given by
Lie = F(k.[ , ])/(t′1 + t′2 + t′3).

Under the identification V ′ ∼= V ∨, we have ((t1 − t2).k ⊕ (t2 − t3).k)
⊥

= (t′1 + t′2+ t′3).k. Therefore
we get Com! = Lie (and Lie! = Com).

4.3. Definition of the black product for operads. Using the notions of the previous section,
we define a black product for binary quadratic operads.

The definition of the white product is based on the morphism Φ (see 3.1). For binary quadratic
operads, this morphism Φ : F(V ⊗W )(3)→ F(V )(3)⊗F(W )(3) is the componentwise projection.
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For instance, for compositions of type I, we have

x
JJJJ y

mmmmmm z

||
||

||
||

||

ν1 ⊗ ν2
PPPP

µ1 ⊗ µ2

7→

x
AA

A y

zz
z

z

��
��

��
��

ν1
DD

D

µ1

⊗

x
AA

A y

zz
z

z

��
��

��
��

ν2
DD

D

µ2

.

We describe a general method that will be applied later in other cases.

When V is finite dimensional, the Koszul dual of binary quadratic operad F(V )/(R) can be defined
by means of a particular non-degenerate bilinear form on F(V )(3) ⊗ F(V ∨)(3) (see 4.2) denoted
by <,>V . For the moment, we do not need its explicit description. Since this bilinear form is

non-degenerate, it induces an isomorphism θV : F(V )(3)
'
−→ F(V ∨)(3)∨. Let V and W be two

finite dimensional k-modules. Define the morphism Ψ by the following commutative diagram

F(V )(3)⊗F(W )(3)⊗ k.sgnS3

Ψ //

θV ⊗θW ⊗sgn

��

F(V ⊗W ⊗ k.sgnS2
)(3)

F(V ∨)(3)∨ ⊗F(W∨)(3)∨ ⊗ k.sgnS3

'

��

F((V ⊗W ⊗ k.sgnS2
)∨)(3)∨

θ−1
V ⊗W⊗sgn

OO

(
F(V ∨)(3)⊗F(W∨)(3)

)∨ tΦV ∨, W∨
// F(V ∨ ⊗W∨)(3)∨,

'

OO

where ' stands for the natural isomorphism for the linear dual of a tensor product, since the
modules are finite dimensional. The morphism Ψ defined here is a twisted version of the one
defined in 3.3.
Recall that ΦV ∨,W∨ is the morphism F(V ∨ ⊗W∨)→ F(V ∨)⊗F(W∨).

Lemma 18. Let P = F(V )/(R) and Q = F(W )/(S) be two binary quadratic operads such that V
and W are finite dimensional. The orthogonal of Ψ(R ⊗ S) for < , >V⊗W⊗sgn is Φ−1

V ∨,W∨(R⊥ ⊗

F(W∨) + F(V ∨)⊗ S⊥).

Proof. By definition of the transpose of ΦV ∨,W∨ , we have

< Ψ(r ⊗ s), X >V⊗W⊗sgn = < r ⊗ s,ΦV ∨,W∨(X) >(F(V )⊗F(V ∨))×(F(W )⊗F(W∨))

= (< r,− >V . < s,− >W ) ◦ ΦV ∨,W∨(X),

for every (r, s) ∈ R × S and every X ∈ F
(
(V ⊗W ⊗ k.sgnS2

)∨
)

Therefore, we have Ψ(R⊗ S)⊥ =

=
{
X ∈ F((V ⊗W ⊗ k.sgnS2

)∨)(3) | ∀(r, s) ∈ R× S < Ψ(r ⊗ s), X >V⊗W⊗k.sgn
S2

= 0
}

= {X ∈ F(V ∨ ⊗W∨)(3) | ∀(r, s) ∈ R× S (< r,− >V ′ . < s,− >W ′) ◦ ΦV ∨,W∨(X) = 0}

=
{
X ∈ F(V ∨ ⊗W∨)(3) | ΦV ∨,W∨(X) ∈ R⊥ ⊗F(W∨) + F(V ∨)⊗ S⊥

}

= Φ−1
V ∨,W∨(R⊥ ⊗F(W∨) + F(V ∨)⊗ S⊥).

�

Definition (Black product for operads). Let P = F(V )/(R) and Q = F(W )/(S) be two binary
quadratic operads with finite dimensional generating spaces. Define their black product by the
formula

P • Q = F(V ⊗W ⊗ k.sgnS2
)/
(
Ψ(R⊗ S)

)
.

Proposition 19. For binary quadratic operads generated by finite dimensional S2-modules, this

definition of black product verifies
(
P •Q

)!
= P ! ◦Q! and corresponds to the one of Ginzburg and

Kapranov [GK95’].
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Figure 1. The permutoassociahedron

Proof. It is a direct corollary of Lemma 18. �

Since Com is the neutral element for ◦, we have that Lie is the neutral element for •.

4.4. Examples. We make explicit some computations of black and white products. For the defi-
nitions of the various operads encountered in this section, we refer the reader to [Lod01].

In order to compute black and white products for operads where the space of generators V is
equal to k[S2] = µ.k ⊕ µ′.k, with µ.(12) = µ′, we will adopt the following convention. Denote by
v1, . . . , v12 the 12 elements of F(V )(3).

1 µ ◦I µ ↔ (xy)z 5 µ ◦III µ ↔ (zx)y 9 µ ◦II µ ↔ (yz)x
2 µ′ ◦II µ ↔ x(yz) 6 µ′ ◦I µ ↔ z(xy) 10 µ′ ◦III µ ↔ y(zx)
3 µ′ ◦II µ′ ↔ x(zy) 7 µ′ ◦I µ′ ↔ z(yx) 11 µ′ ◦III µ′ ↔ y(xz)
4 µ ◦III µ′ ↔ (xz)y 8 µ ◦II µ′ ↔ (zy)x 12 µ ◦I µ′ ↔ (yx)z

This labelling corresponds to the labelling of the permutoassociahedron [Kap93]. Figure 1 repre-
sents it with the action of the symmetric group S3.

An associative algebra is a vector space with a binary associative operation, that is µ(µ(a, b), c) =
µ(a, µ(b, c)). With these notations, the relations of associativity of the operadAs become vi−vi+1,
for i = 1, 3, 5, 7, 9, 11. A (right) preLie algebra is a vector space with a binary operation such that
its associator is right symmetric, that is µ(µ(a, b), c)−µ(a, µ(b, c)) = µ(µ(a, c), b)−µ(a, µ(c, b)).
This relation corresponds to vi − vi+1 + vi+2 − vi+3 for i = 1, 5, 9 with our conventions. The op-
eration of a Perm-algebra verifies µ(µ(a, b), c) = µ(a, µ(b, c)) = µ(a, µ(c, b)) which gives here
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vi = vi+1 = vi+2 = vi+3 for i = 1, 5, 9. Note that PreLie is the Koszul dual of Perm and vice
versa (cf. [CL01]).

We now give an example of computation.

Theorem 20. We have PreLie • Com = Zinb, PreLie • As = Dend and Perm ◦ Lie = Leib.

Proof. Denote by ν the commutative generating operation of Com and by w1, w5, w9 the related
elements of F(ν.k)(3). We write the associativity relation of ν : w1 − w5 = 0 and w5 − w9 = 0.
We have

Ψ ((v1 − v2 + v3 − v4)⊗ (w1 − w5)) = Ψ (v1 ⊗ w1 + v4 ⊗ w5)(1)

Ψ ((v1 − v2 + v3 − v4)⊗ (w5 − w9)) = Ψ ((v2 − v3)⊗ w9 − v4 ⊗ w5)(2)

Ψ ((v5 − v6 + v7 − v8)⊗ (w1 − w5)) = Ψ ((v7 − v6)⊗ w1 − v5 ⊗ w5)(3)

Ψ ((v5 − v6 + v7 − v8)⊗ (w5 − w9)) = Ψ (v5 ⊗ w5 + v8 ⊗ w9)(4)

Ψ ((v9 − v10 + v11 − v12)⊗ (w1 − w5)) = Ψ (−v12 ⊗ w1 + (v10 − v11)⊗ w5)(5)

Ψ ((v9 − v10 + v11 − v12)⊗ (w5 − w9)) = Ψ ((v11 − v10)⊗ w5 − v9 ⊗ w9)(6)

The action of (132) sends (1) to (4), (3) to (6) and (5) to (2). The image of (1) under (13) is (3).
Therefore, we only need to make (1) and (2) explicit. If we identify (µ.k ⊕ µ′.k) ⊗ ν.k ⊗ k.sgnS2

with γ.k ⊕ γ′.k via the isomorphism of S2-modules

µ⊗ ν ⊗ 1 7→ γ

µ′ ⊗ ν ⊗ 1 7→ −γ′,

the morphism Ψ becomes

Ψ((µ ◦I µ)⊗ (ν ◦I ν)) = Ψ(v1 ⊗ w1) = γ ◦I γ = z1 and

Ψ((µ′ ◦II µ)⊗ (ν ◦II ν)) = Ψ(v2 ⊗ w1) = −γ′ ◦I γ = −z2.

The image of the other elements are obtained from these two by the action of S3. For instance,
we have Ψ(v3 ⊗ w1) = −z3, Ψ(v4 ⊗ w1) = z4 and Ψ(v5 ⊗ w5) = z5.
We get

Ψ (v1 ⊗ w1 + v4 ⊗ w5) = γ ◦I γ − γ ◦III γ
′

Ψ ((v2 − v3)⊗ w9 − v4 ⊗ w5) = −γ′ ◦II γ − γ
′ ◦II γ

′ + γ ◦III γ
′.

Finally, if we represent the operation γ(x, y) by x ? y, we have

(x ? y) ? z = (x ? z) ? y

(x ? z) ? y = x ? (z ? y) + x ? (y ? z),

where we recognize the axioms of a Zinbiel algebra (cf. [Lod01]).

The two other identities are obtained by Koszul duality using Proposition 19. From Proposition 17

Perm ◦ As = Dias, we get PreLie • As =
(
Perm ◦ As

)!
=
(
Dias

)!
= Dend. The last equality

Perm ◦ Lie = Leib is the Koszul dual of the first one PreLie • Com = Zinb. �

Jean-Louis Loday defined the operad Dend by two operations such that their sum is an associative
product (see [Lod01]). In the same way, he defined the operad Zinb with one product such that
its symmetrized version is a associative (and commutative) product. This process is often called
a splitting of associativity. Proposition 20 shows that we can interpret the operation PreLie • −
as a natural way of splitting the associativity.

A commutative algebra is an associative algebra. Therefore, we have a morphism of operads As→
Com. Since a commutative algebra is a Perm-algebra and a Perm-algebra is an associative algebra,
the previous morphism factors through As → Perm → Com. Similarly, a Zinbiel algebra is a
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dendriform algebra Dend→ Zinb. We can factor this morphism by a new operad PreLie • Perm
using the functor PreLie • −

As // Perm // Com

PreLie •−

��
Dend // PreLie • Perm // Zinb.

We describe this new type of algebra.

Theorem 21. An algebra over the operad PreLie • Perm is a dendriform algebra such that the
two operations ≺ and � verify the two extra relations

x ≺ (y ≺ z) + x ≺ (y � z) = x ≺ (z ≺ y) + x ≺ (z � y)

x � (y ≺ z) = x � (z � y).

Using the notation x ∗ y := x ≺ y+ x � y, we sum up the 5 relations of a PreLie • Perm-algebra
by 




(x ≺ y) ≺ z = x ≺ (y ∗ z)
(x � y) ≺ z = x � (y ≺ z)
(x ∗ y) � z = x � (y � z)
x ≺ (y ∗ z) = x ≺ (z ∗ y)
x � (y ≺ z) = x � (z � y).

A Perm-algebra is an associative algrebra which is symmetric on the right. A PreLie • Perm-
algebra is a dendriform algebra with right-symmetric relations.

Proof. Denote by ω the generating operation of the operad Perm and by w1, . . . , w12 the re-
lated elements of F(ω.k ⊕ ω′.k)(3). The space of relations Ψ(R⊗ S) is generated by the elements
Ψ ((vi − vi+1 + vi+2 − vi+3)⊗ (wj − wj+1)), for i ∈ {1, 5, 9} and j ∈ {1, 2, 3, 5, 6, 7, 9, 10, 11}.
Reduce the computations using the action of S3 (the symmetries can be seen on the permutoas-
sociahedron), it remains 5 relations among which 3 correspond to the following ones

Ψ ((v1 − v2 + v3 − v4)⊗ (w1 − w2)) = Ψ (v1 ⊗ w1 + (v2 − v3)⊗ w2)(7)

Ψ ((v1 − v2 + v3 − v4)⊗ (w5 − w6)) = Ψ (−v4 ⊗ w5 − v1 ⊗ w6)(8)

Ψ ((v1 − v2 + v3 − v4)⊗ (w7 − w8)) = Ψ (v1 ⊗ w7 + (v2 − v3)⊗ w8) .(9)

Identify the representation (µ.k ⊕ µ′.k) ⊗ (ω.k ⊕ ω′.k) ⊗ k.sgnS2
with the two copies of k[S2] :

α.k[S2]⊕ β.k[S2] = α.k ⊕ α′.k ⊕ β.k ⊕ β′.k via the isomorphism of S2-modules

µ⊗ ω ⊗ 1 7→ α and µ′ ⊗ ω ⊗ 1 7→ −β,

µ′ ⊗ ω′ ⊗ 1 7→ −α′ and µ⊗ ω′ ⊗ 1 7→ β′.

The morphism Ψ becomes

Ψ((µ ◦I µ)⊗ (ω ◦I ω)) = Ψ(v1 ⊗ w1) = α ◦I α,

Ψ((µ′ ◦II µ)⊗ (ω′ ◦II ω)) = Ψ(v2 ⊗ w2) = −α′ ◦II α and

Ψ((µ′ ◦II µ
′)⊗ (ω′ ◦II ω)) = Ψ(v3 ⊗ w2) = −α′ ◦II β,

for instance. Hence, the relations (7), (8) and (9) are

α ◦I α− α
′ ◦II α− α

′ ◦II β

α ◦III β − β
′ ◦I α

β′ ◦I β
′ − β ◦II β

′ − β ◦II α
′

If we represent the operation α(x, y) by x ≺ y and β(x, y) by x � y, these 3 relations become

(x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (y � z)

(z � x) ≺ y = z � (x ≺ y)

z � (y � x) = (z � y) � x+ (z ≺ y) � x,

which are the axioms defining dendriform algebras [Lod01].
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The two other relations are

Ψ ((v1 − v2 + v3 − v4)⊗ (w2 − w3)) = −α′ ◦II α+ α′ ◦II β
′ − α′ ◦II β + α′ ◦II α

′,(10)

Ψ ((v1 − v2 + v3 − v4)⊗ (w6 − w7)) = β′ ◦I α− β
′ ◦I β

′.(11)

And they give after identification

x ≺ (y ≺ z) + x ≺ (y � z) = x ≺ (z ≺ y) + x ≺ (z � y)

x � (y ≺ z) = x � (z � y).

�

A PreLie • Perm-algebra is a Perm-algebra with splitting of the associativity relation.

Proposition 22. Let (A, ≺, �) be a PreLie •Perm-algebra. With the operation ∗ :=≺ + �, the
vector space (A, ∗) becomes a Perm-algebra.

Proof. Consider the sum of the relations. �

Since a PreLie-algebra gives a Lie-algebra by anti-symmetrization of the product, we have a

morphism of operads Lie
λ
−→ PreLie. Taking the black product of this morphism with an operad

P , we get a morphism of the form P = Lie • P
λ•P
−−−→ PreLie • P . A PreLie • P-algebra has

twice more generating operations then P and this morphism corresponds to take the sum of them.
Denote it by λ • P = +. In the previous cases, we had

As //

+

��

Perm //

+

��

Com

+

��
Dend // PreLie • Perm // Zinb.

Therefore, the black product with PreLie is a general splitting of the relations.

One interesting property of the black and white products is to recover classical operads and
morphisms between them by means of products from simpler operads. We have the dual diagram
of operads

As PreLieoo Lieoo

Dias

OO

PreLie ◦ Permoo

OO

Leib.oo

OO

The operad PreLie allows to factor the map As ← Lie. The notion of PreLie-algebra is impor-
tant and has application in deformation theory and differential geometry for instance (see [CL01]).
The second row Dias← Leib was introduced by J.-L. Loday with a view forward applications in
algebraic K-theory (see the introduction of [Lod01]). The operad Dias appears naturally when
one tries to build a bicomplex in algebraic K-theory with the same form then the one in cyclic ho-
mology (the additive counterpart of algebraic K-theory). Since the operad PreLie ◦Perm factors
Dias→ Leib, we expect the operad PreLie ◦ Perm to appear in these fields in the future.

Recall from [CL01], that a basis for PreLie(n) is given by the set of rooted trees with n vertices
labelled by {1, . . . , n}. From Corollary 16, we have PreLie ◦Perm = PreLie⊗Perm. Therefore,
a basis for PreLie ◦ Perm(n) is provided by the set of rooted trees with n vertices labelled by
{1, . . . , n} with one vertex emphasized. We leave to the reader to describe the composition map
of this operad. (Use the composition of PreLie based on rooted trees given in [CL01] with the
fact that only the insertion of a tree in an emphasized vertex keeps a vertex emphasized).

4.5. A counterexample. In this section, we show that the category of Koszul operads is not
stable by white and black products. We exhibit a pair of Koszul operads whose black product is
not Koszul.

Consider the nilpotent operad N defined by a generating skew-symmetric binary operation such
that every composition of it vanishes.
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Lemma 23. The operad PreLie • N is equal to the quadratic operad generated by a binary
operation � with the following relations : (x � y) � z = 0 and x � (y � z) = x � (z � y), for every
x, y, z.

Proof. We use the same notations vi for the space R of relations of the operad PreLie. The
space S of relations of the nilpotent operad is generated by w1, w5 and w9. By symmetry of the
relations, we only have to compute the three terms

Ψ ((v1 − v2 + v3 − v4)⊗ w1) = Ψ(v1 ⊗ w1) = � ◦I �,(12)

Ψ ((v1 − v2 + v3 − v4)⊗ w5) = Ψ((−v2 + v3)⊗ w5) = − �′ ◦II �+ �′ ◦II�
′,(13)

Ψ ((v1 − v2 + v3 − v4)⊗ w9) = Ψ(−v4 ⊗ w9) = � ◦III �.(14)

They correspond to

(x � y) � z = 0, x � (y � z) = x � (z � y) and (x � z) � y = 0.

�

Theorem 24. The operad PreLie • N is not Koszul.

Proof. Because of its relations, the operad PreLie •N has no operations in arity n for n greater
than 4, that is (PreLie • N ) (n) = 0 for n ≥ 4. Recall that the Poincaré series of an operad P is

defined by fP(x) :=
∑

n≥1

dim(P(n))

n!
xn (see [GK95] Section 3 or [Lod01] Appendix B.5.c.). When

an operad P is Koszul, its Poincaré series and the Poincaré series of its dual verify the equation
fP!(−fP(−x)) = x ([GK95] Formula (3.3.2)). The Poincaré series −fPreLie•N (−x) is x−x2+ 1

2x
3.

Its inverse for the composition is

x+ x2 +
3

2
x3 +

5

2
x4 +

17

4
x5 + 7x6 +

21

2
x7 +

99

8
x8 +

55

16
x9−

715

16
x10 + · · · .

Since the 10th coefficient is negative, this series does not correspond to the Poincaré series of an
operad. Therefore the operad PreLie • N is not Koszul. �

The operad PreLie is Koszul (see [CL01] for a proof in characteristic 0 and [CV06] for a more
general one). Any nilpotent operad is Koszul (the Koszul dual is a free operad, which is Koszul).
So the operad PreLie•N is the black product of two Koszul operads which is not a Koszul operad.
This result comes from the fact the morphism Ψ (and the morphism Φ) is not an isomorphism in
general. The morphism Ψ is a projection and kills part of the relations. Therefore, the coherence
between the relations, expressed by the Koszul property, does not hold anymore.

4.6. Adjunction. In this section, we generalize the main result of [Man87] about the adjunction
between the black and the white products to k-ary quadratic operads.

Let k be an integer greater than 2. Consider the category of k-ary quadratic operads, that is
quadratic operads generated by a finite dimensional S-module concentrated in arity k. A morphism
between two k-ary quadratic operads F(V )/(R) and F(W )/(S) is a morphism induced by a map
of Sk-modules V (k)→W (k). Denote this category by k.q-Op.
One can generalize the basis and the non-degenerate bilinear form of 4.2 for the binary case to the
k-ary case. Then Lemma 18 and Proposition 19 also hold in k.q-Op, which defines black products
in this category. Recall from V. Gnedbaye [Gne97] the notion of k-Lie algebra, that is a module
endowed with a k-ary antisymmetric bracket satisfying a generalized Jacobi relation. We denote
the associated operad by Lie<k>. Gnedbaye proved that Lie<k> is the Koszul dual operad of
Com<k> (denoted stAs<k> in [Gne97]), where a Com<k>-algebra is module equipped with a k-ary
commutative and totally associative operation.

Proposition 25. The black and white products endow the category of k-ary quadratic operads
with a structure of symmetric monoidal category, where the operad Lie<k> is the unit object for
• and the operad Com<k> is the unit object for ◦.
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Proof. The same arguments as in 4.1 show that for a k-ary quadratic operad P , we have
Com<k> ◦ P = Com<k> ⊗P = P . If n ∈ (k − 1).N + 1, Com<k>(n) = k, otherwise Com<k>(n) =
P(n) = 0. The rest of the proof is straightforward. �

Theorem 26. There is a natural isomorphism Homk.q.Op(P • Q, R) ∼= Homk.q.Op(P , Q! ◦ R).
Hence, the tensor category of k-ary quadratic operads with the black product • is endowed with an
internal Hom object denoted hom•(Q, R) := Q! ◦ R. Dually, cohom(P , Q) := P • Q! defines an
internal coHom object in (k.q.Op, ◦, Ck).

Proof. Let P = F(V )/(R), Q = F(W )/(S) and R = F(X)/(T ) be three k-ary quadratic
operads. There is a one-to-one bijection between maps f : V ⊗W ⊗ sgn → X and maps g :
V → W∨ ⊗ X . It remains to show that F(f)

(
Ψ(R ⊗ S)

)
⊂ T is equivalent to F(g)(R) ⊂

Φ−1(S⊥ ⊗F(X) + F(W∨)⊗ T ). By Lemma 18, we have

< F(g)(R),Φ−1(S⊥ ⊗F(X) + F(W∨)⊗ T )⊥ >W∨⊗X = < F(g)(R),Ψ(S ⊗ T⊥) >W∨⊗X

= < F(f) (Ψ(R⊗ S)) , T⊥ >X ,

which concludes the proof. �

For another point of view on this type of adjunction and coHom objects in another operadic
setting, we refer the reader to D. Borisov and Y.I. Manin [BM06].

Corollary 27. Let P be a k-ary quadratic operad. The operad end(P) := P • P ! is a comonoid
in (k.q.Op, ◦, Ck).

Proof. The proof comes from general methods of coHom objects. �

Composing ∆ with Φ̄ : end(P) ◦ end(P) → end(P) ⊗ end(P), we get that P ! • P is a comonoid
for the tensor product, that is a Hopf operad (see 1.5).

Theorem 28. For every k-ary quadratic operad P, the operad end(P) = P ! •P is a Hopf operad.

The first example is Com = Com • Lie. Other examples are PreLie • Perm, Zinb • Leib.

In [Man88], Yu. I. Manin proved the equivalent theorem for quadratic algebras. This allowed him
to realize quantum groups as black products of an algebra with its Koszul dual algebra. In this
spirit, the previous theorem gives a method to get new “quantum groups”, that is Hopf operads.

The tensor product of a Lie algebra with a commutative algebra is again a Lie algebra (Courant
algebras for instance). This result can be widely generalized. Let P be a k-ary quadratic operad.
For any P !-algebra A and any P-algebra B, their tensor product A⊗B is a Lie<k> algebra (see
[Lod01] Appendix B.5.a. for a proof in the binary case and see [GW00] Theorem 2.3 for a proof
in the ternary case). In the language of operads, it means that there exists a morphism of operads

Lie<k>
l
−→ P ! ⊗ P . In the particular case of P = Leib and P ! = Zinb, J.-L. Loday and I. Dokas

refined this result and proved in [DL05] that the previous map factors through PreLie. We now
give a conceptual proof of the existence of the map from Lie<k> to P !⊗P and show that is always
comes from a composite with the white product.

Proposition 29. For every k-ary quadratic operad P, there is a canonical morphism of operads

Lie<k>
i
−→ P ! ◦ P, defined by the commutative diagram

Lie<k>
l //

i %%KKK
KKK

KKK
K P ! ⊗P

P ! ◦ P .

Φ̄

99ttttttttt

Proof. Apply Theorem 40 to the triple of operads Lie<k>, P and P . We get a natural isomor-
phism Homk.q.Op(Lie<k> • P , P) ∼= Homk.q.Op(Lie<k>, P ! ◦ P). Since Lie<k> is the unit object

for •, we have Homk.q.Op(P , P) ∼= Homk.q.Op(Lie<k>, P ! ◦P). Define Lie<k>
i
−→ P ! ◦P to be the

image of the identity of P under this isomorphism. �
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4.7. Cohomology operations. In this section, we recall the definition of the intrinsic Lie bracket
on the chain complex defining the cohomology theories for algebras over a Koszul operad. We use
the previous section to define another Lie bracket on the same space. Because of the symmetries,
this operation vanishes on cohomology.

Let (P , µP) and (Q, µQ) be two augmented dg-operads and let ρ : P → Q be a morphism of
augmented dg-operads of degree 0. This morphism makes Q a module over P . Denote by µP

(1,1)

the partial composition of P , that is the composition of two non-trivial operations of P .

Definition (Derivation). A homogenous morphism ∂ : P → Q is a homogenous derivation of ρ
if

∂ ◦ µP
(1, 1) = µQ

(1, 1) ◦ (∂ ⊗ ρ) + µQ
(1, 1) ◦ (ρ⊗ ∂).

This formula, applied to elements p1 ⊗ p2 of P ⊗P , where p1 and p2 are homogenous elements of
P , gives

∂ ◦ µP(p1 ⊗ p2) = µQ
(
∂(p1)⊗ ρ(p2)

)
+ (−1)|∂||p1|µQ

(
ρ(p1)⊗ ∂(p2)

)
.

A derivation is a sum of homogenous derivations. The set of homogenous derivations with respect
to ρ of degree n is denoted Dernρ (P , Q) and the set of derivations is denoted Der•ρ(P , Q) or simply
Der(P , Q) when the morphism ρ is obvious.

We recall the definition of the cohomology of P-algebras, when P is a Koszul operad. Let A be a

P-algebra, that is there is a morphism of operads P
φ
−→ End(A). Denote by Ω(P ¡) = (F(s−1P

¡
), ∂̄)

the cobar construction of P ¡, where the differential ∂̄ is the unique derivation which extends the
partial coproduct of the Koszul dual cooperad P ¡. Since P is a Koszul operad, Ω(P ¡) is a quasi-free
resolution of P .

Ω(P ¡)
∼ //

ρ
$$JJJJJJJJJ
P

φ

��
End(A).

Lemma 30. Let (R, ∂̄)
ε
−→ P be a resolution of P and let f be an homogenous derivation of degree

n in Dernρ (R, End(A)). One has f ◦ ∂̄ ∈ Dern−1
ρ (R, End(A)).

Proof. The degree of f ◦ ∂̄ is n− 1. It remains to show that f ◦ ∂̄ is a derivation. Since (R, ∂̄)
is a dg-operad, we have

f ◦ ∂̄ ◦ µR = f ◦ µR ◦ (∂̄ ⊗ Id + Id⊗ ∂̄)

= µEnd(A) ◦ (f ⊗ ρ+ ρ⊗ f) ◦ (∂̄ ⊗ Id + Id⊗ ∂̄)

= µEnd(A) ◦
(
(f ◦ ∂̄)⊗ ρ+ ρ⊗ (f ◦ ∂̄))

)
.

Since R is concentrated in non-negative degree and A is concentrated in degree 0, the composite
ρ ◦ ∂̄ = φ ◦ ε ◦ ∂̄ is null. �

The deformation theory of the map P
φ
−→ End(A) is studied via the following cochain complex

defined by M. Markl in [Mar96a]. The cohomology of a P-algebra A is defined on the space of
derivations of ρ (see also [Qui70], [Mar96b] and [KS00]).

Definition. The cohomology of a P-algebra A is defined by the (deformation) chain complex

C•
P(A) :=

(
Der•ρ (Ω(P ¡), End(A)) , ∂),

where the differential ∂ is the pullback by ∂̄, that is ∂(f) := f ◦ ∂̄.

Since Ω(P ¡) is a free operad, we have

Der•ρ (Ω(P ¡), End(A)) ∼= Hom•
S(F(s−1P

¡
),End(A)) ∼= Hom•−1

S
(P

¡
,End(A)) ∼= Hom•−1

k (P
¡
(A), A),
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where HomS(M,N) denotes the set of S-equivariant maps between the S-modules M and N .

As in the paper of M. Kontsevich and Y. Soibelman [KS00], we can consider the augmented
chain complex Hom•

S(P
¡,End(A)) ∼= Hom•

k(P
¡(A), A). Up to a shift of degree, the last space cor-

responds to the Hochschild (co)chain complex for associative algebras, Harrison cohomology of
commutative algebras and Chevalley-Eilenberg for Lie algebras. Notice that in the literature, this
cohomology is called the cohomology of A with coefficient in A. Since this chain complex is defined
to control the deformation of the morphism Φ, that is the structure of P-algebra on A, we call
it the cohomology P with coefficient in A or simply the cohomology of A, once the operad is chosen.

In these three cases, the chain complex is a dg-Lie algebra whose bracket is often called the intrinsic
bracket (see J. Stasheff [Sta93]). The space Homk(P ¡,End(A)) of morphisms from a dg-cooperad
to a dg-operad is an S-module with the action by conjugation, that is (f.σ)(p) :=

(
f(p.σ−1)

)
.σ.

Moreover, it is a dg-operad, called the convolution operad in [BM03] Section 1. On the direct sum
of the Sn-modules of an operad, one can define a preLie product ? whose anti-symmetrization
gives a Lie bracket. When the operad is the convolution operad Hom•

k(P
¡,End(A)), the preLie

product is a degree 0 operation given by

f ? g := P ¡ ∆′

−−→ P ¡ ⊗P ¡ f⊗g
−−−→ End(A)⊗ End(A)

µA
−−→ End(A)

where ∆′ is the partial coproduct of the cooperad P ¡. The intrinsic Lie bracket is defined by
[f, g] := f ? g − (−1)|f ||g|g ? f . The space of S-equivariant morphisms HomS(P ¡,End(A)) is equal
to the space of invariants Homk(P ¡,End(A))S with respect to the action by conjugation. It is a
subspace of the convolution operad Homk(P

¡,End(A)) stable under the preLie product ?. (See
for instance [VdL] for a proof of this in the coinvariant context. Since we work over a field k of
characteristic 0, the isomorphism between invariants and coinvariants allows us to conclude.) The
induced Lie bracket on C•

P(A) = HomS(P ¡,End(A)) defines an intrinsic Lie bracket on cohomology.

When P = As, it is exactly the structure defined by M. Gerstenhaber in [Ger63] and when P = Lie
it is the Lie bracket of Nijenhuis and Richardson, which controls the formal deformations of P-
algebra structure (see D. Balavoine [Bal97] Section 4).

Let A be a P-algebra and C be a P ¡-coalgebra, we have by Proposition 29 that Homk(C,A) is
naturally endowed with a structure of P ! ◦ P-algebra and Lie<k>-algebra (see also Section 3.2).
Applied to C = P ¡(A), this result gives that the chain complex C•

P(A) is a P ◦ P !-algebra and a
Lie<k>-algebra. In the binary case, it means that Hom•

k(P
¡(A), A) is equipped with another Lie

bracket { , } of degree −1. Let α be a morphism of degree −1 defined as follows

α : P ¡
� P ¡

(1) = P ¡(2) = sP(2)→ P(2) � P
Φ
−→ End(A).

It is a a twisting cochain, that is α is solution to the Maurer-Cartan equation α ? α = 0, when
P and A are concentrated in degree 0 (see Section 2.3 of Getzler-Jones [GJ94]). The Lie bracket
{f, g} is equal to

P ¡ ∆
−→ P ¡ ◦ P ¡

� P ¡(2)⊗S2 P
¡⊗2 α⊗(f⊗g+(−1)|f||g|g⊗f)
−−−−−−−−−−−−−−−−→ End(A)⊗ End(A)

µA
−−→ End(A).

Note that in the binary case, the latter Lie bracket { , } is not equal to the intrinsic Lie bracket
[ , ]. For instance, there is a shift of degree between the two.

Lemma 31. For every f and g in C•
P (A), we have

∂(f) = [f, α] and {f, g} = ∂f ? g + (−1)|f |f ? ∂g − ∂(f ? g).

Proof. The proof is straightforward and left to the reader. �

Equipped with the intrinsic Lie bracket [ , ], C•
P (A) becomes a dg-Lie algebra. The second formula

shows that the Lie bracket { , } vanishes on cohomology. This result and formula can be explained
as follows. The preLie product comes from the partial composition of the operad. The general
composition product of an operad defines symmetric braces. Since the partial composition of the
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operad generates the global one, the preLie product generates the symmetric braces. (See also
J.-M. Oudom and D. Guin [OG04] and [LM05] for a proof of this result). Therefore, we cannot
expect to have other products than the intrinsic Lie bracket in general. In particular examples,
it would be interesting to see if the structure of P ◦ P !-algebra induces a non-trivial structure
on cohomology. We will see in 5.3 how to refine this study when the operad is not symmetric
(regular).

5. Black and white square-products for regular operads

K. Ebrahimi-Fard and L. Guo in [EFG05] and J.-L. Loday in [Lod04] defined and used an analog
of Manin’s black product for regular operads that they called the black square product. In this
section, we give the conceptual definitions of Manin’s black and white square products for regular
operads. They are not equal to the black and white “circle”-products in the category of operads.
Actually, they come from the black and white products in the category of non-symmetric operads.

5.1. Definitions of non-symmetric and regular operads. Recall that a non-symmetric op-
erad is an operad without the actions of the symmetric groups. From a non-symmetric operad
{P ′

n}n∈N∗ , we can associate an S-module by the collection of the free Sn-modules on P(n) :=
P ′
n ⊗k k[Sn]. The composition product for the operad P is defined from the non-symmetric one.

Such an operad is called a regular operad. Denote Σ this functor from non-symmetric operads to
operads. Therefore, the category of regular operads is the image of Σ and is equivalent to the
category of non-symmetric operads. Denote by U the inverse functor :

Non-symmetric Operads
Σ

/ Regular Operads.
Uo

Let P = F(V )/(R) be a binary quadratic regular operad. In that case, we have that V and R
are regular modules, that is V = V ′ ⊗k k[S2] and R = R′ ⊗k k[S3]. The non-symmetric operad
P ′ = U(P) is once again binary and quadratic. It is given by P ′ = F (V ′)/(R′).

5.2. Definitions of black and white square-products. A non-symmetric operad is a monoid
in the category of non-negative graded modules with a non-symmetric version of ◦ (see Appen-
dix A). Under the Hadamard product, this category forms a 2-monoidal category. Hence, we
can apply arguments of section 3 and consider the morphism Φ and the induced white prod-
uct for non-symmetric operads. From two binary quadratic regular operads P = F(V )/(R) and
Q = F(W )/(S), we study the associated white product

U(P) ◦ U(Q) := F(V ′ ⊗W ′)/
(
Φ−1(R′ ⊗F(W ′) + F(V ′)⊗ S′)

)
.

The idea is now to come back to the category of regular operads using the functor Σ.

Definition (White square-product). The white square-product of two binary quadratic regular
operads P and Q is defined by the following formula

P �Q := Σ(U(P) ◦ U(Q)).

More explicitly, the white square-product of P andQ is equal to P �Q = F(V ′⊗W ′⊗k[S2])/
(
(Φ−1(R′⊗

F(W ′) + F(V ′)⊗ S′))⊗ k[S3]
)
.

Note that the definition given above does not correspond to Definition 3.1 of K. Ebrahimi-Fard
and L. Guo in [EFG05] (See Remark below.)

Proposition 32. Let A be a P-algebra and B a Q-algebra, their tensor product A ⊗ B is an
algebra over the white square-product P �Q.

Proof. The proof is the same than Proposition 11. �

Let V be an S2-module. The part F(V )(3) with 3 inputs of the free operad on V is isomorphic to

F(V )(3) =
(
V ⊗S2 (V ⊗ k ⊕ k ⊗ V )

)
⊗S2 k[S3],
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where the summand V ⊗ (V ⊗ k) corresponds to the compositions on the left
??��??�� and the sum-

mand V ⊗ (k⊗V ) corresponds to the compositions on the right
??��??�� . When V is a sum of regular

representations V = V ′ ⊗ k[S2], we have F(V )(3) =
(
V ′ ⊗ (V ′ ⊗ k) ⊕ V ′ ⊗ (k ⊗ V ′)

)
⊗ k[S3].

Therefore, F(V )(3) can be identify with 2 copies of V ′ ⊗ V ′ represented by the following types of

tree
??��??�� and

??��??�� . These two copies correspond to the part of arity 3 of the free non-symmetric

operad on V ′. We denote the first composition based on the pattern
??��??�� by µ◦1 ν and the second

one based on
??��??�� by µ ◦2 ν, where µ is below ν.

In the appendix B of [Lod01], J.-L. Loday described the non-degenerate bilinear form < , > for
regular operads. It comes from the following one for non-symmetric operads.

F(V ′)(3)⊗F(V ′∗)(3)
< ,>
−−−→ k

< µ ◦1 ν, ζ ◦1 ξ >:= +ζ(µ).ξ(ν)

< µ ◦2 ν, ζ ◦2 ξ >:= −ζ(µ).ξ(ν),

the other products being null.

We define the black product of binary non-symmetric operad like in 4.3 (the non-degenerate
bilinear form is given below). Applying the same ideas, we have the analog of Lemma 18 and
Proposition 19.

Lemma 33. Let P = F(V ′ ⊗ k[S2])/(R
′ ⊗ k[S3]) and Q = F(W ′ ⊗ k[S2])/(S

′ ⊗ k[S3]) be two
regular operads such that the V ′ and W ′ are finite dimensional. The orthogonal of Ψ(R′⊗S′) for
< , > is

(
Φ−1

∗ (R′⊥ ⊗F(W ′∗) + F(V ′∗)⊗ S′⊥)
)
.

Definition (Black square product). Let P ′ = F(V ′)/(R′) and Q′ = F(W ′)/(S′) be two binary
quadratic non-symmetric operads with finite dimensional generating spaces. Define their black
product by the formula

P ′ • Q′ = F(V ′ ⊗W ′)/
(
Ψ(R′ ⊗ S′)

)
.

The black square product of two binary quadratic regular operads is defined by

P �Q := Σ(U(P) • U(Q)).

Proposition 34. For binary quadratic regular operads generated by finite dimensional modules,

this definition of black product verifies
(
P �Q

)!
= P !

�Q!.

Finally, we can use the particular form of the bilinear product < , > to make explicit the morphism
Ψ and show that the black square-product defined here corresponds to the one of [Lod04] and
[EFG05].

Proposition 35. Under the same hypotheses, let r⊗s be an elementary tensor of R′⊗S′. Denote

r = r1 + r2, where r1 is the part of r corresponding to the compositions of the form
??��??�� and r2

is the part of r corresponding to the compositions of the form
??��??�� . In the same way, write

s = s1 + s2. The image of r ⊗ s under Ψ is Ψ(r ⊗ s) = Φ−1(r1 ⊗ s1)− Φ−1(r2 ⊗ s2).

Proof. Note that r1 ⊗ s1 and r2 ⊗ s2 belong to Im Φ. For X ∈ F(V ′∗ ⊗W ′∗)(3), denote the
image of X under Φ∗ by Φ∗(X) =

∑
ΦV ′∗(X) ⊗ ΦW ′∗(X). More precisely, we decompose the

image of X under Φ∗ with the two types of compositions Φ∗(X) = Φ∗(X1 +X2) =
∑

1 ΦV ′∗(X1)⊗
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ΦW ′∗(X1) +
∑

2 ΦV ′∗(X2)⊗ ΦW ′∗(X2). We have

< Φ−1(r1 ⊗ s1)− Φ−1(r2 ⊗ s2), F(Ξ)(X) >V ′⊗W ′

= < Φ−1(r1 ⊗ s1), F(Ξ)(X)1 >V ′⊗W ′ − < Φ−1(r2 ⊗ s2), F(Ξ)(X)2 >V ′⊗W ′

=
∑

1

< r1, ΦV ′∗(X1) >V ′ . < s1, ΦW ′∗(X1) >W ′ +
∑

2

< r2, ΦV ′∗(X2) >V ′ . < s2, ΦW ′∗(X2) >W ′=

=
∑

1

< r, ΦV ′∗(X1) >V ′ . < s, ΦW ′∗(X1) >W ′ +
∑

2

< r, ΦV ′∗(X2) >V ′ . < s, ΦW ′∗(X2) >W ′=

=
∑

< r, ΦV ′∗(X) >V ′ . < s, ΦW ′∗(X) >W ′

=
(∑

< r, − >V ′ . < s, − >W ′

)
◦ Φ∗(X).

�

Corollary 36. The black-square product defined here is equal to the one defined in [EFG05] and
in [Lod04].

Remark. The white square-product is equal to P �Q := F(V ′⊗W ′⊗k[S2])/
(
(Φ−1(R′⊗F(W ′)+

F(V ′)⊗S′))⊗k[S3]
)

and the black square-product to P �Q := F(V ′⊗W ′⊗k[S2])/
(
(Ψ(R′⊗S′))⊗

k[S3]
)
. The definition of � proposed by K. Ebrahimi-Fard and L. Guo in [EFG05] corresponds

to Ψ(R′ ⊗ F(W ′) + F(V ′) ⊗ S′) instead of Φ−1(R′ ⊗ F(W ′) + F(V ′) ⊗ S′). We have Φ−1(R′ ⊗
F(W ′)+F(V ′)⊗S′) ⊂ Ψ(R′⊗F(W ′)+F(V ′)⊗S′). But the second module can be slightly bigger
than the first one (see the example of Dias�Dias on page 309 of [EFG05]). This explains why
the white square-product defined in [EFG05] is not the Koszul dual of the black square-product.

With the explicit form of the black square-product, we get the following property which is Propo-
sition 2.4 of [Lod04].

Proposition 37 ([Lod04]). For two binary quadratic regular operads P and Q, there exists a
canonical epimorphism P �Q� P �Q.

Proof. We have to show that Φ ◦Ψ (R′ ⊗S′) ⊂ R′⊗F(W ′)(3) +F(V ′)(3)⊗S′. Let r⊗ s be an
elemental tensor of R′ ⊗ S′. Denote r ⊗ s = (r1 + r2) ⊗ (s1 + s2). From Proposition 35, we get
Φ ◦Ψ(r⊗ s) = r1⊗ s1− r2⊗ s2 = (r1 + r2)⊗ s1− r2⊗ (s1 + s2) ∈ R′⊗F(W ′)(3) +F(V ′)(3)⊗S′.
�

The proposition means that any P �Q-algebra is a P �Q-algebra. This result together with
Proposition 32, gives the following corollary (Proposition 3.3 of [EFG05]).

Corollary 38 ([EFG05]). For any P-algebra A and Q-algebra B, their tensor A⊗B is a P �Q-
algebra.

Remark. The operads χ+ and χ− discovered by J.-L. Loday in [Lod96] factors this projection

Dend�Dias // //
ee

!

99χ±

!
��

// // Dend�Dias.

Going from the left to the right, there is one more relation each time. (The dimensions of the
spaces of relations is 15, 16 and 17 respectively).

5.3. Adjunction. We can apply the same methods as in Section 4.6 to prove the same kind
of adjunction for black and white square products for regular operads. Consider the category
of k-ary quadratic regular operads denoted by k.q-Reg. One can extend black and white square
products in this category. Recall from [Gne97] that a totally associative k-ary algebra is a module
equipped with a regular k-ary operation such that all the quadratic compositions are equal. Denote
the corresponding operad by TAs<k>. Dually, a partially associative k-ary algebra is a module
equipped with a regular k-ary operation such that the sum of all quadratic compositions is zero.
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Denote the corresponding operad by PAs<k>. Gnedbaye proved that these two operads are Koszul
dual to each other.

Proposition 39. The black and white square products endow the category of k-ary quadratic
regular operads with a structure of symmetric monoidal category, where the operad PAs<k> is the
unit object for � and the operad TAs<k> is the unit object for � .

Theorem 40. There is a natural isomorphism Homk.q.Reg(P �Q, R) ∼= Homk.q.Reg(P , Q!
�R).

Proposition 41. For every k-ary quadratic regular operad P, there is a canonical morphism of

operads PAs<k>
i
−→ P !

�P, defined by the commutative diagram

PAs<k>
l //

i %%LLLLLLLLLL P ! ⊗P

P !
�P .

Φ̄

99sssssssss

This proposition can be seen as a refinement of Proposition 29. When P is a k-ary regular quadratic
operad, the map Lie<k> → P ! ⊗ P factors through PAs<k>, where the morphism Lie<k> →
PAs<k> is induced by the anti-symmetrization of the k-ary partially associative product as in the
binary case.

5.4. Non-symmetric cohomology operations. In this section, we refine the arguments of Sec-
tion 4.7 for non-symmetric (regular) operads. This gives non-vanishing natural operations on the
deformation chain complex of any algebras over such operads. More precisely, we prove that, under
some assumptions, the (co)chain complex defining the cohomology of algebras is a multiplicative
operad.

Recall from [GV95] that an operad with multiplication is a non-symmetric operad P endowed
with a morphism As → P . Let P be a finitely generated binary non-symmetric Koszul operad.
Following Section 4.7, the chain complex defining the cohomology of a P-algebra A is equal to
C•

P(A) = Hom•
k(P

¡,End(A)) which is a non-symmetric (convolution) operad. By Proposition 41,

there is a morphism of operads As→ P ! ⊗ P . Since P ¡ = P !∗, we have

As→ P ! ⊗P ∼= Homk(P
¡,P)

Φ∗−−→ Homk(P
¡,End(A)).

These results form the following proposition.

Proposition 42. For every finitely generated binary non-symmetric Koszul operad P and every
P-algebra A, the chain complex defining its cohomology C•

P(A) is an operad with multiplication.

The multiplication As→ P of an operad P allows us to define a canonical cosimplicial structure on
it (see [MS02] Section 3) and then a differential map d by alternate summation (see [GV95] Formula
(5)). Denote by m the image of the associative operation. The face maps di : P(n) → P(n+ 1)
are defined by

di(p) :=





m ◦2 p if i = 0
p ◦i m if 0 < i < n+ 1
m ◦1 p if i = n+ 1.

The differential d is equal to d(f) := m ? f − (−1)|f |f ? m = [m, f ].

Lemma 43. With the same assumptions, the differential ∂(f) on C•
P (A) is equal to (−1)|f |d(f).

Hence, the chain complex C•
P(A) is always cosimplicial.

Proof. The image of the associative operation in Homk(P ¡,End(A)) is the map α : P ¡(2) →
Hom(A⊗2, A) defined in Section 4.7. We prove in Lemma 31 that the differential on C•

P (A) is

equal to ∂(f) = [f, α] = (−1)|f |d(f). �
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Therefore, the chain complex C•
P (A) is endowed with two types of operations : braces operations

induced by the non-symmetric operadic structure and an associative operation called the cup
product coming from the properties of Manin’s products. In [GV95], M. Gerstenhaber and A.A.
Voronov defined the notion of homotopy G-algebra which gives the compatibility between these
types of operations. Their purpose was to describe the operations acting of the chain complex of
Hochschild cohomology of an associative algebra. Actually, the structure of homotopy G-algebra
on the deformation chain complex and the structure of Gerstenhaber algebra on cohomology is
universal among finitely generated binary non-symmetric Koszul operads.

Corollary 44. For every finitely generated binary non-symmetric Koszul operad P and every
P-algebra A, the chain complex C•

P(A) is a homotopy G-algebra and the cohomology space H•
P(A)

is a Gerstenhaber algebra.

Proof. Apply Theorem 3 of [GV95] which asserts that any multiplicative operad induces a
homotopy G-algebra on the direct sum of its components. To prove the second part, apply the
computations of the proof of Corollary 5 of [GV95]. �

5.5. Generalized Deligne’s conjecture. Finally, we extend and prove Deligne’s conjecture to
any algebra over a finitely generated binary non-symmetric Koszul operad, which includes the
original case of associative algebras.

Here is a brief review on cohomology operations and Deligne’s conjecture. In 1945, G. Hochschild
defined in [Hoc45] the chain complex C•

P(A) for associative algebras and proved the existence
of the cup product. In 1963, M. Gerstenhaber introduced in [Ger63] the preLie product ◦ and
the induced Lie bracket on the chain complex. He gave some formulas between them and the
cup product that allowed him to prove that this induces a graded Poisson structure, now called
Gerstenhaber algebra, on cohomology. Note that the definition of the preLie product is based
upon a preLie system {◦i}i whose axioms correspond the the definition of the partial product of
an operad. In 1964, Gerstenhaber used in [Ger64] this Lie bracket to study the deformations of
associative algebras. (This will directly lead in 1997 to the theorem of deformation-quantization
of Poisson manifold by M. Kontsevich [Kon97]). In 1985, T. Kadeishvili introduced multi-linear
operations called braces on C•

P(A) in [Kad88] (see also E. Getzler [Get93]) which correspond to
the whole operadic structure. In 1995, Gerstenhaber and Voronov described the relations between
the braces operations and the cup product in [GV95].

The little disk operad D2 is a topological operad defined by configurations of disks on the plane. In
1976, F. Cohen showed that the homology operad H•(D2) is equal to the operad coding Gersten-
haber algebras [Coh76]. This led P. Deligne to make the following wish ”I would like the complex
computing Hochschild cohomology to be an algebra over [the singular chain operad of the little
disks] or a suitable version of it” in [Del93]. By suitable version of it, he meant another operad
homotopically equivalent to D2. This conjecture can be seen as a lifting on the level of chain
complexes of the result of F. Cohen. In 1999, J.E. McClure and J.H. Smith gave a prove of this
conjecture in the following way. First, they construct a topological operad C whose chain version
acts on any multiplicative operad. Then, they show that this operad is equivalent to the little
disks operad. This proof with Proposition 42 shows that Deligne conjecture can be generalized
to any finitely generated binary non-symmetric Koszul operads and is not specific to the case of
associative algebras.

Theorem 45. For every finitely generated binary non-symmetric Koszul operad P and every P-
algebra A, the chain complex C•

P(A) is an algebra over an operad equivalent to the singular chains
of the little disks operad.

Proof. Since C•
P (A) is an operad with multiplication, the operad C of [MS02] acts on it. And

this operad is weakly equivalent to the little disks operad by Theorem 3.3 of [MS02]. �

Notice that the non-symmetric case is very different from the symmetric one. The Lie bracket { , }
described in Section 4.7 vanishes on cohomology. When the algebra is modelled by a non-symmetric
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operad, this Lie bracket is the symmetrization of an associative operation, the cup-product, which
is not necessarily trivial on cohomology.

In [Mar05], M. Markl defined the notion of natural operations on cohomology and asked a few
questions and conjectures about the operad BP generated by these operations. Here we have
proved that, for binary non-symmetric Koszul operads, the Gerstenhaber operad imbeds into BP .
For more precise statements depending on the operad P , one has to work with P ! ◦ P . In the
symmetric case, operations of P ! ◦ P could give non-trivial operations in cohomology.

5.6. The operad Quad and its Koszul dual. In this section, we study the example of black
square-product Quad = Dend�Dend introduced by M. Aguiar and J.-L. Loday in [AL04]. We
prove that the Koszul dual of Quad is the operad Quad! = Perm⊗Dias = Perm ◦ Dias.

The operad Dend is a split of one associative product ? into two products ≺ and �, ? =≺ + �.
The operad Quad was defined by M. Aguiar and J.-L. Loday in [AL04] as a split of an associative
product ? into four products ↗, ↘, ↙ and ↖, that is ? =↗ + ↘ + ↙ + ↖. It was proved
in [EFG05] that this operad Quad is equal to the black square-product Dend�Dend. Therefore
one can interpret the splitting of associativity with the black square-product with Dend. At the
end of their paper, M. Aguiar and J.-L. Loday raised one question “what is the Koszul dual of
the operad Quad ?” and two conjectures. The first conjecture deals with the dimensions of the
Sn-modules Quad(n) and the second one is that the operad Quad is Koszul. In the rest of this
section, we answer these questions.

The previous section give a direct answer to the first question.

Proposition 46. The Koszul dual of Quad is equal to Quad! = Dias�Dias.

Proof. Since the Koszul dual of Dend is the operad Dend! = Dias ([Lod01] Proposition 8.3), we
have

Quad! = (Dend�Dend)! = Dend!
�Dend! = Dias�Dias,

from Proposition 34. �

It remains to use the explicit form of the white square-product to describe Dias�Dias.

Theorem 47. The operad Quad! = Dias�Dias is isomorphic to Perm⊗Dias = Perm⊗Perm⊗
As.

Proof. Denote the basis of Dend′(2) by ≺ .k⊕ � .k and its dual basis, the basis of Dias′(2), by
a .k⊕ ` .k. The induced basis of Quad′(2) = (Dend�Dend)′(2) is {≺ ⊗ ≺, ≺ ⊗ �, � ⊗ ≺, �

⊗ �} and the induced basis of Quad!′(2) = (Dias�Dias)′(2) is {a ⊗ a, a ⊗ `, ` ⊗ a, ` ⊗ `}
. The relations of Dias are easy to remember. Represent the operation a by the tree

???? �� and the

operation ` by the tree
??
����. Any element of F(a .k⊕ ` .k)(3) can be seen as a tree with exactly

one path from one leaf to the root. For example, the composition a ◦1 ` corresponds to the tree
??
����???? �� . To get the relations of Dias, identify the trees with paths from the same leaf. For instance,

we have a ◦1 `=` ◦2 a, which corresponds to
??
����???? �� =

???? ��??
���� . The relations of Dias are




a ◦1 a=a ◦2 a=a ◦2 ` (L)
a ◦1 `=` ◦2 a (M)
` ◦1 a=` ◦1 `=` ◦2 ` (R),

where the first line corresponds to the Left leaf, the second one to the Middle leaf and the last
one to the Right leaf. For simplicity, denote these compositions and relations by





L1 = L′
2 = L′′

2

M1 = M2

R′
1 = R′′

1 = R2.
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The operad Dias is equal to F(V ′ ⊗ k[S2])/(R
′ ⊗ k[S3]). One can see that the following relations

are elements of (R⊗F(V ′) + F(V ′)⊗R) ∩ Im Φ




(L,L) L1 ⊗ L1 = L′
2 ⊗ L

′
2 = L′′

2 ⊗ L
′
2 = L′

2 ⊗ L
′′
2 = L′′

2 ⊗ L
′′
2

(L,M) L1 ⊗M1 = L′
2 ⊗M2 = L′′

2 ⊗M2

(L,R) L1 ⊗R′
1 = L1 ⊗R′′

1 = L′
2 ⊗R2 = L′′

2 ⊗R2

(M,M) M1 ⊗M1 = M2 ⊗M2

The other ones are obtained by the symmetries
??��??�� ↔

??��??�� and a ⊗ b ↔ b ⊗ a. We get 23

linearly independent elements in (R⊗F(V ′)+F(V ′)⊗R)∩Im Φ. Since the dimension of Quad′(3)
is 23 = 32 − 9, we know that these elements form a basis of (R ⊗ F(V ′) + F(V ′) ⊗ R) ∩ Im Φ.
Hence, they give the relations defining Quad!.
Interpret these relations in the same way as the ones of Dias. An element of F

(
(a .k⊕ ` .k)⊗ (a

.k⊕ ` .k)
)
(3) can be seen as a tree with two kind of paths, one given by the left side of ⊗ and

the second one by the right side of ⊗. For instance, the tree ����???? represents (a ⊗ `) ◦1 (` ⊗ a),

where the left side corresponds to = and the right side to · · · . This produces two indexes for
the leaves. With this identification, the relations of Quad! mean that any elements written with
trees such that the same leaves are indexed by the same “colors” are equal. Therefore, a basis for
Quad!(n) is given by planar corollas with n leaves indexed by two colors. The composition of such
trees is a corollas and to know which leaf is indexed by which color, follow the path of the same
color. As a consequence, we have Dias�Dias = Perm ⊗Dias. (A basis for the operad Dias is
given by corollas with one leaf emphasized. Tensoring with Perm induces another independent
index of the leaves. And the compositions are the same.) �

Remark. More generally, we get the duals of the operad coding octo-algebras of P. Leroux [Le03]
and its follow-up. Since Octo = Dend� 3, we get Octo! = Perm⊗3 ⊗ As and, for any n ∈ N,(
Dend�n

)!
= Dias�n = Perm⊗n ⊗As.

Corollary 48. The dimensions of the components of the Koszul dual of Quad are equal to

dim (Quad!(n)) = n2.n!.

Proof. We have dim(Quad!(n)) = dim(Perm(n)⊗k Dias(n)) = n2.n!. �

Proposition 17 gives that Dias�Dias = Perm ⊗ Dias = Perm ◦ Dias = Perm ⊗ Perm ⊗
As = Perm ◦ Perm ◦ As. We have Dias = Σ(Perm) and Dias�Dias = Σ

(
Perm ◦ Perm

)
=

Σ
(
Perm⊗2

)
. By duality, we get another form for Quad.

Corollary 49. We have Quad = Perm • Perm • As

5.7. Koszulity of Quad and other operads defined by square products. Aguiar and Loday
made in [AL04] the conjecture that the operad Quad is Koszul. We show this statement using
poset’s method of [Val2]. More generally, we prove that the operads of the form Dend�n and
Dias�n are Koszul. P. Leroux introduced in [Ler04] the operad Ennea = T riDend� T riDend.
We prove the same results for the family T riDend�n and T rias�n. All these families provide
infinitely many examples of the generalized Deligne’s conjecture proved in Theorem 45.

In order to study the homological properties of the algebras over an operad, it is crucial to prove
that the operad is Koszul. We refer the reader to the paper of B. Fresse [Fre04] or to the book of
M. Markl, S. Shnider and J. Stasheff [MSS02] for a full treatment of the subject. Since an operad
is Koszul if and only if its Koszul dual is Koszul, we work with the simplest one to prove that the
pair is a pair of Koszul operads. In the case of the operads Quad and Quad! = Perm⊗Dias, we
will prove that the Koszul property holds for the last one, Perm⊗Dias.

Let P be an algebraic operad coming from an operad in the category of Sets. For instance, it is
the case when the relations defining the operads only involve equalities between two terms and
no linear combination. The operads As, Com, Perm and Dias are of this type. In [Val2], we
defined a family of partition type posets associated to such an operad P and proved that the
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operad is Koszul over Z and over any field k if and only each maximal intervals of the posets are
Cohen-Macaulay.

We saw in the proof of Theorem 47 that Quad! = Perm⊗Dias = Perm⊗Perm⊗As. Therefore,
Quad! is a set operad with basis {(i, j, σ) | 1 ≤ i, j ≤ n, σ ∈ Sn}. The partitions associated to

Quad! are of the form
(
σ(1), . . . , σ(i), . . . , σ(j), . . . , σ(n)

)
, where 1 ≤ i, j ≤ n and σ ∈ Sn. The

order between the Quad!-partitions is given by the refinement of partitions with respect to the
two indexes. For instance, we have {(3, 1, 5), (2, 4)} ≤ {(3, 1, 5, 2, 4)}.

Lemma 50. For each n ∈ N, the maximal intervals of the poset ΠPerm⊗Dias(n) associated to the
operad Perm⊗Dias are totally semi-modular.

Proof. The proof is the same than Lemma 1.10, 1.15 and 2.6 of [CV06]. �

Theorem 51. The operad Quad is Koszul over Z.

Proof. The maximal intervals of the posets ΠPerm⊗Dias(n) are totally semi-modular. Therefore
they are Cohen-Macaulay over Z by [Bac76, Far79] . One can see that the operad Perm⊗Dias
is a basic set operad (see [Val2] Page 6). Then we can apply Theorem 9 of [Val2]. �

Corollary 52. The dimensions of the homogenous components of Quad are equal to

dim(Quad(n)) = (n− 1)!

2n−1∑

j=n

(
3n

n+ 1 + j

)
.

(
j − 1

j − n

)
.

Proof. When an operad P is Koszul, there are relations between the dimensions of P(n) and the
dimensions of P !(n) (see [GK95] Theorem (3.3.2) or [Lod01] Appendix B.5.c.). Use these relations
with Corollary 48 to conclude. �

More generally, we have seen that, for every n ∈ N,
(
Dend�n

)!
= Perm⊗n⊗As, which is a basic

set operad. The related partitions have the same form than the ones for Quad! but with n types
of indices instead of 2.

Theorem 53. For every n, the operad Dend�n is Koszul over Z.

Proof. Apply the same arguments. �

J.-L. Loday and M. Ronco introduced in [LR04] the pair of Koszul dual operads T rias and
T riDend. A T rias-algebra is a Dias-algebra with an extra operation. In [Val2], we defined a
commutative analogue of T rias which we denoted by ComT rias. The ComT rias-partitions are
partitions with at least one element of each block emphasized. The T rias-partitions are ordered
partitions with at least one element in the block emphasized. Using the same ideas than before,
we have to following results. The operad T rias�n ∼= ComT rias⊗n ⊗As. The maximal intervals
of ΠT rias� n are totally semi-modular.

Theorem 54. For every n, the operads T rias�n and T riDend�n are Koszul over Z.

Recall from [EFG05] Proposition 3.5 that T riDend� T riDend is isomorphic to the Ennea operad
defined by P. Leroux in [Ler04]. The previous theorem gives that the Ennea operad is Koszul over
Z.

From this result, we get four infinite families of operads for which Deligne’s conjecture holds.

Corollary 55. Let P be an operad of the form Dend�n, Dias�n, T riDend�n or T rias�n.
Then for any P-algebra A, the chain complex C•

P (A) is an algebra over an operad equivalent to
the singular chains of the little disks operad.

Proof. By the previous theorems, these operads are finitely generated binary non-symmetric and
Koszul. Then apply Theorem 45. �

Notice that the poset’s method of [Val2] allowed us to prove that these operads are Koszul over
Z. Since the proof of Deligne’s conjecture [MS02] also works over the ring of integers, this last
corollary holds over Z.
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Appendix A. Associative algebras, operads and properads

This appendix is a short survey on the notions of associative algebras, operads and properads which
are the main examples of 2-monoidal categories treated in this text. For a complete treatment of
the subject, we refer the reader to [Val1].

A.1. Associative algebras. Associative algebras, operads and properads are monoids in some
monoidal categories.

Let k be the ground field and let (k-Mod,⊗k, k) be the monoidal category of k-modules equipped
with the tensor product over k.

Definition (Associative algebra). A monoid (A, µ, η) in (k-Mod,⊗k, k) is an associative algebra.

The product µ : A⊗k A
µ
−→ A is associative and k

η
−→ A is the unit of A.

The product of elements a1, . . . , al of A can be represented by an indexed branch, see Figure 2

��
a1

��
...

��
al

��

Figure 2. Product of a1, . . . , al.

Example. Let M be a k-module. Denote by End(M) := Homk(M, M) the space of endomor-
phisms of M . With the composition of endomorphisms, End(M) is an associative algebra.

An associative coalgebra is a comonoid in (k-Mod,⊗k, k), that is a monoid in the opposite category.

A.2. Operads. An S-module is a collection {P(n)}n∈N∗ of right modules over the symmetric
group Sn. In the category of S-modules, one defines a monoidal product by the following formula

P ◦ Q(n) :=
⊕

16l6n

(
⊕

i1+···+il=n

P(l)⊗k
(
Q(i1)⊗k · · · ⊗k Q(il)

)
⊗Si1×···×Sil

k[Sn]

)

Sl

,

where the coinvariants are taken with respect to the action of the symmetric group Sl given by
(p⊗k q1 . . . ql ⊗k σ)ν := pν ⊗k qν(1) . . . qν(l) ⊗k ν̄

−1.σ for p ∈ P(l), qj ∈ Q(ij), σ ∈ Sn and ν ∈ Sl,
such that ν̄ is the induced block permutation.

The notion of S-module is used to model the multi-linear operations acting on some algebras. The
monoidal product ◦ reflects the compositions of operations and can be represented by 2-levelled
trees whose vertices are indexed by the elements of P and Q, see Figure 3. The unit of this
monoidal category is given by the S-module I = (k, 0, 0, . . .), which corresponds to the identity
operation represented by | .

Definition (Operad). A monoid (P , µ, η) in (S-Mod, ◦, I) is called an operad. The associative
product µ : P ◦ P → P is called the composition product and η : I → P is the unit.

Example. Let M be a k-module and consider End(M) :=
⊕

n∈N∗ Homk(M
⊗n, M). The permu-

tation of the inputs of a morphism in Homk(M
⊗n, M) makes End(M) into an S-module. With

the natural composition of morphisms, End(M) is an operad called the endomorphism operad.
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Figure 3. The monoidal product P ◦ Q.

A cooperad is a comonoid in (S-Mod, ◦, I).

To every k-module V , one can associate an S-module Ṽ := (V, 0, 0, . . .) concentrated in arity 1.
This defines an embedding of k-Mod into S-Mod. One can check that this embedding is compatible

with the monoidal products, that is Ṽ ⊗W = Ṽ ◦W̃ . Therefore, (k-Mod,⊗k, k) is a full monoidal
subcategory of (S-Mod, ◦, I). Thus every associative algebra is an operad.

We can forget the action of the symmetric groups and work in the category of N∗-graded vector
spaces. This category is endowed with a monoidal product, a non-symmetric analog of the previous
one. We still denote it by ◦ :

P ◦ Q(n) :=
⊕

16l6n

(
⊕

i1+···+il=n

P(l)⊗k
(
Q(i1)⊗k · · · ⊗k Q(il)

)
)
.

Definition (Non-symmetric operad). A monoid in this monoidal category is called a non-symmetric
operad.

We can also define a notion of operads with colors indexing the inputs and the outputs. The
composition of such operations have to fit with the colors. Such operads are called colored operads
(cf. [VdL, BM05]).

A.3. Properads. We are going to pursue this generalization. Elements of an associative algebra
can be seen as operations with one input and one output (see Figure 2). Elements of an operad
represent operations with multiple inputs but one output. To model operations with multiple
inputs and multiple outputs, one uses the notion of S-bimodule. An S-bimodule is a collection
{P(m,n)}m,n∈N∗ of modules over the symmetric groups Sn on the right and Sm on the left. In
this category, we define a monoidal product based on the composition of operations indexing the
vertices of a 2-levelled directed connected graph, see Figure 4.

Let a and b be the number of vertices on the first and on the second level respectively. Let N be the
number of edges between the first and the second level. To an a-tuple of integers ı̄ := (i1, . . . , ia),
we associate |̄ı| := i1 + · · · + ia. Given two a-tuples ı̄ and ̄, we denote by Q(̄, ı̄) the tensor
product Q(j1, i1) ⊗ · · · ⊗ Q(ja, ia) and we denote by Sı̄ the image of the direct product of the
groups Si1 × · · · × Sin in S|̄ı|.

Definition (Connected permutations). Let N be an integer. Let k̄ = (k1, . . . , kb) be a b-tuple
and ̄ = (j1, . . . , ja) be a a-tuple such that |k̄| = k1 + · · ·+ kb = |̄| = j1 + · · ·+ ja = N .
A (k̄, ̄)-connected permutation σ is a permutation of SN such that the graph of a geometric
representation of σ is connected if one gathers the inputs labelled by j1 + · · · + ji + 1, . . . , j1 +
· · ·+ji+ji+1, for 0 ≤ i ≤ a−1, and the outputs labelled by k1+ · · ·+ki+1, . . . , k1+ · · ·+ki+ki+1,
for 0 ≤ i ≤ b− 1. The set of (k̄, ̄)-connected permutations is denoted by Sc

k̄, ̄
.
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Figure 4. Composition of operations with multiple inputs and multiple outputs.

Example. Consider the permutation (1324) in S4 and take k̄ = (2, 2) and ̄ = (2, 2). If one links
the inputs 1, 2 and 3, 4 and the outputs 1, 2 and 3, 4, it gives the following connected graph

'&%$ !"#1 '&%$ !"#2

>>
>>

>>
>>

'&%$ !"#3
��
��

��
��

'&%$ !"#4

'&%$ !"#1 '&%$ !"#2 '&%$ !"#3 '&%$ !"#4

Therefore, the permutation (1324) is ((2, 2), (2, 2))-connected.

Let P and Q be two S-bimodules, their monoidal product is given by the formula

P �c Q(m, n) :=
⊕

N∈N∗


 ⊕

l̄, k̄, ̄, ı̄

k[Sm]⊗Sl̄
P(l̄, k̄)⊗Sk̄

k[Sck̄, ̄]⊗S̄
Q(̄, ı̄)⊗Sı̄

k[Sn]




S
op
b

×Sa

,

where the second direct sum runs over the b-tuples l̄, k̄ and the a-tuples ̄, ı̄ such that |l̄| = m,
|k̄| = |̄| = N , |̄ı| = n and where the coinvariants correspond to the following action of S

op
b × Sa :

θ ⊗ p1 ⊗ · · · ⊗ pb ⊗ σ ⊗ q1 ⊗ · · · ⊗ qa ⊗ ω ∼

θ τ−1
l̄
⊗ pτ−1(1) ⊗ · · · ⊗ pτ−1(b) ⊗ τk̄ σ ν̄ ⊗ qν(1) ⊗ · · · ⊗ qν(a) ⊗ ν

−1
ı̄ ω,

for θ ∈ Sm, ω ∈ Sn, σ ∈ Sc
k̄, ̄

and for τ ∈ Sb with τk̄ the corresponding block permutation, ν ∈ Sa

and ν̄ the corresponding block permutation. The unit I for this monoidal product is given by
{
I(1, 1) := k, and
I(m, n) := 0 otherwise.

We denote by (S-biMod,�, I) this monoidal category.

Remark. We need to restrict compositions to connected graphs and connected permutations in
order to get a monoidal category (see Proposition 1.6 of [Val1]).

Definition (Properad). A properad is a monoid in the monoidal category (S-biMod,�, I).

Example. Let M be a k-module and consider End(M) :=
⊕

m,n∈N∗ Homk(M
⊗n, M⊗m). The

permutation of the inputs and the outputs of an element of Homk(M
⊗n, M⊗m) makes End(M)

into an S-bimodule. Once again, End(M), endowed with the natural (connected) composition of
morphisms, is a properad.

A comonoid in (S-biMod,�, I) is called a coproperad.
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To an S-module V , we associate an S-bimodule Ṽ defined by{
Ṽ (1, n) := V (n) and

Ṽ (m, n) := 0 for m > 1.

This defines an embedding of monoidal categories, that is Ṽ ◦W = Ṽ � W̃ . The category
(S-Mod, ◦, I) is a full monoidal subcategory of (S-biMod,�, I). Hence, an operad is a properad.
Since the notion of properad includes the one of associative algebras and operads, we work in this
general framework throughout the text. We resume these notions in the following table

Monoidal category : (k-Mod, ⊗k) // // (S-Mod, ◦) // // (S-biMod,�)

Monoid : Associative algebra // // Operad // // Properad.

Remark that the first monoidal product ⊗k is bilinear and symmetric, the second one ◦ is only
linear on the left and no symmetry. The third one � has no linear nor symmetric properties in
general.

A.4. P-gebras. In this section, we precise the previous analogy with multi-linear operations and
recall the notion of an (al)gebra over a properad.

Let (A, µ, u) be an associative algebra and let M be a k-module. Recall that a structure of module
over A on M is given by a morphism of associative algebras φ : A → End(M). More generally,
we have the following definition.

Definition (P-gebras). Let P be a properad and let M be a k-module. A structure of P-gebra
on M is a morphism of properads φ : P → End(M).

When P is an operad, this corresponds to the notion of algebra over P or P-algebra (see V.
Ginzburg and M. Kapranov [GK95]). There is an operad As such that the category of As-
algebras is equal to the category of non-unital associative algebras, an operad Com such that the
category of Com-algebras is equal to the category of non-unital commutative associative algebras
and an operad Lie such that the category of Lie-algebras is equal to the category of Lie algebras.

Categories of “algebras” defined by products and coproducts (multiple outputs), cannot be mod-
elled by operads, one has to use properads. Recall from [Val1], that there is a properad Bi such
that the category of Bi-gebras is equal to the category of non-unital non-counital bialgebras and
there exists a properad BiLie such that category of BiLie-gebras is equal to the category of Lie
bialgebras, for instance.

Remark. Following the article of J-.P. Serre [Ser93], we choose to call a gebra any algebraic
structure like modules over an associative algebra, associative algebras, Lie algebras, commutative
algebras or bialgebras, Lie bialgebras, etc ...

This point of view on algebraic structures allows us to understand and describe general properties
between different types of gebras. Constructions on the levels of operads or properads induce
general relations between the related types of gebras.

A.5. Free and quadratic properad. The forgetful functor U from the category of properads
to the category of S-bimodules has a left adjoint F .

U : Properads / S-biMod : F .
o

We gave an explicit construction of it in [Val3] by means of a particular colimit. For every S-
bimodule V , it provides the free properad F(V ) on V . It is given by the direct sum of connected
directed graphs with the vertices indexed by elements of V . The composition product µ is simply
defined by the grafting of graphs. Therefore, the number of vertices is preserved by µ and it
induces a natural graduation denoted F(ω)(V ) and called the weight.
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Remark that, when V is a k-module, we find the tensor algebra T (V ) on V , which is the free
associative algebra on V . When V is an S-module, we get the free operad in terms of indexed
trees like in [GK95] Section 2.1.

We can generalize the notion of ideal for an associative algebra to ideals for operads and properads
(see Appendix B). Let V be an S-bimodule and R be a sub-S-bimodule of F(V ), we consider the
ideal generated by R in F(V ) and we denote it by (R). As usual, the quotient F(V )/(R) has a
natural structure of properads. When R ⊂ F(2)(V ), the quotient properad is called a quadratic
properad. When V is a k-module, this definition corresponds to the notion of quadratic algebra
(see Y. Manin [Man88]) and when V is an S-module it corresponds to the notion of quadratic
operad of [GK95].

Examples. The symmetric and the exterior algebras are natural examples of quadratic algebras.
The operads As, Com and Lie are the most common quadratic operads (see [GK95]). The prop-
erads BiLie of Lie bialgebras, εBi of infinitesimal bialgebras and Frob of Frobenius bialgebras are
quadratic properads (see [Val1] Section 2.9).

Since R is homogenous of weight 2, the quotient properad F(V )/(R) is graded by the weight.

Dually, there is a connected cofree coproperad denoted F c(V ) (see [Val1] Section 2.8).

A.6. Hadamard tensor product. We define another monoidal product in the category of S-
bimodules.

Definition (Hadamard product of S-bimodules). Let V and W be two S-bimodules. Their
Hadamard product is defined by (V ⊗H W )(m, n) := V (m, n)⊗k W (m, n).

When V and W are S-modules, the Hadamard product is equal to (V ⊗HW )(n) := V (n)⊗kW (n).
When it is obvious that in the context we are dealing with the Hadamard product, we simply de-
note it by ⊗.

This monoidal product is bilinear and symmetric. The unit of the Hadamard product is the S-
bimodule K defined by K(m, n) := k, with trivial action of Sn and Sm, for all n,m (and K(n) = k
for S-modules). (The properad K models commutative and cocommutative Frobenius algebras).

Appendix B. Categorical algebra

The aim of this section is to define the notion of “ideal of a monoid” in a modern, categorical
point of view. Working in the opposite category, we get the dual notion for comonoids. The
other purpose of this categorical treatment is to characterize the ideal “generated by” and its dual
notion.

B.1. Definition of the “ideal” notions. In this section we define the notions of ideal monomor-
phism and ideal subobject of monoids. Dually, we define the notions of coideal epimorphism and
coideal quotient.

Let us work in an abelian monoidal category, that is an abelian category A endowed with a
monoidal product �. Consider the subcategory MonA whose objects ar monoids in A. One
natural question now is to ask whether MonA is still an abelian category. The answer is no
because the class of monomorphisms is too wide, for instance. Recall that in an abelian category

the class of monomorphisms is equal to the class of kernels. Every morphism A
f
−→ B in MonA
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admits a kernel i : K � A is A. The following diagram is commutative

K �K
i�i //

µK

��

A�A
f�f //

µA

��

B �B

µB

��
K // i // A

f // B,

where µA and µB stand for the product of the monoid A and B respectively. Since (f�f)◦(i�i) =
(f ◦i)�(f◦i) = 0, the composite f ◦µA◦(i�i) is equal to 0. By the universal property of the kernel
i, there exists an associative map µK : K �K → K making K into a monoid and i : K � A a
morphism inMonA. Hence kernels exist inMonA and every kernel is a monomorphism. Actually,
K has more properties than just being a submonoid of A (see B.2), which explains why not all
monomorphisms are kernels. On the other hand, let I � A be a monomorphism of monoids, its
cokernel A/I in A is not necessarily a monoid. Following Kummer’s language, we restrict our
attention to ideal monomorphisms, that is monomorphisms that are kernels in MonA.

Definition (Ideal monomorphism). Let I � A � Q be an exact sequence in A, where A is a
monoid. In other words, I � A is the kernel of A � Q and A � Q is the cokernel of I � A.
The monomorphism I � A in MonA is an ideal monomorphism if A � Q is a morphism in
MonA.

In this case, we say that I is an ideal (subobject) of A and Q is naturally a quotient monoid, also
denoted by A/I .

Dually, recall that a comonoid in A is a monoid in the opposite category Aop. If we dualize the
previous arguments in the opposite category, we can see that the category ComonA of comonoids
in A is not an abelian category because the class of epimorphisms is too big. The cokernel in A
of a morphism in ComonA is a morphism in ComonA (and even more), but the kernel in A of a
morphism in ComonA is not necessarily a morphism in ComonA. Therefore, every epimorphism
of comonoids is not a cokernel. Once again, we call coideal epimorphisms, the epimorphisms that
are cokernels.

Definition (Coideal epimorphism). Let I � C � Q be an exact sequence in A, where C is a
comonoid. The epimorphism C � Q in ComonA is a coideal epimorphism if I � C is a morphism
in ComonA.

In this case, the subobject I � C is naturally a subcomonoid of C and the quotient Q is called a
coideal quotient.

Remark. The term coideal is already used in the literature, but stands for a (coideal) subobject
J � C (or a monomorphism) in A of a comonoid C such that its cokernel in A is a morphism in
ComonA. It is equivalent to ask that the quotient C/J is a comonoid.
This notion does not correspond to the dual of the notion of ideal, where “dual” means “in the
opposite category”.

B.2. Relation with the classical definition. We now relate this definition of ideal with the

classical notion. Let I // ι // A
π // // Q be an sequence inMonA, exact in A. Denote by µA and

µQ the products of A and Q respectively. The morphism π is a morphism in MonA, means that
the following diagram commutes

A�A
π�π //

µA

��

Q�Q

µQ

��
A

π // Q.

Let κ : KI � A�A be the kernel of π � π in A.

Proposition 56. Let A be a monoidal category such that the monoidal product � preserves
epimorphisms. A monomorphism I � A is an ideal monomorphism if and only if the composite
π ◦ µA ◦ κ is equal to 0.
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Proof.

(⇒) It comes from π ◦ µA ◦ κ = µQ ◦ (π � π) ◦ κ = 0
(⇐) From the hypothesis, we have that π�π is an epimorphism. Therefore, it is the cokernel of κ
and by the universal property of the cokernel, there exists a morphism µQ : Q�Q→ Q such that
π ◦ µA factors through π � π. It is then straightforward to check that µQ defines an associative
product on Q. �

The extra assumption, that the monoidal product has to preserve epimorphisms, is verified in
every cases studied in this paper. For a proof for this fact, we refer to Proposition 1, Proposition
10 and Section 5 of [Val3].
The problem is now to make explicit the kernel κ : KI � A�A of π � π.

Definition (Multilinear part). The multilinear part in X of A� (X ⊕ Y ) � B is defined either

• by the cokernel of A� Y �B
A�iy�B
−−−−−−→ A� (X ⊕ Y ) �B

• or by the kernel of A� (X ⊕ Y ) �B
A�πy�B
−−−−−−→ A� Y �B,

since iY is a section of πY , that is πy ◦ iY = IdY , these two objects are naturally isomorphic. We
denote it A� (X ⊕ Y ) �B.

It corresponds to elements of A� (X ⊕ Y ) �B with at least one element of X in between.
Suppose that we are working in an abelian category A such that every short exact sequence splits,

that is I // ι // A π
// // Q

∃
uu

or equivalently A ∼= I ⊕ Q. Once again, this condition is verified in

every category studied here since they are categories of representations of finite groups over a field
of characteristic 0.

Proposition 57. In a monoidal abelian category such that the monoidal product preserves epi-
morphisms and where every short exact sequence splits, we have

KI = A� (A+ I) + (A+ I) �A,

where A� (A+ I) := Im

(
A� (A⊕ I) � A� (A⊕ I)

A�(A+ι)
−−−−−−→ A�A

)
.

Proof. It is enough to prove that A� (Q+ I) + (Q+ I) �A is the kernel of π� π. We have the
following commutative diagram

Q� (Q⊕ I) // // Q�A
Q�π // // Q�Q

A� (Q⊕ I) // i1 //

��

��

∃! θ2

OOOO

A�A
A�π // //

π�A

OOOO
π�π

77 77pppppppppppp

A�Q

π�Q

OOOO

A� (Q⊕ I)⊕ (Q ⊕ I) �A

i1⊕i2

55llllllllllllllll

(Q ⊕ I) �Aoooo

OO
i2

OO

∃! θ2 // // (Q⊕ I) �Q,

OO

OO

where the two dotted arrows exist by the property of kernels applied to the first line and last
column. Since A � (Q + I) + (Q + I) � A is by definition the image of the morphism i1 ⊕ i2,
it remains to show that π � π is the cokernel of i1 ⊕ i2. The assumption that every short exact
sequence splits implies that the maps θ1 and θ2 are epimorphisms. It is then straightforward to
check that π � π is the cokernel of i1 ⊕ i2. �
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Since ι : I � A is the kernel of π : A � Q, there exists a morphism µ̄ making the following
diagram to commute

A� (A+ I) + (A+ I) �A // //

µ̄

��

A�A

µA

��

I // ι // A
π // // Q.

Hence, we get π ◦ ι ◦ µ̄ = 0. When the monoidal product is additive on the left and on the right,
we have A⊗ (A+ I) = A⊗ I and (A+ I)⊗A = I⊗A. In this case, the notion of ideal corresponds
to the classical one.

Dually, let I // ι // C
π // // Q be a sequence in ComonA, exact in A. Denote by γ : C � C �

CoKQ be the cokernel of ι � ι. Note that when every short exact sequence splits, we have
CoKQ

∼= KI
∼= C � (C + I) + (C + I) � C.

Proposition 58. Let A be a monoidal category such that the monoidal product � preserves
monomorphisms. An epimorphism C � Q is an coideal epimorphism if and only if the composite
γ ◦∆C ◦ ι is equal to 0.

Proof. We work in the opposite category and we apply Proposition 56. �

In the case of a coassociative coalgebra C = I ⊕Q, it means that the composite (π⊗C ⊕C ⊗π) ◦
∆C ◦ ι : I → Q⊗ C ⊕ C ⊗Q is null. In other words, we have ∆C(c) ∈ I ⊗ I , for c ∈ I .

B.3. Various notions of modules. We recall briefly the various notions of modules and relate
one of them to the notion of ideal.

Definition (Module). An object M of A is a left module over a monoid A if there exists a map
A�M →M compatible with the product of A. Dually, there is a notion of right module. And A
compatible left and right action defines a bimodule.

At first sight, the biadditive case could lead to the following definition : I is an ideal of A if it is a
bimodule over A : A� I → I and I �A→ I . The main problem with such a notion is that A/I
is not a monoid when � is not biadditive. Instead of that, one has to consider a linearized version
of module.

Definition. An object M of A is called a multilinear left module over A if it is endowed with a
map A� (A⊕M)→M compatible with the product and the unit of A.

We have a similar notion on the right hand sight and a notion of multilinear bimodule. If we use
this language, I is an ideal of A if and only if I a multilinear bimodule with the action induced
by µA.

Remark. The same notion arises from the work of D. Quillen on (co)homology theories [Qui70].
The coefficient for these theories are abelian group objects. When one wants to make explicit
Quillen (co)homology of monoids, these coefficients are exactly linear version of modules. We
refer the reader to the paper of H.J. Baues, M. Jibladze and A. Tonks [BJT97] for a complete
description in the case of operads, or more generally when the monoidal product is additive only
on one side.

Dualize these definitions to get the notions of comodules and (multi)linear comodules over a
comonoid C.

B.4. “generated by”. Following this categorical point of view, we define and make explicit the
notions of ideal generated by and subcomonoid generated by.

Let ξ : R � A be a subobject of A in A, where A is a monoid. We are going to consider the
“cokernel” A � Q of ξ in MonA, that is the universal epimorphism of monoids such that the
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composite R � A � Q vanishes. The resulting quotient monoid Q is the largest quotient of A
with relations in R.

Since our leitmotiv is to treat together ideals and quotient monoids, we would rather use the
following presentation. Consider the category Sξ of sequences (S) : I � A � Q in MonA, exact
in A such that the composite R � A � Q is equal to 0. Since I � A is the kernel of A � Q, this
last condition is equivalent to the existence of a morphism ι : R � I in A such that the following
diagram commutes

R

0

**

��

ξ ��=
==

==
==��

∃ ι

��

I // // A // // Q.

Let (S′) : J � A � O be another object of Sξ, the morphisms between (S) and (S′) correspond
to the pair of morphisms (i, p) in MonA such that the following diagram commutes

R
��

ξ

��=
==

==
==��

��

��

��

O

I // //
��

i

��

A

@@ @@�������
// // Q

p

OOOO

J

@@

@@��������

Definition (Ideal generated by R). Let A be a category such that for every monoid A and every
subobject ξ : R � A, the category Sξ admits an initial object S̄ : (R) � A � A/(R).
In this case, (R) is called the ideal generated by R and A/(R) is the induced quotient monoid.

Remark. The terminal object of this category always exists and is given by the sequence A �

A � 0.

If we dualize the previous arguments in the opposite category, we get the same kind of diagram
but with C comonoid instead of A monoid.

Let ξ : S � C be a quotient of C in A, where C is a comonoid. We aim to consider the largest
subcomonoid of C vanishing on S. This notion is given by “kernel” S � C of ξ in ComonA, that
is the universal monomorphism of comonoids such that the composite S � C � Q is equal to 0.

Consider the category Sξ of sequences (S) : I � C � Q in ComonA, exact in A such that the
composite S � C � Q is equal to 0. There exists a morphism π : I � S such that the diagram
commutes

S

I

∃π

OOOO

Coooo

ξ

^^^^=======

Q.oooo

0

cc

Let (S′) : J � C � O be another object of Sξ, the morphisms between (S) and (S′) correspond
to the pair of morphisms (i, p) in ComonA such that the following diagram commutes
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S O
��

����
��

��
��

��

i

��

I

OOOO

Coooo

ξ
^^^^=======

������
��

��
��

Qoooo

J

BB BB

p

OOOO

Definition (Subcomonoid generated by S). Let A be a category such that for every comonoid C
and every quotient ξ : S � C, the category Sξ admits a terminal object S̄ : (S) � C � C(S).
In this case, C(S) is called the subcomonoid of C generated by S and (S) is the induced coideal
quotient.

Remark. The initial object is the sequence C � C � 0.

B.5. Ideal generated = free multilinear bimodule. Since the notion of ideal is equivalent
to the notion of multilinear bimodule, the ideal of A generated by R is the free A-multilinear
bimodule on R.

Proposition 59. The ideal generated by R in A is given by the image

Im

(
A� (A+R) �A

µ2

−→ A

)
.

Proof. Using Proposition 57, we have that it is an ideal of A. It is easy to see that any ideal

containing R also contains Im

(
A� (A+R) �A

µ2

−→ A

)
. �

If we dualize the arguments, we have the explicit form of the subcomonoid of C generated by R.

Proposition 60. Let S � C be an epimorphism in A. The subcomonoid of C generated by S is
given by the kernel of

Ker

(
C

∆2

−−→ C�3 proj
−−−→ C � (C + S) � C

)
.

Proof. Dualize. �
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