
KIeinian Groups Acting On 8 3

Which Are Extensions

L. Potyagailo

U.F.R. de Mathematiques

Universite de LilIe 1

59655 Villeneuve d' Ascq Cedex

France

Max-Planck-Institut für Mathenlatik

Gottfried-Claren-Straße 26

53225 Bonn

Germany

MPI/94-105





KLEINIAN GROUPS ACTING ON S3 WHICH ARE EXTENSIONS.

L. Potyagailo

U.F.R. de Mathernatiques
Universite de LilIe 1

59655 Villeneuve cl'Ascq Ceclex
France

1. Introduction.

The lnain objects of this papcr are discontinuous (Kleiuian) subgroups of the group
11/1(n) of conforulal transfonnations of R n = sn = Rn U {oo}.

A group Ci C lVI(n) is called discontinllous (Kleinian) if there exists a point x E sn
and a neighbourhood U(x) C SIl such that {g E G : gU(x) n U(x) =J 0} is at nlost finite.
The set of all such points fonns dOluain of cliscolltinuity O(G) c sn.

\Ve say that a finitely generated Kleinian group G C 1\1(3) is a function group if there
exists a connected conlponent OG' C S3 invariant uuder the action of G.

Onc of the nlost illtriguing questions of the prescnt theory is to describe thc topological
type of the orbifold ll/I(G) = n(ci)jG (a lnanifold in the case when G is torsioll-free),
in particular, whcn Ci is a function group it is inlportant to know in which cases the
funclanlelltal group ?Tl (NIe = OG'jG) turns out to be finitcly gcneratcd.

It was proved in [Ka-P) that thc \veakest topological version of the wen known finite
ness thcorenl of Ahlfors does not hold in llighcr diulensious. N,:uncly wc constructcd a
function group F C 1\1(3) such that thc gl'OUP ?Tl (np j F) is not finitely gencrated.

It has also been shown that there cxists a finitely generated I<leinian group with
infini tely Inany conjugacy classcs of parabolics [1\a].

On the another hand we constructed a group FI without parabolies such that 7Tl (OFt j F1 )

is not finitely gcneratccl [P 1J. This eonstruction allows one to get such groups as subgroups
(of infinite index) of groups arising as boundary points of the defonnation space of fun
dalnental groups of hypcrbolic 3-nlanifolds fibering over the circle [P2). 1vloreover, such a
group can be realizccl as a subgroup in a c1iscrete co-compact subgrollp of I so(H4

) [Bo-M].

In this paper we are going to interrupt this chain of negative rcsults on the finiteness
problenl and prove that nnder sonle restrietions on the algebraic structure of a K.leinian
group wc will have that ?TI (MG') is finitely generated.

One can be convinced that aU known countcrcxarnples to the finiteness theoreln for
finitely generatecl 1(leinian groups in higher diInensions arisc in the following situation (see
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[I(a-P], [I(a], [PI], [P2]' [Bo-MD. Suppose we have an exact sequence of finitely generated
non-elcrnentary Kleinian groups Fand G

I-tF-tG-tZ-tl (1)

anel let G be geolnctrically finite, function group satisfying sorne cornpleluentary conditions
then 7fl (np IF) is not finitely generatecl.

Question. Suppose \ve have the exact sequence (1) of non-eieinentary function groups
acting discontinuously on the Inain cOIllponent no = nF C 53. Assunle that G is geonlet
rically finite then: is the group 'Trl (1\1F = nF IF) finitely generated iff 7fl (il F ) rv I?

The aiIl1 of this paper is to give a positive answer to this question in the case when G
is iS0l110rphic to the fundaluental group of Cl, 3-Iuunifold.

\~re will denote by )( = IVx51 a COlllpact 3-lnanifold which is a surface bundle over
the circle with a cOnlpact surfacc 1V as fiber. \-\Te recall that a 110nnal non-elelnentary
subgroup in a I(leinian group has the sanle dOll1ain of discontinuity.

Theorenl 1. Let G C 1\1(3) be a geo1netrically finite J7Lnction grouIJ any parabolic
element 0/ which is oJ rank two. SlLIJIJOSe that there exists an is01norphism i : G -t 7fl (~Y)

where )( = 1Vx5 I is a 8'/LrJace b1Lndle over SI. Then the Jollowing assertions are equivalent:
i) 'TrI (no) ~ {I}
ii) There is a non-trivial norm,al subgro'lLp Fo <l G oJ infinite index such tho,t 'Trl (li1Fa =

ilG JFo) is finitely generated.
iii) For every non-trivial normal subgro'ILp F <l G 0/ infinite index the grO'ltp 1f] (ß/fFa =

no JFo) is finitely generated.

Notice that in general therc are infinitely Inany different fibrations on a glven 3
luanifolcl .Y [T2].

Let us denote by p : nc -t 1i10 = fJc JG the natural projection, by T : /Tl (1":[0) ---+ G
the epil110rphisill induced by panel let 'i : G -t NI (.Y = 1VX 51) is an iSOl110rphisin. Thcn
there is an infinite regular cyclic covering

(2)

anel our next result shows that hOlllologically the 11lanifold 1\1F is the salne as 1V x R which
is an infinite cyclic covering of X.

For an inconlpressible surfacc 5 C AtJG clenote by j* : H l (5) ---+ H 1 (A10) the 11lap
induced by inclusion j : 5 -t Ale- If also T' = T IndS): 1ft (5) -r /Tl (~X") then by 7~ we
nlean the corresponding 111ap betwcen first hOlll0logy groups.

Theorenl 2. S'lt]J]JOse that G, Fand .Y are as above and ~X" is a closed S-m,aniJold
fi bering ouer 5 1

. Then H * (AlG, Z) ~ H * ();, Z). MoreotJerJ there exists an incom]J1'essib1c

s'nrJace S C 1'1G s'ltch that 7' = 7 Ind S): /Tl (5) -t F is onto and the Jollowing diagram, i8

comm'ntative
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(3)

,
4

The map 'P is an isomorphism and j* is an epirnorphisrn.

Relnark. Following [I(u] we call (2) a covering of finite type if the group of Deck
transfornlations ofPI is of finite cohonlological ditnension and H* (MF ) is finitely generated.
It was shown in [I(u] that a regular covering of finite type has coholnology either of a point,
a circle or a cOlnpact. surface.

\Ve show in Theorenl 2 that in thc context of I(leinian groups satisfying the conelitions
above PI is of finite type anel thc first two possibilities are rulecl out.

In the Appendix we will obtain as an application of our lnethod sOUle results con
cerning hyperbolic 3-1nanifolds. In particular we give a silnplified proof of recent result of
:NI. Boileau anel S.\~1ang containing in ([B-\~1]) that there is countablc set 1t of hyperbolic
3-1nanifolds of finite vohllne such that for each lvI E 1-l there is an infinite tower of finite
covenngs

7\'. Pi N. TJi-l 11"+ 7'\1 Jl1 ;1,1
..•• 1 --t 1-1 -t ... -t H 1 -t .H

such that all Inanifolels lVi anel j'1 do not fiber over the circle.

Acknowledgenlents: The author is grateful to Peter \t\TatennaJl who reael anel cor
recteel the lnanuscript. I woulel like also to thank Max-Planck Institut für :NIathenlatik
\vhere a substantial part of the writing of thc paper was done.

2. Background Inaterial and prelilllinary results.

vVe start fron1 the finit.ely generatccl Kleinian group C; c 1\.1(3) acting cliscontinuously
on S1(G) C 53 allel we will aSSlllne that C; is functioll, C;fle = fle anel l\1e = ne/Go
Suppose also that there exists an isonlophisnl i : G -t 7fl (){) where ){ is a compact
3-1nanifold fibering over thc circlc.

For the rest of this paper we aSStllnC that any parabolic clenlCnt 9 E G (if there is
such) is of rank 2.

A group G is called geollletrically finite if there exists an c-neighbourhoodl\T!: (.~1~ (C;))
of the convex core of 1'1~ (G) in the 4-diInensional hyperbolic Inanifold 1'14 (G) = H 4

/ G
such that vol (lV!: (.~1~(G))) < +00 (see [Bo], NIo]).

COllling back to the 11lanifold ){ we notice that there exists unique up to isotopy
a systenl of tori T = (Tl, ... ,T,l ) in ){ which are all incompressible, non-parallel and
non-isotopic to the boundary such that. the con1ponents

cl(){\T) = )(1 U ... U ..'Ct. (2)
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are either hyperbolic surface bUlldles over 51 01' Seifert fiber spaces [.1-S].

Thc l11anifold .\" is irreelucible (each embedded sphere 5 C .\" bounds a ball) so there
exists a 111ap f: JV10 -+.\" c0l11patible with T. Hence, if f* : 7fl (ld(Ci)) -+ 7fl( ..\") is the
nutp induced by f then the following diagral11 is conu11utative

G
T/

7fl (lilIe;)

(3)

It is easy to see that non-trivial Seifert conlponents never occur in the decol11position (2)
if 7fl (X) is isonlorphic to G C l\11(n). Otherwise, if )ti is a Seifert l11anifold which is not
51 x 51 X I then there exist non-elel11entary subgroups Gi Y G having non-trivial center
\vhieh is iInpossible [NIa1J.

It has been provecl in [P3] that \ve can choose the ll1ap f in such a way that j-1 (7)
is a systenl M = (2: I, ... , ~r) of incol11pressible stu-faces in Me rcalizing geornetricaly the
algebraic splitting

G = ((GI *H1 Gz *H2 ••• *Hn - 1 Gn ) *Hn ••• )

where Gi is isol11orphic to a discrete subgroup of P 5LzC and Hi ,...., Z EB Z.

Deeol11position (3) follows frol11 thc cor1'esponding deCOl1lposition of 7fl (..Y) which ex
ists clue to thc well-known torus cleconlposition of a Haken 3-111anifolcl.

Recall that geonlet1'ic realization for any expression of the type

G = Ci l *H Gz 01' G = GI *H (3' )

nleans that thc1'e exists an inconlpressible surfaee ~ C A1e; such that T (7fl P~~)) = H,
T (71'"1 (1\1;)) = Gi for conlponents lVIi of cl(1'1c\'L.) (~l(.) is the closure of a set).

Vve will use the above l11entioned result [P3] to show that the liI11it set A( Ci) of the
group G admits sonle niee description.

Denote by int 5 (ext 5) thc interior of thc bouncled (unbounded) cOluponent of 5 3 \5
for any surface 5 enlbeddecl in 53 (00 E ext 5), S3 = R 3 U {oo}.

Let HS consider an infinite collection L =i~l Si of 2-spheres (topological) satisfying

the following conclitions

a. Si C S3 ,intSi n int Sj = 0 ,i =1= j, 'i,j E I.

b. There exists at rnost onc ]JOint in Sj n S k (i, j EI, 'i =1= j) which we call the ]Joint
0/ tangency. Ea,ch [Joint 0/ tangency divides L (I; E Si n Sk :::} L\x is not connected).

c. For a given C > 0 there cxists (Lt most (L finite nnm,ber 01 spheres Sj E L snch that
cliaSi > C' (dia. is spheric(Ll dia1neter 0/ the set in 53), i E {I, 2, ... n}.

A finite eollection (SI, . .. ,5n ) of spheres Si E L is called a path if Si n 5k =1= 0 only
for k E {i - 1, i + I} wherc i E {2, ... , 11. - I}. An infinite collection Ax with the salne
properties will be called an infinite branch.
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d. Every two spheres Si and Sk can be connected by a path (Si, Si+l, .. . , Sk).

e. Every branch Ax determines the accumulation point x = linl Sn and for each
S.. EA",

s'uch ]Joint x there is only one branch A:I.' J so if x i= Y' are accum:ulation points 0/ bra,llches
Ar und Ay then Ax and Ay contains infinitely m.any different sphen~s.

\·Ve call the point x = EIn S" the infinite point of the branch Ax and denote by T
SnEA:r:

the set of all such points.

Definition. The set A = Lu T is a called spherical tree if A = cl(L) al1d L satisfies
condi tions (a. - e).

3. Theorenl 3.1. Let C; be a g1'O'Il]J satis/ying tlte assumptions 0/ Theorem, 1 then the
li7nit set A( G) is a spherical tree.

Proof. Let us prove Theorenl 3.1 by induction on the nUluher n of non-isotopic tori
in the systenl T (see (2)).

\~Then n = 0 then G is isoillorphic to thc fundalnental group of a hyperbolic 3-manifold
X = H 3 /f, f c PSL2 C where X is a. surface bundle over S] [Tl].

By assllluption the isonl0rphislll i : G -t f preserves the type of elenlents of G so by
a theorelll of Tukia [Tu] A(G) is hOllleolllorphic to A(f) I"V 52 = 8H3 as requirecl.

Suppose llOW that for k ::; rl. the assertion of the Thcorelll is true. VVe will prove it for
k = n. Consider the case

G G G'= k *H (4)

where H ~ Z EB Z, G' is isoluorphic to a discrete subgroup of P SL2C anel Gk ~ /T] (){k).

The lcngth of the tora.l hierarchy in X k is at luost k.

Reillark. The case when C; is H lV 1V-extension, G = Gk* H, can be given by analogy.

By [P3] we have an incoillpressible closed surface ~ C ]vJG such that T (7T"1 (2:)) = H,
and for cOlllponents A1i of cl (AiG \ ~) we get also T ( 7T"] (MI)) = G k, T ( /Tl (1112 )) = G' (rccall
the epilllorphisill T : 7T"d A1a) -t G conles froln the quotient 7T"j (klc;) IP* (/TI (na)) I"V G).

Let us fix a cOlllponent 0"0 E p-1 (~) C Da and by choosing basis points in an ap
propriate way we can aSSUllle that H = Stab(aO ,G) = {g E G : gO"0 = aO}. Vle know
froin [P3] that H I"V Z EB Z and H is gcnerateel by two parabolic elelllents 0:, ß E G anel
A(H) = Fix(a) = Fix(ß) = a is the conllllon fixeel point.

The set 0" = cl (aO) = aO U {(l} is a closecl surface in 53. Following [lvla2] we will
introduce the follo\ving notations.

Denote by B~ the conlponents of p-l (lild aeljacent along aO anel let Bi be open
cOlllponents of 5 3 \a such that int(BD C Bi (int(-) is intcrior of a set). Evidently MI =
B~ IGk, lvI2 = B& IG'. Due to the fact that ~ C AIG is elnbedded we ilnnlediately obtain
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9ao n (J0 = 0,
,B2 n B 2 = 0,
,BI n BI = 0,
haO = (J0,

IvIoreover we have

Lenll11a 3.2. ga n a = 0, 9 E G\H.

gE G\H
, E Gk\H
1 E G'\H
hE H.

(5)

The proof of this Lenllna is contained in [P3] but we present it here briefly. Suppose
to the contrary that for senne '" E C;\H, "ta n a =1= 0 thcn by (5) ,Cl. = Cl. anel 1 ~ H. Hence,
there exists a non-trivial extension H 1 of H in Gwhich is also abelian of rank 2. In the
n1anifold )( thc group L = '1 (H) is realized by an en1beddeel torus T E T.

By [Fe], 1ft (T) is the tnaxilnal abelian group of 7ft (X), H = H 1 anel the Le1111ua is
proved.

VVe clain1 now that each parabolic clelnent in Gk or in G' has rank 2. This follows
f1'on1 the assertion belov,,..

Lenll11a 3.3. Let){ bc a Haken m,anifold and TeX an em,beddcd incornpressible

torus ind1tcing tlle decornposition 7fd.Y) = r 1*1r1 (T)f 2 for the dividing tor'lls T and 1fl (.Y) =
r 1*1r1 (T) otherwise, If there exist Cl. E r 1, b E 7ft (.Y) \ r] such that [a, b] = 1 then there
exists an element b1 E f 1 \ < Cl. > such that [a, b1] = 1.

For the proof see [P3, Lenllua 5].

By LeIllIlla 3.3 ancl our induction assulnption it now follows that Ak = A(Gk ) anel
A' = A(G') are spherical trees.

Let us consider now an arbitrary 1'educed word wEG

w = "tl"2 ... "~l where /1 E C'\H1111+1 E C k \H or ,i E Gk \Hi, ,i+l E G'\H. (5)

For a given ward w thc nUlnbel' n does not depend on the dccorl1posi tion (5) and is
called the length 1101 of w [Ma2].

It is easy to see that Ak C BI, A' C B 2 and {Cl} = Ak n A' n a. Let us consider the
following sets

T n = U(tU 1ll 11 ( Ak) U W ~H 11 ( A' ))
TIl

(6)

where the union is taken over all words W IllIl (w~'l1J in Ci of length n whcre the last letter
ITl in the deCOll1position (5) of lO m /l (w~lIll) belongs to G'(Gk ).

It was shown in [Ma2] that the lin1it set A(G) has the following description

00

A(C) = U Tu U T,
11=1

6
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00 00 00 00

where T = U n wmn(Bd u u n w:Hn (B2 ) SO every x E T arises as an intersection
Tn=1 n=l m=l n=l

00 00

of nesteel dOluains a: = n 'U) m n Tl ( B d 01' :c = n W ~n Tl ( B2) where the sequence rn n is
n=1 n=1 Tl

determineel by x.
00

The set L = U Tn is a union of spheres satisfying conelition a. of thc definition of
n=l

the spherical tree.

Step 1. Condition c. Consieler now an infinite sequence of different spheres T n C L
then T n C wn(Bd anel by our induction hypothesis W n are different Inodulo H = Gk n G'.

By Koebe Lenllua [:~vla2] we get lün lU n (Bd = 0 and so conelition c. now follows.
n-tco

Step 2. Condition b. Suppose now {Si, Sj} C Land Si n Sj f:. 0. Wc want to show
that there exists t E C; such that t(Sj n Sj) = A/.- n A' = o..

Clahl1 3.4. Let 1.111 > 1 then yAk n Ak f:. 0 aud gA' n A' = 0; IIloreover if Igl > 2 thcn
gA' n Ak = 0.

Proof. Recall 9 has a decoll1position of the fonn (5). We will prove that gAk n Ak =1= (/)

if Ig I > 1 (the inequa.lity gA' n A' =1= 0 is silnilar).

Suppose at first that 111 E Gk then I7I-1/nAk C '(TI-1 B I C B 2 , In-11nAk n 8B2 = 0.
Hence, gAk C int("'11 .. ·'n-2B2) C int('lB2 ) if '(1 E C;k and gAk C int('1 B d if 11 E G'.
In both cases gAk n cl(B~) = 0 anel gA k n Ak = 0 because Ak C cl(B~).

If now In E C;' then the salne observations lead us to the conclusion gAkeIl ... I n-1 ( B2 )

and also g(Ak) n cl(B~) = 0 and wc are done.

AsslunenowgA'nA/.- =F 0, Igl > 2alldeither'{1l E Gk illwhichcasegA' C illtg'{;1(B 1 )

anel thus gA' n Ak = 0 01' '{Tl E G' and, hence, 9A' C int(g,;' '{T~2.1 )(BI). We obtaiu also
gA' n A1. = 0. Thus gA' n Ak =1= 0 is possible iff 9 E Gk or 9 = 11 . 12, '{I E Gk, 12 E G'.
Clainl is proveel.

By (6 - 7) there exists a pair of elenlc1lts {gi, 9j} E G such that 9i Si = SL 9 j S j = Si
for which {Si, s;.} c A' U Ak.

vVe will prove condition b. in the assull1ption that S: E A/.-, the case S: = A' cau be
done by analogy.

\\Te have Si n gig; 1(Si) =F 0 anel notice that if Si E Ak then by Claim 3.4 9 i9; 1 E C; I.:

anel Si' = 9i9;1(Si) E AI.:. Thus, by ineluction, the point x = SI n Sj' elivides A 1. . On
the other hand the point a = A(H) = Ak n A' divides L. Otherwise there exists a simple
loop a C L such that 0 n A1. =1= 0, 0' n A' =F 0, a E o. Here thc intersection index between
honlology classes of 0 and surface 0' is non-trivial (0' n A(G) = {a}) which is ilupossible
becallse 0' divides S3. Thus, L \ {o" x} contains 3 cOlnponents and L \ {x} is not connected.
It fo11ows 110\V that 9;1 (:c) = Si n Sj divielcs L.

It relnaius to consider the case when Sj = A'. Notice that S:n9i9jl(A') =1= 0 and

Ak ng'(A') #- 0 for g' = gig;' E G. By Clahn 3.4, g' = II '12 01' g' = 11, 11 E Gk, '(2 E C;'.
Hcnce, AI.: n g'(A') = ,dAk n A') = "11(0.) because ,lAk = AI.:.
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Finally, we have proved that if 5i n 5j "# 0 then there always exists t E G such that
t(5i n 5 j ) = Ak n A' = a. As we have shown the point Cl divides L so is t- l (a). Condition
b. is proved.

Step 3. Condition d. \·Ve will prove that for 5 c L there exists a finite path
(SI, . .. : 5) cOllllectillg 5 with 51 = A' 01' with SI E Ak ancl 5 = [}(51 ), 9 E Ci.

Let us prove this by induction on thc length of g. If Igl = 1 thcn wc are given foul'
possibilities.

I. 51 E Ak, 9 E Gk.

II. 51 E Ak, 9 E G'.

III. 51 E A', 9 E Gk.

IV. 51 E A', 9 E Ci'.

Consider first II. "VVe have that 51 can bc cOllnected by a path Cwith thc sphere T E Ak
such that T n A' = Ak n A' = a due to our asslunption that Ak is a spherical tree. Hence
g(T) n A'"# 0 anel we get a path Cu g(C) U A' = (51, ... , T, A',g(T), ... , 5).

Case III is analogaus to II and cases land I\T are trivial.

Suppose we h30ve proved our assertion for 3011 words of length less than rl. anel let
5 = /lr2" '/71(Sd, ri E (G k U G')\H. Thus, 5' = 12" 'rn(5d can be connccteel by
a p30th C' with SI. Ag30in there are two possibilities: rl E Gk 01' r] E G'. Considering
the first we obtain SI! = rl (51) which can be connected with 51 by a path e". By the
considerations ahove the path e= rl e' U E" u C' is reqllirecl.

Step 4. Consider an infini te braneh Ax C A(G) consisting of spheres {SI, ... , Sn, S11 +1 : •.. } ,

Sm n Sn"# 0 only for rn. E {n + 1,11. - I}.

Condition e. will now follo\v fronl

Lenlllla 3.5. Thc em.beddi1l9 A(Ci) y S3 has thc prO]Jerty that ij Ax =I Ay then tllere
cxists a constant C (dcpending on A's) s7.lch that dia(Ax , Ay) ~ Gf > O.

Proof. First let HS show that for every point x E T of fornnll3o (7) we can find
00

the appropriate infinite brauch Ax . Sllppose for concreteness x = n W mn 11 (Bd = lin1
n=l n-too

W mn 11 (T), with T E Ak , T n A' = a. Conneeting cach sphere 'W mll (T) with T by a. path Cnj
00

by property d. we get the infinite branch Ax = U En with x as infinite point.
n=1

Suppose no\v we are given two brauches Ax anel Ay such that A1: "# Ay . By step 3,
up to a finite collection of sphercs, wc can aSSUInc that thc branches A:1: = ({ll, {lz, ... ),
Ay = (~1, ~2, ... ) have con1nl0n first sphere {l1 = ~1 and a11 thc rest clistinct. Let t1 =
PZ n Jl2, t2 = fll n ~2 anel el = Ax \1'-1, e2 = Ay \Pl' By step 2 we get 'Wi E G such
that wi(td = a = er n A(Ci). Take surfaces eri = wi l (er) invariant under groups WiHwi1,
erj n A(G) = ti.

"VVe claiIn now that there exist two conlponents of the set cl(S3\eri) such that Ci C a;
anel er l n er:; = 0. Incleecl, the surface 0"1 (respectively (TZ) separates the sphere PI froll1
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flz (respectively {tl froln ~z), it Ineans that {tl anel {tz (respectively f.t1 anel ~2) lie in
different COIllponents of cl (S3 \ 0'd (cl (S3 \ 0"2))' By connectedness of Bi and the fact that
O"i n A(G) = ti we get that Bi C 0"; for cOlnponents 0"; C 5 3 \O"i not containing /lt.

Now O"i are closed in S3 anel 0'1 n O"z = 0. Hence, dia( 0"1,0"2) > O. Lel1una 3.5. anel
Theoreln 3.1 are provcd.

4. Supposc that A is a sphcrica.l tree and T is thc set of all infinite points of Athen our
111ain goal now is

Theorenl 4.1. HnA,T)::: Hä(T) (open, reduced, with integer coefficiel1ts).

Proof. Consider an a,rbitrary cyclc z E Zf(A, T). Let a.z = L:xi where Xi E T anel
8. is thc boundary z in Cf(A).

As we have shown before there exists a llnique infinite branch Ax ; of the tree A the
00. .

infinite point of which is Xi (A x • = U 5;11 EIn 5:j = x;).
n=l n-+oo

It is easy to see that z intersects Ax • in an infinite nUll1her of spheres Sn E Ax ;. Now
if z n Sr =I=- (/) ancl zn Sm =I=- 0, rn > r then zn 5 r+j =I=- (/) becallse each 5 1'+j divides A , here
S ,.+j E Ax. (j = 1, ... , 111 - r).

Hence,

zn A x ; = L zt: j ,

J

where z~. are half-infini te connected 1-chains frol11 Cf(A) such that zt C A anel the
infinite p~int of z~. is cxactly Xi E T. The last fOrInula follows frol11 the following silnple
observation:

"If z leaves Ax • in a point b then z can return to Ax ; only through b".

This slogan is true because b clivides A. So, the chain 'Wj = zL + Z~:l (j 2:: 2) is (1,

closecl path in Al:.' On thc other hanclwj = L wll , wllere wlj is n closccl curvc in sphere
n

Sn E Ax .: which again fo11ows frol11 thc fact that thc points Sn n 5 n +1 divides A.

Thus, our cycle z is hOll1010gous to the cycle

Z= L ZJl'

liEk!

where Zit E C1(A, T), 8.z ,t
/\ =I=- f.l =I=- O.

Incleecl, we just fix 011C point Xo E 8.z and consider all infinite 1-chains ZJl C Z

connecting Xo with any point X Jt E 8.z, by previous consideratiolls ZJl does not contain
any othcr point frol11 T anel 1110reover x lt is a boundary of unique 1-chain zjJ E Gff(A, T).
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Say that z is a standard rcprescntativc of the dass [z] in H!j(A, T). Suppose that we
have 110\V bvo elel11cnts (z] anel [w] frol11 this group such that 0* [z] = 0* [10]. Let us take
standard rcprcscntativcs

z= L2/1'
1I

1U = L w ll ·

It

\-\Te have O*ZIl = 0* w ,t ancl thc cycle 1l '1 = ZJL - lV/L is hOl11010gous to zero. Incleed,
U /J nT = 0* Z IL = 0* W JL and by using again the fact that each point x Il E 0* Z Il is cleternlined
by a unique branch Aj ; we get

Ull = L ll;t' u{t C 5 j .

)

Thus, [z] = [w] in H!j(A, T). Lel11nla is proved.

Corollary 4.2. BI (A) = 0 and H I (ne;) = 0

Proof. Indeed fronl the exact scquence of pair we have

o --+ Hf(A) --+ Hf(A, T) --+ H3(T) --+ 0

and by Thcorenl 4.1 we obtain Hf(A) = 0 but A is closed so, Hf(A) = BI (A) = O.
Fronl Theorel11 3.1 and the fornlula above it fo11ows that H 1 (A(G)) f"V 0, so by Alexan

der dllality we inl111ediately obtain

(8)

The Corollary is provcd. QE D.

6. Proof of Theorenl 1.

Given Corollary 4.2 tbe proof of Theorenl 1 \vhich wc restate below is now fairly easy.

Theorenl 1. Let G C .1VI(3) be a geornet1'ically finite /unction grouIJ any parabolic
element 0/ which is 0/ rank two. SU]Jpose that there cxists an i~om01']Jhisrn i : G --+ ?Tl (X)
'where )( = f\l X5 I is a su1'/0ce b'nnd1e ave r 5 I. Then th C /ollowing ass ertions are equivalent:

i) 1rI(flc ) ~ {I}
ii) There is a naH-trivial nOf'1nal 81Lbgro1Lp Fo <] G 0/ infinite index such that ?Tl (lvIFo =

nc / Fo) is finitely generated.
iii) F01' eve1'y non-trivial normal subgro'u]J F<] G 0/ infinite index the gro'll,p 1r} (lVIFo =

fle; / Fo) is finitely generated.

Pro%/ Theorem, 1. Obviously the condition ii) is thc weakest one, so to prove thc
Theorel11 it is enough to show the equivalence: i) ~ ii).

The inlplication 'i) => ü) is obvious. Let us prove thc convcrsc stateIllent.
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Thc group Po is nonnal in C; anel non-elenlentary, so they both have the sanle linlit
set anel act on the saUle COlllponent S1 a [Mal]. The luaps fla ~ lvIFo ~ A10 are regular
infinite coverings, \vhere p = PI 0]J2 : fl ---+ 1I1G = f'lc/G is thc natural projection.

If Jrl (ll1Fo) is finitely generated then by Stallings fibration theorenl [He, Th. 11.1] the
group 7T"1 ( 111(Fa)) is isonlorphic to ci ther the fundanlcntal group of a closecl surface 01' to
a free group.

Hence, for 7T"1 (fle) one has the following trihotomy: either it is isonlorphic to the
fundaluental group of a closecl surface, 01' it is isoillorphic to a free group, 01' is trivial
group.

Notice that the first two possibilities are rllied out since 7T"t (S1G ) = [Jrl flG: 7T"1 [lG] by
Corollary 4.2. The reluaining possibility is the desired one. The Theorelll is provecl. QED.

6. Proof of Theorenl 2.

"'..,Te will asStllUe that i : C; -t 7ft (){) is an isonl0rphisnl and the nlanifolcl ~Y is a surface
bundle over a. closed surface .T\l. Let p : S1 G -t 111G = D,G / G be a regular covering anel
G C A1(3) be a function group acting on an invariant COlllpollel1t [lG C 53.

V'..re recall that T : 7T"1 (lvJG) --+ G is a natural isoluorphisnl induccd by p, F =
i -1 (7T" 1(JV)) and PI: A1F = D.G / F --+ D.c IG is an infinite regular cyclic coveril1g.

TheorelTI 2. Snppose that C;: F and ~Y are as above and ){ is a closed 3-rnanifold
fibering over 51. Then H.(1\1e: Z) ~ H.(){, Z). Moreover) there exists an incompressible
S'Urface 5 C A1e s'neh tha,t T' = T 11rd 8): 7T" 1(S) --+ F is onto and th e follo'win9 diagrar/l, is
com.mutative

(3)

I

~

The m.ap r.p is an isom.o17Jhism. and j. is (Ln epi1norphism.

Let us consicler again thc conllllutative diagranl (*) in §2. By [He, LCluma 6.5], we
have up to snlall isotopy that I- t (f\l) = )\..1 = {51: ... , Sm} is a collection of incolupressible
surfaces in 1\1G. Vve can choose a. loop ß C Jrj (.Y) the intersection nUlllber of which with
1'/ is one.

Then for any loop 0' C 1vJe which nleets /-1 (AT) transversely f. ([al) = [ßr l where n
is the SUln of "signcd" intersection nUlnbers of 0' with )\..1. Choosing 0' in such a way that
n = 1 we get that 1I1e\Si is not connectecl for sonle 5i E A1. Put 5 = 5i

Step 1. Let Fo = T( Jrl (5)), theu

G = r *Fo (10)

Proof. Consider one preilnage ~1 E p-l (S). All ilnagcs of E j are disjoint, so

gL: t n L: 1 = 0, 9 E G\Fo (11 )
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where Fo = Stab(~l, G).
By Alexander eluality H 2 (flc ) = Hf(nc ) (open, with integer coefficients), anel Hf (ne) =

H 1 (53, A(G)) ~ Ho (A(G)). By Thcoreul 3.1 A(G) is connecteel, so H2 (nc ) I"V 0. It follows
that ~1 divides ne .

Take a cOlnponent lvI E ])-1 (lVI) of the lnanifolel Ai = cl (1'1c \5) such that "EI E BAi
and let r = Stab(l\1, G) = {g E C; : g1l1 = Al}. Obviously Ai = M Ir. Thc cOllclusioll of
Step 1 now follows froln [rvla 2]. For cOlllpletcness we present here these consieleratiolls.

~ ~

Let, = 7([0]) then ,(int A1) n (A1) = f/J anel, if ~2 = ,~} wc denote by Bi open

conlponents of nC\~i not. containing lVI anel it is not harel to see that up to choice of
notations ,(Bd = int(nc;\B2 ). Let also H i = Stab(~i,G) anel H2 = ,BI,-I.

The group G is gellcratecl by r anel , because Jrt (1I1c) = (?Tl (Ai), [0']). Now for an
arbitrary worclw we get

w = ,Cl n • 9n ',On-1 . 9n-l ... "Clt . 91

9j =I 1,O'i i= 0, 'i E (1," ',n -1),] E (2,···,n).

Following [Ma 2, §5] we prove that w( x) =I x for any x Eint Al. Indeeel: ,°1
• 91 (x) E

BI U B 2 (because, "/1\1 C B 2 , ,-I j1;J C Bd. Further 92 . ,Clt . gdx) E int(g2(B2 U Bd) C

53 \11,{ anel finally w(:c) t/:. int 11/1 so every relation in G is a consequence of relatiolls in r
01' the relation H 2 = "/H1,-1 as requirecl ..

Step 2. Fo eontains a s'nbgro'lL]J !{o isomorphie to the j1l,ndarnental gro'up oj a closed
snrjace.

Proof. Consieler the decolnposition of Jr} (~Y) arising frolll (10).

Jr} (){) = f~ , f' = i(f), F~ = 'i(Fo)
pi

o
(10')

Let us construct 2-eliInensional CH1-colnplexcs 171 and 1"i such that Jr} (Y~I) ~ r',
Jrt (Y"2) ~ F~ anel a coulplex y~ = Y1 U (1"i x !) for which Jr} (y~) ~ Jrt ( ..Y) and let j this
isol11orphisnl. Thcre is a nlap ·tP : ~Y -+ y~ inelucing j, 'tP* = j. Agajn by slna1l isotopy
'IjJ-I (1"i x {1/2}) is a collection of incolllpressible closed surfaces R = (RI ,"', R.d).

By construction, 'IjJ* (?Tl (R.d) C Jrt{1"i). QED

Step 3. Fo = F.

Proof. \-\Te have f*(JrdS)) = 'i· r(1fI (5)) = i(Fo) C 1f1(lV) (see diagranl (*) in itel11
2.) anel Fo C F = i-I (Jrt (iV)). By step 2 'we get. an incolnpressible surface R C ){ such
that 7fdR) = ]{b c F~ C Jrl (lV), so index IJrI (lV) : ]{b I is finite. The group ](b is realized
by thc fUlldanlental grou}) of the closecl C1nbeelelcel surfacc B" so ]{~ is the nlax1Inal surface
group in JrI (~\'") [Fe], hence, ]\.~~ = Jrl (lV) and we inu11ediately obtain F~ = Jr} (lV), Fo = F.
QED
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Consider now thc COll1111utative eliagralll

(11 )

where J.l i are "abelianization" ll1aps anel T. is induced by T. It is easy to see that T. is onto.
Suppose now T.(g) = 0, gEH] (lvIG) and g' E 7f1 (lv1c) for which fll(g') = g. If g" = T(g')
thcn g" E [C, C;] (thc conunutator subgroup) anel flz(9") = O. So, we finel that g' = q' W

whel'e q E [7f} (lVIo ), 7ft (hIc,')] allel w E P.(7ft (Sl)), hence, {l1 (g') = 1-11 (w) = 0, because cach
prei111age in p-1 ( w) is a cycle hOlllologous to zero by (8).

V'/e proveel that T. is iSOl1l0rphisnl.

By duality, H2(A1c) ~ H I (1'10) ~ HZ ()C), anel H2 (.i\llc) ~ Hz (X) because H1 (jv1c) ~
H] ()C).

If now PI : NIF ---+ 111G is a regular cyclic covering then the considerations above
give an isolll0rphis111 c.p : H1(AIF) ---+ H](F) anel if T;(S) = 0 for s E H 1(S) thell oS E
j.l.((pt}.(7fl(Sle))) anel ].(8) = 0 (see cliagralll (3)), here (PI). : 7f] (Alp) ---+ 7f} (NIe) is
11101101110rphis111 illduced by ]J1. Theorclll 2 is proved.

7. Appendix. SOHle applications.

As application of the above 11lethoel we will give (our Corollary 7.2) a of the followillg.

Theorenl [Boileau- \-\Tang, B-W]. There is c01.lnta,bIe set H oJ hyperbolic 3-mani/olds
0/ finite 'Uol1.Lmc H = {lVII, ... , A1'I ...} .~'l/,ch that Jor each A1 E H there is an infinite tower
0/ finite coverings Pi

;\ T Pi ;\ T Pi - 1 P~ N P l AI
... lvj -t lvi-l ---+ ... --t 1 --t I

aud all mani/olds lVi and A1 do not fiber over the circle.

(12)

This relatecl sOlnehow to tbe well-kllow Thurston's conjecturc that is any finite vohllne
hyperbolle 3-Inanifolcl fillitcly covcrecl by a circle bundle?

Obviously, we can not garalltee that (12) gives thc cOlnplete list of all finite coverings
over :A1. Dur proof does not usc degree onc ll1i:tpS which was a crucial tool of [B-\-\T] anel
scems to be 1110rc elenlcntary. Although we also use essentially the notion of totally null
hOlnotopic knots due to [BDM]. Dur proof is bascd on the followillg silnple fact which was
used sOluehow in the previous chapter.

Key Observation. SU]Jpose that lvI is a compact 3-manijold which admits an infinite
covering p : Sl --+ Al Mtch that H\ (Sl, Z) = 0 (with cornpact s'upport) and Sl is not simply
connected then Al does not fiber over the circle.
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Proof. Suppose to the eontrary that 1\1 fibers over the circle. Then there i8 an infinite
cyclic covering Pt : l'd(F) ~ _~1 corresponding to 30 no1'1nal surface subgroup f <l 7T'1 (.~1)

anel we have the diagranl of coverings

1\1

lvI(F)
./ PI (13)

Our goal is to show that the diagraul (13) can be luacle cOl1unutative 01' else that the
Pt can be lifted to a covering P2 : Sl -+ A1(F).

Incleed, we havep.([7T' I S1,7T' l S1] = 7T' 1 S1) C {Jr11\1,Jr11\1] C Jrll\1, where we denote (G,G]
the conunutator subgroup of G. On the other hand [/T1]\([, /T1AtJ] C (]J.).(Jr1.~1(F)), hence
P.([/Tl Sl, Jr1Sl]) C (pl).(/Tl1\tJ(F)).

\Ve have provecl that there is a covcring ]J2 : S1 -+ 111(F) such that ]J = Pt 0 P2. The
group /Tt{1\1(F)) is isolnorphic cither to the fundaJnental group of a closecl surfaee 01' to
a free group of finite rank, so for Jrt S1 we have three possibilities: a) /Tt n is trivial group,
b) 7T'1 S1 is the funclaluental group of a closeel slufaee 01' e) /Tl n is a free group (possibly of
infini te rank).

The first possibility is rulecl out by the hypothesis ancl the last two are ilnpossible
since [Jrln, /TIn] = /T1n. The result follows. QED.

Let in our I(ey Observation 1\1 = SlIG where G = Deck(p).
Corollary 7.1. For any subgrvu]J 0/ finite index H C Ci, IG : HI ~ 00 thc mani/old

1\1(H) = Sll H does not fiber over the circle.
Proof. Repeat the proof of the Observation for lvf(H). QED.
Relnark. One can think of fl as an invariant C01l1pOnent of torsion-free I{]einian

group G C M(3) acting on 53. In particular, an exmnple of such a covering is given
by B.Apanasov anel A.Tetenov [A-T] where G is isolnorphic to thc funelamental group
of a hyperbolic 3-nlanifolel N = H 3 Ir, G ~ r, the group G is itself Kleinian whose
lilnit set A( G) is a wild sphere elnbeeldeel in 53. By the Alexander duality one has here
H 1 (A(G), Z) = H 1(n( G), Z) = 0, (A(G) is 30 closed set, so an hOll1ologies coincide).

The construction insures that one of thc cOlnponents 53 \ A(G), say Sl, is not Sill1ply
connectcd. So, by the above Observation thc 1l1anifold lvJ( G) = n/G clocs not fiber over
the circle as wen as an of its fini te coverings of the type 1\1(Gn) = S1IG11 W here G11 isa
finite-index subgroup of G. Note that by the construction lvf( G) i8 not itself hyperbolic
since contains an ineolnpressible torus obtained by the projection of an incolnpressible
torus in discontinuity clonlain. End 0/ the Rcm,ark.

The rest of the Chapter is devoted to thc proof that there exists a eountable set H of
finite VOlUll1C hyperbolic 3-1nanifolds such that for cvery M E H thcre is a regular infinite
covering n ~ Ai for which H. (0, Z) = 0 anel /TIO 1= 1.

Vve neeel to introduce sonle te1'1ninology (see [BDM] and [B-vV]). Say that the Sill1ple
closed curve c C 1'1 is totally null-holuotopic knot in 111 if c bounds a singular disk D C 111
whose regular neighborhoocllV(D) elnbeds trivially which lncallS i.(/T1 (N(D)) = 1 where
i : Pl(D) ----7 111 is the natural clnbedding.

Let c C 111 is totally null-holl1otopic knot., by 1I1(n, 111.) we denote the result of (11., '111,)
surgery on c (i.e. we first delete a regular neighborhood of c ancl then glue back the solid
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torus such that the ne\v rneridian \vill have (n, rn)-slope in the surgered rnanifold). If c is
totally null-honlotopic one clefines in a standard way the 10ngitude-rl1eridian systell1 (a, b)
where b is chosen to be horuologically trivial in lvI \ lV (c) [BDM] .

Let p : iif ---7 lVI be a regular covering then thc restriction of p to each C0111pOnent
of C = p- t (c) (CI possibly infinite) is a horneorllorphisrn since c is hOl11otopically trivial
in j\1. Nloreovcr since c is totally null-hol11otopic, all cOlllponents of both p-l (lV(D)) ancl
p- 1 ( N (c)) are disjoint and t hc 1118.P P restri cted to each of theIn is a honleoul0rphisln too.
Thus, we can choose a conlponent (Li of p-l(a) and bi of p-l(b) which give the l11eridiau
~ongitude SystCl11 on the boundary of senne cOl11ponent f"Ti of f"T(D) = p-l (!V(D). In fact,
bi E p-l (b) is the longitude since it is hOl11ologically trivial in lVi anel all lVkare disjoint,
so it is hOlnologically trivial in the whole n1anifolel il \ p -1 (lV (D) ).

The significance of thc notion of totally null-holnotopic knots is that any surgery
on c C Ai can be liftecl to a silnultaneous surgery with the sal11e coefficients on C/ C

A1. Specifically, we rel110ve the lift fl(D) froln Nt anel obtain A1(n,111.) by doing the
(11., rn)-surgery sil11ultaneously on a11 conlponcnts of ai\Ti . Thc following len1111a is a silnple
ext.ension of [B- \\T, Lenl1118. 5.3] to the case of infinite covering p.

Lenllua 7.2. Let p : 1'1 ---7 111 any regular covering and c E A1 is a totally nu11
hOl11otopic knot. Then for H\ (M(p-l (c), (1, 'ln), Z) = H 1 (M, Z)

Pro 0 f. Consider the l11anifolel i\l = lij \ ]\l (D). It can be easicly seen that. for a fixed
cOl11poncnt Cj E p-t (c) anel for its regular neighborhood Pli E p-l (.IV (c)) we obtain

where < 1ni > is the cyclic group generatecl by new sllrgery 111eridian 1nj with thc slope
(l,rn). Thus, '1ni = ai + 1n&i \vhere {aj~bi} = p-\({a,b}) n aiifj . But bi is trivial in

HdNI \ lVi, Z) so HdNI \ lVi, (1, Jrl), Z) ::: H l (A1, Z) ~ H1(j'VI \ /\Ti , Z)I < Ci >. the
Leuuna now fo11ows by incluction on the nUlllber #(p-l (c)). QED.

It was shown in [B-\\T] by using Myers' result that any cou1pact oricntable 3-n1anifolcl
NI contains a totally nu11-hol11otopic hyperbolic knot c (i.e. ·int(A1 \ c) possecls a cornplete
hyperbolic structure of fini te vohnne).

Theorenl 7.3. Let AI = H 3 Ir be a hypcrbolic 3-maniJold 01 finitc vol1l,mc and c C Ai
a totally null-hornotopic knot. Then thcrc exists no such that Jor any n ~ HO the hypcrbolic
71~anilold 1\1(1, n) posscds a regular covcring p : 0 ---7 1\11(1,11.) s'lLch that H 1 (0, Z) = 0 and
o is not simply connected.

Put G = Deck(p).

Corollary 7.4. The rnanifold 111(1,11.) = nlc rloes not fiber over 51 as 'Well as all vi
its finit e couerings 0f the type i11l = nlCn: 'where C; Tl is a subgroup 0f C 0f finite index.

The proof of the Coro11ary iuunediately follows froI11 thc assertion of the Theoreul anel
our Key Observation.

Proof of Theorenl 7.3. Lct us first consider thc covering H 3 ~ H 3 Ir = 111 anel
thc lift 7f -1 ( c) = C'. By hyperbolic Dehn surgery theoreln [T3] there exists no such that for
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n ~ no the luanifolel 1\1(1, n) is hyperbolic. Consider the luanifolcl !VI = H3 \ Jr- 1(N(c))
and let n = H 3 (1, n) (recall that H 3 (1, n) is obtained froll1 H 3 by cloing (l,n)-Dehn surgery
sin~ultaneouslyon a11 con1ponents of C).

Clahn. The cove1'i1lg Jr i1ld'/l,ces the rcg'lllar covering p : n ---t NI (1, n) = n/G where
the grrJU!J G = Deck ]J is isom,or]Jhic to f.

Consicler the induced covering p : il ---t A1 \ lV(C') where p = Jrlü anel take, E f.

Since the restrietion of Jr to each conlponcnt iVi E Jr-l(lV(C)) is a honleolnorphism the
eleluent , senels the nleridian-longitude systenl ((Li, bd to that of on ,(Dild. As we do our
(1, n)-surgery on 1\1 sinltlltaneously, / preserves the (1, n)-surgery slope of D(Jr- 1 (iV(c))),
anel so extends to SOlue honleonlorphisnl i* of Sl. By repeating this contruction for all
generators of f we obtain the group f* acting cliscontinuously on Sl. Incleecl, the action
of f* on 1\;1 coinciele with that of f, anel so is discontinuous there; further each soliel torus
con1pollent [li is strictly invariant in f* uneler the iclentity: \/"'1* E f* \ fiel} : ,* (l\Ti ) n AT j =
0, so the action is discontinuous cverywherc in n.

The lllap 4J : f ---t f* is well-defined anel, obviously, ison10rphislu since each ,* E f*
is uniqnely eleternlined by its action on }"~I. The Clainl is proved. QED.

Put C; = f* = 4>(f). anel notice that Lenuna 7.2 illlplies that H1 (Sl, Z) = O. To finish
the proof of our Theorenl we necel only to show that n is not sinlply connected. In fact if
it were not so, then the lluluifolel 1\1(1, n) = fliC; is hyperbolic and has the fundaluental
group isonlorphic to r, so 1\1 anel j\1(1, 11.) would be isonletric by Mostow rigiclity thcorenl.
The last is ilnpossiblc since 1'1(1, n) alld 1'1 have different vohuue by hyperbolic Dehn
Surgery Theoreln(T3J. The Theorcnl is proved. QED.

Remark. The ahove construction of Sl looks like a sort of II confonnal Dehn surgery".
Vve have in this connection the following.

Qncstio71. S7l]JPO.'iC that r, Sl and G as a.bovc. Is it possible to em,bed n to 53 and to
,realize G to be a Klein'ian gro'np having n as invariant com]){Jr1.ent?

The positive answer to this question woulc1 provic1e a. standard way to proeluce a11
kllown exanlpIes of "patological" of Kleinian groups acting in 53 (e.g. [A-Tl, [1Ca-Pl, [P]).
One can also point out if such G was I\]einian then rand Ci would belong to different
Coulpouents of the defonnation variety Dcf(r, 150+ (H4

)) which follows frol11 Marden
Sullivan stability theoreIu.
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