Kleinian Groups Acting On S^{3} Which Are Extensions

L. Potyagailo

U.F.R. de Mathématiques	Max-Planck-Institut für Mathematik
Université de Lille l	Gottfried-Claren-Straße 26
59655 Villeneuve d'Ascq Cedex	53225 Bonn
France	Germany

KLEINIAN GROUPS ACTING ON S^{3} WHICH ARE EXTENSIONS.

L. Potyagailo

U.F.R. de Mathématiques

Université de Lille 1
59655 Villeneuve d'Ascq Cedex
France

1. Introduction.

The main objects of this paper are discontimuous (Kleinian) subgroups of the group $M(n)$ of conformal transformations of $\overline{\mathbf{R}}^{n}=S^{n}=\mathbf{R}^{n} \cup\{\infty\}$.

A group $G \subset M(n)$ is called discontinuous (Kleinian) if there exists a point $x \in S^{n}$ and a neighbourhood $U(x) \subset S^{n}$ such that $\{g \in G: g U(x) \cap U(x) \neq \emptyset\}$ is at most finite. The set of all such points forms domain of discontinuity $\Omega(G) \subset S^{n}$.

We say that a finitely generated Kleinian group $G \subset M(3)$ is a function group if there exists a connected component $\Omega_{G} \subset S^{3}$ invariant under the action of G.

One of the most intriguing questions of the present theory is to describe the topological type of the orbifold $M(G)=\Omega(G) / G$ (a manifold in the case when G is torsion-free), in particular, when G is a function group it is important to know in which cases the fundamental group $\pi_{1}\left(M_{G}=\Omega_{G} / G\right)$ turns out to be finitely generated.

It was proved in [Ka-P] that the weakest topological version of the well known finiteness theorem of Ahlfors does not hold in higher dimensions. Namely we constructed a function group $F \subset M(3)$ such that the group $\pi_{1}\left(\Omega_{F} / F\right)$ is not finitely generated.

It has also been shown that there exists a finitely generated Kleinian group with infinitely many conjugacy classes of parabolics [Ka].

On the another hand we constructed a group F_{1} without parabolics such that $\pi_{1}\left(\Omega_{F_{1}} / F_{1}\right)$ is not finitely generated [P 1$]$. This construction allows one to get such groups as subgroups (of infinite index) of groups arising as boundary points of the deformation space of fundamental groups of hyperbolic 3 -manifolds fibering over the circle [P2]. Moreover, such a group can be realized as a subgroup in a discrete co-compact subgroup of I so $\left(\mathbf{H}^{4}\right)[\mathrm{Bo}-\mathrm{M}]$.

In this paper we are going to interrupt this chain of negative results on the finiteness problem and prove that under some restrictions on the algebraic structure of a Kleinian group we will have that $\pi_{1}\left(M_{G}\right)$ is finitely generated.

One can be convinced that all known counterexamples to the finiteness theorem for finitely generated Kleinian groups in higher dimensions arise in the following situation (see
$[\mathrm{Ka}-\mathrm{P}],[\mathrm{Ka}],[\mathrm{P} 1],[\mathrm{P} 2],[\mathrm{Bo}-\mathrm{M}])$. Suppose we have an exact sequence of finitely generated non-elementary Kleinian groups F and G

$$
\begin{equation*}
1 \rightarrow F \rightarrow G \rightarrow \mathbf{Z} \rightarrow 1 \tag{1}
\end{equation*}
$$

and let G be geometrically finite, function group satisfying some complementary conditions then $\pi_{1}\left(\Omega_{F} / F\right)$ is not finitely generated.

Question. Suppose we have the exact sequence (1) of non-elementary function groups acting discontinuously on the main component $\Omega_{G}=\Omega_{F} \subset S^{3}$. Assume that G is geometrically finite then: is the group $\pi_{1}\left(M_{F}=\Omega_{F} / F\right)$ finitely generated iff $\pi_{1}\left(\Omega_{F}\right) \cong 1$?

The aim of this paper is to give a positive answer to this question in the case when G is isomorphic to the fundamental group of a 3 -manifold.

We will denote by $X=N \widetilde{\times} S^{1}$ a compact 3 -manifold which is a surface bundle over the circle with a compact surface N as fiber. We recall that a normal non-elementary subgroup in a Kleinian group has the same domain of discontinuity.

Theorem 1. Let $G \subset M(3)$ be a geometrically finite function group any parabolic element of which is of rank two. Suppose that there exists an isomorphism i: $G \rightarrow \pi_{1}(X)$ where $X=N \widetilde{\times} S^{1}$ is a surface bundle over S^{1}. Then the following assertions are equivalent:
i) $\pi_{1}\left(\Omega_{G}\right) \cong\{1\}$
ii) There is a non-trivial normal subgroup $F_{0} \triangleleft G$ of infinite index such that $\pi_{1}\left(M_{F_{0}}=\right.$ Ω_{G} / F_{0}) is finitely generated.
iii) For every non-trivial normal subgroup $F \triangleleft G$ of infinite index the group $\pi_{1}\left(M_{F_{0}}=\right.$ Ω_{G} / F_{0}) is finitely generated.

Notice that in general there are infinitely many different fibrations on a given 3manifold X [T2].

Let us denote by $p: \Omega_{G} \rightarrow M_{G}=\Omega_{G} / G$ the natural projection, by $\tau: \pi_{1}\left(M_{G}\right) \rightarrow G$ the epimorphism induced by p and let $i: G \rightarrow \pi_{1}\left(X=N \widetilde{\times} S^{1}\right)$ is an isomorphism. Then there is an infinite regular cyclic covering

$$
\begin{equation*}
p_{1}: M_{F} \rightarrow M_{G} \quad, \quad F=i^{-1}\left(\pi_{1}(N)\right), \tag{2}
\end{equation*}
$$

and our next result shows that homologically the manifold M_{F} is the same as $N \times \mathbf{R}$ which is an infinite cyclic covering of X.

For an incompressible surface $S \subset M_{G}$ denote by $j_{*}: H_{1}(S) \rightarrow H_{1}\left(M_{G}\right)$ the map induced by inclusion $j: S \rightarrow M_{G}$. If also $\tau^{\prime}=\left.\tau\right|_{\pi_{1}(S)}: \pi_{1}(S) \rightarrow \pi_{1}(X)$ then by τ_{*}^{\prime} we mean the corresponding map between first homology groups.

Theorem 2. Suppose that G, F and X are as above and X is a closed 9 -manifold fibering over S^{1}. Then $H_{*}\left(M_{G}, \mathbf{Z}\right) \cong H_{*}(X, \mathbf{Z})$. Moreover, there exists an incompressible surface $S \subset M_{G}$ such that $\tau^{\prime}=\left.\tau\right|_{\pi_{1}(S)}: \pi_{1}(S) \rightarrow F$ is onto and the following diagram is commutative

$$
\begin{array}{ccc}
H_{1}(S) & \stackrel{\tau_{\rightarrow}^{\prime}}{\rightarrow} & H_{1}(F) \tag{3}\\
j_{*} \searrow & & \nearrow \varphi \\
& H_{1}\left(M_{F}\right) &
\end{array}
$$

The map φ is an isomorphism and j_{*} is an epimorphism.
Remark. Following [Ku] we call (2) a covering of finite type if the group of Decktransformations of p_{1} is of finite cohomological dimension and $H^{*}\left(M_{F}\right)$ is finitely generated. It was shown in [Ku] that a regular covering of finite type has cohomology either of a point, a circle or a compact surface.

We show in Theorem 2 that in the context of Klemian groups satisfying the conditions above p_{1} is of finite type and the first two possibilities are ruled out.

In the Appendix we will obtain as an application of our method some results concerning hyperbolic 3 -manifolds. In particular we give a simplified proof of recent result of M.Boileau and S.Wang containing in ([B-W]) that there is countable set \mathcal{H} of hyperbolic 3 -manifolds of finite volume such that for each $M \in \mathcal{H}$ there is an infinite tower of finite coverings

$$
\ldots N_{i} \xrightarrow{p_{i}} N_{i-1} \xrightarrow{p_{i-1}} \ldots \xrightarrow{p_{q}} N_{1} \xrightarrow{p_{1}} M
$$

such that all manifolds N_{i} and M do not fiber over the circle.
Acknowledgements: The author is grateful to Peter Waterman who read and corrected the manuscript. I would like also to thank Max-Planck Institut für Mathematik where a substantial part of the writing of the paper was done.

2. Background material and preliminary results.

We start from the finitely generated Kleinian group $G \subset M(3)$ acting discontinuously on $\Omega(G) \subset S^{3}$ and we will assume that G is function, $G \Omega_{G}=\Omega_{G}$ and $M_{G}=\Omega_{G} / G$. Suppose also that there exists an isomophism $i: G \rightarrow \pi_{1}(X)$ where X is a compact 3 -manifold fibering over the circle.

For the rest of this paper we assume that any parabolic element $g \in G$ (if there is such) is of rank 2.

A group G is called geometrically finite if there exists an ε-neighbourhood $N_{\varepsilon}\left(M_{c}^{4}(G)\right)$ of the convex core of $M_{c}^{4}(G)$ in the 4-dimensional hyperbolic manifold $M^{4}(G)=\mathbf{H}^{4} / G$ such that $\left.\operatorname{vol}\left(N_{\varepsilon}\left(M_{c}^{4}(G)\right)\right)<+\infty(\sec [\mathrm{Bo}], \mathrm{Mo}]\right)$.

Coming back to the manifold X we notice that there exists unique up to isotopy a system of tori $\mathcal{T}=\left(T_{1}, \ldots, T_{n}\right)$ in X which are all incompressible, non-parallel and non-isotopic to the boundary such that the components

$$
\begin{equation*}
\operatorname{cl}(X \backslash \mathcal{T})=X_{1} \cup \cdots \cup X_{\ell} \tag{2}
\end{equation*}
$$

are either hyperbolic surface bundles over S^{1} or Seifert fiber spaces [J-S].
The manifold X is irreducible (each embedded sphere $S \subset X$ bounds a ball) so there exists a map $f: M_{G} \rightarrow X$ compatible with τ. Hence, if $f_{*}: \pi_{1}\left(M\left(G^{\prime}\right)\right) \rightarrow \pi_{1}(X)$ is the map induced by f then the following diagram is commutative

$$
\begin{array}{ccc}
& G & \\
\tau \nearrow & & \searrow i \tag{*}\\
\pi_{1}\left(M_{G}\right) & \xrightarrow{f .} & \pi_{1}(X)
\end{array}
$$

It is easy to see that non-trivial Seifert components never occur in the decomposition (2) if $\pi_{1}(X)$ is isomorphic to $G \subset M(n)$. Otherwise, if X_{i} is a Seifert manifold which is not $S^{1} \times S^{1} \times I$ then there exist non-elementary subgroups $G_{i} \hookrightarrow G$ having non-trivial center which is impossible [Ma1].

It has been proved in [P3] that we can choose the map f in such a way that $f^{-1}(\mathcal{T})$ is a system $\mathcal{M}=\left(\Sigma_{1}, \ldots, \Sigma_{r}\right)$ of incompressible surfaces in M_{G} realizing geometricaly the algebraic splitting

$$
\begin{equation*}
G=\left(\left(G_{1} *_{H_{1}} G_{2} *_{H_{2}} \cdots *_{H_{n-1}} G_{n}\right) *_{H_{n}} \cdots\right) \tag{3}
\end{equation*}
$$

where G_{i} is isomorphic to a discrete subgroup of $P S L_{2} \mathbf{C}$ and $H_{i} \cong \mathbf{Z} \oplus \mathbf{Z}$.
Decomposition (3) follows from the corresponding decomposition of $\pi_{1}(X)$ which exists due to the well-known torus decomposition of a Haken 3 -manifold.

Recall that geometric realization for any expression of the type

$$
G=G_{1} *_{H} G_{2} \quad \text { or } \quad G=G_{1} *_{H}
$$

means that there exists an incompressible surface $\Sigma \subset M_{G}$ such that $\tau\left(\pi_{1}(\Sigma)\right)=H$, $\tau\left(\pi_{1}\left(M_{i}\right)\right)=G_{i}$ for components M_{i} of $c l\left(M_{G} \backslash \Sigma\right)(c l(\cdot)$ is the closure of a set $)$.

We will use the above mentioned result [P3] to show that the limit set $\Lambda(G)$ of the group G admits some nice description.

Denote by int S (ext S) the interior of the bounded (unbounded) component of $S^{3} \backslash S$ for any surface S embedded in $S^{3}(\infty \in \operatorname{ext} S), S^{3}=\mathbf{R}^{3} \cup\{\infty\}$.

Let us consider an infinite collection $L=\bigcup_{i \in I} S_{i}$ of 2 -spheres (topological) satisfying the following conditions
a. $S_{i} \subset S^{3}, \operatorname{int} S_{i} \cap \operatorname{int} S_{j}=\emptyset, i \neq j, \quad i, j \in I$.
b. There cxists at most one point in $S_{i} \cap S_{k}(i, j \in I, i \neq j)$ which we call the point of tangency. Each point of tangency divides L ($x \in S_{i} \cap S_{k} \Rightarrow L \backslash x$ is not connected).
c. For a given $C>0$ there exists at most a finite number of spheres $S_{i} \in L$ such that $\operatorname{dia} S_{i}>C$ (dia is spherical diameter of the set in S^{3}), $i \in\{1,2, \ldots n\}$.

A finite collection $\left(S_{1}, \ldots, S_{n}\right)$ of spheres $S_{i} \in L$ is called a path if $S_{i} \cap S_{k} \neq \emptyset$ only for $k \in\{i-1, i+1\}$ where $i \in\{2, \ldots, n-1\}$. An infinite collection Λ_{x} with the same properties will be called an infinite branch.
d. Every two spheres S_{i} and S_{k} can be connected by a path $\left(S_{i}, S_{i+1}, \ldots, S_{k}\right)$.
e. Every branch Λ_{x} determines the accumulation point $x=\lim _{S_{n} \in \Lambda_{x}} S_{n}$ and for each such point x there is only one branch Λ_{x}, so if $x \neq y$ are accumulation points of branches Λ_{x} and Λ_{y} then Λ_{x} and Λ_{y} contains infinitely many different spheres.

We call the point $x=\lim _{S_{n} \in \Lambda_{x}} S_{n}$ the infinite point of the branch Λ_{x} and denote by T the set of all such points.

Definition. The set $\Lambda=L \cup T$ is a called spherical tree if $\Lambda=\operatorname{cl}(L)$ and L satisfies conditions (a-e).
3. Theorem 3.1. Let G be a group satisfying the assumptions of Theorem 1 then the limit set $\Lambda(G)$ is a spherical tree.

Proof. Let us prove Theorem 3.1 by induction on the number n of non-isotopic tori in the system \mathcal{T} (see (2)).

When $n=0$ then G is isomorphic to the fundamental group of a hyperbolic 3-manifold $X=\mathbf{H}^{3} / \Gamma, \Gamma \subset P S L_{2} \mathbf{C}$ where X is a surface bundle over $S^{1}[\mathrm{~T} 1]$.

By assumption the isomorphism $i: G \rightarrow \Gamma$ preserves the type of elements of G so by a theorem of Tukia [Tu$] \Lambda(G)$ is homeomorphic to $\Lambda(\Gamma) \cong S^{2}=\partial \mathbf{H}^{3}$ as required.

Suppose now that for $k \leq n$ the assertion of the Theorem is true. We will prove it for $k=n$. Consider the case

$$
\begin{equation*}
G=G_{k} *_{H} G^{\prime} \tag{4}
\end{equation*}
$$

where $H \cong Z \oplus Z, G^{\prime}$ is isomorphic to a discrete subgroup of $P S L_{2} \mathbf{C}$ and $G_{k} \cong \pi_{1}\left(X_{k}\right)$. The length of the toral hierarchy in X_{k} is at most k.

Remark. The case when G is $H N N$-extension, $G=G_{k^{*} H}$, can be given by analogy.
By [P3] we have an incompressible closed surface $\Sigma \subset M_{G}$ such that $\tau\left(\pi_{1}(\Sigma)\right)=H$, and for components M_{i} of $c l\left(M_{G} \backslash \Sigma\right)$ we get also $\tau\left(\pi_{1}\left(M_{1}\right)\right)=G_{k}, \tau\left(\pi_{1}\left(M_{2}\right)\right)=G^{\prime}$ (recall the epimorphism $\tau: \pi_{1}\left(M_{G}\right) \rightarrow G$ comes from the quotient $\left.\pi_{1}\left(M_{G}\right) / p_{*}\left(\pi_{1}\left(\Omega_{G}\right)\right) \cong G\right)$.

Let us fix a component $\sigma^{0} \in p^{-1}(\Sigma) \subset \Omega_{G}$ and by choosing basis points in an appropriate way we can assume that $H=\operatorname{Stab}\left(\sigma^{0}, G\right)=\left\{g \in G: g \sigma^{0}=\sigma^{0}\right\}$. We know from [P3] that $H \cong \mathbf{Z} \oplus \mathbf{Z}$ and H is generated by two parabolic elements $\alpha, \beta \in G$ and $\Lambda(H)=\operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)=a$ is the common fixed point.

The set $\sigma=c l\left(\sigma^{0}\right)=\sigma^{0} \cup\{a\}$ is a closed surface in S^{3}. Following [Ma2] we will introduce the following notations.

Denote by B_{i}^{\prime} the components of $P^{-1}\left(M_{i}\right)$ adjacent along σ^{0} and let B_{i} be open components of $S^{3} \backslash \sigma$ such that $\operatorname{int}\left(B_{i}^{\prime}\right) \subset B_{i}$ (int(•) is interior of a set). Evidently $M_{1}=$ $B_{1}^{\prime} / G_{k}, M_{2}=B_{2}^{\prime} / G^{\prime}$. Due to the fact that $\Sigma \subset M_{G}$ is embedded we immediately obtain

$$
\begin{array}{ll}
g \sigma^{0} \cap \sigma^{0}=\emptyset, & g \in G^{\prime} \backslash H \\
\gamma B_{2} \cap B_{2}=\emptyset, & \gamma \in G_{k} \backslash H \\
\gamma B_{1} \cap B_{1}=\emptyset, & \gamma \in G^{\prime} \backslash H \tag{5}\\
h \sigma^{0}=\sigma^{0}, & h \in H .
\end{array}
$$

Moreover we have
Lemma 3.2. $g \sigma \cap \sigma=\emptyset, g \in G \backslash H$.
The proof of this Lemma is contained in [P3] but we present it here briefly. Suppose to the contrary that for some $\gamma \in G \backslash H, \gamma \sigma \cap \sigma \neq \emptyset$ then by (5) $\gamma a=a$ and $\gamma \notin H$. Hence, there exists a non-trivial extension H_{1} of H in G which is also abelian of rank 2. In the manifold X the group $L=i(H)$ is realized by an embedded torus $T \in \mathcal{T}$.

By [Fe], $\pi_{1}(T)$ is the maximal abelian group of $\pi_{1}(X), H=H_{1}$ and the Lemma is proved.

We claim now that each parabolic element in G_{k} or in G^{\prime} has rank 2. This follows from the assertion below.

Lemma 3.3. Let X be a Haken manifold and $T \subset X$ an embedded incompressible torus inducing the decomposition $\pi_{1}(X)=\Gamma_{1} *_{\pi_{1}(T)} \Gamma_{2}$ for the dividing torus T and $\pi_{1}(X)=$ $\Gamma_{1} *_{\pi_{1}(T)}$ otherwise. If there exist $a \in \Gamma_{1}, b \in \pi_{1}(X) \backslash \Gamma_{1}$ such that $[a, b]=1$ then there exists an element $b_{1} \in \Gamma_{1} \backslash<a>$ such that $\left[a, b_{1}\right]=1$.

For the proof see [P3, Lemma 5].
By Lemma 3.3 and our induction assumption it now follows that $\Lambda_{k}=\Lambda\left(G_{k}\right)$ and $\Lambda^{\prime}=\Lambda\left(G^{\prime}\right)$ are spherical trees.

Let us consider now an arbitrary reduced word $w \in G$

$$
\begin{equation*}
w=\gamma_{1} \cdot \gamma_{2} \cdots \gamma_{n}, \text { where } \gamma_{i} \in G^{\prime} \backslash H_{i}, \gamma_{i+1} \in G_{k} \backslash H \text { or } \gamma_{i} \in G_{k} \backslash H_{i}, \gamma_{i+1} \in G^{\prime} \backslash H \tag{5}
\end{equation*}
$$

For a given word w the number n does not depend on the decomposition (5) and is called the length $|w|$ of $w[\mathrm{Ma} 2]$.

It is easy to see that $\Lambda_{k} \subset B_{1}, \Lambda^{\prime} \subset B_{2}$ and $\{a\}=\Lambda_{k} \cap \Lambda^{\prime} \cap \sigma$. Let us consider the following sets

$$
\begin{equation*}
T_{n}=\bigcup_{m}\left(w_{m n}\left(\Lambda_{k}\right) \cup w_{m n}^{\prime}\left(\Lambda^{\prime}\right)\right) \tag{6}
\end{equation*}
$$

where the union is taken over all words $w_{m n}\left(w_{m n}^{\prime}\right)$ in G of length n where the last letter γ_{n} in the decomposition (5) of $w_{m n}\left(w_{m n}^{\prime}\right)$ belongs to $G^{\prime}\left(G_{k}\right)$.

It was shown in [Ma 2] that the limit set $\Lambda(G)$ has the following description

$$
\begin{equation*}
\Lambda(G)=\bigcup_{n=1}^{\infty} T_{n} \cup T \tag{7}
\end{equation*}
$$

where $T=\bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} w_{m n}\left(B_{1}\right) \cup \bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} w_{m n}^{\prime}\left(B_{2}\right)$ so every $x \in T$ arises as an intersection of nested domains $x=\bigcap_{n=1}^{\infty} w_{m_{n} n}\left(B_{1}\right)$ or $x=\bigcap_{n=1}^{\infty} w_{m_{n} n}^{\prime}\left(B_{2}\right)$ where the sequence m_{n} is determined by x.

The set $L=\bigcup_{n=1}^{\infty} T_{n}$ is a union of spheres satisfying condition a. of the definition of the spherical tree.

Step 1. Condition c. Consider now an infinite sequence of different spheres $\tau_{n} \subset L$ then $\tau_{n} \subset w_{n}\left(B_{i}\right)$ and by our induction hypothesis w_{n} are different modulo $H=G_{k} \cap G^{\prime}$. By Koebe Lemma [Ma2] we get $\lim _{n \rightarrow \infty} w_{n}\left(B_{i}\right)=0$ and so condition c. now follows.

Step 2. Condition b. Suppose now $\left\{S_{i}, S_{j}\right\} \subset L$ and $S_{i} \cap S_{j} \neq \emptyset$. We want to show that there exists $t \in G$ such that $t\left(S_{i} \cap S_{j}\right)=\Lambda_{k} \cap \Lambda^{\prime}=a$.

Claim 3.4. Let $|g|>1$ then $g \Lambda_{k} \cap \Lambda_{k} \neq \emptyset$ and $g \Lambda^{\prime} \cap \Lambda^{\prime}=\emptyset$; moreover if $|g|>2$ then $g \Lambda^{\prime} \cap \Lambda_{k}=\emptyset$.

Proof. Recall g has a decomposition of the form (5). We will prove that $g \Lambda_{k} \cap \Lambda_{k} \neq \emptyset$ if $|g|>1$ (the inequality $g \Lambda^{\prime} \cap \Lambda^{\prime} \neq \emptyset$ is similar).

Suppose at first that $\gamma_{n} \in G_{k}$ then $\gamma_{n-1} \gamma_{n} \Lambda_{k} \subset \gamma_{n-1} B_{1} \subset B_{2}, \gamma_{n-1} \gamma_{n} \Lambda_{k} \cap \partial B_{2}=\emptyset$. Hence, $g \Lambda_{k} \subset \operatorname{int}\left(\gamma_{1} \cdots \gamma_{n-2} B_{2}\right) \subset \operatorname{int}\left(\gamma_{1} B_{2}\right)$ if $\gamma_{1} \in G_{k}$ and $g \Lambda_{k} \subset \operatorname{int}\left(\gamma_{1} B_{1}\right)$ if $\gamma_{1} \in G^{\prime}$. In both cases $g \Lambda_{k} \cap c l\left(B_{1}^{\prime}\right)=\emptyset$ and $g \Lambda_{k} \cap \Lambda_{k}=\emptyset$ because $\Lambda_{k} \subset c l\left(B_{1}^{\prime}\right)$.

If now $\gamma_{n} \in G^{\prime}$ then the same observations lead us to the conclusion $g \Lambda_{k} \subset \gamma_{1} \cdots \gamma_{n-1}\left(B_{2}\right)$ and also $g\left(\Lambda_{k}\right) \cap c l\left(B_{1}^{\prime}\right)=\emptyset$ and we are done.

Assume now $g \Lambda^{\prime} \cap \Lambda_{k} \neq \emptyset,|g|>2$ and either $\gamma_{n} \in G_{k}$ in which case $g \Lambda^{\prime} \subset \operatorname{int} g \gamma_{n}^{-1}\left(B_{1}\right)$ and thus $g \Lambda^{\prime} \cap \Lambda_{k}=\emptyset$ or $\gamma_{n} \in G^{\prime}$ and, hence, $g \Lambda^{\prime} \subset \operatorname{int}\left(g \gamma_{n}^{-1} \gamma_{n-1}^{-1}\right)\left(B_{1}\right)$. We obtain also $g \Lambda^{\prime} \cap \Lambda_{k}=\emptyset$. Thus $g \Lambda^{\prime} \cap \Lambda_{k} \neq \emptyset$ is possible iff $g \in G_{k}$ or $g=\gamma_{1} \cdot \gamma_{2}, \gamma_{1} \in G_{k}, \gamma_{2} \in G^{\prime}$. Claim is proved.

By $(6-7)$ there exists a pair of elements $\left\{g_{i}, g_{j}\right\} \in G$ such that $g_{i} S_{i}=S_{i}^{\prime}, g_{j} S_{j}=S_{j}^{\prime}$ for which $\left\{S_{i}^{\prime}, S_{j}^{\prime}\right\} \subset \Lambda^{\prime} \cup \Lambda_{k}$.

We will prove condition b . in the assumption that $S_{i}^{\prime} \in \Lambda_{k}$, the case $S_{i}^{\prime}=\Lambda^{\prime}$ can be done by analogy.

We have $S_{i}^{\prime} \cap g_{i} g_{j}^{-1}\left(S_{j}^{\prime}\right) \neq \emptyset$ and notice that if $S_{j}^{\prime} \in \Lambda_{k}$ then by Claim $3.4 g_{i} g_{j}^{-1} \in G_{k}$ and $S_{j}^{\prime \prime}=g_{i} g_{j}^{-1}\left(S_{j}^{\prime}\right) \in \Lambda_{k}$. Thus, by induction, the point $x=S_{i}^{\prime} \cap S_{j}^{\prime \prime}$ divides Λ_{k}. On the other hand the point $a=\Lambda(H)=\Lambda_{k} \cap \Lambda^{\prime}$ divides L. Otherwise there exists a simple loop $\alpha \subset L$ such that $\alpha \cap \Lambda_{k} \neq \emptyset, \alpha \cap \Lambda^{\prime} \neq \emptyset, a \in \alpha$. Here the intersection index between homology classes of α and surface σ is non-trivial $(\sigma \cap \Lambda(G)=\{a\})$ which is impossible because σ divides S^{3}. Thus, $L \backslash\{a, x\}$ contains 3 components and $L \backslash\{x\}$ is not connected. It follows now that $g_{i}^{-1}(x)=S_{i} \cap S_{j}$ divides L.

It remains to consider the case when $S_{j}^{\prime}=\Lambda^{\prime}$. Notice that $S_{i}^{\prime} \cap g_{i} g_{j}^{-1}\left(\Lambda^{\prime}\right) \neq \emptyset$ and $\Lambda_{k} \cap g^{\prime}\left(\Lambda^{\prime}\right) \neq \emptyset$ for $g^{\prime}=g_{i} g_{j}^{-1} \in G$. By Claim 3.4, $g^{\prime}=\gamma_{1} \cdot \gamma_{2}$ or $g^{\prime}=\gamma_{1}, \gamma_{1} \in G_{k}, \gamma_{2} \in G^{\prime}$. Hence, $\Lambda_{k} \cap g^{\prime}\left(\Lambda^{\prime}\right)=\gamma_{1}\left(\Lambda_{k} \cap \Lambda^{\prime}\right)=\gamma_{1}(a)$ because $\gamma_{1} \Lambda_{k}=\Lambda_{k}$.

Finally, we have proved that if $S_{i} \cap S_{j} \neq \emptyset$ then there always exists $t \in G$ such that $t\left(S_{i} \cap S_{j}\right)=\Lambda_{k} \cap \Lambda^{\prime}=a$. As we have shown the point a divides L so is $t^{-1}(a)$. Condition b. is proved.

Step 3. Condition d. We will prove that for $S \subset L$ there exists a finite path $\left(S_{1}, \ldots, S\right)$ connecting S with $S_{1}=\Lambda^{\prime}$ or with $S_{1} \in \Lambda_{k}$ and $S=g\left(S_{1}\right), g \in G$.

Let us prove this by induction on the length of g. If $|g|=1$ then we are given four possibilities.
I. $S_{1} \in \Lambda_{k}, g \in G_{k}$.
II. $S_{1} \in \Lambda_{k}, g \in G^{\prime}$.
III. $S_{1} \in \Lambda^{\prime}, g \in G_{k}$.
IV. $S_{1} \in \Lambda^{\prime}, g \in G^{\prime}$.

Consider first II. We have that S_{1} can be connected by a path ℓ with the sphere $\tau \in \Lambda_{k}$ such that $\tau \cap \Lambda^{\prime}=\Lambda_{k} \cap \Lambda^{\prime}=a$ due to our assumption that Λ_{k} is a spherical tree. Hence $g(\tau) \cap \Lambda^{\prime} \neq \emptyset$ and we get a path $\ell \cup g(\ell) \cup \Lambda^{\prime}=\left(S_{1}, \ldots, \tau, \Lambda^{\prime}, g(\tau), \ldots, S\right)$.

Case III is analogous to II and cases I and IV are trivial.
Suppose we have proved our assertion for all words of length less than n and let $S=\gamma_{1} \gamma_{2} \cdots \gamma_{n}\left(S_{1}\right), \gamma_{i} \in\left(G_{k} \cup G^{\prime}\right) \backslash H$. Thus, $S^{\prime}=\gamma_{2} \cdots \gamma_{n}\left(S_{1}\right)$ can be connected by a path ℓ^{\prime} with S_{1}. Again there are two possibilities: $\gamma_{1} \in G_{k}$ or $\gamma_{1} \in G^{\prime}$. Considering the first we obtain $S^{\prime \prime}=\gamma_{1}\left(S_{1}\right)$ which can be connected with S_{1} by a path $\ell^{\prime \prime}$. By the considerations above the path $\ell=\gamma_{1} \ell^{\prime} \cup \ell^{\prime \prime} \cup \ell^{\prime}$ is required.

Step 4. Consider an infinite branch $\Lambda_{x} \subset \Lambda(G)$ consisting of spheres $\left\{S_{1}, \ldots, S_{n}, S_{n+1}, \ldots\right\}$, $S_{m} \cap S_{n} \neq \emptyset$ only for $m \in\{n+1, n-1\}$.

Condition e. will now follow from
Lemma 3.5. The embedding $\Lambda(G) \hookrightarrow S^{3}$ has the property that if $\Lambda_{x} \neq \Lambda_{y}$ then there exists a constant, C (depending on $\Lambda^{\prime} s$) such that dia $\left(\Lambda_{x}, \Lambda_{y}\right) \geq C>0$.

Proof. First let us show that for every point $x \in T$ of formula (7) we can find the appropriate infinite branch Λ_{x}. Suppose for concreteness $x=\bigcap_{n=1}^{\infty} w_{m_{n} n}\left(B_{1}\right)=\lim _{n \rightarrow \infty}$ $w_{m_{n} n}(\tau)$, with $\tau \in \Lambda_{k}, \tau \cap \Lambda^{\prime}=a$. Connecting each sphere $w_{m n}(\tau)$ with τ by a path ℓ_{n}; by property d. we get the infinite branch $\Lambda_{x}=\bigcup_{n=1}^{\infty} \ell_{n}$ with x as infinite point.

Suppose now we are given two branches Λ_{x} and Λ_{y} such that $\Lambda_{x} \neq \Lambda_{y}$. By step 3, up to a finite collection of spheres, we can assume that the branches $\Lambda_{x}=\left(\mu_{1}, \mu_{2}, \ldots\right)$, $\Lambda_{y}=\left(\xi_{1}, \xi_{2}, \ldots\right)$ have common first sphere $\mu_{1}=\xi_{1}$ and all the rest distinct. Let $t_{1}=$ $\mu_{2} \cap \mu_{2}, t_{2}=\mu_{1} \cap \xi_{2}$ and $e_{1}=\Lambda_{x} \backslash \mu_{1}, e_{2}=\Lambda_{y} \backslash \mu_{1}$. By step 2 we get $w_{i} \in G$ such that $w_{i}\left(t_{i}\right)=a=\sigma \cap \Lambda(G)$. Take surfaces $\sigma_{i}=w_{i}^{-1}(\sigma)$ invariant under groups $w_{i} H w_{i}^{-1}$, $\sigma_{i} \cap \Lambda(G)=t_{i}$.

We claim now that there exist two components of the set $\operatorname{cl}\left(S^{3} \backslash \sigma_{i}\right)$ such that $e_{i} \subset \sigma_{i}^{-}$ and $\sigma_{1}^{-} \cap \sigma_{2}^{-}=\emptyset$. Indeed, the surface σ_{1} (respectively σ_{2}) separates the sphere μ_{1} from
μ_{2} (respectively μ_{1} from ξ_{2}), it means that μ_{1} and μ_{2} (respectively μ_{1} and ξ_{2}) lic in different components of $c l\left(S^{3} \backslash \sigma_{1}\right)\left(c l\left(S^{3} \backslash \sigma_{2}\right)\right)$. By connectedness of e_{i} and the fact that $\sigma_{i} \cap \Lambda(G)=t_{i}$ we get that $e_{i} \subset \sigma_{i}^{-}$for components $\sigma_{i}^{-} \subset S^{3} \backslash \sigma_{i}$ not containing μ_{1}.

Now σ_{i} are closed in S^{3} and $\sigma_{1} \cap \sigma_{2}=\emptyset$. Hence, $\operatorname{dia}\left(\sigma_{1}, \sigma_{2}\right)>0$. Lemma 3.5. and Theorem 3.1 are proved.
4. Suppose that Λ is a spherical tree and T is the set of all infinite points of Λ then our main goal now is

Theorem 4.1. $H_{1}^{o}(\Lambda, T) \cong \widetilde{H}_{0}^{o}(T)$ (open, reduced, with integer coefficients).
Proof. Consider an arbitrary cycle $z \in Z_{1}^{o}(\Lambda, T)$. Let $\partial_{*} z=\Sigma x_{i}$ where $x_{i} \in T$ and ∂_{*} is the boundary z in $C_{1}^{o}(\Lambda)$.

As we have shown before there exists a unique infinite branch $\Lambda_{x_{i}}$ of the tree Λ the infinite point of which is $x_{i}\left(\Lambda_{x_{i}}=\bigcup_{n=1}^{\infty} S_{n}^{i}, \lim _{n \rightarrow \infty} S_{n}^{i}=x_{i}\right)$.

It is easy to see that z intersects $\Lambda_{x_{i}}$ in an infinite number of spheres $S_{n} \in \Lambda_{x_{i}}$. Now if $z \cap S_{r} \neq \emptyset$ and $z \cap S_{m} \neq \emptyset, m>r$ then $z \cap S_{r+j} \neq \emptyset$ because each S_{r+j} divides Λ, here $S_{r+j} \in \Lambda_{x_{i}}(j=1, \ldots, m-r)$.

Hence,

$$
z \cap \Lambda_{x_{i}}=\sum_{j} z_{x_{j}}^{j}
$$

where $z_{x_{i}}^{j}$ are half-infinite connected 1-chains from $C_{1}^{o}(\Lambda)$ such that $z_{x_{i}}^{j} \subset \Lambda$ and the infinite point of $z_{x_{i}}^{j}$ is exactly $x_{i} \in T$. The last formula follows from the following simple observation:
"If z leaves $\Lambda_{x_{i}}$ in a point b then z can return to $\Lambda_{x_{i}}$ only through b ".
This slogan is true because b divides Λ. So, the chain $w_{j}=z_{x_{i}}^{j}+z_{x_{i}}^{j+1}(j \geq 2)$ is a closed path in $\Lambda_{x_{i}}$. On the other hand $w_{j}=\sum_{n} w_{n}^{j}$, where w_{n}^{j} is a closed curve in sphere $S_{n} \in \Lambda_{x_{i}}$, which again follows from the fact that the points $S_{n} \cap S_{n+1}$ divides Λ.

Thus, our cycle z is homologous to the cycle

$$
\widehat{z}=\sum_{\mu \in M} z_{\mu},
$$

where $z_{\mu} \in C_{1}^{o}(\Lambda, T), \partial_{*} z_{\mu}=\left\{x_{\mu}, x_{0}\right\} \in T, \operatorname{int} z_{\mu} \cap T=\emptyset, x_{\lambda} \cap x_{\mu}=\emptyset, \lambda, \mu \in M$, $\lambda \neq \mu \neq 0$.

Indeed, we just fix one point $x_{0} \in \partial_{*} z$ and consider all infinite 1 -chains $z_{\mu} \subset z$ connecting x_{0} with any point $x_{\mu} \in \partial_{*} z$, by previous considerations z_{μ} does not contain any other point from T and moreover x_{μ} is a boundary of unique 1 -chain $z_{\mu} \in C_{1}^{o}(\Lambda, T)$.

Say that \widehat{z} is a standard representative of the class $[z]$ in $H_{1}^{o}(\Lambda, T)$. Suppose that we have now two elements $[z]$ and $[w]$ from this group such that $\partial_{*}[z]=\partial_{*}[w]$. Let us take standard representatives

$$
\begin{aligned}
& \widehat{z}=\sum_{\mu} z_{\mu} \\
& \widehat{w}=\sum_{\mu} w_{\mu}
\end{aligned}
$$

We have $\partial_{*} z_{\mu}=\partial_{*} w_{\mu}$ and the cycle $u_{\mu}=z_{\mu}-w_{\mu}$ is homologous to zero. Indeed, $u_{\mu} \cap T=\partial_{*} z_{\mu}=\partial_{*} w_{\mu}$ and by using again the fact that each point $x_{\mu} \in \partial_{*} z_{\mu}$ is determined by a unique branch Λ_{x} we get

$$
u_{\mu}=\sum_{j} u_{\mu}^{i}, u_{\mu}^{j} \subset S_{j}
$$

Thus, $[z]=[w]$ in $H_{1}^{o}(\Lambda, T)$. Lemma is proved.
Corollary 4.2. $H_{1}(\Lambda)=0$ and $H_{1}\left(\Omega_{G}\right)=0$
Proof. Indeed from the exact sequence of pair we have

$$
0 \rightarrow H_{1}^{o}(\Lambda) \rightarrow H_{1}^{o}(\Lambda, T) \rightarrow \tilde{H}_{0}^{o}(T) \rightarrow 0
$$

and by Theorem 4.1 we obtain $H_{1}^{o}(\Lambda)=0$ but Λ is closed so, $H_{1}^{o}(\Lambda)=H_{1}(\Lambda)=0$.
From Theorem 3.1 and the formula above it follows that $H_{1}(\Lambda(G)) \cong 0$, so by Alexander duality we immediately obtain

$$
\begin{equation*}
H^{1}\left(S^{3} \backslash \Lambda(G)\right)=H_{1}\left(\Omega_{G}\right)=H_{1}(\Lambda(G)) \cong 0 \tag{8}
\end{equation*}
$$

The Corollary is proved. $Q E D$.

6. Proof of Theorem 1.

Given Corollary 4.2 the proof of Theorem 1 which we restate below is now fairly casy.
Theorem 1. Let $G \subset M(3)$ be a geometrically finite function group any parabolic element of which is of rank two. Suppose that there exists an isomorphism $i: G \rightarrow \pi_{1}(X)$ where $X=N \widetilde{\times} S^{1}$ is a surface bundle over S^{1}. Then the following assertions are equivalent:
i) $\pi_{1}\left(\Omega_{G}\right) \cong\{1\}$
ii) There is a non-trivial normal subgroup $F_{0} \triangleleft G$ of infinite index such that $\pi_{1}\left(M_{F_{0}}=\right.$ Ω_{G} / F_{0}) is finitely generated.
iii) For every non-trivial normal subgroup $F \triangleleft G$ of infinite index the group $\pi_{1}\left(M_{F_{0}}=\right.$ Ω_{G} / F_{0}) is finitely gencrated.

Proof of Theorem. 1. Obviously the condition ii) is the weakest one, so to prove the Theorem it is enough to show the equivalence: i) $\Longleftrightarrow i i)$.

The implication $i) \Longrightarrow i i$) is obvious. Let us prove the converse statement.

The group F_{0} is normal in G and non-elementary, so they both have the same limit set and act on the same component $\Omega_{G}[\mathrm{Ma1}]$. The maps $\Omega_{G} \xrightarrow{p_{2}} M_{F_{0}} \xrightarrow{p_{1}} M_{G}$ are regular infinite coverings, where $p=p_{1} \circ p_{2}: \Omega \longrightarrow M_{G}=\Omega_{G} / G$ is the natural projection.

If $\pi_{1}\left(M_{F_{0}}\right)$ is finitely generated then by Stallings fibration theorem [He, Th. 11.1] the group $\pi_{1}\left(M\left(F_{0}\right)\right)$ is isomorphic to either the fundamental group of a closed surface or to a free group.

Hence, for $\pi_{1}\left(\Omega_{G}\right)$ one has the following trihotomy: either it is isomorphic to the fundamental group of a closed surface, or it is isomorphic to a free group, or is trivial group.

Notice that the first two possibilities are ruled out since $\pi_{1}\left(\Omega_{G}\right)=\left[\pi_{1} \Omega_{G}, \pi_{1} \Omega_{G}\right]$ by Corollary 4.2. The remaining possibility is the desired one. The Theorem is proved. $Q E D$.

6. Proof of Theorem 2.

We will assume that $i: G \rightarrow \pi_{1}(X)$ is an isomorphism and the manifold X is a surface bundle over a closed surface N. Let $p: \Omega_{G} \rightarrow M_{G}=\Omega_{G} / G$ be a regular covering and $G \subset M(3)$ be a function group acting on an invariant component $\Omega_{G} \subset S^{3}$.

We recall that $\tau: \pi_{1}\left(M_{G}\right) \rightarrow G$ is a natural isomorphism induced by $p, F=$ $i^{-1}\left(\pi_{1}(N)\right)$ and $p_{1}: M_{F}=\Omega_{G} / F \rightarrow \Omega_{G} / G$ is an infinite regular cyclic covering.

Theorem 2. Suppose that G, F and X are as above and X is a closed 3-manifold fibering over S^{1}. Then $H_{*}\left(M_{G}, \mathbf{Z}\right) \cong H_{*}(X, \mathbf{Z})$. Moreover, there exists an incompressible surface $S \subset M_{G}$ such that $\tau^{\prime}=\left.\tau\right|_{\pi_{1}(S)}: \pi_{1}(S) \rightarrow F$ is onto and the following diagram is commutative

$$
\begin{array}{ccc}
H_{1}(S) & \xrightarrow[\rightarrow]{\tau_{1}^{\prime}} & H_{1}(F) \tag{3}\\
j_{*} \searrow & & \nearrow \varphi \\
& H_{1}\left(M_{F}\right) &
\end{array}
$$

The map φ is an isomorphism and j_{*} is an epimorphism.
Let us consider again the commutative diagram (*) in §2. By [He, Lemma 6.5], we have up to small isotopy that $f^{-1}(N)=\mathcal{M}=\left\{S_{1}, \cdots, S_{m}\right\}$ is a collection of incompressible surfaces in M_{G}. We can choose a loop $\beta \subset \pi_{1}(X)$ the intersection number of which with N is one.

Then for any loop $\alpha \subset M_{G}$ which meets $f^{-1}(N)$ transversely $f_{*}([\alpha])=[\beta]^{n}$ where n is the sum of "signed" intersection numbers of α with \mathcal{M}. Choosing α in such a way that $n=1$ we get that $M_{G} \backslash S_{i}$ is not connected for some $S_{i} \in \mathcal{M}$. Put $S=S_{i}$

Step 1. Let $F_{0}=\tau\left(\pi_{1}(S)\right)$, then

$$
\begin{equation*}
G=\Gamma *_{F_{0}} \tag{10}
\end{equation*}
$$

Proof. Consider one preimage $\Sigma_{1} \in p^{-1}(S)$. All images of Σ_{1} are disjoint, so

$$
\begin{equation*}
g \Sigma_{1} \cap \Sigma_{1}=\emptyset, g \in G \backslash F_{0} \tag{11}
\end{equation*}
$$

$$
f \Sigma_{1}=\Sigma_{1}, f \in F_{0},
$$

where $F_{0}=\operatorname{Stab}\left(\Sigma_{1}, G\right)$.
By Alexander duality $H^{2}\left(\Omega_{G}\right)=H_{1}^{o}\left(\Omega_{G}\right)$ (open, with integer coefficients), and $H_{1}^{o}\left(\Omega_{G}\right)=$ $H_{1}\left(S^{3}, \Lambda(G)\right) \cong \widetilde{H}_{0}(\Lambda(G))$. By Theorem $3.1 \Lambda(G)$ is connected, so $H_{2}\left(\Omega_{G}\right) \cong 0$. It follows that Σ_{1} divides Ω_{G}.

Take a component $\widetilde{M} \in p^{-1}(M)$ of the manifold $M=c l\left(M_{G} \backslash S\right)$ such that $\Sigma_{1} \in \partial \widetilde{M}$ and let $\Gamma=\operatorname{Stab}(\widetilde{M}, G)=\{g \in G: g \widetilde{M}=\widetilde{M}\}$. Obviously $M=\widetilde{M} / \Gamma$. The conclusion of Step 1 now follows from [Ma 2]. For completeness we present here these considerations.

Let $\gamma=\tau([\alpha])$ then $\gamma(\operatorname{int} \widetilde{M}) \cap(\widetilde{M})=\emptyset$ and, if $\Sigma_{2}=\gamma \Sigma_{1}$ we denote by B_{i} open components of $\Omega_{G} \backslash \Sigma_{i}$ not containing \widetilde{M} and it is not hard to see that up to choice of notations $\gamma\left(B_{1}\right)=\operatorname{int}\left(\Omega_{G} \backslash B_{2}\right)$. Let also $H_{i}=\operatorname{Stab}\left(\Sigma_{i}, G\right)$ and $H_{2}=\gamma H_{1} \gamma^{-1}$.

The group G is generated by Γ and γ because $\pi_{1}\left(M_{G}\right)=\left\langle\pi_{1}(M),[\alpha]\right\rangle$. Now for an arbitrary word w we get

```
\(w=\gamma^{\alpha_{n}} \cdot g_{n} \cdot \gamma^{\alpha_{n-1}} \cdot g_{n-1} \cdots \gamma^{a_{1}} \cdot g_{1}\)
\(g_{j} \neq 1, \alpha_{i} \neq 0, \quad i \in(1, \cdots, n-1), j \in(2, \cdots, n)\).
```

Following [Ma 2, §ु5] we prove that $w(x) \neq x$ for any $x \in \operatorname{int} \widetilde{M}$. Indeed, $\gamma^{\alpha_{1}} \cdot g_{1}(x) \in$ $B_{1} \cup B_{2}$ (because, $\left.\gamma \widetilde{M} \subset B_{2}, \gamma^{-1} \widetilde{M} \subset B_{1}\right)$. Further $g_{2} \cdot \gamma^{\alpha_{1}} \cdot g_{1}(x) \in \operatorname{int}\left(g_{2}\left(B_{2} \cup B_{1}\right)\right) \subset$ $S^{3} \backslash \widetilde{M}$ and finally $w(x) \notin \operatorname{int} \widetilde{M}$ so every relation in G is a consequence of relations in Γ or the relation $H_{2}=\gamma H_{1} \gamma^{-1}$ as required.

Step 2. F_{0} contains a subgroup K_{0} isomorphic to the fundamental group of a closed surface.

Proof. Consider the decomposition of $\pi_{1}(X)$ arising from (10).

$$
\pi_{1}(X)=\Gamma_{F_{0}^{\prime}}^{\prime}, \quad \Gamma^{\prime}=i(\Gamma), \quad F_{0}^{\prime}=i\left(F_{0}\right)
$$

Let us construct 2-dimensional $C W$-complexes Y_{1} and Y_{2} such that $\pi_{1}\left(Y_{1}\right) \cong \Gamma^{\prime}$, $\pi_{1}\left(Y_{2}\right) \cong F_{0}^{\prime}$ and a complex $Y=Y_{1} \cup\left(Y_{2} \times I\right)$ for which $\pi_{1}(Y) \cong \pi_{1}(X)$ and let j this isomorphism. There is a map $\psi: X \rightarrow Y$ inducing $j, \psi_{*}=j$. Again by small isotopy $\psi^{-1}\left(Y_{2} \times\{1 / 2\}\right)$ is a collection of incompressible closed surfaces $\mathcal{R}=\left(R_{1}, \cdots, R_{d}\right)$.

By construction, $\psi_{*}\left(\pi_{1}\left(R_{i}\right)\right) \subset \pi_{1}\left(Y_{2}\right) . \mathrm{QED}$
Step 3. $F_{0}=F$.
Proof. We have $f_{*}\left(\pi_{1}(S)\right)=i \cdot \tau\left(\pi_{1}(S)\right)=i\left(F_{0}\right) \subset \pi_{1}(N)$ (see diagram (*) in item 2.) and $F_{0} \subset F=i^{-1}\left(\pi_{1}(N)\right)$. By step 2 we get an incompressible surface $R \subset X$ such that $\pi_{1}(R)=K_{0}^{\prime} \subset F_{0}^{\prime} \subset \pi_{1}(N)$, so index $\left|\pi_{1}(N): K_{0}^{\prime}\right|$ is finite. The group K_{0}^{\prime} is realized by the fundamental group of the closed embedded surface R, so K_{0}^{\prime} is the maximal surface group in $\pi_{1}(X)[F e]$, hence, $\Lambda_{0}^{\prime}=\pi_{1}(N)$ and we immediately obtain $F_{0}^{\prime}=\pi_{1}(N), F_{0}=F$. QED

Consider now the commutative diagram

where μ_{i} are "abelianization" maps and τ_{*} is induced by τ. It is easy to see that τ_{*} is onto. Suppose now $\tau_{*}(g)=0, g \in H_{1}\left(M_{G}\right)$ and $g^{\prime} \in \pi_{1}\left(M_{G}\right)$ for which $\mu_{1}\left(g^{\prime}\right)=g$. If $g^{\prime \prime}=\tau\left(g^{\prime}\right)$ then $g^{\prime \prime} \in\left[G, G^{\prime}\right]$ (the commutator subgroup) and $\mu_{2}\left(g^{\prime \prime}\right)=0$. So, we find that $g^{\prime}=q \cdot w$ where $q \in\left[\pi_{1}\left(M_{G}\right), \pi_{1}\left(M_{G}\right)\right]$ and $w \in p_{*}\left(\pi_{1}(\Omega)\right)$, hence, $\mu_{1}\left(g^{\prime}\right)=\mu_{1}(w)=0$, because each preimage in $p^{-1}(w)$ is a cycle homologous to zero by (8).

We proved that τ_{*} is isomorphism.
By duality, $H^{2}\left(M_{G}\right) \cong H_{1}\left(M_{G}\right) \cong H^{2}(X)$, and $H_{2}\left(M_{G}\right) \cong H_{2}(X)$ because $H_{1}\left(M_{G}\right) \cong$ $H_{1}(X)$.

If now $p_{1}: M_{F} \rightarrow M_{G}$ is a regular cyclic covering then the considerations above give an isomorphism $\varphi: H_{1}\left(M_{F}\right) \rightarrow H_{1}(F)$ and if $\tau_{*}^{\prime}(s)=0$ for $s \in H_{1}(S)$ then $s \in$ $\mu_{1}\left(\left(p_{1}\right)_{*}\left(\pi_{1}\left(\Omega_{G}\right)\right)\right.$) and $j_{*}(s)=0$ (see diagram (3)), here $\left(p_{1}\right)_{*}: \pi_{1}\left(M_{F}\right) \rightarrow \pi_{1}\left(M_{G}\right)$ is monomorphism induced by p_{1}. Theorem 2 is proved.

7. Appendix. Some applications.

As application of the above method we will give (our Corollary 7.2) a of the following.
Theorem [Boileau-Wang, B-W]. There is countable set \mathcal{H} of hyperbolic 3-manifolds of finite volume $\mathcal{H}=\left\{M_{1}, \ldots, M_{n} \ldots\right\}$ such that for each $M \in \mathcal{H}$ there is an infinite tower of finite coverings p_{i}

$$
\begin{equation*}
\ldots N_{i} \xrightarrow{p_{i}} N_{i-1} \xrightarrow{p_{i-1}} \ldots \xrightarrow{p_{7}} N_{1} \xrightarrow{p_{1}} M \tag{12}
\end{equation*}
$$

and all manifolds N_{i} and M do not fiber over the circle.
This related somehow to the well-know Thurston's conjecture that is any finite volume hyperbolic 3 -manifold finitely covered by a circle bundle?

Obviously, we can not garantee that (12) gives the complete list of all finite coverings over M. Our proof does not use degree one maps which was a crucial tool of $[B-W]$ and seems to be more elementary. Although we also use essentially the notion of totally nullhomotopic knots due to [BDM]. Our proof is based on the following simple fact which was used somehow in the previous chapter.

Key Observation. Suppose that M is a compact 8-manifold which admits an infinite covering $p: \Omega \rightarrow M$ such that $H_{1}(\Omega, \mathbf{Z})=0$ (with compact support) and Ω is not simply connected then M does not fiber over the circle.

Proof. Suppose to the contrary that M fibers over the circle. Then there is an infinite cyclic covering $p_{1}: M(F) \rightarrow M$ corresponding to a normal surface subgroup $f \triangleleft \pi_{1}(M)$ and we have the diagram of coverings

Our goal is to show that the diagram (13) can be made commutative or else that the p_{1} can be lifted to a covering $p_{2}: \Omega \rightarrow M(F)$.

Indeed, we have $p_{*}\left(\left[\pi_{1} \Omega, \pi_{1} \Omega\right]=\pi_{1} \Omega\right) \subset\left[\pi_{1} M, \pi_{1} M\right] \subset \pi_{1} M$, where we denote $[G, G]$ the commutator subgroup of G. On the other hand $\left[\pi_{1} M, \pi_{1} M\right] \subset\left(p_{1}\right)_{*}\left(\pi_{1} M(F)\right)$, hence $p_{*}\left(\left[\pi_{1} \Omega, \pi_{1} \Omega\right]\right) \subset\left(p_{1}\right)_{*}\left(\pi_{1} M(F)\right)$.

We have proved that there is a covering $p_{2}: \Omega \rightarrow M(F)$ such that $p=p_{1} \circ p_{2}$. The group $\pi_{1}(M(F))$ is isomorphic either to the fundamental group of a closed surface or to a free group of finite rank, so for $\pi_{1} \Omega$ we have three possibilities: a) $\pi_{1} \Omega$ is trivial group, b) $\pi_{1} \Omega$ is the fundamental group of a closed surface or c) $\pi_{1} \Omega$ is a free group (possibly of infinite rank).

The first possibility is ruled out by the hypothesis and the last two are impossible since $\left[\pi_{1} \Omega, \pi_{1} \Omega\right]=\pi_{1} \Omega$. The result follows. $Q E D$.

Let in our Key Observation $M=\Omega / G$ where $G=\operatorname{Deck}(p)$.
Corollary 7.1. For any subgroup of finite index $H \subset G,|G: H| \leq \infty$ the manifold $M(H)=\Omega / H$ does not fiber over the circle.

Proof. Repeat the proof of the Observation for $M(H)$. QED.
Remark. One can think of Ω as an invariant component of torsion-free Kleinian group $G \subset M(3)$ acting on S^{3}. In particular, an example of such a covering is given by B.Apanasov and A.Tetenov [A-T] where G is isomorphic to the fundamental group of a hyperbolic 3 -manifold $N=\mathbf{H}^{3} / \Gamma, G \cong \Gamma$, the group G is itself Kleinian whose limit set $\Lambda\left(G^{\prime}\right)$ is a wild sphere embedded in S^{3}. By the Alexander duality one has here $H_{1}(\Lambda(G), \mathbf{Z})=H_{1}(\Omega(G), \mathbf{Z})=0,(\Lambda(G)$ is a closed set, so all homologies coincide).

The construction insures that one of the components $S^{3} \backslash \Lambda(G)$, say Ω, is not simply connected. So, by the above Observation the manifold $M(G)=\Omega / G$ does not fiber over the circle as well as all of its finite coverings of the type $M\left(G_{n}\right)=\Omega / G_{n}$ where G_{n} is a finite-index subgroup of G. Note that by the construction $M(G)$ is not itself hyperbolic since contains an incompressible torus obtained by the projection of an incompressible torus in discontinuity domain. End of the Remark.

The rest of the Chapter is devoted to the proof that there exists a countable set \mathcal{H} of finite volume hyperbolic 3 -manifolds such that for every $M \in \mathcal{H}$ there is a regular infinite covering $\Omega \rightarrow M$ for which $H_{1}(\Omega, \mathrm{Z})=0$ and $\pi_{1} \Omega \not \equiv 1$.

We need to introduce some terminology (see [BDM] and [B-W]). Say that the simple closed curve $c \subset M$ is totally null-homotopic knot in M if c bounds a singular disk $D \subset M$ whose regular neighborhood $N(D)$ embeds trivially which means $i_{*}\left(\pi_{1}(N(D))=1\right.$ where $i: N(D) \rightarrow M$ is the natural embedding.

Let $c \subset M$ is totally null-homotopic knot, by $M(n, m)$ we denote the result of (n, m)surgery on c (i.e. we first delete a regular neighborhood of c and then glue back the solid
torus such that the new meridian will have (n, m)-slope in the surgered manifold). If c is totally null-homotopic one defines in a standard way the longitude-meridian system (a, b) where b is chosen to be homologically trivial in $\overline{M \backslash N(c)}[\mathrm{BDM}]$.

Let $p: \tilde{M} \rightarrow M$ be a regular covering then the restriction of p to each component of $\tilde{C}=p^{-1}(c)(\tilde{C}$ possibly infinite) is a homeomorphism since c is homotopically trivial in M. Moreover since c is totally null-homotopic, all components of both $p^{-1}(N(D))$ and $p^{-1}(N(c))$ are disjoint and the map p restricted to each of them is a homeomorphism too. Thus, we can choose a component \tilde{a}_{i} of $p^{-1}(a)$ and \tilde{b}_{i} of $p^{-1}(b)$ which give the meridianlongitude system on the boundary of some component \tilde{N}_{i} of $\tilde{N}(D)=p^{-1}(N(D)$. In fact, $\tilde{b}_{i} \in p^{-1}(b)$ is the longitude since it is homologically trivial in \tilde{N}_{i} and all \tilde{N}_{k} are disjoint, so it is homologically trivial in the whole manifold $\bar{M} \backslash p^{-1}(N(D))$.

The significance of the notion of totally null-homotopic knots is that any surgery on $c \subset M$ can be lifted to a simultaneous surgery with the same coefficients on $\tilde{C} \subset$ \tilde{M}. Specifically, we remove the lift $\tilde{N}(D)$ from \tilde{M} and obtain $\tilde{M}(n, m)$ by doing the (n, m)-surgery simultaneously on all components of $\partial \tilde{N}_{i}$. The following lemma is a simple extension of [B-W, Lemma 5.3] to the case of infinite covering p.

Lemma 7.2. Let $p: \tilde{M} \rightarrow M$ any regular covering and $c \in M$ is a totally nullhomotopic knot. Then for $H_{1}\left(\tilde{M}\left(p^{-1}(c),(1, m), \mathbf{Z}\right)=H_{1}(\tilde{M}, \mathbf{Z})\right.$

Proof. Consider the manifold $\tilde{N}=\overline{\tilde{M} \backslash \tilde{N}(D)}$. It can be easiely seen that for a fixed component $\tilde{c}_{i} \in p^{-1}(c)$ and for its regular neighborhood $\tilde{N}_{i} \in p^{-1}(N(c))$ we obtain

$$
H_{1}(\overline{\tilde{M} \backslash \tilde{N}},(1, m), \mathbf{Z})=H_{1}\left(\overline{\tilde{M} \backslash \tilde{N}_{i}}, \mathbf{Z}\right) /<m_{i}>
$$

where $<m_{i}>$ is the cyclic group generated by new surgery meridian m_{i} with the slope $(1, m)$. Thus, $m_{i}=\tilde{a}_{i}+m \tilde{b}_{i}$ where $\left\{\tilde{a}_{i}, \tilde{b}_{i}\right\}=p^{-1}(\{a, b\}) \cap \partial \tilde{N}_{i}$. But \tilde{b}_{i} is trivial in $H_{1}\left(\bar{M} \backslash \tilde{N}_{i}, \mathbf{Z}\right)$ so $H_{1}\left(\bar{M} \backslash \tilde{N}_{i},(1, m), \mathbf{Z}\right) \cong H_{1}(\tilde{M}, \mathbf{Z}) \cong H_{1}\left(\tilde{M} \backslash \tilde{N}_{i}, \mathbf{Z}\right) /<\tilde{a}>$. the Lemma now follows by induction on the number \# $\left(p^{-1}(c)\right) . Q E D$.

It was shown in [B-W] by using Myers' result that any compact orientable 3 -manifold M contains a totally null-homotopic hyperbolic knot c (i.e. int $(M \backslash c)$ posseds a complete hyperbolic structure of finite volume).

Theorem 7.3. Let $M=\mathbf{H}^{3} / \Gamma$ be a hyperbolic 3-manifold of finite volume and $c \subset M$ a totally null-homotopic knot. Then there exists n_{0} such that for any $n \geq n_{0}$ the hyperbolic manifold $M(1, n)$ posseds a regular covering $p: \Omega \rightarrow M(1, n)$ such that $H_{1}(\Omega, Z)=0$ and Ω is not simply connected.

Put $G=\operatorname{Deck}(p)$.
Corollary 7.4. The manifold $M(1, n)=\Omega / G$ does not fiber over S^{1} as well as all of its finite coverings of the type $\tilde{M}_{n}=\Omega / G_{n}$, where G_{n} is a subgroup of G of finite index.

The proof of the Corollary immediately follows from the assertion of the Theorem and our Key Observation.

Proof of Theorem 7.3. Let us first consider the covering $\mathbf{H}^{3} \xrightarrow{\pi} \mathbf{H}^{3} / \Gamma=M$ and the lift $\pi^{-1}(c)=\tilde{C}$. By hyperbolic Dehn surgery theorem [T3] there exists n_{0} such that for
$n \geq n_{0}$ the manifold $M(1, n)$ is hyperbolic. Consider the manifold $\tilde{M}=\overline{\mathbf{H}^{3} \backslash \pi^{-1}(N(c))}$ and let $\Omega=\mathbf{H}^{3}(1, n)$ (recall that $\mathbf{H}^{3}(1, n)$ is obtained from \mathbf{H}^{3} by doing ($1, \mathrm{n}$)-Dehn surgery simultaneously on all components of \tilde{C}).

Claim. The covering π induces the regular covering $p: \Omega \rightarrow M(1, n)=\Omega / G$ where the group $G=$ Deck p is isomorphic to Γ.

Consider the induced covering $p: \tilde{M} \rightarrow \overline{M \backslash N(C)}$ where $p=\left.\pi\right|_{\tilde{M}}$ and take $\gamma \in \Gamma$. Since the restriction of π to each component $\tilde{N}_{i} \in \pi^{-1}(N(c))$ is a homeomorphism the element γ sends the meridian-longitude system $\left(\tilde{a}_{i}, \tilde{b}_{i}\right)$ to that of on $\gamma\left(\partial \tilde{N}_{i}\right)$. As we do our $(1, n)$-surgery on \tilde{M} simultaneously, γ preserves the $(1, n)$-surgery slope of $\partial\left(\pi^{-1}(N(c))\right)$, and so extends to some homeomorphism γ^{*} of Ω. By repeating this contruction for all generators of Γ we obtain the group Γ^{*} acting discontinuously on Ω. Indeed, the action of Γ^{*} on \dot{M} coincide with that of Γ, and so is discontinuous there; further each solid torus component \tilde{N}_{i} is strictly invariant in Γ^{*} under the identity: $\forall \gamma^{*} \in \Gamma^{*} \backslash\{i d\}: \gamma^{*}\left(\tilde{N}_{i}\right) \cap \tilde{N}_{i}=$ θ, so the action is discontinuous everywhere in Ω.

The map $\phi: \Gamma \rightarrow \Gamma^{*}$ is well-defined and, obviously, isomorphism since each $\gamma^{*} \in \Gamma^{*}$ is uniquely determined by its action on \tilde{M}. The Claim is proved. $Q E D$.

Put $G=\Gamma^{*}=\phi(\Gamma)$. and notice that Lemma 7.2 implies that $H_{1}(\Omega, \mathrm{Z})=0$. To finish the proof of our Theorem we need only to show that Ω is not simply connected. In fact if it were not so, then the manifold $M(1, n)=\Omega / G$ is hyperbolic and has the fundamental group isomorphic to Γ, so M and $M(1, n)$ would be isometric by Mostow rigidity theorem. The last is impossible since $M(1, n)$ and M have different volume by hyperbolic Dehn Surgery Theorem[T3]. The Theorem is proved.
$Q E D$.
Remark: The above construction of Ω looks like a sort of "conformal Dehn surgery". We have in this connection the following.

Question. Suppose that Γ, Ω and G as above. Is it possible to embed Ω to S^{3} and to realize G to be a Kleinian group having Ω as invariant component?

The positive answer to this question would provide a standard way to produce all known examples of "patological" of Kleinian groups acting in S^{3} (e.g. [A-T], [Ka-P], [P]). One can also point out if such G was Kleinian then Γ and G would belong to different components of the deformation variety $\operatorname{Def}\left(\Gamma, I s o_{+}\left(\mathbf{H}^{4}\right)\right)$ which follows from MardenSullivan stability theorem.

REFERENCES

[A-T] B.Apanasov, A. Tetenov, Nontrivial cobordism with geometrically finite hyperboli structures, J. Diff. Geometry 28 (1988), n.3, 407-422.
[BDM] M.Boileau, M.Domergue, Y.Mathieu, Surgery on null-homotopic knots in irreducible 3-manifolds, Preprint, 1993.
[B-W] M.Boileau, S.Wang, Degree one maps and surface bundles over S^{1}. Preprint, 1993-94.
[Bo] B. Bowditch, Geometrical finiteness for hyperbolic groups, University of Melbourne, preprint, 1990.
[Bo-M] B. Bowditch, G. Mess, A 4-dimensional Kleinian group, Trans. Amer. Math. Soc., v.344, N 1, (1994), 391-407.
[Fe] C.D. Feustel, Some application of Waldhausen's results on irreducible manifolds, Trans. Amer. Math. Soc., v. 149. (1970), 575-583.
[He] J. Hempel, 3-manifolds, Ann. of Math. Study, Vol. 86, Princeton Univ. Press, 1976.
[J-S] W. Jaco, P. Shalen, A new decomposition therorem for irreducible sufficiently large manifolds, Proc. of Symposia in Pure Math. AMS, N 32 (1977), 209-222.
[Ka] M. Kapovich, On absence of Sullivan's cusp finiteness theorem in higher dimensions, preprint, 1990.
[Ka-P] M. Kapovich and L. Potyagailo, On the absence of Ahlfors' finiteness theorem for Kleinian groups in climension three, Topology and its Applications 40 (1991), 83-91.
[Ku] R.S. Kulkarni, Infinite regular coverings, Duke Math. J. Vol. 45, N4 (1978), 781-796.
[Ma1] B. Maskit, Kleinian groups, Springer-Verlag, 1988.
[Ma2] B. Maskit, On Klein Combination, theorem III, In : Advances in the theory of Riemann surfaces, Princeton Univ. Press, 1971, 297-310.
[Mo] J. Morgan, On Thurston's uniformization theorem for three dimensional manifolds, The Smith conjecture, New York, Acad. Press, 1984, 37-125.
[P1] L. Potyagailo, Finitely generated Kleinian groups in 3-space and 3-manifolds of infinite homotopy type, Trans. Amer. Math. Soc., v.344, N 1 (1994), 57-79.
[P2] L. Potyagailo, On the boundary of deformation space of the fundamental group of some hyperbolic surface bundles over the circle. Preprint, 1993 .
[P3] L. Potyagailo, Geometric decomposition of the spatial Kleinian groups and fundamental groups of 3-manifolds (Russian), English translation : Siberian Math. Journal, V. 30, N5 (1990), 773-783.
[T1] W. Thurston, Hyperbolic structures on 3-manifolds II : Surface groups and 3-manifolds with fibers over the circle.
[T2] W. Thurston, A norm for the homology of 3-manifolds, Memoirs of AMS, V. 59, N 339 (1986), 99-130.
[T3] W.Thurston, The Geometry and Topology of 3-Manifolds. Lect. Notes of Princeton University.
[Tu] P. Tukia. On isomorphism of geometrically finite Möbius groups, Publ. Math. Inst. Hautes Etud. Sci. 61 (1985), 171-214.

