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1. Introduction.

The main objects of this paper are discontinuous (Kleinian) subgroups of the group
M(n) of conformal transformations of R" = §" = R" U {co}.

A group G C M(n) is called discontinuous (IKleinian) if there exists a point z € S™
and a neighbourhood U(z) C S such that {g € G : gU(z) N U(z) # 0} is at most finite.
The set of all such points forms domain of discontinuity (G) C S™.

We say that a finitely generated Kleinian group G C M(3) is a function group if there
exists a connected component Q¢ C S? invariant under the action of G.

One of the most intriguing questions of the present theory is to describe the topological
type of the orbifold M(G) = Q(G)/G (a manifold in the case when G is torsion-free),
in particular, when G is a function group it is important to know in which cases the
fundamental group m (Mg = Q¢ /G) turns out to be finitely generated.

It was proved in [Ka-P] that the weakest topological version of the well known finite-
ness theorem of Ahlfors does not hold in higher dimensions. Namely we constructed a
function group F C M(3) such that the group m (2r/F) is not finitely generated.

It has also been shown that there exists a finitely generated Kleinian group with
infinitely many conjugacy classes of parabolics [Ka).

On the another hand we constructed a group Fy without parabolics such that 7y (Q g /F})
is not finitely generated [P1]. This construction allows one to get such groups as subgroups
(of infinite index) of groups arising as boundary points of the deformation space of fun-
damental groups of hyperbolic 3-manifolds fibering over the circle [P2]. Moreover, such a
group can be realized as a subgroup in a discrete co-compact subgroup of Iso(H*) [Bo-M].

In this paper we are going to interrupt this chain of negative results on the finiteness
problem and prove that under some restrictions on the algebraic structure of a Kleinian
group we will have that 7 (Mg) is finitely generated.

One can be convinced that all known counterexamples to the finiteness theorem for
finitely generated Kleinian groups in higher dimensions arise in the following situation (see
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[Ka-P], [Ka], [P1], [P2], [Bo-M]). Suppose we have an exact sequence of finitely generated
non-elementary Kleinian groups F' and G

1o FaG-oZ-1 (1)

and let G be geometrically finite, function group satisfying some complementary conditions
then 7 (¢ /F) is not finitely generated.

Question. Suppose we have the exact sequence (1) of non-elementary function groups
acting discontinuously on the main component Q¢ = Qp C $°. Assume that G is geomet-
rically finite then: is the group m (Mp = Qp/F) finitely generated iff 7 (Qp) = 17

The aim of this paper is to give a positive answer to this question in the case when G
is tsomorphic to the fundamental group of a 3-manifold.

We will denote by X = NxS! a compact 3-manifold which is a surface bundle over
the circle with a compact surface N as fiber. We recall that a normal non-elementary
subgroup in a Kleinian group has the same domain of discontinuity.

Theorem 1. Let G C M(3) be a geometrically finite function group any parabolic
element of which is of rank two. Suppose that there exists an isomorphism 1: G — m(X)
where X = NxS' is a surface bundle over S'. Then the following assertions are equivalent:

1) ™ (Q¢) = {1}

i1) There is a non-trivial normal subgroup Fy oG of infinite indez such that m(Mp, =
Qg /Fo) is finitely generated.

11) For every non-trivial normal subgroup F aG of infinite indez the group m(Mp, =
Qe /Fp) 1s finitely generated.

Notice that in general there are infinitely many different fibrations on a given 3-
manifold X [T2].

Let us denote by p: Qg - Mg = Q¢ /G the natural projection, by 7: m(Mg) - G
the epimorphism induced by p and let i : G — = (X = NxS8') is an isomorphism. Then
there is an infinite regular cyclic covering

pr:Mp = Mg , F=i"(m(N)), (2)

and our next result shows that homologically the manifold A is the same as N x R which
is an infinite cyclic covering of X.

For an incompressible surface S C M¢ denote by j. : Hi(S) —» H,(Mg) the map
induced by inclusion j : § = Mg. If also 7' = 7 |5, (5): m(S) = m(X) then by 7] we
mean the corresponding map between first homology groups.

Theorem 2. Suppose that G, F and X are as above and X 1s a closed $-manifold
fibering over S'. Then H.(Mg,Z) = H.(X,Z). Moreover, there exists an incompressible
surface S C Mg such that 7/ = 7 |z (5): m1(S) = F s onto and the following diagram s
commutative

Q]



H(S) 3 H(F)
Jx ¢ /“P (3)
H, (M#)

The map ¢ 1s an somorphism and j, is an epimorphism.

Remark. Following [Ku] we call (2) a covering of finite type if the group of Deck-
transformations of p; is of finite cohomological dimension and H* (M) is finitely generated.
It was shown in [Kuj that a regular covering of finite type has cohomology either of a point,
a circle or a compact surface.

We show in Theorem 2 that in the context of Kleinian groups satisfying the conditions
above p; 1s of finite type and the first two possibilities are ruled out.

In the Appendix we will obtain as an application of our method some results con-
cerning hyperbolic 3-manifolds. In particular we give a simplified proof of recent result of
M.Boileau and S.Wang containing in ([B-W]) that there is countable set H of hyperbolic
3-manifolds of finite volume such that for each M € H there is an infinite tower of finite
coverings

LB NS BN D M

such that all manifolds N; and M do not fiber over the circle.

Acknowledgements: The author is grateful to Peter Waterman who read and cor-
rected the manuscript. I would like also to thank Max-Planck Institut fiir Mathematik
where a substantial part of the writing of the paper was done.

2. Background material and preliminary results.

We start from the finitely generated Kleinian group G C M(3) acting discontinuously
on Q(G) C §% and we will assume that G is function, GQg = Qg and Mg = Qg/G.
Suppose also that there exists an isomophism ¢ : G = m(X) where X is a compact
3-manifold fibering over the circle.

For the rest of this paper we assume that any parabolic element ¢ € G (if there is
such) is of rank 2.

A group G is called geometrically finite if there exists an e-neighbourhood N, (M2(G))
of the convex core of M?(G) in the 4-dimensional hyperbolic manifold M*(G) = H*/G
such that vol (N, (M}(G))) < +oo (see [Bo], Mo]).

Coming back to the manifold X we notice that there exists unique up to isotopy
a system of tor1 7 = (T},...,T,) in X which are all incompressible, non-parallel and
non-isotopic to the boundary such that the components

dX\T)=X,U-- UX, (2)
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are either hyperbolic surface bundles over S' or Seifert fiber spaces [J-S].

The manifold X is irreducible (each embedded sphere S C X bounds a ball) so there
exists a map f : Mg — X compatible with r. Hence, if f, : m (M(G)) = m(X) is the
map induced by f then the following diagram is commutative

G
T N (+)

n(Ma) 5 m(x)

It is easy to see that non-trivial Seifert components never occur in the decomposition (2)
if m1(X) is isomorphic to G C M(n). Otherwise, if X; is a Seifert manifold which is not
S' x 8! x I then there exist non-elementary subgroups G; — G having non-trivial center
which is impossible [Mal].

It has been proved in [P3] that we can choose the map f in such a way that f~1(7)
is a system M = (E;,...,5,) of incompressible surfaces in Mg realizing geometricaly the
algebraic splitting

= (G G o Gl ) ®
where G; is 1somorphic to a discrete subgroup of PSL,C and H; 2 Z $ 7.

Decomposition (3) follows from the corresponding decomposition of 71 (.X') which ex-
ists due to the well-known torus decomposition of a Haken 3-manifold.

Recall that geometric realization for any expression of the type

G=G1 *pf Gg or G=G1*H (3')

means that there exists an incompressible surface & C Mg such that 7(m () = H,
7 (m(M;)) = G; for components M; of cl(Ma\T) (cl(-) is the closure of a set).

We will use the above mentioned result [P3] to show that the limit set A(G) of the

group G admits some nice description.

Denote by int S (ext S) the interior of the bounded (unbounded) component of $*\S
for any surface S embedded in $® (00 € ext 5), 5% = R3 U {c0}.

Let us consider an infinite collection L =~L€JI Si of 2-spheres (topological) satisfying
the following conditions

a. S;C S ,intS;NintS; =0 ,i#j, i,5€l.

b. There czists at most one pownt in S; NSy (1,7 € I, 1 # 7) which we call the point
of tangency. Each point of tangency divides L (v € 5; N S = L\ s not connected).

¢. For a given C > 0 there ezists at most a finite number of spheres S; € L such that
dia S; > C (dia is spherical diameter of the set in S%), 7 € {1,2,...n}.

A finite collection (5y,...,S5,) of spheres S; € L is called a path if §;N Sy 5 @ only
for k€ { — 1,7+ 1} where 7 € {2,...,n — 1}. An infinite collection A, with the same
properties will be called an infinite branch.



d. Every two spheres S; and Sy can be connected by a path (S;, Sit1,-..,Sk).

e. Every branch A, determines the accumulation point x =Sli1n Sn and for each

such point x there is only one branch A, , so if ¢ # y are accumulation points of branches
Ay and Ay then Ay and Ay contains infinitely many different spheres.

We call the point z = lim S, the infinite point of the branch A, and denote by T

nE€Az

the set of all such points.

Definition. The set A = LUT is a called spherical tree if A = ¢l(L) and L satisfies
conditions (a - €).

3. Theorem 3.1. Let G be a group satisfying the assumptions of Theorem 1 then the
limnit set A(G) is a spherical tree.

Proof. Let us prove Theorem 3.1 by induction on the number n of non-isotopic tori
in the system 7 (see (2)).

When n = 0 then G is isomorphic to the fundamental group of a hyperbolic 3-manifold
X =H3/T, T C PSL,C where X is a surface bundle over S' [T1].

By assumption the isomorphism 7 : G — T preserves the type of elements of G so by
a theorem of Tukia [Tu] A(G) is homeomorphic to A(T') & §? = GH? as required.

Suppose now that for & < n the assertion of the Theorem is true. We will prove it for
k = n. Consider the case

G =Gy G (4)

where H = Z ® Z, G’ is isomorphic to a discrete subgroup of PSLyC and Gy = my (X¢).
The length of the toral hierarchy in Xy is at most k.

Remark. The case when G 1s HN N-extension, G = Gr*py, can be given by analogy.

By [P3] we have an incompressible closed surface & C M¢ such that 7 (m(£)) = H,
and for components M; of cl(Mg\Z) we get also 7 (7 (M) = Gk, 7 (m1(M2)) = G’ (recall
the epimorphism 7 : 7 (Mg) = G comes from the quotient = (Mq)/p«(m1(Q¢)) = G).

Let us fix a component o® € p~'(E) C Q¢ and by choosing basis points in an ap-
propriate way we can assume that H = Stab(c®,G) = {g € G : go°® = ¢°}. We know
from [P3] that H & Z ® Z and H is generated by two parabolic elements o, € G and
A(H) = Fix(«a) = Fix(8) = a is the common fixed point.

The set 0 = ¢l(6%) = 0% U {a} is a closed surface in S3. Following [Ma2] we will
introduce the following notations.

Denote by B! the components of P~!(M;) adjacent along ¢° and let B; be open
components of $*\o such that int(B!) C B; (int(-) is interior of a set). Evidently M; =
B1/Gk, My = B, /G'. Due to the fact that & C M¢ is embedded we immediately obtain
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go®Nao® =0, ge G\H
vBy N By =0, ve€G\H (5)
YB1N B =0, yeG'\H
ho® = o?, heH.
Moreover we have

Lemma 3.2. goNo=0,¢9 € G\H.

The proof of this Lemma is contained in [P3] but we present it here briefly. Suppose
to the contrary that for some v € G\H, vo No # @ then by (5) ya = @ and v ¢ H. Hence,
there exists a non-trivial extension H; of H in G which is also abelian of rank 2. In the
manifold X the group L = i(H) is realized by an embedded torus T € T.

By [Fe], m(T') is the maximal abelian group of n1(X), H = H; and the Lemma is
proved.

We claim now that each parabolic element in Gy or in G’ has rank 2. This follows
from the assertion below.

Lemma 3.3. Let X be a Haken manifold and T C X an embedded imcompressible
torus inducing the decomposition m (X)) = Uyxq (T2 for the dividing torus T and 7 (X) =
Lixr o1y otherwise, If there exist « € 'y, b € m(X) \ [y such that [a,b] = 1 then there
ezists an element by € I'}\ < a > such that [a,by] = 1.

For the proof see [P3, Lemma 5).

By Lemma 3.3 and our induction assumption it now follows that Ay = A(Gy) and
A" = A(G') are spherical trees.

Let us consider now an arbitrary reduced word w € G

W=y 72 Yn, where v; € G'\H;,vit1 € Gi\H or v; € G \H;,viy) € G'\H. (5)

For a given word w the number n does not depend on the decomposition (5) and is
called the length |w| of w [Ma2].

It is easy to see that Ax C By, A’ C Bz and {a¢} = Ay N A’ No. Let us consider the
following sets

Ty = |J (wann(As) U}, (A7) (6)

m

where the union is taken over all words w,, (w),,) in G of length n where the last letter

Yn i1t the decomposition (5) of wu. (w),,,) belongs to G'(Gy).

mn

It was shown in [Ma2] that the limit set A(G) has the following description

AG) = ‘fjl T,UT, (7)
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where T= 0 0 Wmn(B1) U U ﬂ w,,(B2) so every x© € T arises as an intersection

m==1 n=1 m=] n=
o0 o0 .
of nested domains z = ﬂl W, n(By) or z = ﬂl wmn,l(Bg) where the sequence m,, is
n= n=

determined by z.

00
The set L = U T, is a union of spheres satisfying condition a. of the definition of
=1

the spherical tree.

Step 1. Condition ¢. Consider now an infinite sequence of different spheres 7, C L
then 7, C w,(B;) and by our induction hypothesis w, are different modulo H = G N G".

By Koebe Lemma [Ma2] we get lim w,(B;) =0 and so condition ¢. now follows.
n—=o00

Step 2. Condition b. Suppose now {S;,5;} C L and S;NS; # 0. We want to show
that there exists ¢ € G such that ¢(S; N S5;) = A NA = a.

Claim 3.4. Let [¢g] > 1 then gAr N A # 0 and gA’ N A’ = §; moreover if |g| > 2 then
gA' N AL =0

Proof. Recall g has a decomposition of the form (5). We will prove that gAxNAx # 0
if |g| > 1 (the inequality gA’ N A’ # @ is similar).

Suppose at first that ~v,, € Gy then v,,—1¥nAx C Yn—1B1 C B2, Yn—17:Axr N 8B, = 0.
Hence, gAx C int(vyy -+ yn—2B2) C int(y; By) if 1 € Gr and gAy C int(y1 B;) if vy € G.
In both cases gAx Ncl(B)) = 0 and gAr N Ax = @ because Ax C cl(B]).

If now v, € G’ then the same observations lead us to the conclusion gAy C v - - yu—1(B2)
and also g(Ag) N cl(B]) = B and we are done.

Assume now gA'NAg # 0, |g| > 2 and either v, € Gy in which case gA’ C int g, '(B))
and thus gA’ N Ax = 0 or 4, € G’ and, hence, gA’ C int(gy; 'v, ', )(B1). We obtain also
gAN' N AL =@ Thus gA' N Ag # D is possible iff g € Gy or g =71 - v2, 11 € Gi, v2 € G,
Claim is proved.

By (6 - 7) there exists a pair of elements {g:,¢;} € G such that ¢;S; = S/, ¢;5; = S;
for which {5}, 51} C A"U Ay

We will prove condition b. in the assumption that S} € Ay, the case S! = A’ can be
done by analogy.

We have S'N g,-gj'l(S;-) # 0 and notice that if S% € Ax then by Claim 3.4 g,-gj_' € Gy,
and S7 = gigj-_l(S;-) € Ag. Thus, by induction, the point 2 = S/ N 55-’ divides Ag. On
the other hand the point a = A(H) = A, N A’ divides L. Otherwise there exists a simple
loop oo C L such that a NAx # B, o N A’ # 0, « € o. Here the intersection index hetween
homology classes of o and surface o is non-trivial (¢ N A(G) = {«}) which is impossible
because o divides S3. Thus, L\{a,z} contains 3 components and L\{z} is not connected.
It follows now that g7 '(z) = S; N S; divides L.

It remains to consider the case when S} = A’. Notice that SN g,-gj_l(f\') # (b and

AeNg'(A) # @ for ¢ = g,-g'j‘l €G. By Claim34, ¢  =v1-vp0or ¢ =v,7 € Gk, 72 € G'.
Hence, Ay N g’ (A') = v (A N A') = v1(a) because y1Ar = Ag.
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Finally, we have proved that if S; N S; # 0 then there always exists ¢ € G such that
t(S;NS;) = Ay NA’ = a. As we have shown the point « divides L so is t7*(a). Condition
b. is proved.

Step 3. Condition d. We will prove that for S C L there exists a finite path
(S1,...,S5) connecting § with Sy = A’ or with 5§, € Ay and S = ¢(5), g € G.

Let us prove this by induction on the length of g. If |¢g| = 1 then we are given four
possibilities.

[. §; € Ag, g € Gy

II. §, € Ay, g € G'.

III. Sy € A, g € Gy..

V.5, e, ge G

Consider first II. We have that S, can be connected by a péth ¢ with the sphere 7 € Ay
such that 7N A" = A N A’ = a due to our assumption that Ay is a spherical tree. Hence
g(T)N A" # 0 and we get a path CU g(O)UA = (Sy,...,7, A g(r),...,9).

Case III is analogous to II and cases I and IV are trivial.

Suppose we have proved our assertion for all words of length less than n and let
S = yiv2 o v(S1), vi € (G UG)\H. Thus, § = v+ -7,(S1) can be connected by
a path ' with S). Again there are two possibilities: v; € G or 73 € G’. Considering
the first we obtain 5" = «v;(S;) which can be connected with Sy by a path ¢”. By the
considerations above the path { = v ' U £”" U ¢ is required.

Step 4. Consider an infinite branch A, C A(G) consisting of spheres {S1,..., 5., Sny1,- .-

SmN S, #0only forme {n+1,n~1}
Condition e. will now follow from

Lemma 3.5. The embedding A(G) — S* has the property that if A, # A, then there
exists a constant C (depending on A's) such that dia(A,,Ay) > C > 0.

Proof. First let us show that for every point z € T of formula (7) we can find

oo
the appropriate infinite branch A,. Suppose for concreteness @ = ﬂ] Wi, n(B1) = lim
n= mT—00

W, n(T), with 7 € Ag, 7 N A’ = a. Connecting cach sphere w,,,(7) with 7 by a path ¢,;
n g

by property d. we get the infinite branch A, = U £, with z as infinite point.

n==1

Suppose now we are given two branches A, and Ay such that A, # A, By step 3,
up to a finite collection of spheres, we can assume that the branches Ay = (py, p2, .. .),
Ay = (&1,&2,...) have common first sphere 13 = £ and all the rest distinct. Let #; =
fo Mg, t2 = py N & and e; = Ag\pg, es = Ay\py. By step 2 we get w; € G such
that w;i(t;) = a = ¢ N A(G). Take surfaces o; = w; ' (¢) invariant under groups w;Hw; '
o NA(G) = t;.

?

We claim now that there exist two components of the set cl(S*\a;) such that e¢; C o]
and o] No; = 0. Indeed, the surface oy (respectively o2) separates the sphere p; from
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po (respectively g from &), it means that gy and g (vespectively py and €;) lie in
different components of ¢/(S*\a;) (c!(S3\02)). By connectedness of e; and the fact that
oi NA(G) = t; we get that e; C o] for components o7 C S?\o; not containing .

Now o; are closed in $* and oy N oy = @. Hence, dia(o),02) > 0. Lemma 3.5. and
Theorem 3.1 are proved.

4. Suppose that A is a spherical tree and T is the set of all infinite points of A then our
main goal now is

Theorem 4.1. H)(A,T) = ES(T) (open, reduced, with integer coefficients).

Proof. Consider an arbitrary cycle z € Z{(A,T). Let 0,z = Z2; where z; € T and
J. is the boundary =z in CP(A).

As we have shown before there exists a unique infinite branch A;,; of the tree A the

- - . . . m N - M
infinite point of which is &; (Ay, = U S}, lim S} =z;).
n=1 =00

It is easy to see that z intersects A, in an infinite number of spheres S, € A;,. Now
if zN S, # 0 and 2N Sy, # 0, m > r then 2N Sr4; # @ because each S,4; divides A , here
Sr4i €A, =1,...,m—1).

Hence,
2N A, = Zzij,
i
where 21 are half-infinite connected 1-chains from C?(A) such that zJ, C A and the

infinite point of zil. is exactly z; € T. The last formula follows from the following simple
observation:

“If = leaves Ay, 1 a point b then z can return to A, only through b”.
This slogan is true because b divides A. So, the chain w; = zJ_ + zI*! (7 > 2) is a

closed path in A,;. On the other hand w; =) w}, where w{, is a closcd curve in sphere

n
Sn € Ag,, which again follows from the fact that the points S, N 5,41 divides A.
Thus, our cycle z is homologous to the cycle
= Z Zp,
neEM

where z, € CY(A,T), Ovzp = {2y,20} € T, intz, NT =0, 2xNz, =0, A\, € M,
/\ ?/: H ?é 0.

Indeed, we just fix one point zp € J.z and consider all infinite 1-chains z, C =z
connecting zg with any point z, € 0,2z, by previous considerations z, does not contain
any other point from T and moreover z, is a boundary of unique 1-chain z, € CY(A,T).
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Say that z is a standard representative of the class [2] in H?(A,T). Suppose that we
have now two elements (z] and [w] from this group such that d.[z] = d.[w]. Let us take
standard representatives

z = E Zp,
#H
w= E Wy
}l

We have J.z, = O,w, and the cycle v, = 2z, — w, is homologous to zero. Indeed,
u,NT = 0,2, = Q.w, and by using again the fact that each point x, € 0.z, is determined
by a unique branch A, we get

b e I :
Uy = E w,,, 3, C Sj.
J

Thus, (2] = [w] in HY(A,T). Lemma is proved.
Corollary 4.2. H;(A) =0 and H,(Q2¢) =0

Proof. Indeed from the exact sequence of pair we have

0— HY(A) = HY(A,T) » HY(T) = 0

and by Theorem 4.1 we obtain HY(A) = 0 but A is closed so, H{(A) = H{(A) = 0.
From Theorem 3.1 and the formula above it follows that H;(A(G)) 2 0, so by Alexan-
der duality we immediately obtain

H' (S2\A(G)) = H\ () = Hi(A(G)) 2 0. (8)
The Corollary is provea. QED.

6. Proof of Theorem 1.
Given Corollary 4.2 the proof of Theorem 1 which we restate below is now fairly easy.

Theorem 1. Let G C M(3) be a geometrically finite function group any parabolic
element of which 1s of rank two. Suppose that there ezists an 1somorphism 1: G — m(X)
where X = NxS' is a surface bundle over S'. Then the following assertions are equivalent:

1.) Wl(Qg) = {l}

1) There 1s a non-trivial normal subgroup Fy 4G of infinite indez such that my (Mg, =
Qg /F) is finitely generated.

i11) For every non-trivial normal subgroup F a G of infinite index the group m (Mg, =
QG /Fo) s finttely generated.

Proof of Theoremn 1. Obviously the condition ii) is the weakest one, so to prove the
Theorem it is enough to show the equivalence: 1) < 11).
The implication 1) == 1) is obvious. Let us prove the converse statement.
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The group Fp 1s normal in G and non-elementary, so they both have the same limit
set and act on the same component Q¢ [Mal]. The maps Q¢ =2 My, 2+ Mg are regular
infinite coverings, where p = p; o pp : @ — Mg = Q¢/G is the natural projection.

If m1(MFp,) is finitely generated then by Stallings fibration theorem [He, Th. 11.1] the
group m (M (Fp)) is isomorphic to either the fundamental group of a closed surface or to
a free group.

Hence, for m(Q¢) one has the following trihotomy: either it is isomorphic to the
fundamental group of a closed swrface, or it is isomorphic to a free group, or is trivial
group.

Notice that the first two possibilities are ruled out since m(Q¢g) = [m1Q¢, mQ¢] by
Corollary 4.2. The remaining possibility is the desired one. The Theorem is proved. QED.

6. Proof of Theorem 2.

We will assume that 7 : G — m(X) is an isomorphism and the manifold X is a surface
bundle over a closed surface N. Let p : Q¢ = Mg = Q¢/G be a regular covering and
G C M(3) be a function group acting on an invariant component Qg C 53.

We recall that 7 : m (Mg) — G is a natural isomorphism induced by p, F =
i~V (m(N)) and py : Mp = Q¢/F = Qg/G is an infinite regular cyclic covering.

Theorem 2. Suppose that G, F and X are as above and X 1s a closed 3-manifold
fibering over S'. Then H.(M¢g,Z) = H.(X,Z). Moreover, there exists an incompressible
surface S C Mg such that 7' = 7 |5, (5): 71(S) = F is onto and the following diagram s
commutative |

1_!

Hi(5) = Hi(F)

Je N\ " (3)
H, (Mp)

The map ¢ 18 an isomorphism and j. 18 an epimorphism.

Let us consider again the commutative diagram (*) in §2. By [He, Lemma 6.5], we
have up to small isotopy that f~1(N) = M = {S),---, S} is a collection of incompressible
surfaces in M. We can choose a loop # C m;(X) the intersection number of which with
N is one.

Then for any loop o C Mg which meets f~!(N) transversely f.([a]) = [5]" where n
is the sum of "signed” intersection numbers of o with M. Choosing « in such a way that
n =1 we get that Mg\ S; is not connected for some S; € M. Put § = 5;

Step 1. Let Fy = 7(m(5)), then
G =T xp, (10)
Proof. Consider one preimage £, € p~!(S). All images of £, are disjoint, so
~ gEiNE =0,9g€ G\Fy (11)
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fir =%, f ek,

where Fy = Stab(Z,, G).

By Alexander duality H?(Qq) = H?(Qg) (open, with integer coefficients), and H? (2g) =
H, (5% A(G)) = Ho(A(G)). By Theorem 3.1 A(G) is connected, so Hy (¢) = 0. It follows
that £, divides Qg.

Take a component M e p™ (M) of the manifold M = cl(M¢\S) such that T, € oM
and let T = Stab(M,G) = ={geCG: gM = AI} Obviously M = M/T. The conclusion of

Step 1 now follows ﬁom [Ma 2]. For completeness we present here these considerations.

Let v = 7([e]) then v(int M) N (A ) = { and, if £, = vZ, we denote by B; open
components of Q¢\E; not containing M and it is not hard to see that up to choice of

notations v(B)) = int(Qg\By). Let also H; = Stab(S;,G) and Hy = vHyy .

The group G is generated by I' and v because m(Mg) = (m1(M),[e]). Now for an
arbitrary word w we get

w‘—_"/n"'gn Gn—1 "On=1"""7Y " " h

gj-‘,él,ag#o, 1€, ,n=1),7€(2,---,n).

Following [Ma 2, §5] we prove that w(z) # « for any « € int M. Indeed, v cq1(z) €
B, U B; (because, */.M C By,~y -1M C B)). Further g2 - v°' - gi(z) € mt(g2(By U By)) C

Sa\ﬁ;f and finally w(z) ¢ int M so every relation in G is a consequence of relations in T
or the relation Hy = vH;v~! as required. .

Oy

Step 2. Fy contains a subgroup Ko 1somorphic to the fundamental group of a closed
surface.

Proof. Consider the decomposition of 7y (XX') arising from (10).

m(X) =T, T=iD), R =if) (10)
Let us construct 2-dimensional CW-complexes Y and Y, such that m(Y;) = IV,

m (Y2) 2 F§ and a complex ¥ = Y, U (Y2 x I) for which 71'1(3’) = m(X) and let 3 thls
19011101131115111 There is a map ¥ : X — Y inducing j, ¥, = 7. Again by small isotopy
Y~ 1(Yy x {1/2}) is a collection of incompressible closed surfaces R = (Ry, -, Rq).

By construction, ¥,(m (R;)) C m(Y2). QED

Step 3. Fo = F.

Proof. We have f,(m(5)) =1i-7(m(S)) = i(Fp) C m1(N) (see diagram (*) in item
2.) and Fy € F = i71(m(N)). By step 2 we get an incompressible surface R C X such
that 7 (R) = K§ C F{ C m(V), so index |m(N) : Ii§] is finite. The group Ky is realized
by the fundamental group of the closed embedded surface R, so K is the maximal surface

group in my (X) [Fe], hence, j = 7y (N} and we immediately obtain F§ = m(N), Fp = F.
QED
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Consider now the commutative diagram

n(Mg) — G

m | #a (11)
Hi(Mg) — Hi(G)

where p; are "abelianization” maps and 7, is induced by 7. It is easy to see that 7, is onto.
Suppose now 7,.(g) =0, g € H(M¢g) and ¢’ € m(Mg) for which u1(¢") =g. If " =71(¢")
then ¢” € [G, G] (the commutator subgroup) and ug(¢g”) = 0. So, we find that ¢’ = ¢- w
where ¢ € [m (Mg), mi(Mg)] and w € p,(m(Q2)), hence, pq(g') = p1(w) = 0, because each
preimage in p~!(w) is a cycle homologous to zero by (8).

We proved that 7, is isomorphism.

By duality, H?(M¢g) = H(Mg) & H*(X), and Hy(Mg) = Hy(X) because Hy (M¢) &
H, (X).

If now p; : Mp — Mg is a regular cyclic covering then the considerations above
give an isomorphism ¢ : Hy(Mp) = H (F) and if 7/(s) = 0 for s € H;(S) then s €
i ((p1)«(m1(2¢))) and 7.(s) = 0 (see diagram (3)), here (p1). : m (Mp) = m (Mg) is

monomorphism induced by p;. Theorem 2 is proved.
7. Appendix. Some applications.
As application of the above method we will give (our Corollary 7.2} a of the following.

Theorem [Boileau-Wang, B-W|. There is countable set ‘H of hyperbolic $-manifolds
of finite volume H = {My, ..., M,,...} such that for each M € H there is an infinite tower
of finite coverings p;

DNE NS BN B M (12)
and all manifolds N; and M do not fiber over the circle.

This related somehow to the well-know Thurston’s conjecture that is any finite volume
hyperbolic 3-manifold finitely covered by a circle bundle?

Obviously, we can not garantee that (12) gives the complete list of all finite coverings
over M. Our proof does not use degree one maps which was a crucial tool of [B-W] and
seems to be more elementary. Although we also use essentially the notion of totally null-
homotopic knots due to [BDM]. Our proof is based on the following simple fact which was
used somehow in the previous chapter.

Key Observation. Suppose that M is a compact 8-manifold which admits an infinite
covering p : @ — M such that H (2,Z) = 0 (with compact support) and § s not simply
connected then M does not fiber over the circle.
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Proof. Suppose to the contrary that M fibers over the circle. Then there is an infinite
cyclic covering py : M(F) — M corresponding to a normal surface subgroup f <« 7 (M)
and we have the diagram of coverings

QO M(F)

NP ' P1 (13)
M

Our goal is to show that the diagram (13) can be made commutative or else that the
p1 can be lifted to a covering ps : Q@ — M(F).

Indeed, we have p.([m1Q, 71 Q] = m Q) C [ M, 71 M) C = M, where we denote |G, G]
the commutator subgroup of G. On the other hand [m M, 7y M| C (p1)«(m1 M(F)), hence
p([m 2, m1Q}) C (p1)«(mi M(F)).

We have proved that there is a covering p, : @ — M(F) such that p = p, o p2. The
group m (M(F)) is isomorphic either to the fundamental group of a closed surface or to
a free group of finite rank, so for 71§ we have three possibilities: a) m;Q is trivial group,
b) m1Q is the fundamental group of a closed surface or ¢) m 2 is a free group (possibly of
infinite rank).

The first possibility is ruled out by the hypothesis and the last two are impossible
since [, m§2] = m§2. The result follows. QED.

Let in our Key Observation M = Q/G where G = Deck(p).

Corollary 7.1. For any subgroup of finite indez H C G,|G : H| < oo the manifold
M(H) = Q/H does not fiber over the circle.

Proof. Repeat the proof of the Observation for M(H). QED.

Remark. Omne can think of  as an invariant component of torsion-free Kleinian
group G C M(3) acting on S*. In particular, an example of such a covering is given
by B.Apanasov and A.Tetenov [A-T| where G is isomorphic to the fundamental group
of a hyperbolic 3-manifold N = H?*/T", G & T, the group G is itself Kleinian whose
limit set A(G) is a wild sphere embedded in §3. By the Alexander duality one has here
H{(A(G),Z) = H(Q(G),Z) =0, (A(G) is a closed set, so all homologies coincide).

The construction insures that one of the components S* \ A(G), say 2, is not simply
connected. So, by the above Observation the manifold M(G) = Q/G does not fiber over
the circle as well as all of its finite coverings of the type M(G,) = /G, where G, is a
finite-index subgroup of G. Note that by the construction M(G) is not itself hyperbolic
since contains an incompressible torus obtained by the projection of an incompressible
torus in discontinuity domain. End of the Remark.

The rest of the Chapter is devoted to the proof that there exists a countable set H of
finite volume hyperbolic 3-manifolds such that for every M € H there is a regular infinite
covering 2 — M for which H,(Q,Z) =0 and m Q % 1.

We need to introduce some terminology (see [BDM] and [B-W]). Say that the simple
closed curve ¢ C M is totally null-homotopic knot in A if ¢ bounds a singular disk D C M
whose regular neighborhood N (D) embeds trivially which means {7 (N(D)) = 1 where
i: N(D) - M is the natural embedding.

Let ¢ C M is totally null-homotopic knot, by A (n,m) we denote the result of (n,m)-
surgery on c¢ (i.e. we first delete a regular neighborhood of ¢ and then glue back the solid
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torus such that the new meridian will have (n,m)-slope in the surgered manifold). If ¢ is
totally null-homotopic one defines in a standard way the longitude-meridian system (a, b)
where b is chosen to be homologically trivial in M \ N(c¢) [BDM].

Let p : M — M be a regular covering then the restriction of p to each component
of C = p~(e) (C' possibly infinite) is a homeomorphism since ¢ is homotopically trivial
in M. Moreover since c¢ is totally null-homotopic, all components of both p~! (N (D)) and
p~'(N(c)) are disjoint and the map p restricted to each of them is a homeomorphism too.
Thus, we can choose a component &; of p~!(«) and b; of p~1(b) which give the meridian-
lougltude system on the boundary of some component N; of NQD =p~H(N(D). In fact,
b; € p~1(b) is the longitude since it is homologically trivial in N; and all Ny are disjoint,
so it is homologically trivial in the whole manifold M \ p~! (N(D)).

The significance of the notion of totally null-homotopic knots is that any surgery
on ¢ C M can be lifted to a simultaneous surgery with the same coefficients on C' C
M. Specifically, we remove the lift N(D) from M and obtain M(n,m) by doing the
(n,m)-surgery simultaneously on all components of dN;. The following lemma is a simple
extension of [B-W, Lemma 5.3] to the case of infinite covering p.

Lemma 7.2. Let p : M — M any regular covering and ¢ € M is a totally null-
homotopic knot. Then for H{(M(p~'(¢),(1,m),Z) = H,(M,Z)

Proof. Consider the manifold N = M \ N(D). It can be easiely seen that for a fixed
component ¢ € p~!(c¢) and for its regular neighborhood N; € p~!(N(c)) we obtain

H{(M\N,(1,m),Z) = H (M \ N;,Z)/ < m; >

?

where < m; > is the cyclic group generated by new surgery meridian m; with the slope
(1,m). Thus, m; = & + mb; where {a;, 0} = p~'({a,b}) NONi. ON;. But b; is trivial in
Hi(M\ Ni,Z) so H,(M \ N, (1,m),Z) = H,(M,Z) = H(M\Ni,Z)/ < @ >. the
Lemma now follows by induction on the number #(p~! (¢)). QED.

It was shown in [B-W)] by using Myers’ result that any compact orientable 3-manifold

M contains a totally null-homotopic hyperbolic knot ¢ (i.e. int(M \ ¢) posseds a complete
hyperbolic structure of finite volume).

Theorem 7.3. Let M = H*/T be a hyperbolic 8-manifold of finite volume and ¢ C M
a totally null-homotopic knot. Then there exists ng such that for any n > ng the hyperbolic
manifold M(1,n) posseds a regular covering p: Q@ — M(1,n) such that H1(Q,Z) =0 and
2 18 not ssmply connected.

Put G = Deck(p).

Corollary 7.4. The manifold M(1,n) = Q/G does not fiber over S' as well as all of
its finite coverings of the type M, = Q/G,, where G, 1s a subgroup of G of finite indez.

The proof of the Corollary immediately follows from the assertion of the Theorem and
our ey Observation.

Proof of Theorem 7.3. Let us first consider the covering H* — H*/T = M and
the lift #~1(c) = C. By hyperbolic Dehn surgery theorem [T3] there exists ng such that for
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n > ng the manifold M(1,n) is hyperbolic. Consider the manifold M = H3 \ 7= (N(c))
and let = H?(1,n) (recall that H*(1,7) is obtained from H® by doing (1,n)-Dehn surgery
stmultaneously on all components of C').

Claim. The covering m induces the regular covering p: Q — M(1,n) = Q/G where
the group G = Deck p s isomorphic to T.

Consider the induced covering p : M — M \ N(C) where p = ‘ﬂ'] 5 and take v € I.
Since the restriction of 7 to each component N; € 7~ }(N(c)) is a homeomorphism the
element 7 sends the meridian-longitude system (@,, b;) to that of on v(9N;). As we do our
(1,n)-surgery on M simultaneously, v preserves the (1,n)-surgery slope of d(x~!(N(c))),
and so extends to some homeomorphism v* of 2. By repeating this contruction for all
generators of I' we obtain the group I'* acting discontinuously on Q. Indeed, the action
of T* on M coincide with that of T, and so is discontinuous there; further each solid torus
component N; is strictly invariant in I'* under the identity: ¥* € T*\ {id} : v*(N;)NN; =
@, so the action is discontinuous everywhere in .

The map ¢ : I' — I' is well-defined and, obviously, isomorphism since each v* € ['*
is uniquely determined by its action on M. The Claim is proved. QED.

Put G =T = ¢(I'). and notice that Lemma 7.2 implies that H,(Q,Z) = 0. To finish
the proof of our Theorem we need only to show that §2 is not simply connected. In fact if
it were not so, then the manifold M(1,n) = Q/G is hyperbolic and has the fundamental
group isomorphic to I', so M and M(1,n) would be isometric by Mostow rigidity theorem.
The last is impossible since M(1,n) and M have different volume by hyperbolic Dehn
Surgery Theorem[T3]. The Theorem is proved. QED.

Remark. The above construction of Q looks like a sort of ”conformal Dehn surgery”.
We have in this connection the following.

Question. Suppose that T, Q and G as above. Is it possible to embed Q! to S and to
realize G to be a Kleinian group having Q as invariant component?

The positive answer to this question would provide a standard way to produce all
known examples of ”patological” of Kleinian groups acting in S* (e.g. [A-T], [Ka-P], [P]).
One can also point out if such G was Kleinian then I' and G would belong to different
components of the deformation variety Def(T, Iso; (H*)) which follows from Marden-
Sullivan stability theorem.
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