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1. Introduction and statement of theorenl. The period polynomial of a cusp form

1(7) = I:~=1 aJ(I) e21rilr (r E SJ = upper half-plane) of weight k on r = PSL2(Z) is the

polynomial of degree k - 2 defined by

(1)

(2)

or equivalently by

(X)=-~ (k-2)! L(f,n+ 1) xk-2-n

r J ~ (k _ 2 - n)! (21t"i)n+l '

where L(/, s) denotes the L-series of I (= analytic continuation of I:~=1 aJ( /)[-8). The
Eichler-Shimura-Manin theory tells us that the map f ~ r J is an injection fron1 the space

Bk of cusp forms of weight A: on r to the space of polynomials of degree :::; k - 2 and that

the product of the nth and mth coefficients of r J is an algebraic multiple of the Petersson

scalar product (I, I) if n and m have opposite parity. More precisely, for each [ 2: I the

polynomial in two variables

L
fES/e

e.igcnforrn

(3)

has rational coefficientsj here (rJ(X)rJ(Y)) - = ~ (rJ(X)rJ(Y) - rJ( -X)rJ( -Y)) is the
odd part of rf(X)rJ(Y) and the SUffi is taken over a basis of Hecke eigenforms of Bk. A
rather complicated expression for the coefficients of these polynomials was found in [3J.

In this paper we will give a much more attractive formula for the expressions (3)
by means of a generating ftmction. First we multiply each expression (3) by ql and sum

over 1, i.e., we replace aJ(l) in (3) by the cusp form 1(7) itself. Secondly, we extend the

definition of rJ (and of (I, I)) to non-cusp forms, the function rJ(X) now being I/X
times a polynomial of degree k in X, and include the Eisenstein series in the sum (3).
Thus we define for even k > 0

Ck(X, Yj 7) = L
fEM/e

eigenform

(4)



where the SUffi is now over all Hecke eigenforms in the space Mk of modular forms of
weight k on r. The function Ck(X, Yj T) belangs to M~ @ X-1y-1Q[X, Y), e.g.

C2(X, Y; T) =0,
111

C4(~'Y; T) = -"3 [(X 2 _1)(y3+ 5Y + Y) + (X3+ 5X + X)(y2 - 1)] G4(T),

<X>

where Gk(T) = -lft + :L(:L dk- 1 )e21rilr (k even) is the normalized Eisenstein series of
1=1 dll

weight k on r. vVe also set

r ( ..YY - l)(X + Y)
co(X, Y; T) = co(X, Y) = X2y2 '

and combine all the Ck into a single generating function

Ck(X, Y; T) _ 0 for k odd,

Then the result we will prove is

THEOREM. Tbe generating function C(X, Yj T; T) is given by

B((..YY - l)T) B((X + Y)T) 8/(0)2 T 2

C(X, Yj Tj T) = O(~YYT) O(XT) O(YT) O(T) ,

wbere
<X> n-l rf nu

8(u) = 8r (u) = 2 L (-1)-'- q sinh( 2")
n=1

n odd

denotes the c1assical Jacobi theta function, 0'(0) = ßO;}u) I = L:(-1)9 nq.t?
u u=o n

From the Jacobi tripie product fOfffiula

co

8(u) = qi (et - e-t) TI (1 - qn)(l _ qneu)(l _ qne-u)
n=1

one easily finds

8(u) ('"""' uJ.:)
uO'(O) = exp -2~ Gk(r) kT '

so (5) can be rewritten in the form

(5)

(6)

(7)

C(X, Yj r; T) (8)

= eo(X, Y) eXP(2~ [(Xk + 1)(yk + 1) - (XY _1)k - (X + y)k] Gk(r) ~~)
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(the tenn k = 2 drops out because (X2+ 1)(y2 + 1) = (XY - 1)2 + (X + y)2).

This formula is surprisingly simple: the coefficient of T k in the exponent on the right
involves only the Eisenstein series Gk ( r ), mul tiplied by an exceedingly simple polynomial
of degree k in X and Y. Yet either it or the equivalent formula given in the theorem

contain complete information about all modular forms on rand their periods, for by
expanding the right-hand side of either formula as apower series in T (which can be
done with any symbolic algebra package) we obtain automatically for each weight k the
canorllcal basis of Hecke eigenforms of M k and the corresponding period polynomials.

The contents of the paper are as follows. In §2 we define the period functions T j

for f t/:. Sk and prove the basic properties of the extended period mapping. Section 3,
which does not use the theory of periods and may be of independent interest, contains

the construction of a certain function of three variables r E .)J, U, v E C which has nice

transformation properties (modular in r, elliptic in u and v) and nice expansions with
respect to the variables q, u and v. In §4 we use this ftmction to prove the main identity
(5); the proof will be short. Finally, §5 contains some discussion and numerical examples.

2. Periods of cusp farIns and non-cusp forms. We begin by reviewing the classical

theory of periods for cusp forms on r = PSL2(Z) (for more details, see [4], Chapter 5).

Let k denote a positive even integer, Sk and Mk the spaces of cusp forms and modular
forms of weight k on r, and Vk the space of polynomials of degree ~ k - 2. The periods
of f E Sk are the k - 1 numbers

(0 ~ n ~ k - 2)

and equal i n+1L*(/, n + 1), where

L*(f, s) = L'" J(iy) y'-l dy = (_1)k/2L*(f, k - s)

is the L-series of 1 multiplied by its gamma-factor (2tr)-"r(s). They can be assembled
into the polynomial Tj(X) = I:~:~(_1)n (k~2)rn(/)Xk-2-n E Vk as in (1). The group ."

r acts on the space VI; by

(</>li)(X) = (</>12-ki)(X) = (eX +d/-2</>(ar +~)
er +

One checks easily that 1'jl, is given by the same integral as in (1) hut taken from ,-1 (0)
to ,-1 (00). In particular,

l
iOO 1°rj+rjIS= +. =0,

o 100

o -1 1 -1 "
where S = (1 0)' u = (1 0) are the standard generators of r of order 2 and 3,

respectively. Therefore r f belongs to the space
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where we have extended the action of the group r to one of the group ring Z[r] in the

obvious way. If Vk+ (resp. Vk-) denotes the space of even (resp. odd) polynomials in Vk ,

then Tf can be written as Tj + Ti with Tj E W! = Wk n Vk±' The map T- : I H- rj is

an isomorphism from Sk to 111;, while r+ is an isomorphism from Sk to a codimension

1 subspace of W: which was determined in [3], 4.2. Finally, if I is a normalized Hecke
eigenform, then there are non-zero numbers wj E iR, wj ERsuch that the coefficients of

Tj(X)lwj and the number wjwj li(/, J) belong to the number field Qf generatecl by the
Fourier coefficients of f (and in fact transform by a if f is replaced by Ja = Laf( 1)(7 ql ,
a E Gal(Q/Q)). For instance, for k = 12, J = ß = q - 24q2 + 252q3 - .•. we have

r+(X) = (36 X 10 _ X 8 + 3X6 -3X4 +X2 _ 36 )w+
,6, 691 691 ,6, ,

T~(X) = (4X 9
- 25X7 +42X5

- 25X3 + 4X) w~ , where
+ -+ W,6,W,6, 10

W,6, = 0.114379 ... i, w~ = 0.00926927 ... , i(~, ~) = 2 E Q = Q,6, .

Now suppose that f is a modular fonn of weight k but not a cusp form, say f =

L~o af(l)ql with af(O) f:. O. The function L*(/, 8) is now defined for Re(s) ~ 0 by

00

L(/,8) = L Of(1)/-&;
1=1

it still has a meromorphic continuation to all sand satisfies the functional equation
L*(j,s) = (-1)k/2L*(J,k - s), but now has (as its only singularities) simple poles of

residue -af(O) and (-1)k/2 af (O) at .9 = 0 and s = k, respectively. On the other hand,

the binomial coefficient (k~2), interpreted as r(n+;f;(i~l-n)' has a simple zero at a1l
n E Z, n f1. {O, 1, ... ,k - 2}, the values of its derivatives at n = -1 and n = k - 1 being

l/(k - 1) and -l/(k - 1), respectively. Hence the natural way to interpret the formula
rf(X) = L i1-n(k~2)L*(J,n + 1)Xk- 2- n (valid for cusp forms) is to define Tf by

nEZ

r (X) = af(O) (X k- 1+ X- 1) +~ i1- n(k - 2) L*(/, n + 1)Xk- 2- n.
f k-l ~ n

n=O

This is TIO longer in VA: but instead in the bigger space

Vk = EB CX n = X- 1
• {polynomials of degree ~ k in X}.

-1:::;n:::;k-1

Using the standard formula

L*(J, s) =100

(f(it) - af(O)) e-1dt + [tc (f(it) _ a(~()o}) t s - 1 dt
to Jo zt

[
t~ (-1)k/2t~-~]

- a f(O) -; + k _ s (io > 0 arbitrary),

4
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we ean give an alternative formulation of the definition as

Tf(X) = t=(I(r) - af(O)) (r - X)k-2 dr + (0 (I(r) _ af~O)) (r - X)k-2 dy
J~ Ja T

a f (0) [(X )k -1 1 (1 X ) ,I,; -1 ] )+-- - 7"0 + - - - (7"0 E JJ arbitrary
k-l X ~

(10)

(that the right-hand side does not depend on 7"0 ean be eheekecl easily by differentiation).

Note that we do not have to write Ti for our new element of Yk, since when f is a cusp

form the new definition agrees with the old one. As before, we denote by Vk+ and Vk- the

even and odd parts of Vk and by rj the component of rf in Yk±.

THEOREM. The functian r f(X) belangs to tbe subspace

........ -± -- ........ ±-
of Vk. Tllis space is the direct sum of the two subspaces I/Vk = IVk n Vk ,. lV,t equals

lV:, while W; contains I'V; with coclimension 1 unless k = 2, when W;= = IVf = {O}.
Tbe maps r± : M k ~ wt are both isomorphisms.

Remarks. Note that the result here is simpler than the eorresponcling result for cusp

forms, where only one of the two maps r± : Sk ~ IVt was an isomorphism and the
determination of the image of the other \vas a difficult problem. This siInplification on
passing from Bk to l\lk is a main theme of this paper. vVe shottld also remark that Vk
is not a r- or Z[rJ-module since 1>[2-kf' for 1> E Vk and , E r is not in general in Vk ;

nevertheless, 1>h' is a well-defined rational function and the definition of Wk makes sense.

Ta prove the relations rfl(l+S) = rfl(l+U +U2 ) = Gfor fE Mk we could proceed
as before, writing Tfl, as an integral from ,-1(0) to ,-1(00) via ,-l(TO) and worrying

about the contribution from af(G). However , since M k = Sk ffi {G k } and we will need the

period polynomials of the Eisenstein series anyway, it is more convenient to simply check
the assertions of the theorem direetly for G k • Thus we will deduce the theorem from

PROPOSITION. (i) For k > 2 the functions

-(X) - " B n+1 B k - n - 1 X n
Pk - L..J (n+l)! (k-n-l)! .

-1<n<k-1nadd

belong to W: and W;, respectively.
(ii) The period polynomial of the Eisenstein series Gk is given by

where
- (k - 2)!

WOk = - 2
+ e(k-l)_

Wo = k WO,
11 (21ri) '-1 I:

PROOF: For (i) we must check that pt E Wk , since pt E Vk± is obvious. The condition

pt 1(1 + S) = 0 just says that the eoefficients of X n and X k-2-n in pt differ by a factor
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(_1)"+1, which is dear. Hence we need only check ptl(l + U + U2
) = O. For pt this

is immediate, since ptlu = (X - 1)k-2 - X k-2, ptlu2 = 1 - (X - 1)k-2. For pI; it is

convenient to introduce the generating function

1 00

P(X, T) = XT2 + L Pk(X) T
k

-
2

k=2
k even

(12)

" even m even

The addition law for the hyperbolic cotangent functioo, which can be written in the fonn

Q' + ß+; = 0 => coth Q' coth ß+ coth ß coth ; + coth; coth 0' = -1,

now teIls us that

P(X,T) + P(l- ~, XT) + P(X ~ l' (X -l)T) = -~,

and comparing the coefficients of T k - 2 (k # 2) on both sides gives the desired conclusion.

Note that for P2"(X) = 112(X + X-I) we have p2"lo(l + U + U2
) = -~. Thus pt =0

and P2 rt. W2-j for k = 0, on the other hand, both functions pt(X) = X- 2 - 1 and
pä(X) = X-I do satisfy the period relations.

For (ii) we use the definition (9) of r J, observing that aG k (0) = -Bk /2k and
L(Ck, s) = ((s)((s - k + 1). The assertions follow after a short calculation using the

values ((l-n) = -Bn/n, ((n) = -(27ri)"Bn /2n! (n > 0 even), ((l-n) = 0 (n > 1 add).

The proof of the theorem is now immediate: r J E Wk for any f E M k because Alk is

the direct surn of Bk and (Gk), W: = lV: because Vk+ = Vk+, llVk has codimension 1 in

Wk- for k > 2 because PI: t/:. Vk and because the codimeosion of lVk in H\ is ~ 1 (since

4>1(1 + S) = 0 implies that the coefficients of X-I and X k
-

1 in any 1> E Wk are equal),
and r± : M k ---+ wt is an isomorphism because r+ : Sk ---+ W: / {pt} and r- : Bk ---+ W k
are isomorphisms.

We have now extended the definition of rj to all I E Mk. In [7], §5, we defined the
Petersson scalar product of arbitrary modular fonns in Mk by Rankin's method, i.e.,

(I ) = 7r(k-1)!R _.[~af(l)~]
, g 3 (4?T)k eS.!l_k W l.!l

1=1

For the Petersson norm of the Eisenstein series this gives

(G. G )=~(k-1)!R _.[((S)((S-k+1)2((S-2k+2)]
k, k 3 (4?T)k eS~_k ((2s-2k+2)

= (k-1)! ((k)('(2-k)
22k-1?Tk+l
(k - l)!(k - 2)!

= 23 k - 2 2 k -1 . k _ 2 (( k) ((k - 1)?T Z

= (k - 2)' Bk ((k _ 1). (13)
(4?T )k-l k
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(The formula given on p. 435 of [7] contains amisprint: 23k - 3 should be 23k - 2 .) Com

paring this with part (ii) of the proposition, we see that we have the same assertion

wjwJfi(f,f) E Qf for Gk as for Hecke eigenforms f E Sk.

It follows from (13) and part (H) of the proposition that, if we decompose the

expression (4) into a cuspidal part c~(X,Yj T) and an Eisenstein part cf(.Y, Yj T), then

the latter is given by

Splitting up the generating function C(X, Y; T; T) as a sum CO +CE in the corresponding

way, we find for the value at the cusp T = ioo, q = 0, the value

C(X,Yjioo;T) = CE(X,Yjioo;T)

= (XY ~l}}--;+Y) _ f[(Xk-2 -l)p;;(Y) + (yk- 2 -l)p;;(X)] Tk

.1.=2

= T 2 (P(X, T) + P(Y, T) - P(Y, XT) - P(X, YT))

(with P(X, T) defined as in (12))

T 2 XT YT T XYT
= 4"" (coth -2- + coth 2) (coth 2" - coth -2-)

T 2 • h (X + Y")T . h (XY - l)T
Sln Sln

___-=_----'2=-=-==---_"":;-;:-:=----=2~"'=""="'=="
. h T 'nh XT . h YT . h XYT .

4S1n - SI - Sln - Sln --
2 2 2 2

This proves (5) in the limit as r --> ioo, since ;,«(u )) I = 2 sinh ~.
o q=O 2

3. A Ineromorphic Jacobi fornl. In this section we study the function of three vari

ables T E j), U, v E C defined (for - ~(u) < s..'r(T) and ~(v) < ~(T)) by

00 1]-n 00 ~m1]

F (u v) = "'"' - " --T, ~ q-n~ - 1 ~o q-m - 1]

VVe write G k ( T) for the Eisenstein series defined in §1 if k > 0 is even and set G k - 0 for

k odd.

PROPOSITION. Tbe function F T ( u, v) bas the following properties:

(i) (SymmetIJ') Fr(u, v) = Fr(v, u) = -Fr(-u, -v) .
(ii) (Analytic continuation) Fr ( u, v) extends meromolphically to all values of u, v.

It bas a simple pole in U of residue 7J-n at 21ri(nT + s) (n, 8 E Z) and a siznple pole in v

of residue ~-m at 21ri(mT + r) (m, r E Z), and is bololnolphic for u, v ~ A = 21ri(ZT +Z).

7



(iii) (Fourier expansion) The coefHcients oE Fr as apower series in q are e1ementary
hyperbolic functions of u and v:

(iv) (Laurent expansion) The Taylor coefHcients of Fr ( U, v) - ~ - ~ are derivatives
of Eisenstein series:

1 1 ~ (1 d )min{r,s} ur v"
Fr(u,v)=-+--2 Lt ~d Glr-"'1+1(7)-,-,.

U V r s-O 1T"Z 7 r. s., -

(15)

(v) (Elliptieproperty) Fr(u+276(n7+S),v+27ri(m7+r)) = q-mn~-m1]-nFr(v,u)

for m, n, r, s E Z.
(vi) (Modular property) F~ ( U+ d , v+ d ) = (eT + d)e /T+d Fr(U, v) for (a db) Er.cr::F'l cr cr c

(vii) (Relation to tbeta fun etions) Let B(u) = Br ( u) be as in (6). Then

B'(O)B(u + v)
Fr(u, v) = B(u)B(v) .

(viii) (Logarithm) FT(u, v) = u:: v exp ( L ~! [uk + vk - (u + v)k] Gk(T)).
k>O

PROOF: By expancling the fractions in thc teIIDs n =1= 0, m =1= °in the definition of F as
geometrie series, we cau express F as a double series

0Cl

F () ~17 - 1 " (~m n ~-m -n) mn
r U, V = (~ _ 1)( _ 1) - 6 ~ 17 - ~ 1] q j

1] . m,n=l

this makes the symmetry properties (i) obvious and also gives the Fourier expansion (iii).

The double series converges if I~(u)1 and I~(v)1 are less than 27r1~(7)1. To get the analytic
continuation in u and v, we choose a positive integer N, break up the double series into

the terms with n < N and those with n 2:: N, and sum over m in the former and n in the
latter terms. This gives

The infinite sum converges for I~(u )1< 271"N I~(T ) 1, since then ~qN and ~ -1 qN are less

than 1 in absolute value. Taking N large enough thus gives the meromorphic continuation

to all values of u and v, the positions and residues of the poles being as stated in (ii)

8



of the proposition. The elliptic property (v) is also easily deduced: taking N = 1 and

replacing 7] by q7], we find

which proves (v) for m = 1, n = 0; the general case follows by interchanging u and v and
by induction on m and n.

Inserting the Taylor expansions

00

1 u z: B n n- coth- = -u
2 2 n!'

n=O

into (14), we find

z:OO (u+v)t urvs

sinh(u + v) = - '" - -t! - L.J r! s! '
d=l r, ... 2:.0

t odd r+.'wdd

and the expressions in brackets is clearly (27ri) - v G~1I) ( r) where v = min{r, s} ancl k =
Ir - sI + 1. This proves formula (15). 'Ve can rewrite (15) as

FT(u, v) = -2 z: Gk(r, uv)(u k
-

1 + V
k- 1

)

k2:. 2

with

G.( ..\) =~ (..\/27ri) 11 C{II)() _ bk,2
k T, L.J v!(v + k _ I)! k T 2..\ .

&1=0

A result of H. Cohen and N. I(uznetsov (cf. [2], p. 35) implies the transformation law

Gk ( ~;tS, cT~d) = (er +d) k ec>"j{ cT+d)Gk (T, z) for (: ~) Er. The modular transformation
property (vi) follows.

The closed formula (vii) is an easy consequence of the elliptic transformation prop

erties of Fr. Indeed, it is well-known (and elementary) that B(u) has simple zeros at all
points of the lattice A and no other poles. Since FT ( u, v) has simple poles for u or v in
A, is otherwise holomorphic, and vanishes for u + v E A (because of the antisymmetry
property Fr ( U, -v) = - Fr ( v, -u», the quotient fJ( u)B(V )FT(u, v)/B(u + v) is holomor
phic in u and v. Now using (v) and the transformation properties fJ (u + 27ri) = B(u ),
B('l.L + 21TiT) = _e-1I'"iT-UB(u), both of which are obvious frorn the definition of B a.s either

a surn or a product, one finds that the quotient in question is invariant under u 1----* u +w

or v 1----* v +w for all w E A. It fiUSt therefore be a constant (for T fixed); taking the

9



limit as u ~ 0, we find that this constant equals B'(O). Trus proves (vii) and also-in
view of the known modularity properties of B(u)-leads to another proof of (vi). Finally,
the identity given in (viii) follows from the formula (7). This identity again makes the

modular transformation properties of FT eIear, since (cr + d)kGkC'Yr) is equal to Gk(r)
for k > 2 hut to Gz(r) +47ric(cr + d) for k = 2.

REMARK: Parts (v) and (vi) of the proposition say that the function Fr (27riz1 , 27rizz)
(r E J5, Zl, Zz E C) is a two-variahle rneromorphic Jacobi form of weight 1 and index

m = (~ ~) (far the theary af Jacabi farms, see [2], where, hawever, anly Jacabi farms
z

of one variable were considered). Equation (14) says that this Jacobi form is singular in
the sense that for each term qn ~ rl r(2 occurring in its Fourier development the mat rix

( 2~ r) (r = (rl rl)) has determinant zero.
r m

4. Proof of the main identity. In view of part (vii) of the proposition of the last
section, the theorem stated in §1 is equivalent to the identity

C(X, Yj rj T) = TZ Fr(T, -XYT) FT(XT, YT). (16)

Denote the right-hand side of (16) by B(X, Yj rj T) and the coefficient of TI. in it by

bk(X, Yj r). We must show that bk = Ck for every k ;::: 0, the case k = °heing ohvious.

Because the term k = 2 dropped out in (8), and the functions GI. for k > 2 are

madular farms, the right-hand side af (5) (ar af (16» is invariant under r 1-+ ur + ~,
cr +

T 1-+ (cr +d)T far every (: ~) E r. This is equivalent to the assertion that bk(X, Y; r) is

a modular form of weight k (with coefficients in C[X,X- 1 , Y, y-l)) for every k ;::: 0. But

we already checked the correctness of (16) in the limit r ~ ioo at the end of §2, so the

Eisenstein parts of the modular forms bk(X, Y; r) and Ck(X, Yj r) agree. We therefore
need only check the cuspidal parts, Le., the assertion that bk and CI. have the same
Petersson scalar product with each cusp form f E Sk. In view of the definition of Ck, this
is equivalent to proving that

(17)

for each nonnalized Hecke eigenform fESk .

For brevity of notation, write the Taylor expansion (15) as

FT(u, v) = L 9h,l(r) (u1v1+h- 1 + u'+h-1v1)
h ,l"2,0

with
1

-2(27ri)-1 C(l)( )
1!(1+h-1)! h r

°
10

(h = 1= 0),
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Then

gh,l( r )gh l ,1' (r)
l,h/ ,h'2:0

h+h'+2(1+1')=k

X [(_Xy)'+h-l + (_XY)'][X'ly'l+h'-l +X"+h'-ly"].

(18)

The coefficients of xmyn with m or n equal to -1 or to k -1 involve only the Eisenstein

series G k and have already been taken care of. Also, it is dear that the coefficient of
xmyn on the right of (18) is invariant under m t-+ n and (_I)'n+l-invariant under

m t-+ k - 2 - m, so we mayassume 0 ::; m < n ::; ~(k - 2). (The middle relation is

< rather than ::; because m and n always have opposite parity.) For such m, n, the
coefficient of xmyn on the right hand side of (18) equals

L gk-n-m-l,l(r)gn-m+l,ll(r) + om,n-l«1 + 20n ,!k_l)gk-2n,n(r)
l,l',?-O

l+l'=m
1

- 4 "(k- _2),Fm(Gk-n-m-l,G n - m+1 ),m.n. n .

where Fm(Gh, Gh' ) for h, h' ~ 2 is defined by

F (G G I) = 1 ~(_ )m-l (m) (m + h - 1)1(m + h' - 1)1 G(l)( ) C(m-l)( )
m h, h (21ri)m ~ 1 I (l+h-l)!(m-l+h'-I)! h r h' r

m! (bh"2 m Oh,2 ) (m+l)
+ 2(21ri)m+l h + m + (-1) h' + m G2 (r).

If m = 0 and hand h' are both greater than or equal to 4, then Fm(Gh ) ChI) is simply the
product of the Eisenstein series Gh and Ch', and it was shown by Rankin ([R], Theorem
4) that (at least for h =j:. h') this product satisfies

for all normalized Hecke eigenforms in Bk, k = h + h'. H m > 0 and hand h' are both

~ 4, then Fm(Ch) Ch') is the result of applying to the Eisenstein series Gh and Ch' the
operator introduced by H. Cohen in [1] and is a cusp form of weight k = h + h' + 2m;
here it was shown in [6] (Proposition 6, Corollary) that the scalar product of Fm(Ch , ChI)
with a normalized Hecke eigenform f E Bk is given by

The case when h or h' equals 2 is not mentioned explicitly in [1] or [6], but the above

assertions remain true then also, as one proves by the same method as in the general case
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but using "Hecke's trick" to define Gz as lim LC" )-21·' ·I-s. Putting aU trus together
.8-0

gives the desired result (17).

The calculation we have given and the result we have proved are esscntially restate

ments of Theorem 3 of [3] and its proof. The difference is that there we insisted on

obtaining cusp forms and therefore had to lnodify Fm(Gh, Chi) by subtracting a multiple

of Gk when m = 0, with the consequence that the final formulas obtained were much
more complicated and could not be combined conveniently into a generating function.

5. Properties of C(X, Y; r; T) and examples. In this seetion we take the main

theorem in the fonn (5) or (8) and diseuss what consequeoces cau be drawn from it.

In the first place, since Br(u) and Gk(r) have rational coefficients as power series in

u and q = e21rir
, it fol11ows immediately from either version of the identity that all of the

coefficients of xmyn in (3) are rational for a11 m aod n lying between 0 and k - 2, Le.,

that the numbers Tm(f)Tn(f)/i(f, f) belong to Qf for a11 Hecke eigenfonns fand for all

m aod n of opposite parity. \'\Te also get integrality statements, e.g., that the coefficients

of (4) with respect to -,Y, Y and q are p-integral for a11 primes p 2:: k. Ivforeover, as

already mentioned in the introduction, either (5) or (8) gives a complete1y algorithmic

way of obtaining a basis of Hecke eigenfonns for Sk and their period polynomials for any
k. Numerical examples will be given at the end of this seetion.

Secondly, as already mentioned in §4, the fact that the non-modular form Gz drops

out in substituting equation (7) into (5) implies that the right-hand side of (5) is invariant
ur + b ab.

under r 1-+ d' T 1-+ (er + d)T for every ( d) E r and hence that the coeffiClent
cr+ C

Ck(X, Y; r) of T k is a modular form of weight k in r for every k. (One must also check
that this coefficient contains no negative powers of q, but this is clear from (8).)

Thirdly, one sees directly from (8) that C(X, Y; r; T) is the product of co(X, Y)
and apower series in T, XT, and YT which is invariant under (X, Y) 1-+ (-X, -Y) or
(X j Y) 1-+ (Y, X) and is congruent to 1 modulo -,Y or Y. This shows that each coefficient

Ck(X, Y; r) (k > 0) is symmetrie in -,Yand Y and contains only monomials xmyn with

m ~ n (mod 2) and -1 ~ m ~ k - 1, -1 ~ n ~ k - 1. Moreover, by looking at the
extreme coefficients in the exponent in (8), we easily find the coefficients of all monomials

with m or n equal to -1 or k - 1; these coefficients are multiples of Gk as calculated in

§2. For instance, expanding (8) to the first two terms in Y gives

C(X y. r' T) = _ (1 - XY)(l +X-I Y) [1 _ ~ 2Gk (r) X"(X k - 2 _ l)YT k + O(y2)]
, , , XY2 L (k - I)!·

k;;;2

and hence that the coefficient of y-l in Ck(X,Y;r) (k > 0) equals ~kG~(;]! (Xk- 2 -1).

Fourthly, one cau ask whether one ean "see" the period relations T 11(1 + S) -..:
rfl(l +U +U2

) = 0 (f E M k ) directly from equation (5). These relations are equivalent
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to the identities

-1
C(X,YjriT)+C(X,Y;r;XT) =0,

C(X,YjTjT)+C(l- ~,YjTjXT)+C(l~X'yj(l-X)T)=0.

The first of these is immediately obvious from (5) 01' (8) (using B( -u) = -B(u) in the
former case). The second, after multiplying through by a common denominator whieh is
a produet of six theta funetions, is the special ease

ao =T, al = (X -l)T, 0'2 = -XT, ßi = Yai (i = 0,1,2)

of the following theta senes identity:

PROPOSITION. Let O'i, ßi (i E 1/3Z) be six numbers satisfying I: O'i = I: ßi = 0. Tben
i i

L O( Qi) O(ßi) O(Qi-l + ßi+l) O( O'i+l - ßi-l) = O.
1

PROOF: One of Riemann's theta formulae (cf. [5], formula (Rs), p. 18) says

I

20ll (Xl )Oll (YI )0]] (UI )8]] (v]) = L (-1 )i+ j Oij( x )8ij (y )8ij ( u )Bij (v), (19)
i,j=O

\vhere x, y, u and v are arbitrary and

1
YI = '2(x+y-u-v),

1
Ul = -(x-y+u-v),

2

1
VI = '2(x- y -u+v).

The Oi,j are Jacobi theta funetions whose definition is irrelevant here except that B]] (u) =
B(u) and that the other three Bi,j are even funetions of their arguments. Therefore
replacing v by -v in (19), subtraeting, and dividing by 2, we get

where X2, ... ,V2 are defined like x I, ..• ,VI but with v replaced by - v. UP to renaming
the variables, this identity is the same as the one in the proposition.

Finally, in support of the dainl made in the introduction that the identity (5)
contains all information about Hecke theory for PSL2 (Z) , we mention that it is possible to
derive the Eichler-Selberg trace formula for the traces of Hecke operators on Sk from (5).
The formula that comes out is rather different from the standard one and in some ways

more elementary (for instance, no dass numbers appear explicitly), and the ealculation
that relates it to the classieal formula is rather amusing. Since the derivation is somewhat

intricate, we postpone it to a later paper.
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We end with a few numerical examples in weights k :::; 18. Since dirn ];fk :::; 2 in this

range, we need only expand (5) up to tenns in q1, anel the calculation of Ck(.Y, Yj r) up
to this order is obtained immediately from the expansions given in §4. Subtracting the

Eisenstein part cf as given in §2, we find the values

k rj(X)rj(Y)/(2i)k-3(k - 2)!(/, f)

12 -2 [6
3
9
6
1 Pi2(X) - q+(X)][q-(Y)]

16 ~~ [33661°7 pt6(X) - (2X 4
- X 2 + 2) q+(X)][(9y4

- 5y2 + 9) q-(Y)]

18 ~ [4
1
3
8
8°6°7 pt8(X) - (8X 4

- 9X2+8) qt(X)][(6y4
- 7y2 +6) qö(Y)]

for the unique nonnalized cusp form f of weights 12, 16 and 18 (we have given only

rj(X)Tf(Y), since (rf(X)rf(Y))- is the sum of this polynomial and the one obtained

by permuting X and Y). Here pt(X) denotes the polynamial X k
- 2 - 1 as in §2 and the

polynomials q±, qt are defined by

and q5=(X) = (X2+1)q±(X). The fact that rj(X) modulo pt(X) and Tf(X) are divisible
by q+(X) and by q-(X), respectively, and also by X 2 + 1 if k/2 is add, is an exercise in

the use of the period relations r f 1(1 + S) = r f 1(1 +U + U2
) = 0 and is left to the reader.

These properties can be translated using (5) ioto identities for theta senes wmch can of
course also be proved directly; for instance, the fact that T feX) is divisible by X-I for

all cusp forms f says that the function

8(XT - T)8(XT + T)B'(O)2T2

C(l, Yj Tj T) = 8(T)28(XT)2

has no cuspidal part, which is true because the elliptic function 8(u-v)8(u+v)/8(u)28(v)2
equals p(v) - p(u) (compare poles and zeros!) and because the Weierstrass p-function
has a Laurent expansion involving only Eisenstein series. Notice also that the only large
denominators occun'ing in the table are the nU1nerators 691, 3617 and 43867 of Bk which

accur as denominators in the coefficient of pt(X) in r7(X). These are cancelled by

the Eisenstein part '* (pt (X)pk(Y) + pk(X)pt (Y) ), in accordance \vi th the integrality
properties mentioned at the beginning of the section.
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