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ON THE LINEAR STABILITY OF NEARLY-KÄHLER 6-MANIFOLDS

UWE SEMMELMANN, CHANGLIANG WANG, AND M. Y.-K. WANG

Abstract. We show that a strict, nearly Kähler 6-manifold with either second or third
Betti number nonzero is linearly unstable with respect to the ν-entropy of Perelman and
hence is dynamically unstable for the Ricci flow.
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1. Introduction

Manifolds which admit a non-trivial Killing spinor form a distinguished subclass of Einstein
manifolds. Recall that the Killing spinor equation is given by

∇Xσ = cX · σ

where σ is a complex spinor field, c is a constant, X is an arbitrary tangent vector, and ·
denotes Clifford multiplication. Let (M, g) be the underlying Riemannian spin manifold and
n be its (real) dimension. Since a Killing spinor is an eigenspinor for the Dirac operator:
Dσ = −ncσ, the constant c is zero (parallel spinor case), purely imaginary, or real.

In the c = 0 case, we obtain special geometries of Calabi-Yau, hyperkähler, G2, and Spin(7)
types. By the work of X. Dai, X. D. Wang, and G. Wei [DWW05], the underlying Ricci-flat
metric g is linearly stable. When c is purely imaginary, the manifolds were classified by H.
Baum [Bau89]. By the work of Kröncke [Kr17] and the second author [Wan17], the Einstein
metrics (with negative scalar curvature) are also linearly stable.

When c is real and nonzero, the Einstein metric g has positive scalar curvature, and so
by Lichnerowicz’s theorem it cannot admit any harmonic spinors. T. Friedrich [Fr80] then
derived a positive lower bound for the eigenvalues of the square of the Dirac operator, and
furthermore showed that the lower bound is achieved precisely for those manifolds which
admit a non-trivial Killing spinor. These manifolds are known to be locally irreducible, and
cannot be locally-symmetric unless they are spherical space-forms (which we will exclude
from our discussion henceforth). While they are far from being classified, there is a well-
known rough classification by C. Bär [Ba93] in terms of the restricted holonomy of their
metric cones (R+×M,dt2 + t2g). The only possibilities are SU(n+1

2
), Sp(n+1

4
),G2, or Spin(7).

Thus n can be even only if n = 6, and, in this case, by the work of Grunewald [Gru90] (see
also chapter 5 in [BFGK91]), (M, g) is either isometric to round S6 or a strict nearly Kähler
6-manifold.

This article examines the linear stability of this class of Einstein 6-manifolds. Recall that
a nearly Kähler manifold (M,J, g) is an almost Hermitian manifold that satisfies

(∇XJ)X = 0
1
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for all tangent vectors X, where ∇ denotes the Levi-Civita connection of g. The nearly
Kähler structure is strict if it is not Kähler.

For the purpose of this paper, a closed Einstein manifold (M, g) is linearly stable if for all
transverse traceless (TT) symmetric 2-tensors h, i.e., divergence-free and trace-free symmet-
ric 2-tensors, the quadratic form

(1.1) Q(h, h) = −〈∇∗∇h− 2R̊h, h〉L2(M,g) ≤ 0.

In the above R̊ is the action of the curvature tensor on symmetric 2-tensors (see (2.1)).
(M, g) is linearly unstable if it is not linearly stable. The coindex of a quadratic form is the
dimension of the maximal subspace on which it is positive definite. More comments about
stability will be given in section 2. Here we only mention that (a positive multiple of) the
above quadratic form occurs in the second variation formula of both the Einstein-Hilbert
action and Perelman’s ν-entropy.

The main result of this article is

Theorem 1.2. Let (M,J, g) be a complete strict nearly Kähler 6-manifold. If b2(M) or
b3(M) is nonzero, then g is linearly unstable with respect to the Einstein-Hilbert action
restricted to the space of Riemannian metrics with constant scalar curvature and fixed volume.
Hence it is also linearly unstable with respect to the ν-entropy of Perelman, and dynamically
unstable with respect to the Ricci flow.

Note that an Einstein metric g is dynamically unstable if there exists a non-trivial ancient
rescaled Ricci-flow gt,−∞ < t ≤ 0, such that gt converges modulo diffeomorphisms to g
in the pointed Cheeger-Gromov topology. The conclusion about dynamic instability in the
above theorem follows from Theorem 1.3 in [Kr15].

The proof of Theorem 1.2 actually shows that the coindex of the Einstein metric g (for
either the Einstein-Hilbert action or ν-functional) is ≥ b2(M) + b3(M).

By the theorem of Bonnet-Myers, a strict nearly Kähler 6-manifold has finite fundamental
group. On the other hand, by pull-back any Riemannian cover of such a manifold also has
a strict nearly Kähler structure. From the properties of the transfer homomorphism, the
corresponding Betti numbers of any Riemannian cover are at least as large as those of the
base. Hence the nearly Kähler metrics on the covers are also linearly unstable.

At present there are very few examples of complete strict nearly Kähler 6-manifolds.
Recently, Foscolo and Haskins produced the first non-homogeneous examples of such spaces
[FH17]. One cohomogeneity one non-homogeneous nearly Kähler metric was produced on
each of S6 and S3 × S3. Our result implies that the second metric is dynamically unstable.

In [WW18] we showed that all the homogeneous nearly Kähler 6-manifolds other than the
isotropy irreducible space G2/SU(3) ≈ S6 are linearly unstable. Theorem 1.2 provides some
additional information for these cases. In the case of (SU(2) × SU(2) × SU(2))/∆SU(2), it
was shown in [WW18] that the eigenspace corresponding to the first nonzero eigenvalue of
the Laplace-Beltrami operator of the nearly Kähler normal metric has dimension 12, and
the corresponding eigenvalue is less than twice the Einstein constant. Hence the normal
metric is linearly unstable with respect to the ν-entropy. However, the instability with
respect to the Einstein-Hilbert action was unresolved. Theorem 1.2 shows that this is also
the case, and further that the coindex of g for the ν-entropy is at least 12 + 2 = 14. As for
Sp(2)/(Sp(1)U(1)) = CP3, the Ziller metric was shown to be linearly unstable with respect
to the Einstein-Hilbert action by appealing to the properties of its canonical variation as
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a Riemannian submersion type metric. The above theorem gives the instability without
resorting to using fibrations or homogeneous geometry. Finally, the coindex of the nearly
Kähler normal metric on SU(3)/T 2 is at least 2 since the second Betti number is 2 in this
case.

Finally we mention that Theorem 1.2 can be interpreted as a rigidity result in the form of

Corollary 1.3. Let (M,J, g) be a complete, simply connected, strict nearly Kähler mani-
fold that is linearly stable with respect to the Einstein-Hilbert action. Then it is a rational
homology sphere. In particular, if H2(M,Z) has no torsion, then M is diffeomorphic to S6.

The corollary follows immediately from Theorem 1.2 by applying Wall’s classification of
closed simply connected spin 6-manifolds [W66]. Recall that the absence of torsion in the
second integral homology implies that there is no torsion in integral homology, and Wall
showed that such manifolds are determined up to diffeomorphism by their integral homology
type and their first Pontryagin class.

After recalling in the next section the various notions of stability and those properties of
nearly Kähler manifolds that will be used in this paper, the proof of Theorem 1.2 will be
given in the section 3.

Acknowledgements: C. Wang gratefully acknowledges the support and wonderful working
condition of the Max Planck Institute for Mathematics in Bonn. M. Wang’s research is
partially supported by NSERC Grant No. OPG0009421. Both of them like to thank Xianzhe
Dai, Stuart Hall, Fei He, J. Madnick, Tommy Murphy, and Guofang Wei for discussions and
comments on an earlier version of the paper.

2. Preliminaries and Properties of Nearly Kähler Manifolds

We begin with explicit statements of conventions used in this paper because different
authors use different conventions for curvature quantities, and signs are of utmost importance
for computations in the next sections. We take the (1, 3) curvature tensor to be RX,Y (Z) =
[∇X ,∇Y ]Z − ∇[X,Y ] Z. If {e1, · · · , en} is an orthonormal frame, the (0, 4)-curvature tensor
is taken to be R(ei, ej, ek, el) = Rijkl. The sectional curvature determined by the 2-plane
{ei, ej} is Rijji. The action of the curvature on symmetric 2-tensors is given by

(2.1) (R̊h)ij = −
∑
p,q

Ripjqhpq.

Laplace-type operators will be consistent with the Laplace-Beltrami operator on functions
given as −trg(Hessg), for which the eigenvalues are non-negative.

2.1. Notions of linear stability of Einstein metrics. We next describe in more detail
the various notions of stability mentioned in the Introduction. As is well-known, Einstein
metrics on closed manifolds are critical points of the total scalar curvature functional re-
stricted to unit volume metrics. The second variation formula at an Einstein metric consists
of three parts. For directions tangent to the orbit of the diffeomorphism group, the second
variation is zero, and along directions corresponding to conformal changes, the second vari-
ation is non-negative as a consequence of the theorem of Lichnerowicz-Obata. Therefore, it
is customary to associate linear stability of the Einstein-Hilbert functional with the second
variation restricted to the space of transverse traceless symmetric 2-tensors (TT-tensors),
which is the tangent space of the space of unit volume constant scalar curvature metrics. By
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the work of Berger and Koiso, on this space the second variation is given by 1
2
Q(h, h), where

Q is given by (1.1). Note that the operator ∇∗∇− 2R̊ on TT-tensors at an Einstein metric
with Einstein constant Λ is the same as ∆L− 2Λ · I where ∆L is the Lichnerowicz Laplacian
and I is the identity operator. The notion of linear instability given in the Introduction is
equivalent to the condition 〈∇∗∇h− 2R̊h, h〉L2(M,g) < 0 for some nonzero TT-tensor h.

Einstein metrics with positive scalar curvature also occur among the critical points of
Perelman’s ν-entropy [Pe02]. The second variation formula for this functional at an Einstein
metric was computed by H. D. Cao, R. Hamilton, and T. Illmanen [CHI04] and explained in
detail in [CH15]. (For the corresponding formula at a shrinking gradient Ricci soliton, see
[CZ12].) It likewise consists of three parts. Along directions orthogonal to the orbit of the
diffeomorphism group and along the space of TT-tensors, it agrees with that for the Einstein-
Hilbert action (up to some positive constant factor). Along directions tangent to volume
preserving conformal deformations, however, it can only have a positive definite subspace
provided there are eigenfunctions of the Laplace-Beltrami operator with eigenvalues less than
2Λ. In other words, unstable directions are given by these eigenfunctions and by TT-tensors
which are eigentensors of the Lichnerowicz Laplacian with eigenvalue < 2Λ.

Hence Einstein metrics (with positive scalar curvature) which are linearly unstable with
respect to the Einstein-Hilbert action are automatically linearly unstable with respect to
the ν-entropy. As mentioned in the Introduction, Kröncke’s theorem implies that ν-linearly
unstable Einstein metrics are dynamically unstable with respect to the Ricci flow.

2.2. Properties of nearly Kähler 6-manifolds. As mentioned in the introduction, an
almost Hermitian manifold (M2m, g, J) is called nearly Kähler if (∇XJ)X = 0 holds for
all tangent vectors X, where ∇ denotes the Levi-Civita connection of g. The canonical
Hermitian connection ∇̄ is defined by ∇̄XY = ∇XY − 1

2
J(∇XJ)Y . This is a U(m) connection

(i.e. ∇̄g = 0 and ∇̄J = 0) whose torsion T̄ , given by T̄XY := −1
2
J(∇XJ)Y , is skew-

symmetric. It is well known that for all nearly Kähler manifolds the torsion T̄ is ∇̄-parallel.
The Kähler form ω of M is given by ω(·, ·) = g(J ·, ·). The nearly Kähler condition implies
that the tensor Ψ+ := ∇ω is a 3-form.

Recall that the almost complex structure J acts as an automorphism on the space of
complex-valued differential forms, and induces a (pointwise) orthogonal decomposition of
this space into forms of type (p, q). Our convention here is that of [Bes87], so that J acts
on a form of type (p, q) as multiplication by iq−p. We denote by Λ(p,q)+(q,p)TM the space of
forms of type (p, q) + (q, p), i.e. the projection of the complex bundle Λ(p,q)TM onto the real
bundle Λp+qTM , e.g., the Kähler form ω is of type (1, 1) and Ψ+ is of type (3, 0) + (0, 3).

Similarly, the bundle SymTM of g-symmetric endomorphisms splits into the orthog-
onal direct sum SymTM = Sym+TM ⊕ Sym−TM , of symmetric endomorphisms com-
muting, respectively anti-commuting, with the almost complex structure J . The trace
of every element in Sym−TM is automatically 0, and Sym+TM decomposes further as
Sym+TM = Sym+

0 TM ⊕ I, i.e., into its trace-free part and multiples of the identity.

From now on we assume that M is 6-dimensional and that the nearly Kähler manifold is
strict, i.e., (M, g, J) is not Kähler. In this situation the metric g is Einstein and we assume
its scalar curvature is normalized to be 30. It turns out that the 3-form Ψ+ has pointwise
constant norm and can thus be considered as the real part of a ∇̄-parallel complex volume
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form Ψ = Ψ+ + iΨ−, where Ψ− = ∗Ψ+. Thus M carries a SU(3)-structure with minimal
connection ∇̄, which has holonomy contained in SU(3).

We will need identifications of the subbundles Sym±TM with spaces of forms. First,

the bundle Sym+
0 TM can be identified with Λ

(1,1)
0 TM , the bundle of primitive J-invariant

2-forms. The isomorphism is given by the map h 7→ η = h(J ·, ·). Moreover, the bundle

Sym−TM can be identified with the bundle Λ
(2,1)+(1,2)
0 TM of primitive 3-forms of type (2, 1)+

(1, 2). Here the isomorphism is given by the map h 7→ h∗Ψ
+, where h∗ denotes the natural

action of endomorphisms on forms defined by h∗Ψ
+ = −

∑
i h(ei) ∧ ei yΨ+, for any ortho-

normal basis {ei} of T . For more details we refer to [MNS08], p. 60. These two identifications
are ∇̄-parallel bundle isomorphisms since they are fibrewise defined by SU(3)-equivariant
maps.

In the following it will be convenient to consider the standard Laplacian ∆V introduced in
[SW19]. It is a Laplace type operator acting on sections of any vector bundle VM associated
to the (oriented orthonormal) frame bundle P via a representation (V, ρ) of SO(n). It is
defined as ∆V = ∇∗∇ + q(R), where ∇ is the covariant derivative induced by the Levi-
Civita connection and q(R) is a symmetric endomorphism of VM , linear in the Riemannian
curvature R and defined fibrewise by q(R) = 1

2

∑
i,j(ei ∧ ej)∗R(ei ∧ ej)∗. For any 2-form

A ∈ Λ2Rn ∼= so(n) we denote by A∗ the action of A on V via the differential of ρ.

The motivating example is the standard form representation V = ΛkT. Then ∆V is the
Hodge-Laplace operator ∆ = d d∗ + d∗d on differential forms. Another important example is
V = SymT. Here the standard Laplace operator coincides with the Lichnerowicz Laplacian
∆L on symmetric endomorphisms, or equivalently symmetric 2-tensors. In particular, we

have q(R) = − 2
◦
R + Ric, where (Rich)(X, Y ) := h(RicX, Y ) + h(X,RicY ) denotes the

standard derivative extension of the Ricci endomorphism to symmetric 2-tensors and the cur-

vature operator
◦
R is defined by (2.1), or equivalently by (

◦
Rh)(X, Y ) = −

∑
i h(RX, eiY, ei)

(cf. [SW19], p. 280).

More generally, one can consider a Laplace type operator ∆̄V := ∇̄∗∇̄ + q(R̄), where
instead of the Levi-Civita connection ∇ one has a metric connection ∇̄ with curvature R̄.
The frame bundle P has to be replaced by a G-principal bundle with G = Hol(∇̄). Here V
is a G-representation and it is reasonable to consider only connections with skew-symmetric
and parallel torsion. In particular, if ∇̄ is the canonical hermitian connection of a nearly
Kähler manifold, the standard Laplace operator ∆̄V is exactly the Hermitian Laplacian ∆̄
introduced in [MS10], p. 254. An important property of the standard Laplacian is that it
commutes with all parallel bundle maps (cf. [SW19], p. 283).

Regarding harmonic forms on M we shall need to use the following result of Verbitsky:

Theorem 2.2. ([V11], Theorem 6.2) Let (M,J, g) be a strict nearly Kähler 6-manifold.
Then the space of harmonic k-forms is a direct sum of spaces Hp,q of harmonic forms of type
(p, q) with k = p + q, and Hp,q = 0 unless p = q or (p, q) = (2, 1) or (1, 2). All harmonic
(1, 1)-forms are primitive, as are all harmonic 3-forms.

An alternative proof of the above result can be found on p. 598 of [Fos17].
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3. Proof of Theorem 1.2

3.1. The b2(M) 6= 0 Case. Recall that Cao, Hamilton, and Illmanen observed in [CHI04],
pp. 6-7, that a compact shrinking Kähler Ricci soliton with b1,1 ≥ 2 is linearly unstable,
and gave a simple argument for Kähler-Einstein case. (For the case of Kähler Ricci solitons,
see [HM11]). Our result may be viewed as the analogue of this observation for complete,
strict, nearly Kähler 6-manifolds. In this case, the fundamental 2-form ω is not closed,
and by Verbitsky’s theorem, any harmonic 2-form is pointwise orthogonal to ω. Hence the
analogous condition is b2(M) > 0 instead.

Let η be a harmonic 2-form and h(X, Y ) := η(JX, Y ). By Verbitsky’s theorem, η is
J-invariant and primitive. So h is a J-invariant symmetric 2-tensor. Since η is pointwise
orthogonal to ω, it follows that trgh = 0. The harmonic form η is closed and co-closed, which
implies by a short calculation that h is divergence free (cf. Lemma 4.2 in [MNS08]).

As a consequence of Proposition 3.4 and Corollary 4.4 in [MS11] we have that ∆ and
∆̄ coincide on primitive co-closed (1, 1)-forms. Hence, ∆̄η = ∆η = 0. Since the standard
Laplace operator ∆̄ commutes with ∇̄-parallel bundle homomorphims, we also have ∆̄h = 0.
Using the definition of ∆̄ and again Proposition 3.4 and Corollary 4.4 of [MS11] we obtain

0 = ∇̄∗∇̄h+ q(R̄)h = ∇∗∇h− 3h+ q(R)h− 3h = ∇∗∇h+ q(R)h− 6h .

Since the nearly Kähler metric g is Einstein with scalar curvature normalized to be 30 it
follows that Rich = 10h. Hence

∇∗∇h− 2
◦
Rh = ∇∗∇h+ q(R)h− 10h = −4h .

3.2. The b3(M) 6= 0 Case. We construct a destabilizing TT symmetric 2-tensor from any
given harmonic 3-form as follows. Let η be a harmonic 3-form. Then, by Verbitsky’s theorem,
it is primitive and of type (2, 1) + (1, 2). Hence, as recalled above, there is a symmetric
endomorphism h ∈ Sym−TM such that η = h∗Ψ

+. It follows that h is divergence free
(Lemma 4.2, (35) in [MNS08]). Indeed, h∗Ψ

− = − ∗ (h∗Ψ
+) (cf. [MNS08], p. 61). Thus,

d(h∗Ψ
−) = −d ∗ (h∗Ψ

+) = ∗ d∗ η = 0, since η is co-closed as a harmonic form. Again a
combination of Proposition 3.4 and Corollary 4.4 in [MS11] shows that ∆ and ∆̄ coincides
on co-closed 3-forms in Λ(2,1)+(1,2)TM . Hence, ∆̄η = ∆η = 0 and as above we can conclude
that ∆̄h = 0. This can be reformulated as

0 = ∇̄∗∇̄h+ q(R̄)h = ∇∗∇h− 2h+ q(R)h− 2h = ∇∗∇h+ q(R)h− 4h ,

by using again Proposition 3.4 and Corollary 4.4 of [MS11]. In this case it follows that

∇∗∇h− 2
◦
Rh = ∇∗∇h+ q(R)h− 10h = −6h .

This completes the proof of Theorem 1.2.

Remark 3.1. As one can easily check by using SU(3)-equivariance, an explicit expression
of the destabilizing direction h in terms of η is given by

h(X, Y ) = −1

8

∑
i,j

(
η(X, ei, ej)Ψ

+(Y, ei, ej) + η(Y, ei, ej)Ψ
+(X, ei, ej)

)
= −1

4

(
〈iXη, iY Ψ+〉+ 〈iY η, iXΨ+〉

)
,
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where 〈 , 〉 denotes the inner product for 2-forms. Indeed, the righthand side is the inverse
of the isomorphism h 7→ η = h∗Ψ

+ mentioned above. The above formula is the analogue of
Bryant’s formula (2.17) in [Br06] for the nearly parallel G2 case.
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