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1. Introduction

In this paper we construct the dashed cells and dashed lines in the
next scheme:
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Explain this scheme in detail. The classical topological Landau-
Ginsburg model was found by Vafa [17](see also Dijkgraaf- Witten [5]).
It generates an algebra over C on the tangent space to a polynomial
p(z) = zn+1 + a1z

n−1 + a2z
n−2 + ... + an in the space Pol(n) of all

such polynomials. This algebra Ap is associative, with the unity and
a linear functional lp : Ap → C, such that the bilinear form (d1, d2) =
lp(d1d2) is non degenerates. We call by Frobenius pairs all pairs (Ap, lp)
with such algebraic properties. Algebra Ap is commutative for classical
topological Landau-Ginsburg model.

Commutative Frobenius pairs one-to-one correspond to topological
field theories that appear from closed topological strings [3, 4, 7, 16].
These topological field theories naturally extend up to open-closed
topological field theories, describing strings with boundary [10, 12],
and even up to Kleinian topological field theories, describing strings
with arbitrary world sheets [1]. In their turn, open-closed topological
field theories one-to-one correspond to combinations from one com-
mutative and one unrestricted Frobenius pairs, connected by Cardy
condition [1]. We call such algebraic structure by Cardi-Frobenius al-
gebra. Some classifications of Cardi-Frobenius algebras is contained in
[1].

In the present paper we construct some extension of classical topo-
logical Landau-Ginsburg model to a Cardy-Frobenius algebra with a
quaternion structure. Next we prove, that the set of such quaternion
Landau-Ginsburg models over all polynomials p(z) = zn+1 + a1z

n−1 +
a2z

n−2 + ...+an form a non-commutative Frobenius manifold in means
of [15].

Let us explain this result in more detail. The moduli space of the
classical topological Landau-Ginsburg models coincides with the space
Pol(n) of miniversale deformation for the singularity of type An [2].
The metrics (d1, d2) = lp(d1d2) on the algebras Ap turn Pol(n) into
a Riemannian manifold with some additional properties [6, 7]. The
differential-geometric structure, arising here, is an important example
of Frobenius manifolds [7, 11]. The theory of Frobenius manifolds
has a lot of applications in different areas of mathematics (integrable
systems, singularity theory, topology of symplectic manifolds, geometry
of moduli spaces of algebraic curves etc.).

The Dubrovin’s theory of Frobenius manifolds [7] is a theory of flat
deformations of commutative Frobenius pairs. As we discussed, Frobe-
nius pairs are extended up to Cardy-Frobenius algebras. This sug-
gests on extension of Frobenius manifolds to Cardy-Frobenius mani-
folds. An approach to this problem, is contained in [15]. It is based on
Kontsevich-Manin cohomological field theory [9].

In this paper we define Cardy-Frobenius bundles as spaces of some
flat deformations of Cardy-Frobenius algebras and prove, that they are
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Cardy-Frobenius (noncommutative) manifolds as regards to [15]. More-
over we prove that the family of all the quaternion Landau-Ginsburg
models form a Cardy-Frobenius bundle with quaternion structure.

2. Cardy-Frobenius algebras.

Following [10,12] describe the algebraic structure (Cardy-Frobenius
algebra), connected with open-closed topological field theory. It is
follow from [1], that Cardy-Frobenius algebras one-to-one correspond
to open-closed topological field theories.

2.1.Frobenius pairs.

Definition. By Frobenius pair over a field K we call a set (D, lD)
where

1. D is an associative algebra over K with the unity element 1D.
2. lD : D → K is a K - linear functional such that the bilinear form

(d1, d2)
D = lD(d1d2) is non degenerated.

In this case D is a Frobenius algebra [8].
Definition. By orthogonal sum of Frobenius pairs (D1, l

D1) and
(D2, l

D2) we call the Frobenius pair (D, lD) = (D1, l
D1) ⊕ (D2, l

D2),
where D = D1⊕D2 is the direct sum of algebras (d1d2 = 0 for di ∈ Di)
and lD = lD1 ⊕ lD2 .

Exampele 2.1. K - numbers.
K(λ) = (K, lλ), where λ 6= 0 ∈ K and lλ(z) = λz for z ∈ K.
Exampele 2.2. Matrixes over K.
M(n, K)(µ) = (M(n, K), lµ), where M(n, K) is the algebra of n × n

K-matrixes, µ 6= 0 ∈ K and lµ(z) = µtr(z) for z ∈ M(n, K).
Exampele 2.3. Quaternions over K.
Let RK ∈ K be a subfield, isomorphic to the field of real numbers. Let

HR be the algebra of quaternions, that is the algebra over R, generated
by vectors 1H, I, J , K, where IJ = K, JK = I, KI = J . Use the
isomorphism RK

∼= R for define HK = HR

⊗
R

K. We will consider 1H,
I, J , K also as a basis of HK over K. Put HK(ρ) = (HK, lρ) where
ρ 6= 0 ∈ K and lρ : HK → K be the K-linear functional, defined by
lρ(1

H) = 2ρ, lρ(I) = lH(J) = lH(K) = 0.
The correspondance
(

1 0
0 1

)
7→ 1H,

(
−i 0
0 i

)
7→ I,

(
0 −1
1 0

)
7→ J,

(
0 i

i 0

)
7→ K

defines an isomorphism between M(2, K)(ρ) and HK(ρ).

2.2 Cardy-Frobenius algebras.

Definition. By Cardy-Frobenius algebra over K we call a set
{(A, lA), (B, lB), φ}, where

1. (A, lA) and (B, lB) are Frobenius pairs over K and A is a commu-
tative algebra;



4 S.M. NATANZON

2. φ : A → B is a homomorphism of algebras, such that φ(A) belong
to centre of B;

3. For any x, y ∈ B is fulfilled (φ∗(x), φ∗(y))A = tr(Wx,y), where
φ∗ : B → A is the linear operator, such that (a, φ∗(b))A = (φ(a), b)B,
for a ∈ A, b ∈ B, and Wx,y : B → B is the linear operator, defined by
Wx,y(b) = xby.

The condition of this type first appear in works of Cardy and usually
has him name. Let us give a coordinate representation of Cardy condi-
tion, using bases (α1, ...αn) ⊂ A and (β1, ...βn) ⊂ B. Let {F αi,αj} and
{F βi,βj} be matrixes inverse to Fαi,αj

= (αi, αj)
A and Fβi,βj

= (βi, βj)
B.

Then condition 3. is equivalent to
3’. For any x, y ∈ B is fulfilled F αi,αj lB(φ(ai)x)lB(φ(aj)y) =

F βk,βj lB(xβjyβk) = F βk,βj lB(βjxβky).
Proof of equivalent. The equality (φ∗(x), φ∗(y))A =

F αi,αj lB(φ(ai)x)lB(φ(aj)y) is obviously. Consider a basis
of B such that (βk, βj) = δkj. Then F βk,βj lB(xβjyβk) =
F βk,βk lB(xβkyβk) =

∑n
k=1(Wx,y(βk), βk)

B = tr(Wx,y).
Exampele 2.4. K - numbers and matrixes.
{K(µ2), M(n, K)(µ), φM}, where φM : K → M(n, K) is the naturel

homomorphism of numbers to diagonal matrixes.
Check the axiom 3. Choice the elementary matrixes Eij as a base of

M(n, K). Left and right parts of axiom 3’ are equal to 0, if one of the
matrixes x or y are not diagonal. Left and right and parts of axiom 3’
are equal to 1 for x = Eii, y = Ejj.

Definition. By orthogonal sum of Cardy-Frobenius algebras
{(A1, l

A1), (B1, l
B1), φ1} and {(A2, l

A2), (B2, l
B2), φ2} we call the Cardy-

Frobenius algebra {(A, lA), (B, lB), φ} = {(A1, l
A1), (B1, l

B1), φ1} ⊕
{(A2, l

A2), (B2, l
B2), φ2}, where (A, lA) = (A1, l

A1)⊕(A2, l
A2), (B, lB) =

(B1, l
B1) ⊕ (B2, l

B2) and φ = φ1 ⊕ φ2.
A Cardy-Frobenius algebra is called semisimple, if A and B are

semisimple algebras. It is follow from [1], that any semisimple Cardy-
Frobenius algebra is isomorphic to orthogonal sum of some numbers
of algebras of {K(µ2

i ), M(n, K)(µi), φM} and some numbers of algebras
{K(λi), 0, 0}.

Exampele 2.5. K - numbers and quaternions.
{K(ρ2), HK(ρ), φH}, where homomorphism φH : K → H is defined by

φH(1) = 1H.
The isomorphism between M(2, K)(ρ) and HK(ρ) generate the iso-

morphism between {K(ρ2), M(2, K)(ρ), φM} and {K(ρ2), HK(ρ), φH}.

3. Quaternion Landau-Ginsburg models.

The classical topological Landau-Ginsburg model [17] of degree n
is generated by a complex polynomial p in the form p(z) = zn+1 +
a1z

n−1 + a2z
n−2 + ... + an, such that all roots α1, ..., αn of its derivative

p′(z) are simple.
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The set of all such polynomials form a complex manifold Pol(n) of
complex dimension n. Its tangent space Ap in a point p consists of all
polynomials of degree n − 1. The Landau-Ginsburg model generates
on Ap a structure of algebra, where the multiplication q = q1 ∗p q2 for
polynomials q1 = q1(z) and q2 = q2(z) ∈ Ap is defined by condition
q(z) = q1(z)q2(z)(modp′(z)).

Moreover, the Landau-Ginsburg model generates on Ap a non-
degenerated bilinear form (q1, q2)p = lp(q1q2) = lp(q1 ∗p q2), where

lp(q) = 1
2πi

∮
q(z)dz

p′(z)
. (Here and late the formula 1

2πi

∮
means ”minus

residue in ∞”). Thus Ap has a structure of Frobenius algebra.

The polynomials ep,αi
(z) =

∏
j 6=i

z−αj

αi−αj
form a basis of idempotents

of Ap, that is ep,αi
ep,αj

= δijep,αi
. Thus Ap is a semi-simple algebra.

Put µp,αi
= lp(ep,αi

) = 1
n+1

∏
j 6=i

1
αi−αj

. Let Ap,αi
be the complex vector

space generated by ep,αi
and lAp,αi

= lp|Ap,αi
. Then (Ap,αi

, lAp,αi
) is a

Frobenius pair, isomorphic to C(µp,αi
).

Consider the Frobenius pair (Bp,αi
, lBp,αi

) , where Bp,αi
= Ap,αi

⊗C

HC
∼= HC and lBp,αi

is defined by lBp,αi
(1H) = 2ρp,αi

, ρ2
p,αi

= µp,αi
,

lBp,αi
(I) = lBp,αi

(J) = lBp,αi
(K) = 0. Let us define the homomor-

phism φp,αi
: Ap,αi

→ Bp,αi
by φp,αi

(ep,αi
) = ep,αi

⊗C HC. Then
{(Ap,αi

, lAp,αi
), (Bp,αi

, lBp,αi
), φp,αi

} is a Cardy-Frobenius algebra, isomor-

phic to {C(ρ2
p,αi

), HC(ρp,αi
), φH}.

Put Bp =
⊕n

i=1 Bp,αi
= Ap ⊗C HC. Let φp : Ap → Ap ⊗C HC =

Bp be the natural homomorphism. By quaternion Landau-Ginsburg

model we call the Cardy-Frobenius algebra {(Ap, l
A
p ), (Bp, l

B
p ), φp} =⊕n

i=1{(Ap,αi
, lAp,αi

), (Bp,αi
, lBp,αi

), φp,αi
}.

4. Frobenius manifolds.

4.1. Frobenius manifolds and WDVV equations.

In middle of 90 years of the last century B.Dubrovin found and in-
vestigated a class of ”flat” deformation of commutative Frobenius al-
gebras that appear in different domain of mathematics. He calls this
structure Frobenius manifolds [7]. Frobenius manifold is a manifold
with a Dubrovin connection. Present some equivalent definitions of
the Dubrovin connection.

Definition.([7]) Let M be a smooth (real or complex) manifold.
By Dubrovin connection on M is called is a family of commutative
Frobenius pairs (Mp, θp) on the tangent spaces Mp = TpM for any
point p ∈ M such that

1. Tensors θ = {θp|p ∈ M}, g(a, b) = θ(ab), c(a, b, d) = θ(abd) are
smooth and dθ = 0.

2. The Levi-Civita connection O of the matric g is flat and such that
Oe = 0, where e is the field of unity elements of the algebras Mp.
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3. Tensors c(a, b, d) and Ofc(a, b, d) are symmetrical by variables
a, b, d, f .

4. There exists a vector field E (it is called Euler field), such that
O(OE) = 0.

A Frobenius manifold M is called semi-simple, if Mp is a semi-simple
algebra for any point p ∈ M .

If θ(e) = 0, then Frobenius manifold has a special flat quasi-

homogeneous coordinate system t = (t1, ..., tn), such that g =∑
ij δi+j,n+1dti

⊗
dtj, e = ∂/∂t1; dn = 1, diri = 0, di + dn+1−i = υ + 2

for all i; E =
∑n

i=1(dit
i + ri)(∂/∂ti) for some constants di, ri. We call

such Dubrovin connection anti-diagonale.
Recall, that any semi-simple commutative Frobenius algebra is a

direct sum of one-dimensional one [8]. Thus it has a canonical basis

e1, ..., en. This is a basis with the properties eiej = δijei, l(ei) 6= 0. The
canonical basis is defined uniquely up to enumeration of its elements.

Definition.([13]) A semi-simple anti-diagonale Dubrovin connection
on a smooth (real or complex) manifold M is a family of commutative
Frobenius pairs (Mp, θp) on the tangent spaces Mp = TpM for any point
p ∈ M such that

1. Tensors θ = {θp|p ∈ M}, g(a, b) = θ(ab), c(a, b, d) = θ(abd) are
smooth and dθ = 0

2. There exists a covering M =
⋃

α Uα by coordinate maps
(x1

α, ..., xn
α) : Uα → Kn, such that: a) the vectors (∂/∂x1

α, ..., ∂/∂xn
α)

form a canonical basis in Mp for any p ∈ Uα; b) the field E =∑n

i=1 xi
α(∂/∂xi

α) don’t depend from α; c)LEθ = (υ + 1)θ, where LE

is the Li derivative by E. Such coordinate system is call canonical.
3. The Levi-Civita connection O of the matric g is flat. It

exists a coordinate system t = (t1, ..., tn) on M , such that g =∑
ij δi+j,n+1dti

⊗
dtj, e = ∂/∂t1 and E =

∑n
i=1(dit

i+ri)(∂/∂ti), where
di, ri are constants.

By potential of Dubrovin connection (Mp, θp) on flat quasi-
homogeneous coordinates t = (t1, ..., tn), is called a function F (t1, ..., tn)
such that θp(

∂
∂ti

∂
∂tj

∂
∂tk

) = ∂F
∂ti∂tj∂tk

.
Definition. Let F (t1, ..., tn) be a function on a set U ⊂ Cn =

(t1, ..., tn). Let E =
∑n

i=1(dit
i + ri)(∂/∂ti) be a vector field ,such that

dn = 1, diri = 0 di + dn+1−i = υ + 2 for all i. Then the pair (F, E) is
a solution of WDVV equations if:

1.
∑n

q=1
∂3F

∂ti∂tj∂tq
∂3F

∂tk∂tl∂tn+1−q =
∑n

q=1
∂3F

∂tk∂tj∂tq
∂3F

∂ti∂tl∂tn+1−q

(associativity equations);

2. ∂3F
∂ti∂tj∂tn

= δi+j,n+1

(normalization condition);
3.LEF = (υ + 3)F +

∑
ij Aijt

itj +
∑

i Bit
i + C, where LE is the Li

derivative and Aij, Bi, C are constants.
(quasi-homogeneous conditions).
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This equations was found in works of Witten [18] and Dijkgraaf,
E.Verlinde, H.Verlinde [6] for a description of spaces of deformations
of topological fields theories.

According to [7], any solution of WDVV equations is a potential
of some anti-diagonale Dubrovin connection and moreover the cor-
respondance (potential)7→(anti-diagonale Dubrovin connection) form
one-to-one correspondance between solutions of WDVV equations and
anti-diagonale Dubrovin connections.

If a solution F of WDVV equations has a representation in the
form of Tailor series F (t) =

∑
c(i1, i2, ..., ik)t

i1ti2 ...tik , then associativ-
ity equations are equivalent to some relations between the coefficients
c(i1, i2, ..., ik). M.Kontsevich, Yu.Manin [9, 11] presented a family of
coefficients with these relations by a special system of homomorphisms
C⊗l → H∗(M0,l), where M0,l is the moduli space of spheres with l
pictures. This gives some other method of description for Frobenius
manifolds. It is called Cohomological Field Theory.

4.2. Classical space of miniversale deformation for the singu-

larity An.

The first and very important example of a complex Frobenius man-
ifold is the the moduli space Pol(n) of classical topological Landau-
Ginsburg models. This space appear also in the theory of singularity,
the theory of Coxeter groups, the theory of moduli spaces of Riemann
surfaces, in matrix models of mathematical physics and in integrable
systems. Let us describe this example more detailed, following on the
whole [7].

Theorem 4.1.[6,7] The structure of Frobenius pairs (Ap, lp) for p ∈
Pol(n) generates a complex Dubrovin connection on the space Pol(n)
of polynomials p(z) = zn+1 + a1z

n−1 + a2z
n−2 + ... + an .

Proof. Axiom 1 directly follow from the definitions. Let (α1, ..., αn)
be the set of roots of p′. Consider the functions xi(p) = p(αi) as
coordinates on Pol(n).

Lemma 4.1. The coordinates (x1, ..., xn) are canonical, υ = 2
n+1

−1

and E =
∑n

i=k
k+1
n+1

ak∂/∂ak.

Proof. Prove, that ∂
∂xj = ep,αj

. Really, δij = ∂xi

∂xj =
∂((αi)n+1+a1(αi)n−2+...+an)

∂xj = ((n + 1)(αi)
n + (n − 1)a1(αi)

n−2 + ... +

an−1)
∂αi

∂xj + ∂α1

∂xj (αi)
n−1 + ... + ∂αn

∂xj = p′(αi)
∂αi

∂xj + ∂p

∂xj (αi) = ∂p

∂xj (αi). Thus
∂p

∂xj (αi) = δij = ep,αj
(αi) and therefore ∂p

∂xj (z) = ep,αj
(z). By definition,

this means that the polynomial ep,αj
correspond to the tangent vector

∂
∂xj . Thus (∂/∂x1

α, ..., ∂/∂xn
α) form a canonical basis.

Prove now, that lp = da1

n+1
. Really, considering the coefficients for

zn−1 in ∂a1

∂xi z
n−1 + ...+ ∂an

∂xi = ∂p

∂xi (z) = ep,αi
(z) we find that lp(∂/∂xi

α) =

lp(ep,αi
) = 1

n+1
∂a1

∂xi . Thus lp =
∑n

i=1 lp(∂/∂xi
α)dxi

α =
∑n

i=1
1

n+1
∂a1

∂xi dxi
α =

da1

n+1
.
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Prove, that E =
∑n

i=1 xi
α(∂/∂xi

α) don’t depend from α and LElp =
(υ + 1)lp. Prove at first, that LEp = p − z

n+1
p′. Really, the poly-

nomials LEp and p − z
n+1

p′ have the same degree n − 1 and they
are the same values in the points α1, ..., αn, because LE(p)(αk) =
(
∑n

i=1 xi
α(∂/∂xi

α)(p))(αk) = xk = p(αk) = p(αk) − z
n+1

p′(αk). Con-

sider now the vector field F =
∑n

k=1
k+1
n+1

ak∂/∂ak. Then LF (p)(z) =∑n
k=1

k+1
n+1

akz
n−k =

∑n
k=1(1− n−k

n+1
)akz

n−k = p(z)− z
n+1

p′(z) = LE(p)(z).

Thus LE(lp) = LF ( da1

n+1
) = 1

n+1
2

n+1
da1 = 2

n+1
lp.

�

Construct now a flat coordinate systems on Pol(n). Consider a
function ω = ω(p, z) on Pol(n) × C such that ωn+1 = p(z). Put

z = ω + t̃1

ω
+ t̃2

ω2 + t̃3

ω3 + .... The equality ωn+1 = p(ω + t̃1

ω
+ t̃2

ω2 + t̃3

ω3 + ...)

gives a possibility to find t̃i as a quasihomogenous polynomial of {aj}.
In particularity t̃1 = − a1

n+1
t̃2 = − a2

n+1
. Put t1 = −(n + 1)t̃n, tn = −t̃1

and ti = −
√

n + 1t̃n+1−i for i = 2, ..., n − 1.
Lemma 4.2. The coordinates (t1, ..., tn) are flat quasi-homogeneous

and di = n+2−i
n+1

.

Proof. Consider the set of polynomials p(z, t̃) = zn+1 + a1(t̃)z
n−1 +

a2(t̃)z
n−2 + ... + an(t̃), where t̃ = (t̃1, ..., t̃n). Consider the func-

tion z(ω, t̃) = ω + t̃1

ω
+ t̃2

ω2 + t̃3

ω3 + ..., such that ωn+1 = p(z(ω, t̃), t̃).

We will consider ω and {t̃1, . . . , t̃n} as independent variables. Then

0 = dωn+1

dt̃i
= ∂p

∂t̃i
+ ∂p

∂z
∂z
∂t̃i

= ∂p

∂t̃i
+ p′ 1

ωi . Thus ∂p

∂t̃i
= −p′ 1

ωi .

Therefore g(∂/∂t̃i, ∂/∂t̃j) = lp(∂/∂t̃i∂/∂t̃j) = −Resz=∞
∂p

∂t̃i
∂p

∂t̃j

p′
dz =

−Resz=∞
p′dz

ωi+j = −Resω=∞
dp

ωi+j = −Resω=∞
dωn+1

ωi+j = (n + 1)δi+j,n+1.
Thus, g(∂/∂ti, ∂/∂tj) = δi+j,n+1.

Let e =
∑n

i=1 ρi
∂

∂t̃i
be the field of unity elements of the algebras Ap.

Recall, that t̃1 = − a1

n+1
. Using this fact and lemma 4.1, we find that

δβ,1 = dt̃1(∂/∂t̃β) = − a1

n+1
da1(∂/∂t̃β) = −lp(∂/∂t̃β) = −g(e, ∂/∂t̃β) =

−g(
∑n

i=1 ρi
∂

∂t̃i
, ∂

∂t̃β
) = −

∑n

i=1 ρig( ∂
∂t̃i

, ∂
∂t̃β

) = −(n+1)
∑n

i=1 ρiδi+β,n+1 =

−(n + 1)ρn+1−β. Therefore, e = − 1
n+1

∂
∂t̃n

= ∂
∂t1

It is follow from lemma 4.1. that LEai = i+1
n+1

ai. Thus, by the

definition of t̃i, we find that LE t̃i = i+1
n+1

t̃i. Therefore LEti = n+2−i
n+1

ti,

and E =
∑n

i=1
n+2−i
n+1

ti(∂/∂ti).
�

Example 4.1.Find the numbers µp,αi
as some functions of flat quasi-

homogeneous coordinates for n = 2. If p(z) = z3 + a1z + a2, then
t2 = −t̃1 = a1

3
. Moreover p′(z) = 3z2 +a1 and αi = ±

√
−a1

3
= ±

√
−t2.

Thus, µp,αi
= ± 1

6
√
−t2

.

Example 4.2. The potential of the Frobenius manifold Pol(n) is
a polynomial Fn [7]. Its coefficients was found in [14]. In particulary
F2 = 1

2
(t1)2t2 + 1

24
(t2)4.
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5. Non-commutative Frobenius manifolds.

5.1. Extended WDVV equations.

A theory of deformations of closed strings is one of sours for the
theory of Frobenius manifolds. Its mathematical equivalent is flat de-
formations of commutative Frobenius pairs. But the theory of closed
strings is only part of more general open-closed topological field the-
ory. It is follow from [1,10,12], that a mathematica equivalent of a
open-closed topological field theory is a Cardy-Frobenius algebra. A
theory of flat deformation for Cardy-Frobenius algebras was suggested
in [15]. It continue the Kontsevich and Manin approach [9,11] and it
gives some extension of WDVV equations to differential equations on
series of non-commutative variables.

Describe more detail these equations. Let t = (t1, ..., tn) (respec-
tively s = (s1, ..., sm) be the standard coordinates on A ∼= Cn (re-
spectively on B ∼= Cm). Consider the algebras of formal tensor
series F =

∑
c(i1, i2, ..., ik|j1, j2, ..., jl)t

i1 ⊗ ti2 ...tik ⊗ sj1 ⊗ sj2 ...sjk ,
c(i1, i2, ..., ik|j1, j2, ..., jl) ∈ C. Let FA be the part of the series F that
consists of all monomial without si .

Partial derivatives of F are defined by partial derivatives of mono-
mials.

We consider that ∂(ti1⊗ti2⊗...⊗tik⊗sj1⊗sj2⊗...⊗sjk)
∂ti

is the sum of monomi-
als ti1 ⊗ ti2 ⊗ ... ⊗ tip−1 ⊗ tip+1 ... ⊗ tik ⊗ sj1 ⊗ sj2 ⊗ ... ⊗ sjk), such that
ip = i.

Reciprocally ∂(ti1⊗ti2⊗...⊗tik⊗sj1⊗sj2⊗...⊗sjk)
∂sj is the sum of monomials

ti1 ⊗ ti2 ⊗ ...⊗ tik ⊗ sj1 ⊗ sj2 ⊗ ...⊗ sjp−1 ⊗ sjp+1 ...⊗ sjk , such that jp = j.

Put ∂2

∂ti∂tj
= ∂

∂ti
∂

∂tj
, ∂2

∂ti∂sj = ∂
∂ti

∂
∂sj ,

∂2

∂si∂sj = ∂
∂si

∂
∂sj ,

∂3

∂ti∂tj∂tk
=

∂
∂ti

∂
∂tj

∂
∂tk

.

The definition of the partial derivatives ∂3(ti1⊗···⊗tik⊗sj1⊗···⊗sj`)
∂si∂sj∂sr is more

complicated. These partial derivatives are the sum of monomials ti1 ⊗
· · · ⊗ tik ⊗ sk2 ⊗ · · · ⊗ skp−1 ⊗ skp+1 ⊗ · · · ⊗ skq−1 ⊗ skq+1 ⊗ sk` such that
the sequences si, sk2, · · · , skp−1, sj, skp+1, · · · , skq−1, sr, skq+1, · · · , sk` and
(sj1, · · · , sj`) are the same after an cyclic transposition.

We consider that a monomials ti1⊗· · ·⊗tik⊗sj1⊗· · ·⊗sj` and t
ei1⊗· · ·⊗

t
eik⊗s

ej1⊗· · ·⊗s
ej` are equivalent, if ∪k

r=1ir = ∪k
r=1̃ir and ∪l

r=1jr = ∪l
r=1j̃r.

Let [ti1 ⊗ · · · ⊗ sj`] be the equivalent class of ti1 ⊗ · · · ⊗ sj`. The tensor
series F =

∑
c(i1, ..., ik|j1, ..., j`)ai1 ⊗· · ·⊗bj`

generate the tensor series
[F ] =

∑
c[i1, ..., ik|j1, ..., j`][ai1 ⊗· · ·⊗bj`

], where the sum is the sum by
all equivalent classes of monomials and c[i1, ..., ik|j1, ..., j`] is the sum

of all coefficients c(̃i1, ..., j̃`), corresponding monomials from equivalent
class [ai1 ⊗ · · · ⊗ bj`

].
We say that a tensor series F =

∑
c(i1 · · · ik|j1 · · · j`)t

i1 ⊗ · · · ⊗ tk ⊗
sj1 ⊗· · ·⊗sj` satisfy extended WDVV equations on a space H = A⊕B,
if the following conditions hold
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1. The coefficients c(i1 · · · ik|j1 · · · j`) are invariant under all permu-
tation of {ir}.

2. The coefficients c(i, j|) c(|i, j) generate nondegenerate matrices.

By F titj

a F sisj

b denote the inverse matrices of c(i, j|) and c(|i, j) respec-
tively.

3.

[

n∑

p,q=1

∂3FA

∂ti∂tj∂tp
⊗ F tptq

a

∂3FA

∂tq∂tk∂t`
] = [

n∑

p,q=1

∂3FA

∂tk∂tj∂tp
⊗ F tptq

a

∂3FA

∂tq∂ti∂t`
].

4.

[

m∑

p,q=1

∂3F

∂si∂sj∂sp
⊗F spsq

b

∂3F

∂sq∂sk∂s`
] =

m∑

p,q=1

[
∂3F

∂s`∂si∂sp
⊗F spsq

b

∂3F

∂sq∂sj∂sk
].

5.

[
∑ ∂2F

∂tk∂sp
⊗ F spsq

b

∂3F

∂sq∂si∂sj
] = [

∑ ∂2F

∂tk∂sp
⊗ F spsq

b

∂3F

∂sq∂sj∂si
].

6.

[
∑ ∂2F

∂sk∂tp
⊗F tptq

a

∂3F

∂tq∂ti∂tj
] = [

∑ ∂2F

∂ti∂sp
⊗F spsq

b

∂3F

∂sq∂sk∂sr
⊗F srs`

b

∂2F

∂s`∂tj
].

7.

[
∑ ∂2F

∂su∂tp
⊗ F tptq

a

∂2F

∂tq∂sv
] = [

∑ ∂3F

∂su∂sp∂sr
F srsl

b ⊗ F spsq

b

∂3F

∂sl∂sv∂sq
].

In [15] are demonstrated that solutions of extended WDVV equations
one-to-one correspond to potentials of some extension of Cohomological
Field Theory and moreover they describe some class of deformations of
Cardy-Frobenius algebras. Thus it is natural to consider solutions of
extended WDVV equations as (non commutative) extension of Frobe-
nius manifolds, that we call Cardy-Frobenius manifolds. Late we prove
that quaternion Landau-Ginsburg models generate a Cardy-Frobenius
manifold.

5.2. Cardy-Frobenius bundles.

Definition. Let M be a , were K is the real or the complex field. By
Cardy-Frobenius bundle on smooth (real or complex) manifold M we
call a pair of bundles ϕA : A → M and ϕB : B → M with a flat connec-
tion ∇B, and a set of Cardy-Frobenius algebras {(Ap, l

A
p ), (Bp, l

B
p ), φp},

where Ap = ϕ−1
A (p), Bp = ϕ−1

B (p), such that:
1. The algebras {(Ap, l

A
p )} form a Dubrovin connection.

2. The connection ∇B conserve the family of bilinear forms
{(b1, b2)p = lBp (b1b2)|p ∈ M}.

Call by a flat system of coordinates on B a family of linear coor-
dinates systems s = {sp = (s1

p, ..., s
m
p )|p ∈ M} on bands Bp, that is

invariant by ∇B. It generates a basis ( ∂
∂s1

p
, ..., ∂

∂sm
p

) on any vector space
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Bp. Axiom 2. say that values ( ∂
∂si

p
, ∂

∂s
j
p
)p = lBp ( ∂

∂si
p

∂

∂s
j
p
) are constants on

M .
3. Let s = (s1, ..., sm) be a flat system of coordinates on B. Then the

tensor fields cB( ∂
∂si ,

∂
∂sj ,

∂
∂sk ) = lBp ( ∂

∂si
∂

∂sj
∂

∂sk ), are smooth as functions
on M . We call B-structures tensors.

4. The natural map φ = {
⋃

φp|p ∈ M} : A → B is smooth. It define
smooth transition tensors field cAB(a, b) = lBp (φ(a)b).

Theorem 5.1. Let M be a semi-simple Frobenius manifold with
a Dubrovin connection {(Ap, l

A
p )|p ∈ M}. Then there exist Cardy-

Frobenius bundles {(Ap, l
A
p ), (Bp, l

B
p ), φ}.

Proof. Let (x1
α, ..., xn

α) be canonical coordinates on M . Put λp,i =
lAp (∂/∂xi

α(p)). Let µp,i be a smooth function on M , such that µ2
p,i = λp,i.

Consider the family of Frobenius pair (Bp,i, l
B
p,i) = M(m, C)(µp,i) from

example 2.2. Put (Bp, l
B
p ) =

⊕
i(Bp,i, l

B
p,i) and B =

⊕
p∈M Bp. Describe

a connection ∇B. The standard basis {Ekr} of M(m, C) generate the
basis the {Ekr

p,i} of Bp,i. We will be consider, that the connection ∇B

generate the transfer Ekr
p,i to

µp,i

µq,i
Ekr

q,i for q from a neighborhood of p.

Define a structure of smooth manifold on B considering that the projec-
tion ϕB(Bp) = p is smooth. Define the homomorphism φp : Ap → Bp,
considering that φp(∂/∂xi

α) is the unit element of the algebra Bp,i. Ac-
cording to example 2.4. the structure, that we constructed, is Cardy-
Frobenius bundles.

�

Definition. Let ϕA : A → M , ϕB : B → M , ∇B,
{(Ap, l

A
p ), (Bp, l

B
p ), φp|p ∈ M} be a Cardy-Frobenius bundle on M . Let

t = (t1, ..., tn) be a system of flat quasi-homogenies coordinates of the
Dubrovin connection (Ap, l

A
p ) and let s = (s1, ..., sm) be a system of

flat coordinates on B. By potential of this Cardy-Frobenius bundle is
called the formal tensor series F (t|s) =

∑
c(i1, i2, ..., ik|j1, j2, ..., jl)t

i1 ⊗
ti2 ...tik ⊗ sj1 ⊗ sj2 ...sjk , where c(i1, i2, ..., ik|j1, j2, ..., jl) ∈ C, such that

1. The matrixes c(i, j|) = lAp ( ∂
∂ti

∂
∂tj

) c(|i, j) = lBp ( ∂
∂si

∂
∂sj ) are non-

degenerated. Let F titj

a and F sisj

b be the matrixes inverted to c(i, j|)
and c(|i, j) respectively.

2. If FA is the part of F that don’t depend from s, that it pass to
the potential of Dubrovin connection (Mp, l

A
p ) after changing the tensor

multiplication to the ordinary multiplication.
3. The formal tensor series ∂3F

∂si∂sj∂sr are not depend from s and,
after changing the tensor multiplication to the ordinary multiplication,
coincide with the B-structure tensors of the bundle.

4. The formal tensor series ∂2F
∂ti∂sj are not depend from s and , af-

ter changing the tensor multiplication to the ordinary multiplication,
coincide with the transition function of the bundle.

Theorem 5.2. Let a Dubrovin connection (Ap, l
A
p ) on M has a

potential in form of Taylor series. Then any Cardy-Frobenius bundle
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ϕA : A → M , ϕB : B → M , ∇B, {(Ap, l
A
p ), (Bp, l

B
p ), φp|p ∈ M} also has

a potential.
Proof. Let t = (t1, ..., tn) be a flat quasi-homogeneous coordinates

of the Dubrovin connection {(Ap, l
A
p )|p ∈ M}. Let s = (s1, ..., sm)

be be a flat coordinates system on B. Consider the potential of the
Dubrovin connection {(Ap, l

A
p )|p ∈ M}. Changing the ordinary multi-

plication to the tensor multiplication we obtain a tensor series FA. Let

F i
A be the tensor series, such that

∂F i
A

∂ti
= FA. Then the tensor series

F = FA + 1
2

∑
lA( ∂

∂ti
∂

∂tj
)ti ⊗ tj+

∑
lB( ∂

∂si
∂

∂sj )s
i ⊗ sj +

∑
F i

Ati ⊗ si+
1
3

∑
lB( ∂

∂si
∂

∂sj
∂

∂sk )si ⊗ sj ⊗ sk is the potential of the Cardy-Frobenius
bundle.

�

Theorem 5.3. The potential of any Cardy-Frobenius bundle satisfy
the extended WDVV equations.

Proof. All relation follow from properties of Cardy-Frobenius alge-
bras {(Apl

A
p ), (Bp, l

B
p ), φp}. In particulary relation 1 follow from the

commutativity of A. Relation 2 follow from the non-degeneracy the
bilinear forms on A and B. Relations 3 and 4 follow from the associa-
tivity of algebras A and B. Relation 5. is true because φp(Ap) belong
to center of algebra Bp. Relation 6 is true because the map φp is a
homomorphism. Relation 7 follow from Cardy axiom.

�

5.3. Quaternion miniversale deformation for the singularity

An.

Let us use the construction from theorem 5.1. for quaternion
Landau-Ginsburg models. Then we have

Corollary 5.1. Family of quaternion Landau-Ginsburg models
{(Ap, l

A
p ), (Bp, l

B
p , ), φp|p ∈ Pol(n)} form a Cardy-Frobenius bundles

over Pol(n). The space B has a natural quaternion structure that is
invariant by the connection ∇B.

A flat system of coordinates t = (t1, ..., tn) for A is , described in
section 4. A basis on Bp is {1Hep,αi

, Iep,αi
, Jep,αi

, Kep,αi
|i = 1, ..., n}

from section 3. In a neighborhood of p it generate a flat coordinate
system sq,i = (s1H

q,i, s
I
q,i, s

J
q,i, s

K
q,i) =

ρp,αi

ρq,αi

(1Hep,αi
, Iep,αi

, Jep,αi
), where

ρ2
p,αi

= µp,αi
.

Example 5.1. For any V, W ∈ {1H, I, J, K}, ∂
∂sV

h,i

∂
∂sW

q,i

= δh,qδi,j

ρp,αi

ρq,αi

∂
∂,sV W

q,i

Thus we can to find the bilinear form ( ∂
∂sij ,

∂
∂skl )

B = lB( ∂
∂sij

∂
∂skl )

and the structure tensor cB( ∂
∂sij ,

∂
∂skl ,

∂
∂suv ) = lB( ∂

∂sij
∂

∂skl
∂

∂suv ), by values
ρq,αi

. Example 4.1. contain an algorithm for these calculations for
n = 2. In this case ρ2

q,αi
= ± 1

6
√
−t2

.
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Example 5.2. Coupling between canonical x = (x1, ..., xn) and flat
quasi-homogeneous coordinates t = (t1, ..., tn) generate the transition
tensors. Demonstrate this for n = 2.

According to our definitions, ∂
∂t1

= ∂
∂x1 +

∂
∂x2

∂
∂t2

= R1
∂

∂x1 + R2
∂

∂x2 .

Thus ∂
∂t2

∂
∂t2

= R2
1

∂
∂x1 +R2

2
∂

∂x2 . On the other hand, according to example

4.2., ∂
∂t2

∂
∂t2

= t2 ∂
∂t1

= t2( ∂
∂x1 +

∂
∂x2 ). Thus Ri = ±

√
t2.

It is follow from example 4.2., that FA = 1
2
(t1)2t2+ 1

24
(t2)4. Therefore

F 1
A = 1

6
(t1)3t2 + 1

24
t1(t2)4 and F 2

A = 1
4
(t1)2(t2)2 + 1

120
(t2)5.

Thus, we can to find the potential of the Cardy-Frobenius bundle for
n = 2. According to theorem 5.2 it is the tensor series

F = FA + 1
2

∑
lA( ∂

∂ti
∂

∂tj
)ti ⊗ tj+

∑
lB( ∂

∂si
∂

∂sj )s
i ⊗ sj +

∑
F i

Ati ⊗ si+
1
3

∑
lB( ∂

∂si
∂

∂sj
∂

∂sk )si ⊗ sj ⊗ sk.
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