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Abstract

We calculate the K-theory of Cuntz-Krieger algebras associated to locally finite
infinite graphs via the Bass-Hashimoto operator. The formula we get express the
Grothendieck group and Whitehead group in purely graph theoretic terms. We
consider the category of finite (black-and-white, double) subgraphs with certain
graph homomorphisms and construct a continuous functor to abelian groups. This
allows to present K0 as an inductive limit of K-groups of finite graphs, which are
calculated in [3]. Then we specify this construction in the case of an infinite graph
with finite Betti number and obtain a formula K0(OE) = Zβ(E)+γ(E), where β(E)
is the first Betti number and γ(E) is the branching number of the graph E. We
note, that in the infinite case the torsion part of the group, which is present in the
case of finite graph, vanishes. The formula for the Whitehead group expresses the
group only via the first Betti number: K1(OE) = Zβ(E). This allows to provide
a contrexample to the fact, that K1(OE) is a torsion free part of K0(OE), which
holds for finite graphs.

MSC: Primary: 05C50, 46L80, 16B50 Secondary: 46L35, 05C63.

1 Introduction

Let us consider first a planar non-directed graph Ê, which might be infinite,
have loops, multiple edges and sinks.

We impose one finiteness condition on the graph, namely, it should be lo-
cally finite: every vertex should be connected only with finitely many vertices
by edges. Also we suppose Ê is a connected non-directed graph (=geometri-
cally connected graph).

1



We consider the Cuntz-Krieger algebras of the Bass-Hashimoto operator
associated to this graph (more precisely, its infinite, locally finite analogue).
This operator (operator ΦE defined below) was considered by Hashimoto
[5] and Bass [2] and later studied in [3]. The algebra known as a boundary
operator algebra, studied, for example, in [7, 8, 9] is Morita equivalent to the
corresponding algebra associated to the Bass-Hashimoto operator. Namely,
OE ∼ C∗(δF)/Γ, where F is a universal covering tree of the graph E and Γ
is a free group of rank β, where β is the first Betti number of E. Note here,
that the Cuntz-Krieger algebra of the Bass-Hashimoto operator associated
to a given graph E (which we denote here also OE) should not be mixed
with the Cuntz-Krieger algebra of operator defined by the incidence matrix
of the graph, as it is done, for example, in [1, 11]. These are two different
ways to associate Cuntz-Krieger algebra to a graph, via different operators.
Although operators are very similar, the behaviour of the algebra changes
dramatically.

For example, as it can be seen from [1], K0 of algebras associated to finite
graphs via incidence matrix is not defined by the first Betti number, as it
is the case for algebras associated to a finite graph via the Bass-Hashimoto
operator [3].

Our goal here is to calculate K-theory of Cuntz-Krieger algebra of the
Bass-Hashimoto operator associated to an infinite, locally finite graph, purely
in graph theoretic terms, as it was done in [3] in the case of finite graph.

For any locally finite graph which is connected we can define a first Betti
number (cyclomatic number) extending the usual definition for a finite graph.

Definition 1.1. If Ê is a finite geometrically connected graph, then the first
Betti number of Ê is

β(Ê) = d1 − d0 + 1,

where d0 is the cardinality of the set of vertices and d1 is a cardinality of the
set of (geometric) edges.

Note that for a finite graph with m connected components it would be

β(Ê) = d1 − d0 +m.

This number determines the number of cycles in Ê.

Definition 1.2. If Ê is a locally finite geometrically connected graph, then
we define the first Betti number of Ê as the limit of the sequence of Betti
numbers of finite subgraphs Êk of Ê obtained in the following way: Ê0 is an
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arbitrary connected finite subgraph of Ê and for any n, Ên+1 is obtained from
Ên by adding to Ên all edges of Ê connected to the vertices of Ên (together
with vertices on the other end of these edges). It will be a finite graph due

to Ê is locally finite.

Remark 1. This definition does not depend on the choice of the subgraph
Ê0, starting for the sequence {Ên}. Indeed, if you start from another graph

Ê ′0, then at some step n, we will have the graph Ê0 as a subgraph of Ê ′n
and Ê ′0 as a subgraph of Ên (all vertices and edges will be ’eaten’ due to

connectedness of Ê). It follows that the sequences β(Ên) and β(Ê ′n) have
the same limit: either stabilize on the same positive integer or both grow to
infinity.

Remark 2. It is clear that the locally finite infinite graph with finite first
Betti number, has a shape of finite graph (with the same first Betti number),
with finite or infinite number of outgoing trees.

Now associate for convenience to any graph Ê as above, an oriented
’double’ graph E = (E0, E1, s, r) with the set of vertices E0, set of edges
E1 and maps s, r from E1 to E0 which determines the source and the range
of an arrow respectively (source and range maps). The quiver E is obtained

from Ê by doubling edges of Ê, so that each non oriented edge of Ê gives
rise to the pair of edges of E, e and e, equipped with opposite orientations.

For any finite graph one can associate a Cuntz–Krieger C∗-algebra OE,
in a way it is done in [3]. Namely, there it is considered a Cuntz–Krieger
C∗-algebra (as it is defined in the Cuntz–Krieger paper [4]) associated to the
matrix AE. The matrix AE is obtained from the graph as a matrix of the
following operator (homomorphism of countable direct sum Z(E1) of copies
of Z) written as follows in the basis labeled by the set E1 of edges of E:

ΦE : Z(E1) → Z(E1) : e 7→ −e+
∑

e′:r(e)=s(e′)

e′ (∗)

This operator was considered in [5] and [2] in connection with the study
of Ihara zeta function of a graph.

The entries of the matrix AE are in {0, 1}. If the graph E is finite, then
AE is an 2n × 2n matrix, where n is the number of geometric edges of the
graph E (=the number of edges of E, considered as a non-oriented graph).

Denote by OE the Cuntz–Krieger C∗-algebra associated to this matrix
AE as in [4]. That is, OE is the C∗-algebra generated by 2n partial isome-
tries {Sj}2n

j=1 which act on a Hilbert space in such a way that their support
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projections Qi = S∗i Si and their range projections Pi = SiS
∗
i satisfy the

relations

PiPj = 0 if i 6= j and Qi =
2n∑
j=1

(AE)ijPj for 1 6 j 6 2n.

This definition of OE surely has a sense for an arbitrary locally finite matrix
AE, since the relations contain still finite sums. So, we have the following.

Definition 1.3. For an infinite, row finite graph E = (E0, E1, s, r), its C∗-
algebra OE is generated by partial isometries {Si : i ∈ E1} subject to the
relations

S∗i Si =
∑
j∈E1

(AE)ijSjS
∗
j .

Note that there could be another way to associate a C∗-algebra to a graph,
for example, the one which is considered in [1]. It should be distinguished
from the described above. In [1] a C∗-algebra of the graph defined as a
Cuntz-Krieger algebra of another operator associated to a graph. Namely
the operator represented by the edges adjacency matrix of an oriented graph.

In the paper [3] there was obtained a formula for K0(OE) depending only
on the first Betti number β(E) of the graph E, for a finite graph, namely
K0(OE) = Zβ(E)⊕Z/(β(E)− 1)Z. As a consequence, K1(OE) = Zβ(E), as it
is well known ([10], [3] in the finite graphs setting that K1 is a torsion free
part of K0.

It was mentioned there that it would be interesting to extend these results
to infinite, locally finite graphs.

We do this here when the first Betti number β(E) of an infinite graph is
finite, and show that in the infinite case K0 does not have torsion. Moreover,
in the infinite case the formula for K0 involves not only the first Betti number,
but also another combinatorial characteristic of the graph: the brunching
number.

Definition 1.4. We say that the brunching number γ(E) of an infinite locally
finite graph E with finite Betti number β(E) is a number of different infinite
chains outgoing from the finite subgraph of E with the Betti number β(E).

Theorem 1.5. Let E be a locally finite connected graph with the finite
first Betti number β(E) and the brunching number γ(E). Then K0(OE) =
Zβ(E)+γ(E).
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We also calculateK1(OE) and express it in terms of the first Betti number.
It turns out that it is not necessary a torsion free part of K0(OE) in the
infinite graphs setting.

Theorem 1.6. Let E be a locally finite connected graph with the finite first
Betti number β(E). Then K1(OE) = Zβ(E).

2 Category of black-and-white double graphs

and functor to abelian groups

It is known for finite graphs and row-finite graphs (see, for example, [4]
and [6]), that K0(OE) = coker(Id − Φ), where Φ : Z(E1) → Z(E1) is the
homomorphism of countable direct sum of copies of Z, defined for the graph
E by the formula (∗).

Let E be an infinite locally finite double graph as above. We define a
category E of black-and-white ’subgraphs’ of E with morphisms of them in
the following way. The objects of E are finite subgraphs of E, but with edges
of two types: black and white, and the property that together with any edge
e of any color it contains an edge of opposite direction ē of the same color. In
other words, we obtain a finite black-and-white ’subgraphs’ of E as follows.
Choose an arbitrary finite set Ω of vertices of E. A graph will contain all
edges starting and ending on vertices from Ω. If the edge starting(ending)
on a vertex from Ω, but ending (starting) outside, it will be white, otherwise
black.

Now we define the set of graph homomorphisms between those black-and-
white double graphs. There is a homomorphism f : E → F if F contains all
vertices of E, and all black and white edges of E, as black edges of F . White
vertices of F are those which are starting at the ends of vertices of E. So,
these homomorphism changes white edges to black and add, as white, new
edges which are coming out from former white edges. Any finite composition
of defined above elementary homomorphisms is also a homomorphism. These
homomorphisms play the role analogous to ’complete graph homomorphisms’
in [1], however they are defined differently in our case.

Proposition 2.1. Every locally finite, infinite graph E is a direct limit of
a chain of finite graphs and homomorphisms in the category E . Any finite
subgraph of E can serve as a starting element of this chain.

Proof. Take an arbitrary finite subgraph E0 of E (as a black-and-white sub-
graph constructed on vertices of E0) and consider a chain of homomorphisms
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ϕn : En → En+1 in E . Due to connectedness of the graph E the union of
edges of all elements of the chain will coincide with the set of edges of E.
Moreover, if edge become black in the graph En from the chain, then it will
be a black edge in any EN , N > n. This means that E is indeed a limit of a
chain En, ϕn.

Now we construct a functor from the category E to abelian groups AG.
We associate to a finite black-and white graph E ∈ E the group K0(ÕE) with
generators corresponding to all (black and white) edges xi ∈ E and relations
xi =

∑
yi∈E1 λi,jyj, for any black edge xi ∈ E. Here yj run over all edges,

black and white of E, and λij is 1 if there is a path connecting directly xi to
yj (they are adjacent in directed graph), except from the case when yi is the
inverse of xi, in this case and all others λi,j is zero.

Theorem 2.2. The map which sends an arbitrary black-and-white finite
double graph F ∈ E to the group K0(ÕF ) in AG can be extended to the
functor F from E to AG. This functor is continuous, i.e. it commutes with
direct limits.

Proof. First we should show that defined above map which sends E to
K0(ÕE) is indeed a functor of those categories, i.e. morphisms of graphs
are mapped into morphism of abelian groups. Let ψ : En → Fn be an
elementary morphism of black-and-white graphs. We should ensure, that
if we have any relation on elements of the group F(E) : P (x1, ..., xk) =
0, xi = F(yi), yi ∈ E, then P (ψ(y1), ..., ψ(yk)) = 0. This is the case since
the group F(F ) has the set of generators, which includes generators of F(E)
and amongst defining relations of F(F ) we have got all defining relations
of F(E). This is ensured, by the way we have constructed the graphs and
associated the groups to them.

Now we can see that for an infinite graph E, F(E) = coker(Id− ΦE) =
F(limEn) = limF(En). This follows from the fact that defining relations
of each F(En) is a subset of the defining relations of the group F(E) =
coker(Id− ΦE).

Combining this theorem with the proposition 2.1 we have the following.

Corollary 2.3. Any K0 group of locally finite infinite graph E is a direct
limitgroups corresponding to finite subgraphs from category E .
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3 K0 calculations in the case of finite Betti

number

After we have proved in previous sections, the existence of the direct limit
in AG which express the value of K0 for an arbitrary locally finite, infinite
graph, we turn to concrete calculation in the case when the Betti number of
that graph is finite.

First of all, we shall show that in any locally finite graph, we can perform
any finite number of edge contractions, without changing K0.

Theorem 3.1. Let the graph E ′ be obtained from E by contraction of one
non-loop edge x and its inverse x̄. Then the groups K0(OE) and K0(O′E) are
isomorphic.

Proof. We will obtain the fact that the group K0 is preserved under the edge
contraction as a corollary of the following general lemma, which might be
interesting in its own right.

Lemma 3.2. Let G, H be abelian groups and T : G ⊕ H → G ⊕ H a
homomorphism, such that Tx− x ∈ G for any x ∈ H. Let P : G⊕H → G
be a homomorphism such that P |G = idG and Px = x− Tx, x ∈ H.

Then for T̃ : G→ G = P ◦ T |G the following is true:
G⊕H/T (G⊕H) ' G/T̃ (G)

Proof. (of lemma 3.2).
Define a homomorphism J : G/T̃ (G)→ G⊕H/T (G⊕H) as follows:

J(u+ T̃ (G)) = u+ T (G⊕H).

The definition is correct, e.i. T̃ (G) ⊆ T (G ⊕ H). Let u ∈ G and Tu =
y + w, y ∈ H,w ∈ G. Then T̃ u = P ◦ Tu = P (y + w) = y − Tu + w =
Tu− Ty ∈ T (G⊕H).

The map J is injective. For u ∈ G, u ∈ T (G ⊕ H) implies u ∈ T̃ (G).
Indeed, let u = T (w + y) ∈ G for w ∈ G, y ∈ H. Since u = Tw + Ty =
Tw + y + Ty − y, we can present Tw as Tw = (u + (y − Ty)) − y, and
u + (y − Ty) ∈ G, y ∈ H. In 1. above we show that for w ∈ G, T̃w =
Tw = Th, for h being an H-component of Tw: Tw = w′+h, w′ ∈ G, h ∈ H.
Due to the above presentation of Tw its H-component is −y, so we have:
T̃w = Tw + Ty = T (w + y), hence indeed T (w + y) ∈ T̃ (G).

The map J is surjective, i.e. G+T (G⊕H) = G⊕H. Indeed, for x ∈ H,
there exists u ∈ G : u = Tx−x. Then for w+x ∈ G⊕H, w+x = Tx−u+w,
where w = u ∈ G and Tx ∈ T (G⊕H).
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Now to prove theorem 3.1 for the edge x and its inverse x̄ apply the
lemma 3.2 for direct sum of copies of Z: G = Z|E1\{x,x̄}| and H = Z2. As
an operator T (T̃ ) we should take T = Id − ΦE (T̃ = Id − ΦE′), where Φ
defined by the formula (*).

We are now in a position to start the proof of the main theorem.

Theorem 3.3. Let E be a locally finite connected graph with the finite
first Betti number β(E) and the brunching number γ(E). Then K0(OE) =
Zβ(E)+γ(E).

Proof.
Type I. If the brunching number γ(E) is finite, by a finite number of steps
we can reduce our graph to the rose with β(E) petals and γ(E) outgoing
simple infinite chains. In this case it is easy to calculate directly the group
K0(OE) = coker(Id − Φ), generated by relations readable from the graph.
Indeed, let us denote variables corresponding to β(E) = m petals (and their
inverses) by u1, ..., um, ū1, ..., ūm and variables corresponding to γ(E) = n
edges outgoing directly from the vertex of the rose (and their inverses) by
x1, ..., xn, x̄1, ..., x̄n. Next, edges (and their inverses) in each chain will be

x
(1)
i , ..., x

(k)
i , ..., x̄

(1)
i , ..., x̄

(k)
i ..., i = ¯1, n. Then K0 will be the quotient of the

free group generated by the set Ω = {x(k)
i , x̄

(k)
i , i = ¯1, n, uj, ūj, j = ¯1,m},

subject to the relations defined by the formula K0(OE) = coker(Id − Φ).
For each edge e ∈ E we will have one relation. Note that relation written
for edges belonging to chains will give x

(1)
i = x

(2)
i = ..., i = ¯1, n. So after

that we actually have a finite number of relations for variables xi, x̄i, i =
¯1, n, uj, ūj, j = ¯1,m. Namely,

∑
j 6=k

(uj + ūj) +
n∑
l=1

xl = 0, 1 6 k 6 m,

x̄l =
m∑
j=1

(uj + ūj) +
∑
r 6=l

xr, 1 6 l 6 n,

Where the first group of relations correspond to petals and the second to
edges outgoing (incoming) from (to) the rose. It is a compete set of defining
relations for K0 on the set of generators Ω.
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For convenience let us denote by wj = uj + ūj. Now write down the
matrix of the above system of linear equations on variables wj, xi, x̄i, j =

¯1,m, i = ¯1, n. 

0 . . . 1 1 . . . 1 0 . . . 0
. . . . . . . . .

1 . . . 0 1 . . . 1 0 . . . 0
1 . . . 1 0 . . . 1 −1 . . . 0

. . .
. . . . . .

1 . . . 1 1 . . . 0 0 . . . −1


By adding last n columns to the first m we can make zeros in the lower

n× (m+ n) block of the matrix. Then using the middle block of n columns
we can transform the upper left m× (m+ n) corner into

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0

. . .

0 1 . . . 1 0 . . . 0


This shows that we have m+ n free variables: u1, ..., um,x̄1, ..., x̄n. So we

see, that K0(OE) = Zβ(E)+γ(E) in this case.
Type II. The second case is when the number γ(E) is infinite. Here we can

not write down a finite number of equations on the finite number of variables,
which will define a group, but we can show what will be the system of free
generators of the abelian group K0(OE). The group K0(OE) is defined by
generators corresponding to all edges of the graph, consisting of one rose
with β(E) petals and finite number of outgoing infinite trees. The number
of outgoing trees can not be infinite, because of locally finiteness condition.

Let us consider generators corresponding to petals of the rose: u1, ..., um,
ū1, ..., ūm and edges coming out directly from the rose vertex: x1, ..., xn,
x̄1, ..., x̄n. We have the following equations on them:

∑
k 6=j

(uk + ūk) +
n∑
l=1

xl = 0, 1 6 j 6 m

x̄j =
m∑
k=1

(uk + ūk) +
∑
l 6=r

xl, 1 6 j 6 n
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These are the same as above and gives us n+m free variables: u1, ...um,
x1, ..., xn. Then consider for any piece of tree of the shape

b1

↗
a −→ • ...

↘
bl

equations which we have to write for edges a and bj, j = 1̄, l, incoming for
the fixed vertex (a) and those outgoing from it, which belongs to an infinite
path. It is the following system.

a = b1 + ...+ bl

b̄j = ā+ b1 + ...+ b̂j + ...+ bl

So, on such a step we get l− 1 new free variables, corresponding to l− 1
new infinite pathes along the graph, we got in this vertex. If we sum up
all new free variables, we have in all vertices of outgoing trees, we arrive to
γ(E) additional variables. Note that again, if an outgoing chains are finite,
then variables corresponding to their edges are just zero. So, we see that in
this case also K0(OE) = Zβ(E)+γ(E), and here it is a direct sum of countably
infinite number of copies of Z, and the set enumerating these copies is in
1− 1 correspondence with infinite outgoing pathes. By this the proof of the
theorem is completed.

4 The Whitehead group expressed via the

first Betti number

In the original paper due to Cuntz and Krieger [4] it was shown that K0 and
K1 of the Cuntz-Krieger C∗- algebra OA, associated to any finite 0-1 matrix
A are, respectively, co-kernel and kernel of the map (Id− At) : Zn → Zn.

This fact was later generalized in [6] to the Cuntz-Krieger C∗- algebra
OA, associated in the same way to infinite 0-1 matrix A, with finite number
of ’ones’ in any row. The graph algebra we consider, as it is mentioned
in Introduction, is a Cuntz-Krieger algebra associated to an infinite matrix,
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constructed from the graph by certain rules. So this result is applicable here
and making use of this we will prove the following.

Theorem 4.1. Let E be a locally finite connected graph with the finite first
Betti number β(E), and OE is an associated C∗- algebra (via Bass-Hashimoto
operator). Then K1(OE) = Zβ(E).

Proof. The proof will be divided into several steps.

First of all, we shall show that in any locally finite graph, we can perform
any finite number of edge contractions, without changing K1.

Theorem 4.2. Let the graph E ′ be obtained from E by contraction of one
non-loop edge x and its inverse x̄. Then the groups K1(OE) and K1(OE′)
are isomorphic.

Proof. Let us ensure the following fact of linear algebra.

Lemma 4.3. Let G, H be abelian groups and T : G ⊕ H → G ⊕ H a
homomorphism, such that Tx− x ∈ G for any x ∈ H. Let P : G⊕H → G
be a homomorphism such that P |G = idG and Px = x− Tx, x ∈ H.

Then for T̃ : G→ G = P ◦ T |G the following is true: KerT ' KerT̃ .

Proof. (of lemma 4.3)
Take an element u + y ∈ KerT , with u ∈ G, y ∈ H. Let Tu = w + x,

where w ∈ G, x ∈ H. Then T̃ u = x−Tx+w = Tu−Tx, so Tu = T̃ u+Tx.
Now substituting that to T (u+y) = 0, we have 0 = T (u+y) = T̃ u+T (x+y).
From this we see first that T̃ u = −T (x+ y).

Denote G and H components of an element r ∈ G ⊕ H by rG and rH
respectively, so r = rG + rH , for rG ∈ G and rH ∈ H. Now comparing G and
H components of left and right hand side of T̃ u = −T (x+y) = −(x+y)−gx+y,
we have that x + y = 0. Therefore T̃ u = −T (u + y) and u + y ∈ KerT iff
u ∈ KerT̃ .

The proof of the theorem 4.3 will follow as a corollary from this lemma
if we put G = Z|E1\{x,x̄}| and H = Z2. As an operator T (T̃ ) we should take
T = Id− ΦE (T̃ = Id− ΦE′), where Φ defined by the formula (*).

Theorem 4.2 from the first step, allows us to reduce calculation ofK1(OE),
where E is a locally finite graph with Betti number β(E) to the K1 for the
graph Γ, which is a rose with β(E) = β(Γ) petals and a tree, rooted in the
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vertex of the rose, with finite number of branches outgoing from each vertex,
due to locally finiteness condition.

Now the second step in the calculation of the Whitehead group will be
a calculation for the graph Γ. We need to calculate K1(OΓ) = KerTΓ =
Ker(Id− ΦΓ), where ΦΓ defined by formula (*).

For the graph Γ we can present the set of all edges as a disjoint union of
three sets:

Γ1 = Γ↑ t Γ↓ tR,

where Γ↑ is the set of edges from the tree, directed towards the rose, Γ↓

is the set of edges of the tree directed off the rose and R is the set of petals
of the rose.

Let ξ ∈ KerTΓ, ξ =
∑

e∈Γξ
mee, where Γξ is a finite set of edges and

me ∈ Z \ {0}.
Let us show first that the following is true.

Lemma 4.4. The set Γξ does not contain tree edges in the direction towards
the rose: Γξ ∩ Γ↑ = ∅.

Proof. Consider projection π : Z(Γ) −→ Z(Γ)/Z(Γ′), where Γ′ = Γ↓ t R, then
the composition of our initial map T with π denote by T ′:

Z(Γ) T−→Z(Γ) π−→Z(Γ)/Z(Γ′) ' Z(Γ↑
)

Then T ′/Z(Γ′) = 0 and T ′e = e + f , where f consists of edges which are
higher in the tree (=closer to the rose) then e.

Suppose Γξ ∩ Γ↑ 6= ∅. Consider g ∈ Γξ farthest away from the rose,
ξ = mg + g̃, m ∈ Z \ {0}.

Then

T ′ξ = mg + f + T ′(g̃).

Here f consists from terms corresponding to the edges, closer to the rose
then g. T ′(g̃) consists from terms corresponding to the edges, closer to the
rose then g̃, which are in a turn closer then g. This means that the term mg
can not cancel, and T ′ξ 6= 0, hence Tξ 6= 0. We arrive to a contradiction.

Lemma 4.5. The set Γξ does not contain tree edges in the direction off the
rose: Γξ ∩ Γ↓ = ∅.

12



Proof. Assume Γξ ∩ Γ↓ 6= ∅, and take h ∈ Γξ ∩ Γ↓, farthest away from the
rose. Then

Th = h− (h1 + h2 + ...),

where all hi are further away then h from the rose. Then

ξ = mh+
∑

higi,

m ∈ Z \ {0}, gi closer then h to the rose by the choice of h and gi /∈ Γ↑

by the previous lemma. Therefore

Tξ = mh−m(h1 + h2 + ...) + T (
∑

higi),

and the furthest from the rose edge, which T (
∑
higi) could contain is h.

This means that the term mh1 could not be canceled, Tξ 6= 0 and we arrive
to a contradiction.

Now after above two lemmas we are left with the only possibility, that

Γξ ⊆ R = {u1, ..., un, ū1, ..., ūn}.
Let ξ =

∑n
j=1(mjuj + njūj). We know that

T ūj = Tuj = −
∑
k 6=j

(uk + ūk) +
s∑

=1

xl = w − (uj + ūj),

where for convenience we denote by w = −
∑n

k=1 +
∑s

l=1 xl. Then

Tξ = (
n∑
j=1

(mj + nj))w −
n∑
j=1

(mj + nj)(uj + ūj) = 0.

Since all xl appear in w with coefficient 1 they can disappear only if∑n
j=1(mj + nj) = 0. Hence

Tξ = −
n∑
j=1

(mj + nj)(uj + ūj) = 0.

Since each uj appears in one term only, in order sum to be zero, we should
have mi+ni = 0 for all j. This means ξ ∈ KerT ⇐⇒ ξ =

∑n
j=1 mj(uj− ūj),

mj ∈ Z, thus KerT = Zn, where n = β(Γ). This completes the proof of the
theorem 4.1.
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Remark This result shows that the statement that K1 is a torsion free
part of K0, which holds in case of finite graphs (see [10] or [3]) is false in the
setting of infinite graphs.

Indeed, let E be locally finite infinite graph with finite first Betti num-
ber β(E) and infinite brunching number γ(E). Then K0(OE) ' Z∞ and
K1(OE) ' Zβ(E), so K1(OE) is not isomorphic to the torsion part of K0(OE).
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